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Anorexia nervosa (AN) is a severe eating disorder that primarily affects young women

and girls, and is characterized by abnormal restrictive feeding and a dangerously

low body-mass index. AN has one of the highest mortality rates of any psychiatric

disorder, and no approved pharmacological treatments exist. Current psychological and

behavioral treatments are largely ineffective, and relapse is common. Relatively little basic

research has examined biological mechanisms that underlie AN compared to other major

neuropsychiatric disorders. A recent large-scale genome-wide association study (GWAS)

revealed that the genetic architecture of AN has strong metabolic as well as psychiatric

origins, suggesting that AN should be reconceptualized as ametabo-psychiatric disorder.

Therefore, identifying the metabo-psychiatric mechanisms that contribute to AN may be

essential for developing effective treatments. This review focuses on animal models for

studying the metabo-psychiatric mechanisms that may contribute to AN, with a focus

on the activity-based anorexia (ABA) paradigm. We also highlight recent work using

modern circuit-dissecting neuroscience techniques to uncover metabolic mechanisms

that regulate ABA, and encourage further work to ultimately identify novel treatment

strategies for AN.

Keywords: anorexia nervosa, animal model, activity based anorexia, hypothalamus, dopaminergic pathway, gut

microbiome, GWAS

INTRODUCTION

Anorexia nervosa (AN) is a complex and serious illness primarily characterized by a low body-
mass index (BMI), fear of gaining weight, and body image disturbance. Patients with AN also
frequently engage in compulsive exercise. AN predominantly affects women and girls, with clinical
populations showing a 10:1 female-to-male ratio (1, 2). The onset of illness is typically during
middle to late adolescence, and runs a disabling and chronic course with up to 4% in lifetime
prevalence (3). AN has one of the highest mortality rates of any psychiatric disorder, with a
weighted mortality rate of 5.1 deaths per 1,000 person-years from meta-analysis (4). Relapse is
frequent in individuals with AN despite receiving treatment, with reported rates ranging between
9 and 52% (5). Certain cognitive traits have been associated with AN and precede onset of the
illness, including cognitive rigidity, anxiety, and perfectionism (6). Strong genetic correlations have
been identified between the heritability of AN and other psychiatric disorders, namely obsessive-
compulsive disorder, major depressive disorder, and schizophrenia (1). Thus, elucidating biological
mechanisms in ANmay also shed light on the underpinnings of other related psychiatric conditions
and traits.
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Recent findings from genetic, neuroimaging, metabolic, and
microbiome studies in humans have provided important leads
for animal model studies investigating the metabo-psychiatric
mechanisms underlying AN. For example, a recent GWAS
combining data from the Anorexia Nervosa Genetics Initiative
and the Eating Disorders Working Group identified significant
genetic correlations of AN with metabolic traits and psychiatric
disorders, suggesting that AN should be reconceptualized as
a metabo-psychiatric disorder (1). Low BMI has traditionally
been thought to result from core psychological features of AN,
such as a drive for thinness. Yet, this view has failed to explain
the extreme difficulty that AN patients face in the recovery
and maintenance of a healthy BMI. These novel genetic data
strongly suggest that metabolic traits contribute significantly
to the development of AN (1, 7, 8) and should also be a
target for treatment. Indeed, current treatments focusing only
on nutritional restorations and psychological symptoms have
been largely ineffective (5, 9). Furthermore, neuroimaging studies
have identified alterations in the density of dopamine receptors
in AN (10) which have subsequently been found to alter
metabolism in preclinical studies (11). Future research efforts
into the etiology and treatment of AN should target metabolic
mechanisms gone awry in the disorder to develop novel
treatment strategies.

Preclinical work using animal models to investigate biological
mechanisms underlying core features of AN has not been
prioritized for several reasons. One is the historical focus on
sociocultural factors thought to contribute to eating disorders,
which may make animal models appear unfeasible. Two, the
mistaken perception that an animal model should recapitulate
all aspects of a disorder may also discourage the development
of animal models for studying aspects of AN (12). In fact, the
current approach to developing animal models for studying
neuropsychiatric disorders is to model only an aspect or a
core feature of the disorder, and determine whether the model
exhibits predictive validity (12). Developing a model with a more
narrow use often leads to pragmatic advantages in the conduct
of mechanistic studies, and can also increase the confidence
in the cross-species validity of the model (12). A substantial
increase in animal model work will be required to identify the
metabo-psychiatric underpinnings of AN.

