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Diabetes mellitus and the associated complications are metabolic diseases with high
morbidity that result in poor quality of health and life. The lack of diagnostic methods for
early detection results in patients losing the best treatment opportunity. Oral
hypoglycemics and exogenous insulin replenishment are currently the most common
therapeutic strategies, which only yield temporary glycemic control rather than curing the
disease and its complications. Exosomes are nanoparticles containing bioactive
molecules reflecting individual physiological status, regulating metabolism, and repairing
damaged tissues. They function as biomarkers of diabetes mellitus and diabetic
complications. Considering that exosomes are bioactive molecules, can be obtained
from body fluid, and have cell-type specificity, in this review, we highlight the multifold
effects of exosomes in the pathology and therapy of diabetes mellitus and
diabetic complications.

Keywords: exosomes, biomarkers, diabetes mellitus, therapy, diagnosis, mesenchymal stem cells
1 INTRODUCTION

Exosomes are membranous extracellular vesicles (EVs) first discovered in 1983; for several years,
they have been described as organelles removing metabolic waste out of cells (1). Exosomes can be
isolated from body fluids such as blood, urine, cerebrospinal fluid (CSF), amniotic fluid, and saliva,
and from different cell types in vitro such as stem cells, dendritic cells, mast cells, and T cells (2, 3).
Recent studies on exosomes extracted from body fluid in vivo and culture media in vitro have shown
that they can provide information about the tissues or cells of their origin and that they act as
messengers in cell–cell communication and deliver bioactive molecules such as proteins and nucleic
acids, apart from removing cellular waste (4, 5). These studies suggest that exosomes play important
roles in non-invasive diagnosis (6) and impaired tissue repair (7).

Diabetes mellitus (DM) is a metabolic disease with high morbidity. It significantly deteriorates
the quality of health and life. Early diagnostic methods for diabetes remain lacking, resulting in
patients losing the optimal treatment opportunity, which increases the risk of diabetic complications
(8). Current therapeutic options include oral hypoglycemic drugs or insulin injections, which
provide temporary blood glucose level control; however, these therapies cannot prevent diabetic
complications and are associated with adverse effects such as hypoglycemia (9). In this review, we
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summarize the recent evidence on exosomes as biomarkers and
therapeutic factors for DM and its complications in
clinical practice.
2 INTRODUCTION TO AND
CHARACTERIZATION OF EXOSOMES

Exosomes are microvesicles released by cells into the
extracellular space, sized around 30–200 nm. Generally, the
size of exosomes is at the nanometer level, and the unit for
detecting the concentration of exosomes is units/microliter. They
can be recognized as a heterogeneous population of membrane-
bound structures (“cup-like” or “dish-like”) under a transmission
electron microscope (10). Chemical or physical stimulations
such as cytokines, unesterified cholesterol, thrombin, tobacco
smoke extract (11, 12), hypoxia, and shear stress activate or
induce cell apoptosis, which results in the budding of the
endosomal membrane, forming multivesicular bodies (MVBs).
MVBs and the plasma membrane fuse and finally lead to the
release of exosomes (13, 14). Exosomes can be released by most
cell types such as cancer cells, stem cells, skeletal muscles cells,
mast cells, dendritic cells, and lymphocytes. The most common
components in the evaluation of exosomes are the following
categories: functional miRNA, a small amount of mRNA, long
non-coding RNA (lncRNA), and specific proteins (such as
cytokines and growth factors) and other biologically active
substances, which are protected from hydrolase activity by the
lipid from the original cells and the membrane structures,
allowing exosomes to act as cell communication messengers
and influence biological function in target cells by fusion,
endocytosis, and receptor–ligand interaction (6, 14–17). These
are not total components and just one of the components.
Exosomes can be extracted from the serum, urine, cerebral
spinal fluid, saliva, and bronchiolar lavage fluid (2, 18). The
level of exosomes is generally through the detection of their
morphology, namely, particle size and concentration. Three
main methods are used: morphology (electron microscopy),
particle size (diameter particle analysis), and marker protein
(WB) (19). Exosome density ranges from 1.13 to 1.21 g/ml,
allowing the use of the sucrose-deuteroxide density gradient
separation method to isolate them (20). In addition, exosomes
can also be extracted using ultra-centrifugation or the ExoQuick
exosome precipitation solution (8, 21). CD9, CD63, and CD81
are the accepted surface markers on exosomes for identification
using Western blotting (20), quantitative RT-PCR, nucleic acid
sequencing, enzyme-linked immunosorbent assay (ELISA), and
flow cytometry (FCM).