Our review highlights the utility of animal models for
studying the metabo-psychiatric origins of AN. Recent work has
combined the ABA paradigm with other modern techniques
including circuit-dissecting approaches, genetic approaches, and
gut microbiome manipulations. We review recent findings
in this area, and encourage more preclinical work studying
how metabolic mechanisms influence behaviors relevant to AN
(Figure 1).

Abbreviations: ABA, activity-based anorexia; AgRP, agouti-related protein;

AN, anorexia nervosa; ARC, arcuate nucleus; BMI, body-mass index; DA,

dopamine; D1R- and D2R-MSNs, dopamine D1 and D2 receptor expressing

medium spiny neurons; GHS-R1A, growth hormone secretagogue receptor 1A;

GWAS, genome-wide association study; FAA, food anticipatory activity; LHA,

lateral hypothalamus; mPFC, medial prefrontal cortex; NPY, neuropeptide Y;

NAc, nucleus accumbens; SPA, spontaneous physical activity; VTA, Ventral

tegmental area.

Section 1. Overview of Activity-Based
Anorexia
A commonly used biobehavioral animal model for aspects of
AN is the activity-based anorexia (ABA) paradigm. In the
ABA paradigm, rodents exposed to time-restricted feeding and
constant running wheel access rapidly reduce food intake and
bodyweight, and paradoxically develop hyperactivity (13). In
contrast, rodents subjected to the same time-restricted feeding
schedule without access to running wheels maintain body weight
indefinitely. During ABA, rodents develop hypothermia (14, 15),
loss of estrus, and increases in HPA axis activity (16, 17); if
allowed to continue unchecked, ABA results in death (18).
Importantly, the ABA phenomenon is highly conserved across
mammalian species, and makes some accurate predictions about
AN (18). For example, AN typically onsets during adolescence
(6, 7), and younger rodents develop ABAmore readily than older
rodents (19, 20). Furthermore, female rats, and mice are more
vulnerable to ABA than male rodents (18, 21), paralleling the
female preponderance in AN.

The ABA paradigm recapitulates a core feature of AN, which
is a paradoxical response to negative energy balance. In AN,
individuals restrict feeding and engage in compulsive exercise
while in a state of negative energy balance. When exposed
to the ABA paradigm, rodents reduce voluntary food intake,
and increase wheel running even as they progressively lose
weight. The increase in wheel running in the ABA paradigm has
been suggested to reflect increased foraging behavior (22). This
hyperactivity often peaks before food delivery, and is termed food
anticipatory activity (FAA), and has also been reported in AN
patients (23). However, the ABA model does not recapitulate all
aspects of AN. For example, providing high-fat food during the
paradigm prevents the development of ABA (24). Furthermore,
restoration of ad-lib feeding typically results in recovery of mice
to a normal body weight (25), while AN patients do not readily
recover only with presentation of food. Regardless, the ABA
paradigm provides a useful model for a specific aspect of AN,
which is the paradoxical response to negative energy balance
under homeostatic feeding conditions.

Using the ABA model to identify metabolic mechanisms
contributing to AN represents a tailored use of the model, which
may lead to pragmatic advantages and aid in establishing cross-
species validity (12). The ABA paradigm is ideally suited for
assessing metabolic measures, and can be readily performed
within metabolic chambers (26). The utility of the ABA paradigm
for modelling cognitive aspects of AN is less well-established,
although several reports lend support to this idea (27–29).
Finally, the biological processes regulating feeding, activity, and
metabolism are thought to be highly conserved between rodents
and humans (30, 31), further supporting their use for studying
metabolic mechanisms relevant to AN.

Section 2. Use of the ABA Paradigm to
Identify Metabo-Psychiatric Mechanisms
in AN
Most studies using the ABA paradigm have assessed only
basic readouts of metabolic function including bodyweight,
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food intake, and wheel running activity during ad libitum
vs. time-scheduled feeding. Far fewer studies have assessed
metabolic measures more comprehensively. Modern circuit-
dissecting approaches have identified some of the neural circuits
that regulate metabolism in the context of ABA, although
much work remains to be done in this area. Here, we
highlight recent preclinical findings regarding the metabo-
psychiatric mechanisms underlying ABA, including the role of
the hypothalamic nuclei, striatal dopaminergic system, and gut-
brain axis (Figure 2).