As exosomes are stable and cell-type specific and can be
isolated non-invasively/minimally invasively, they have been
extensively studied, particularly in tumorigenesis (22–25) and
diagnosis of DM and diabetic complications. Physiologically,
exosomes can repair tissue damage, particularly exosomes
derived from stem cells (7, 20, 26, 27). Pancreatic, vascular,
kidney, nervous, and skin injuries are commonly associated with
DM onset and diabetic complications (28–31). Exosomes can
physiologically contribute to the repair of such injuries.
Frontiers in Endocrinology | www.frontiersin.org 2
3 EXOSOMES AS THE POTENTIAL
BIOMARKERS OF DIABETES MELLITUS
AND DIABETIC COMPLICATIONS

3.1 Introduction to Diabetes Mellitus
DM mainly includes type 1 DM (T1DM) and type 2 DM
(T2DM). Under physiological conditions, fasting blood glucose
levels should be 3.9–6.1 mM given normal secretion of insulin
and tissue insulin sensitivity. Various factors such as genetic
inheritance, viral infection, unhealthy lifestyle, and other
physical or chemical damages lead to b-cell destruction,
impaired insulin secretion, and loss of peripheral tissue insulin
sensitivity, finally resulting in a high blood glucose level (28).
T1DM accounts for 10% of DM cases and is characterized by
absolute insufficiency of insulin, often presenting with symptoms
such as thirst, weight loss, and polyuria. T2DM, characterized by
insulin resistance in target tissue, relatively insufficient insulin
secretion, and subsequent b-cell dysfunction, is often non-
symptomatic; and patients with T2DM seek medical care only
for complications such as vision loss, heart attack, or limb
gangrenes (28, 32). The frequently used diagnostic methods for
diabetes include fasted or random blood glucose level
measurement for preliminary screening, homeostatic model
assessment—insulin resistance (HOMA-IR), oral glucose
tolerance tests (OGTTs), intraperitoneal glucose tolerance test
for detecting the sensitivity of peripheral tissues to glucose and
insulin, serum insulin level, homeostatic model assessment b
(HOMA-b) and insulin release tests for determining the function
of b cells, and glycated hemoglobin (HbA1c) for indicating the
blood glucose level for the previous 8–12 weeks (28, 33).

3.2 Introduction to Diabetic Complications
A chronic high blood glucose level disrupts homeostasis, causes
oxidant stress, and induces microvessel, nervous, and immune
system damage, finally exacerbating the development of diabetic
complications (34). Cardiomyopathy is induced by an increased
fatty acid metabolism, reduced myofilament Ca+ sensitivity,
mitochondrial dysfunction, oxidative stress, apoptosis, and
fibrosis of diabetic cardiomyocytes (35–37). Pathologic glucose
metabolism also damages the blood vessels structurally and
functionally, resulting in apoptosis and fibrosis in microvessels,
inducing diabetic nephropathy, glomerular atrophy, renal
fibrosis, renal dysfunction, and renal failure (29, 38). In the
retina, microvessel apoptosis and paraplasm may also result in
microaneurysms and hemorrhage, which are diagnosed as
diabetic retinopathy and finally cause vision loss (30). Poor
glucose control induces peripheral neuropathy and peripheral
vascular disease combined with structural deformities, and
environmental factors and compromised immunity lead to the
development of diabetic foot (31).

Furthermore, heart attack, vision loss, renal dysfunction, and
refractory wound healing are often apparent before DM
diagnosis, and these symptoms indicate significant organ
injury. Therefore, early detection of DM and diabetic
complications is crucial; however, no definitive methods of
early diagnosis exist (28).
October 2021 | Volume 12 | Article 756581
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3.3 Potential of Exosomes in Non-Invasive/
Minimally Invasive Diagnosis
Exosomes are a medium of cell–cell communication and carry
several bioactive substances from the original cells including
proteins, RNA, DNA, and lipid derivatives (6, 39, 40); they have
been studied in both physiological and pathological circumstances
such as exercise, cancer, neurodegenerative disorders, and
metabolic diseases (41–44). DM and diabetic complications are
systemic diseases and affect several organs. The following factors
allow the potential use of exosomes in the diagnosis of systemic
diseases: 1) exosomescanbederived fromthe serum,urine, andCSF
and contain several bioactive materials like proteins, nucleic acids,
and lipids, which can provide information about almost the entire
body (14, 45–47). Urine and serum are the common specimen
sources of exosomes inDM and associated complication diagnosis;
the collection of urine is quite convenient, which can be operated by
patients themselves non-invasively; and the collection of blood or
CSF is minimally invasive, which can cause no obvious discomfort;
2) exosomes are relatively stable and allow prolonged storage given
their membranous structures, which provide structural integrity to
bioactive molecules; this feature makes sure of the authenticity and
accuracy of results in subsequent tests in that the bilayer structure
can avoid the degradation of different kinds of enzyme such as
proteolytic enzyme or RNase (48); 3) analysis techniques such as
liquid chromatography–mass spectrometry (LC/MS), protein or
gene chip analysis, liquid biopsy, FCM, and magnetic bead-based
analysis have sufficiently matured to allow using exosomes or tests.
The LC/MS can be used to analyze the type andquantity of proteins
or metabolites, and genetic sequencing is an important tool of
nucleic acidanalysis, arewhich contained inexosomesderived from
body fluid of DM or related patients. Besides,Western blotting and
qRT-PCR can be used to verify the correlated data in different
groups (48–51); 4) several methods for isolation of exosomes exist
with acceptable costs (Table 1). Ultra-centrifugation is the gold
standard method for exosomes isolation, which can promise the
highest purity; however, the facility request and operating steps are
quite tedious, and the output is quite low; these characteristics result
in the low inspection efficiency, which is not clinically applicable
(44–46). Sucrose/heavy water density gradient is the improved
method of ultra-centrifugation, which increases the output of
exosomes, but the steps are still very cumbersome (51). Exosome
isolation kit is the most common and convenient method, which
has high yield, but the high yield is built on the sacrificing purity
(44). In addition, several other methods develop gradually such as
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magnetic bean sorting, filter device, and flow sorting; in this
manners, exosomes can be captured accurately depending on the
expensive equipment and consumables and will be the mainstream
approach in the future (48, 52–54).

Herein, we present a review of the recent advances in the use of
exosomes as potential early diagnostic biomarkers (Table 2) of DM
and diabetic complications in different ways, particularly of the
recent ones, and the detailed information will be described,
as follows.

3.3.1 Diabetes Mellitus and Diabetic Complications
Result in a Change in Exosome Count
The count of exosomes derived from circulating cells differs
significantly between those with diabetes and those without, as
chronic high glucose levels result in inflammatory cell activation
and endothelial cell apoptosis (74). Meta-analyses have revealed a
notable increase in circulating exosomes released by platelets,
monocytes, and endothelial cells in diabetes; however, exosomes
from leucocytes do not differ between patients with diabetes and
controls (57, 58). A high glucose concentration can induce a
threefold increase in exosomes from endothelial cells (59). A
study reported that the count of total exosomes isolated from
gingival crevicular fluid of pregnant women who developed
gestational DM (GDM) later in pregnancy was significantly
higher than in normoglycemic pregnant women (75). In diabetic
nephropathy, urinary podocyte exosome counts are higher in
patients with T2DM, preceding changes in other biomarkers such
as urine albumin or nephrin (an early biomarker of glomerular
injury) (76). The exosome counts can be assessed using NanoSight
or FCM. BothNanoSight and FCMare experimentalmethods used
to evaluate exosomes. NanoSight technology can detect the size
distribution and concentration of purified exosomes through
nanoparticle tracking analysis (NTA) (77–79). FCM can be used
to observe the number of exosomes and their surface markers (80).
It also canbeused to identify various exosomal subpopulations (81).
The detection of exosomes in the disease through the above
techniques may be the most easily accessible method for early
screening of DM or diabetes complications.

3.3.2 Differences in Exosome Contents Between
Individuals With or Without Diabetes
Although the contents of exosomes between patients with DM
have also been reported to vary, the difference is significant in case
of diabetic complications. Exosomal proteins derived from body
TABLE 1 | Methods of exosome isolation and evaluation.

Method Principle Advantage Disadvantage Reference

Ultra-centrifugation Special density Gold standard for vesicle isolation, effective, low cost Laborious, low yield (45–47)
Sucrose/heavy water density gradient Special density Effective, low cost Laborious, low yield, (20, 52)
Exosomes isolation kit Special density Convenient, efficient Low purity and high cost (45, 47, 50)
Magnetic beans
sorting

Immunoreaction High precision, direct analysis target molecular Laborious, high cost (49)

Filter device Special diameter High precision, direct analysis of target molecules High cost (53)
Flow sorting Immunoreaction High precision, direct analysis of target molecule Laborious, high cost (54, 55)
PEG (polyethylene glycol) Special density Effective Low purity, high cost (56)
O
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fluids of patients with DM differ; for example, dipeptidyl
peptidase-IV (DPP IV) that activates glucagon-like peptide-1
(GLP-1) is associated with DM. In addition, the microvesicle-
bound type is the major form of DPP IV in urine, which is
significantly higher among those with T2DM than among
controls (38). The levels of Wilms tumor protein 1 in urinary
exosomes are significantly higher in patients with diabetes with
proteinuria, which implies that exosomes can be early biomarkers
of podocyte injury (60). The changes in miRNA levels can be
detected also in exosomes in diabetes patients with and without
Frontiers in Endocrinology | www.frontiersin.org 4
diabetic complications. For example, Lange et al. found that the
level of miR-16 was lower in the urine of patients with diabetic
nephropathy than of healthy controls (65). Individuals with
T2DM and T2DM-associated microvascular complications have
a significantly higher level of miR-7 in serum-derived exosomes
than do individuals without. Accordingly, the changes in these
biomarkers in exosomes precede organ-level changes and provide
more specificity than whole urine or blood, which further
consolidates the potential role of exosomes in early diagnosis of
DM and diabetic complications (Figure 1).
TABLE 2 | Exosomes derived from body fluid can act as novel biomarkers for early diagnosis of DM and diabetic complications.