The hypothalamus is perhaps one of the most studied
central brain regions which coordinates physiological and
behavioral homeostasis and motivated behaviors including
feeding and foraging (32, 33). It is thereby not surprising
that altered hypothalamic structure and connectivity have been
implicated in the emergence of AN. For example, neuroimaging
studies have described increased connectivity within the arcuate
nucleus (ARC) but decreased connectivity within the lateral
hypothalamus, as well as neurochemical imbalances in AN
patients following a meal (34–36). However, whether these
and other structural and functional changes are a cause or
consequence of AN remains unclear. Animal studies using the
ABA paradigm have since assisted in probing the mechanisms by
which hypothalamic dysregulation contributes to aspects of AN.

Agouti-related protein (AgRP)- and neuropeptide Y (NPY)-
expressing neurons located within the ARC are activated
by energy deficits and promote food-seeking behaviors and
consumption (37). AN patients have been reported to have
elevated plasma AgRP levels (38), and elevated concentrations
of NPY in cerebrospinal fluid (39). In parallel, animals exhibit
significantly higher AgRP/NPY mRNA levels in the ARC during
ABA (40, 41), while intracerebroventricular infusion of NPY
facilitates ABA by increasing running activity and decreasing
food intake (42). Recent work using fiber photometry has
provided novel insights into the role of AgRP neurons in
regulating metabo-psychiatric processes underlying the ABA
phenomenon. For example, Miletta et al. (24) demonstrated
that ablation of AgRP neurons in the early postnatal period
prevents fuel mobilization during ABA conditions, resulting
in reduced running wheel activity and marked weight loss,
whereas chemogenetic activation of AgRP neurons increases
running wheel activity and extends survival in the paradigm.
Furthermore, they also reported that AgRP neuron activity
rapidly decreases with termination of running, revealing a
novel role for AgRP neurons in regulating compulsive running
behavior during ABA. Duriez et al. (40) reported complex effects
of food restriction and running wheel availability onmRNA levels
of AgRP andNPY. Specifically, they reported thatmRNA levels of
AgRP and NPY are increased during short- and long-term food
restriction (2 vs. 10 weeks, respectively), but that the presence
of a running wheel attenuates this increase. Further studies
using modern circuit-dissecting approaches should clarify the
complex role of AgRP and NPY in regulating metabo-psychiatric
mechanisms of ABA.

Located exclusively in the lateral hypothalamus (LHA), orexin
is another key neuropeptide thought to modulate reward,
feeding, and activity (43). Orexin neurons project widely

throughout the brain, and densely innervate the ARC (44).
Plasma orexin-A levels have been reported to be elevated in
untreated ANpatients in some studies (45), and reduced in others
(46). Orexin neuronal activity is rapidly inhibited following
food consumption, while ablation of orexin neurons promotes
overeating and obesity (47). Orexin neuron activity is increased
during FAA (48, 49), and elevated spontaneous physical activity
(SPA), which refers to physical activity notmotivated by a reward.
Furthermore, orexin neuron-ablated mice do not exhibit FAA
when exposed to ABA conditions (49). Higher SPA levels have
been reported to predict greater weight loss during ABA (50).
Furthermore, when AgRP and orexin levels fail to upregulate
during ABA in a rat model of passive stress coping, these rats lose
weight more rapidly (51). More work will be required to clarify
the role of orexin neuron activity in regulating ABA.

A large body of literature has implicated the striatal
dopaminergic system in the etiology of AN. Much of this
evidence comes from human neuroimaging studies revealing
altered striatal function during tasks assessing reward, altered
dopamine (DA) receptor levels, or altered dopamine metabolites
(10, 52, 53). Recently, a small number of preclinical research
studies have implicated the striatal dopaminergic system in
metabolic processes affecting ABA. For example, chemogenetic
excitation of the ventral tegmental area (VTA) to nucleus
accumbens (NAc) pathway in female rats prevents weight loss
during ABA by increasing food intake and FAA, without
altering overall activity (54). Furthermore, hyperdopaminergia
resulting from dopamine transporter knockdown accelerates the
progression of ABA (55). Recently, viral overexpression of the D2
receptor expressing on the medium spiny neurons (D2-MSNs)
of the nucleus accumbens core (D2R-OENAc) was reported to
induce rapid and robust weight loss in female, but not male,
mice during ABA under mild food-restriction conditions. Of
note, this sexually-dimorphic effect was also observed without
running wheel access, and without alterations in food intake. In
addition, D2R-OENAc mice showed robust glucose intolerance
in the intraperitoneal glucose tolerance test (11), confirming
a previous report that D2Rs in the NAc regulate glucose
metabolism (56). Furthermore, experiments using chemogenetic
approaches have revealed a role for cortico-striatal projections
from medial prefrontal cortex (mPFC) to NAc shell in regulating
body weight and activity during ABA (28), and these projections
are modulated by dopamine (57). In summary, these findings
highlight the need for more research to better characterize the
role of striatal dopaminergic dynamics in ABA.

Mesolimbic DAneurons also detect peripheral signals relaying
information regarding appetite and energy intake, such as leptin
and ghrelin. Altered circulating concentrations of the orexigenic
hormone ghrelin and the anorexigenic leptin have been reported
in AN patient (58, 59). Mice treated with ghrelin increased
food intake during ABA, although bodyweight was not affected
(60). Furthermore, plasma ghrelin levels have been positively
correlated with FAA, which can be suppressed by a ghrelin
receptor (GHS-R1A) antagonist (61). Increases in ghrelin and
reductions in leptin levels are thought to drive hyperactivity by
directly altering the activity of dopamine neurons in the VTA
(22). Complex dysfunction of nutrient-sensing systems may play
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a role in AN and involve interactions with the dopamine system,
which regulates behavioral responses to food cues and influences
energy homeostasis.

Section 3. Use of the ABA Paradigm to
Study the Role of the Gut-Brain Axis in AN
The gut microbiota is a complex community of trillions of
microorganisms residing in the gastrointestinal tract, affecting
both physiological and psychological health (62). The gut-
brain axis has drawn more attention in AN research recently,
as a fast growing body of literature suggests that alterations
in gut microbiota might influence features of AN, including
host energy hemostasis, appetite and body weight regulation,
gastrointestinal symptomatology, and neurobehavioral traits
including anxiety (63, 64). AN patients have been reported
to exhibit gut dysbiosis, with imbalances in multiple microbes
(8, 63). Interestingly, gut dysbiosis may be persistent even
after short-term weight restoration in AN (65), suggesting that
disrupted equilibrium of gut microbiota might be a causative
factor in AN. However, the cause-effect relationship between
the gut microbiota and AN still remains unclear. Studies using
animal models will be essential for expanding our understanding
of how the gut-brain axis contributes to AN pathology, beyond
correlative findings.

Recently, preclinical research has substantiated that exposure
to ABA conditions can affect gut microbiota composition
and diversity primarily through metabolic processes induced
by food restriction and the resulting negative energy balance
(66, 67). ABA conditions have also been reported to induce
specific proteome adaptations in gut bacteria favoring ATP
production in response to the energy-restricted state of the
host (68). On the other hand, the mechanisms by which gut
microbiota influence AN risk and trajectory have yet to be
determined. One study explored this direction by transplanting
fecal microbiota derived from AN patients vs. healthy controls
into germ-free mice. Interestingly, gut microbiome derived
from AN patients significantly hindered the recipient mice
from gaining body weight, and reduced in food intake and
food efficiency ratio (body weight gain/food intake). Moreover,
mice receiving fecal microbiota from AN patients also exhibit
elevated anxiety-like behaviors in open field and marble-
burying tests compared to mice receiving fecal microbiota
from controls (69). Another report, in contrast, found no
difference in body weight and lean/fat mass between AN
recipient mice and control recipient mice after 4 weeks of
colonization (70). However, neither study measured bodyweight
or food intake under food restriction conditions, and only
assessed these measures during ad-lib feeding. Studies employing
the same strategy but testing animal recipients in the ABA

FIGURE 1 | Framework for improving the utility of animal models of AN. Leads from human findings can be further tested and refined using animal models to elucidate

the metabo-psychiatric origins of AN, and explore novel treatments. Findings from animal models can also generate testable hypotheses for human studies of AN.

GWAS, genome-wide association study.
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paradigm will be essential to better understand whether the
AN-derived gut microbiota contributes to the development of
AN-like phenotypes.

Section 4. Other Animal Models for
Studying Metabo-Psychiatric Traits in AN
AN has an estimated twin-based heritability ranging from 30–
80%, suggesting a strong genetic component to the risk of
disease development. A recent large-scale GWAS identified
eight significant loci that were associated with AN, including
CADM1, FOXP1, and PTBP2, which are all expressed in the
hypothalamus and other brain regions (1). Yet, these loci still
require fine mapping in order to confirm the involvement of
these genes. Once the functional consequences of these loci
have been determined, genetic mouse models can be produced
that will be essential for identifying AN disease mechanisms.
Furthermore, GWAS could also be performed in mice to identify
loci which regulate ABA, and these could be compared with the
recent GWAS findings in AN.