Disease Target
content in
exosome

Sample Method Scientific mechanism Reference

T2DM Counts of cell
derived
exosomes ↑

Serum Flow
cytometry
meta-
analysis

1. Total annexin V-positive blood cell microparticles—procoagulant activity could be involved
in vascular complications 2. Endothelial microparticles stimulated by elevated glucose change
their molecular composition and increase their biological activity, which may lead to
progressive endothelial damage and subsequent cardiovascular complications in diabetes

(57–59)

Diabetes
nephropathy

Counts of cell
derived
exosomes ↑

Urinary Flow
cytometry

MiR-26a-5p from adipose-derived mesenchymal stem cell-derived EVs protect against DN

Dipeptidyl
peptidase-IV ↑

Urinary ELISA The urinary level of microvesicle-bound microvesicle-dipeptidyl peptidase-IV is associated with
the severity of diabetic kidney disease

(38)

Wilms tumor-1
↑

Urinary Western
blotting

Among podocyte‐derived signal transduction factors in urinary exosomes, WT1 mRNA levels
reflected damage of diabetic glomeruli in the patients

(60)

AMBP, MLL3
↑VDAC1 ↓

Urinary LC-MS/MS Comparing DN urine exosomes and healthy controls, it was discovered in a panel of three
proteins (AMBP, MLL3, and VDAC1) that they were differentially found in urinary exosomes
from DN patients

(61)

MiR-130, miR-
145, miR-155,
miR-424 ↑

Urinary TaqMan
qPCR

High glucose will stimulate mesangial cells and increase the content of miR-145 in mesangial
cells and their derived exosomes

(62)

Mitochondrial
DNA ↓

Urinary Intrarenal
Gene
Expression
Analysis

Urine exosomes from patients with diabetes and CKD had less mitochondrial DNA, and
kidney tissues from patients with diabetic kidney disease had lower gene expression of
PGC1a

(63)

Elf3 ↑ Urinary Western
blotting

AGE treatment induced the secretion of Elf3-containing exosomes from cultured podocytes,
which was dependent on the activation of the TGF-b-Smad3 signaling pathway

(64)

MiR-16 ↓ Urinary RT-qPCR MiR-16 identified as the most stable endogenous reference gene in data set, making it a
suitable endogenous reference gene for miRNA studies of urinary exosomes derived from
CKD patients

(65)

Gelatinase
↓ceruloplasmin
↑

Urinary ELISA Gelatinase (decreased activity) and ceruloplasmin (increased levels), in the urinary exosomes
of diabetic kidney patients were in agreement with the alterations of these two proteins in the
kidney tissue

(66)

Diabetic
cardiomyocytes

Counts of
exosomes ↑

Blood Flow
cytometry

Exosomes from diabetic rats no longer activated the ERK1/2 and HSP27 cardioprotective
pathway and were no longer protective in a primary rat cardiomyocyte model of hypoxia and
reoxygenation injury. Exosomes from diabetic plasma have lost the ability to protect
cardiomyocytes, but protection can be restored with exosomes from non-diabetic plasma

Hsp20 ↓ Serum LC-MS/MS Elevation of Hsp20 in cardiomyocytes can offer protection in diabetic hearts through the
release of instrumental exosomes

(67)

MiR-320 ↑ Serum TaqMan
qPCR

Cardiomyocytes exert an anti-angiogenic function in type 2 diabetic rats through exosomal
transfer of miR-320 into endothelial cells

(68)

MiR-126 ↓ Serum TaqMan
qPCR

MiR-126 targets insulin receptor substrate (IRS)-1 expression via PI3K/Akt signaling pathways
suggests that it is involved in IR modulation

(69)

MiR-7 ↑ Serum RT-qPCR MiR-7 was demonstrated to be involved in b-cell dysfunction and insulin secretion (70)
Diabetic Charcot
neuroarthropathy
(CN)

Counts of
exosomes ↑

Plasma Flow
cytometry

The concentration of EVs is related to elevation of markers of inflammation (CRP and foot
temperature difference) in acute diabetic CN

(71)

Gestational
diabetes

Counts of
endothelial cell
exosomes ↑

Serum,
plasma

Western
blotting,
RT-qPCR

Exosomal Ang2 secretion is regulated by the PI3K/Akt/eNOS and syndecan-4/syntenin
pathways

(72, 73)
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4. EXOSOMES AS A POTENTIAL
THERAPEUTIC TARGET FOR DIABETES
MELLITUS AND DIABETIC
COMPLICATIONS

4.1 The Disadvantages of Traditional
Treatment for Diabetes Mellitus and
Diabetic Complications
Herein, we focus on common therapeutic strategies for the
treatment of DM and its complications (Table 3) apart from
lifestyle optimizations such as diet control and physical exercise.
Insulin injection is the most important therapeutic approach in
Frontiers in Endocrinology | www.frontiersin.org 5
the treatment of DM and diabetic complications. However, if its
dose is not precisely controlled, it can induce life-threatening
hypoglycemia (32, 97). Oral hypoglycemic drugs also play key
roles in blood glucose level management. Hypoglycemics have
been divided into several types depending on their mechanism of
blood glucose regulation. For instance, metformin can increase
peripheral tissue insulin sensitivity, whereas sulfonylureas can
stimulate insulin secretion. Of relevance, these hypoglycemic
drugs have adverse effects depending on the mechanism of blood
glucose regulation, such as gastrointestinal tract response,
hypoglycemia, hypoleucocytosis, hemolytic anemia, increased
risk of major cardiovascular events, and weight gain (83–85).
There is a correlation between exosomes and traditional
TABLE 3 | The common therapeutic strategies and disadvantages for the DM and its complications.

Disease Therapy Treatment principle Adverse effect Reference

T1DM Insulin Exogenous insulin improves glucose metabolism Substandard dose control can induce
hypoglycemia, ketoacidosis

(82)

T2DM Insulin Exogenous insulin improves glucose metabolism Substandard dose control induces
hypoglycemia, ketoacidosis

(82)

Metformin Improving peripheral tissue glucose uptake Gastrointestinal tract response (83)
Sulfonylureas/meglitinides Stimulating insulin secretion Hypoglycemia, hypoleucocytosis, hemolytic

anemia, increased risk of major cardiovascular
events, weight gain

(84, 85)

DPP-4 inhibitors/GLP-1/GIP
receptor agonist

Stimulating insulin secretion, suppressing glucagon
secretion, slowing gastric emptying, increasing b-cell
mass and function

Renal impairment, hypoglycemia (86–90)

a-Glucosidase inhibitor Delaying food decomposition, enhancing GLP-1
secretion

Flatulence, diarrhea (91–94)

Diabetic
cardiomyopathy

Antianginal therapy,
percutaneous intervention,
surgical revascularization

Reduce myocardial fibrosis, revascularization Surgical risk, little benefit, other risk factors (95, 96)
October 2021 | Volume 12 | Art
DM, diabetes mellitus; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
FIGURE 1 | Analysis of exosomes from patients with diabetes mellitus. Diabetes mellitus and diabetic complications have pathological change before organic
damage in exosomes derived from body fluids. We can collect the serum, plasma, and urine non-invasively and analyze the counts and contents such as DNA,
RNA, and protein depending on the differences between healthy control by choosing the significant biomarker for early diagnosis of diabetes mellitus and
diabetic complications.
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diagnostic test results. For example, a study showed that bone
marrow mesenchymal stem cell (BM-MSC)-derived exosomes
can regulate aging-related insulin resistance. When BM-MSC-
derived exosomes are administered to old mice, young wild-type
C57/BL6J mouse fasting glucose, fasting serum insulin, and
HOMA-IR increased, suggesting that BM-MSC-derived
exosomes in old mice can damage the body’s insulin sensitivity
(98). Further clinical data showed that after measuring total
plasma and EV-related microRNA (miRNA)-15a by real-time
PCR, it was found that the circulating levels of miRNA-15a were
significantly different. And miRNA-15a has a significant
connection with markers of altered glucose metabolism (e.g.,
HbA1c, plasma glucose, insulin, and HOMA-IR) (99). However,
so far, no specific association mechanism between exosomes and
HOMA, fasting glucose, OGTT, HbA1c, and other diagnostic
indicators has been found.

Currently, effective drugs to treat diabetic complications are
lacking, apart from invasive surgery or conventional methods to
relieve symptoms such as anti-inflammatory and wound care
(95, 96, 100–102).

Glycemic control encompasses the management of not only
DM but also the associated complications. However, oral
hypoglycemic drugs and insulin can only resolve symptoms and
cannot prevent disease development. Therefore, novel strategies
for effective treatment, which are non-invasive or minimally
invasive with minimal or no adverse effects, are urgently required.

4.2 Cell Transplantation for the
Treatment of Diabetes Mellitus and
Diabetic Complications: Opportunities
and Challenges
Promoting insulin secretion and ameliorating insulin resistance
are the most important approaches in preventing DM and its
complications. Pancreas/islet and stem cell transplantations
could be effective and have seen remarkable advancements. We
discuss the current research on tissue/cell transplantation for the
treatment of DM and diabetic complications.

4.2.1 The Limitations of Pancreas
or Islet Transplantation
Pancreas or islet transplantation has been applied in both T1DM
and T2DM and has proved successful in restoring functional b
cells (103, 104). However, even after several years since first use,
these have not been applied extensively for the following reasons.
1) Pancreas or islet transplantation requires surgical
intervention. Although islet transplantation is minimally
invasive, the risk of portal vein hypertension, thrombosis, or
infarction of the liver exists (105–107). 2) Post-transplant
autoimmune reactions can cause graft loss and eventual failure
(108). 3) To reduce donor antigens, using islets from a single
donor (>5,600 islets equivalents/kg) is the best approach;
however, this cannot meet the demand, and post-transplant
management is complex (109). Patients with glucose lability,
insulin resistance, obesity, and donor sensitization are not good
candidates for islet transplantation (109). To solve these
problems, Sui et al. induced nuclear transfer embryonic stem
Frontiers in Endocrinology | www.frontiersin.org 6
cells (NT-ES) into C-peptide-positive cells and achieved an
average efficiency of 55% in vitro, which indicates that this
approach could address the challenges of b-cell donation.
However, the risk of teratomas remains. Sui et al. (110) found
that neuropeptide Y (NPY) family members can activate the Y
receptor that inhibits glucagon-like peptide 1 (GLP-1) signaling
in b cells and induces insulin secretion. Using Y receptor
inhibitors can increase insulin secretion from transplanted
islets; however, little is known about Y receptor inhibitors
(111), which precludes its immediate extensive clinical use.