Prior to the recent GWAS findings in AN, several animal
studies reported mutations which induce a phenotype similar to
AN. Early work reported that the anx/anx mice model mimics
aspects of AN, including suppressed appetite and food intake,
emaciated appearance, and premature death (71). Notably,
the spontaneous anx mutation identified in mice induces
abnormalities within the hypothalamus, involving an aberrant
AgRP/NPY system (64, 72). Additionally, anx/anx mice display

decreases in hypothalamic activity accompanied by impaired
glucose utilization and energy metabolism (73). However, it
remains unknown which gene is responsible for the phenotype
of anx/anx mice, or whether AN patients show variation within
the responsible gene.

A recent study reported that brain-specific knockout of

SIRT1, a metabolic regulator responding to stress and nutrient

availability, protects mice from ABA, while overexpression
promotes the development of ABA including weight loss,

hyperactivity, and anxiety (74). Although SIRT1 has not been
identified as a risk gene for AN in large-scale human genetic

studies, these findings are consistent with metabo-psychiatric

underpinnings of AN.
Adverse social and developmental experiences have been

identified as risk factors for AN, and several animal models,
especially maternal separation-based protocols, have been
generated to examine the links between environmental influence
and AN-related phenotypes (9). For example, maternal
separation combined with time-restricted feeding alters the
expression of genes involved in lipid and energy metabolism
(75). Intriguingly, post-weaning isolation rearing induces FAA
only in female mice during ABA (76), and maternal separation
was found to upregulate DA expressing cells in the VTA on ABA
rats in a sex-dependent manner (77). Furthermore, prenatal
stress was reported to accelerate the progression of weight loss
during ABA in passive stress-coping rats due to impairments
of AgRP and orexin gene upregulation. Passive stress-coping

FIGURE 2 | Schematic representation of rodent brain circuits and neural substrates implicated in the regulation of activity-based anorexia. Solid lines indicate

established circuits, and dashed lines show potential circuits regulating the ABA phenomenon through effects on food intake, locomotor activity, FAA, or metabolic

function. Primary neural substrates are listed in accordance with their brain regions. mPFC, Medial prefrontal cortex; NAc, Nucleus accumbens; ARC, Arcuate

Nucleus; LHA, Lateral hypothalamus; VTA, Ventral tegmental area; NPY, Neuropeptide Y; AgRP, Agouti-related peptide; GLUT, glutamate; GABA,

gamma-aminobutyric acid; DA, dopamine; D1R- and D2R-MSNs, dopamine D1 and D2 receptor expressing medium spiny neurons.
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rats are also suggested to have innate impairments in leptin and
ghrelin in responses to starvation, which may underlie decreased
food intake and associated heightened body weight loss during
ABA (51). Prenatal stress was also found to accelerate ABA
progression through the hypomethylation of placental miR-340,
a sexually dimorphic regulator of nutrient transporters (78).
Thus, environmental factors can induce epigenetic changes
leading to metabolic alterations in rodent models, and thus may
also be involved in triggering AN symptomatology in humans.
In addition to the genetic and environmental models of AN
highlighted here, others have been systematically reviewed
elsewhere (29).

CONCLUSION AND FUTURE
PERSPECTIVE

In summary, animal models are undoubtedly critical for
identifying the metabo-psychiatric basis of AN and accelerating
the discovery of novel treatments. Limitations to animal
models for investigating AN include their inability to mimic
certain psychological factors of the disorder including body
image disturbances and fear of gaining weight. However, these
limitations do not negate their usefulness for identifying the
metabo-psychiatric mechanisms underlying the disorder. In
particular, the ABA paradigm remains a promising and useful
experimental preparation, especially when used in combination

with modern circuit-dissecting techniques. Future research
should pursue how traditionally viewed distinct circuits for
metabolic regulation vs. psychiatric phenotypes interact to
produce AN-like phenotypes. In addition, the development of
new genetic and epigenetic animal models based on recent
GWAS findings should have far-reaching impact. Another
essential feature of AN and the ABA phenomenon which requires
further mechanistic study is the robust sex difference in which
females show far greater vulnerability. Indeed, recent work
has revealed striatal manipulations which result in robust sex
differences in vulnerability to ABA (11). In conclusion, animal
models will be essential for identifying metabo-psychiatric
mechanisms underlying vulnerability to AN, and for identifying
the role of newly discovered genetic variants and gene pathways
in AN.
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