4.2.2 The Advantages and Disadvantages of
Mesenchymal Stem Cell Transplantation
Currently, MSCs are regarded as a potent regenerative source in
repairing injured tissue (26, 50, 112, 113), including in DM and
associated diseases. This hypothesis was verified in both animal
models and among patients with diabetes. Human umbilical cord
MSC (hucMSC) infusion decreased high-fat diet and
streptozotocin (STZ)-induced T2DM in rats. Blood glucose level
decrease was affected by increasing insulin sensitivity and
restoring insulin secretion (114–116). hucMSC injection can
also help decrease insulin dependency in patients with T2DM
in early stages and hence reduce the insulin dosage at later stages
(117). The characteristics of MSCs such as low immunogenicity,
proliferation, and multilineage differentiation may partly solve the
challenges associated with pancreas or islet transplantation (118,
119). Moreover, genetic editing techniques such as lentivirus and
CRISPER/Cas9 in MSCs, which overexpress exendin-4, can be
used for pancreatic duodenal homeobox-1-induced MSC
differentiation into insulin secretion cells, which may help
overcome the shortage in islet donors (120, 121). Besides, MSCs
also show remarkable effects in diabetic complications. BM-MSCs
seeded in collagen scaffolds can augment angiogenesis in diabetic
ulcers in rabbits (122). Placenta-derived MSCs can accelerate foot
ulcer repair by inhibiting NF-kB expression and promoting
secretion of the anti-inflammatory factor IL-10 (123) in T2DM
rat models. In diabetic nephropathy, MSCs derived from several
tissues can reverse glomerular injury by inhibiting oxidation,
proinflammatory cytokines, and macrophage infiltration (124–
127). MSCs also can reverse diabetic neuropathy, cardiopathy,
and retinopathy; the underlying mechanism mainly involves
improving revascularization, inhibiting fibrosis, controlling
inflammation, and regulating oxidation (128–130). Given this
body of evidence, MSCs could be the best treatment choice
for diabetes and diabetic complications. However, MSC
transplantation also presents challenges. First, in vivo MSC
injection has tumorigenic potential (131–136). Second, the
infusion of a large number of MSCs may cause thrombosis
(137, 138), headache, and fever (139). Third, the low survival
time and efficiency of MSCs in vivo may limit their therapeutic
efficiency (140). Fourth, although several studies have attempted
to improve MSC therapy with techniques such as transfecting
CDR1 (141) and hepatocyte nuclear factor-4 alpha (HNF-4a) to
regulate the biological characteristics of MSCs directly (142), no
practical strategy is applicable in clinical practice and increases
the risk of MSC application.
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4.3 The Advantages of Exosomes
in Regulating the Glucose Metabolism
in Diabetes Mellitus and Resolving
Diabetic Complications
Glucose metabolism regulation by exosomes was first discovered
in the setting of physical exercise. Physical exercise is critical in
DM care and has proved to increase insulin sensitivity in
peripheral tissues and preserve b-cell function (143, 144).
Physical exercise or training can also induce rapid release of
small EVs from skeletal muscle into circulation, which indicates
a connection between exercise-induced exosome release and
reversal of insulin resistance and b-cell destruction (145, 146).
Furthermore, exosomes released by muscles may contribute to
DM management. Glucose-deprived cardiomyocytes released
exosomes containing glucose transporter 1 (GLUT1) and
GLUT4, and other glucose metabolism enzymes, which can
increase glucose uptake and subsequent glycolysis in
neighboring endothelial cells (147). Exosomes released
during exercise contain miR-455, miR-29b, miR-323-5p, and
miR-466, which can downregulate the expression of matrix
metalloproteinase (MMP9) by binding to its 3′ region to
inhibit MMP9-induced cardiac fibrosis, which may reverse
diabetic cardiopathy (15, 148). Previously, our team has used
exosomes derived from hucMSCs to treat T2DM rat models,
achieved good curative effects in the early stage, and explained
the relevant mechanisms (149). In addition, exosomes secreted
from INS-1 cells can deliver neutral ceramidase to inhibit
palmitic acid (PA)-induced INS-1 cell apoptosis and increase
insulin sensitivity in the PA-induced insulin-resistant cell model
H4IIEC3 (150). These data showed the potential of physical
exercise associated exosomes in regulating glucose metabolism.

Exosomes have also been reported to be effective in the
treatment of diabetic complications. For instance, Davidson
et al. found that exosomes derived from diabetic rats are not
capable of activing the ERK1/2 and HSP27 cardioprotective
pathway to protect rat cardiomyocytes from hypoxia and re-
oxygenation injury (151); however, exosomes derived from non-
diabetic plasma were effective. In addition, human endothelial
progenitor cell-derived exosomes contained angiogenesis-related
molecules, including FGF-1, VEGFA, VEGFR-2, ANG-1, E-
selectin, CXCL-16, eNOS, and IL-8, to accelerate cutaneous
wound healing in diabetic rats by improving proliferation,
migration, and angiogenic tubule formation in endothelial cells
(152); the Erk1/2 signaling pathway was also involved (153).
These reports indicate that the contents of exosomes
derived from patients with DM or diabetic complications
are dysfunctional and incapable of regulating cell–cell
communications; however, the use of exogenous exosomes
overcomes these limitations.

GDM is the first occurrence or diagnosis of abnormal glucose
tolerance during pregnancy; this condition occurs during
pregnancy when the pancreatic b-cell function is insufficient to
overcome the insulin resistance (154). The incidence of GDM is
increasing every year (155). It is associated with various short-
term and long-term adverse effects in pregnant women and
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offspring (156). Early screening and timely intervention are
critical to improve the maternal and child outcomes in GDM
(157–159). Exosomes can be potential biomarkers for disease
diagnosis and early prediction (160, 161), can carry miRNA,
lncRNA, protein, and so forth, which act on recipient cells (162)
and play a key role in intercellular signal transmission (163).
Previous studies have found that in different stages of pregnancy,
the levels and biological activities of exosomes in the circulation
differ between women with GDM and without (164); however,
the miRNA expression changes in exosomes in GDM. The
underlying mechanisms are yet to be fully clarified. GDM is
associated with proinflammatory processes, oxidative stress, and
endothelial cell dysfunction in the placental microvascular
system (165). Fetal–placental endothelial dysfunction is
characterized by changes in the L-arginine-adenosine signaling
pathway and inflammation (165, 166). The mechanisms involved
in these changes are hypothesized to be hyperglycemia,
hyperinsulinemia, and oxidative stress (167, 168). These
conditions increase the release of exosomes. Because exosomes
can regulate vascular function, they play an important role in the
fetal–placental endothelial dysfunction in pregnancy in women
with GDM (165). Increasing evidence shows that miRNAs rich
in nanovesicles called exosomes are important regulators of gene
expression. Compared with a normal pregnancy, a GDM
pregnancy is associated with skeletal muscle insulin resistance
and increased levels of circulating placental exosomes. Placental
exosomes from women with GDM pregnancy suppressed
insulin-stimulated migration and glucose uptake in primary
skeletal muscle cells obtained from patients with normal
insulin sensitivity. Of interest, placental exosomes from
normoglycemic women increased insulin migration and
glucose uptake in skeletal muscle of women with diabetes (73).

Although DM and diabetic complications are metabolic
diseases, one of the essential causes is tissue injury. For
example, auto-antibodies destroy b cells, causing insulin
secretion deficiency; lipid mediates activation of macrophages
to prominent proinflammatory cytokines and induces insulin
resistance (169, 170); chronic high glucose levels and insulin
resistance cause increased fatty acid metabolism; the reduced
myofilament Ca+ sensitivity, mitochondrial dysfunction,
oxidative stress, apoptosis, and fibrosis induce endothelial cell
apoptosis, cardiomyopathy (30, 31, 34–36), and neuropathy; and
chronic high glucose levels and working strength induce
glomerular injury and renal fibrosis (29, 76). Based on
reported evidence, exosomes can potentially repair tissue injury.

4.4 Therapeutic Advantages of
Mesenchymal Stem Cell-Derived
Exosomes in Diabetes Mellitus and
Diabetic Complications
Exosomes can be derived from several tissues and cells; however,
exosomes can be derived from MSCs (MSC-ex) most
conveniently. MSCs can be isolated from the bone marrow,
umbilical cord, and adipose tissue, which can be used in
autotransplantation. Low immunogenicity ensures low
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immunoreactions in such transplantation. The proliferation
potential of MScs ensures sufficiency of exosomes.

Currently, the repair of injured tissue byMSCs does not rely on
proliferation potential but on paracrine activity, because only <1%
MSCs can reach the target tissue, and evidence shows that MSCs
differentiated into target cells are lacking (114, 171–173).
Exosomes are one of the most important approaches for
paracrine regulation. Our previous research showed that
exosomes are an excellent replacement for MSCs and played an
important role in the repair of injured tissue or organs by
delivering bioactive molecules such as Wnt4 (7) and Wnt11 to
regulate b-catenin and ameliorate scalded wound, and 14-3-3z
and glutathione peroxidase 1 to regulate YAP signaling in
inhibiting excessive repair and recovering hepatic oxidant injury
(8, 50, 112). MSC-ex can also mediate the repair of osteochondral
defects by increasing cellular proliferation and infiltration,
enhancing matrix synthesis, and a regenerative immune
phenotype (174). The present studies not only explain the
mechanism underlying MSC-driven repair of tissue injury but
also prove that exosomes are key to the paracrine activity of MSCs.

In DM, MSC-ex could be the key element in protecting the
pancreatic islets in patients with T1DM from autoimmune
targeting, slowing disease progression (175). MSC-ex can
promote angiogenesis and survival of transplanted pancreatic
islets and can enhance the efficiency and success rate of the
treatment, for example, by carrying siFas and anti-miR-375 and
inhibiting immune reaction to improve islet transplantation
(176, 177). MiR-29b-3p in MSC-derived exosomes significantly
ameliorated the insulin resistance in aged mice and helped
regulate the blood glucose level (98). Exosomes from the
hucMSCs can downregulate blood glucose level in T2DM by
reversing peripheral insulin resistance and inhibiting b-cell
destruction (149). In diabetic complications, MSC-ex can
induce proliferation and migration of normal and chronic
wound fibroblasts and enhance angiogenesis to accelerate
cutaneous wound healing (178). Diabetes-induced cognitive
impairment and nephropathy can be improved by bone
marrow stem cell-derived exosomes too (179, 180).

Besides ordinary MSC-ex, exosomes from modified MSCs
can carry special molecules, like exosomes from 3,3′-
diindolylmethane (DIM)-stimulated human hucMSCs contain
higher levels of Wnt 11 and enhanced the wound healing
potential of hucMSCs (112). Exosomes from hypoxia-inducible
factor 1a (HIF-1a) modified BM-MSCs were much more
effective in attenuating early steroid-induced avascular necrosis
of the femoral head in rabbits than exosomes from the wild-type
MSCs (181). These studies indicate that the potency of exosomes
can be increased by modifying MSCs, which may be safer than
using MSCs directly and can promote the use of exosomes in the
treatment of DM and diabetic complications (Figure 2).

4.5 The Utility of Exosomes in
Other Diseases
As a communication messenger between cells, the potential role
of exosomes in the clinical treatment and prevention of diseases
has gradually emerged. First, in early diagnosis or targeted tumor
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treatment, various tumor-derived exosomes have been identified
that harbor several specific molecules from different types of
tumors in patients with cancer (182, 183). In addition, exosomes
are associated with neurodegenerative diseases, such as
Alzheimer’s disease (AD) and Parkinson’s disease. A recent
study found that AD caused by the accumulation of b-amyloid
(Ab) peptides in senile plaques is related to an exosome-
associated protein called ALIX, which suggests a significant
role of exosomes in the pathogenesis of AD (184). Exosomes
can participate in the occurrence and development of
cardiovascular diseases. Scientists found that exosomes
carrying endothelial differentiation signals affect the formation
of new blood vessels, indicating the effectiveness of exosomes in
the treatment of angiogenesis (185, 186). In addition, our
findings indicated that DIM promoted the stemness of
hucMSCs by increasing exosomes derived from hucMSCs to
activate Wnt11 autocrine signaling, which provides a novel
strategy for improving the therapeutic effects of hucMSCs on
skin wound healing (112).

Some studies have shown that exosomes derived from MSCs
can also increase ATP levels, reduce oxidative stress through
the PI3K/Akt pathway, enhance the vitality of myocardial cells,
and prevent adverse remodeling after myocardial ischemia and
reperfusion (187). In a study of intervertebral disc degeneration,
exosomes can significantly inhibit the inflammatory response of
apoptotic nucleus pulposus cells (188).

Exosomes are also involved in the occurrence and
development of liver diseases. Karamichali et al. found that
exosomes can mediate the transfer of in-frame deletion
mutants to regulate HCV virus replication and make the virus
continue to infect (189). The concentration of exosomes in the
peripheral blood of pregnant women is closely related to the
process of pregnancy and pregnancy complications. Abnormal
concentration of exosomes in the peripheral blood of pregnant
women can reflect the risk of pregnancy complications to a
certain extent (190).

4.6 The Future Application Prospects of
Exosomes in the Treatment of Diabetes
and Complications
Nowadays, the application of MSC exosomes is becoming more
andmore extensive, and the corresponding application technology
is relatively mature. In autologous therapy, currently, the main
cell-free therapy is MSC-ex. It contains a variety of functional
proteins, mRNAs, miRNAs, and signaling lipids (191–193). In
non-autologous therapy, researchers are moving towards a new
strategy based on loading MSC-ex by patches, injectable
microcarriers, or hydrogels, aimed at maintaining the function
of exosomes at the function site and enhancing efficiency and
safety. Chitosan and relevant compounds are ideal carriers for the
sustained release of nanoparticles including exosomes (183, 194,
195). Shi et al. prepared the chitosan/silk hydrogel sponge by
freeze-drying method to be a scaffold for exosomes (196). Since
chitosan is a hydrophilic polymer, this hydrogel sponge shows
good swelling behavior, creates a moist environment, and
enhances the angiogenesis and neuronal ingrowth. Alginate-
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based hydrogels have been designed to encapsulate adipose-
derived mesenchymal stem cell exosomes (ADSC-Exos) to
fabricate a bioactive scaffold (133), which is tested to be
biodegradable and biocompatible, reflecting its potential as a
cell-free therapy (197). In general, the exosome-carrier
compound displays better treatment outcomes than the
exosomes or carrier materials alone, suggesting a synergistic
effect through the sustained release of MSC-ex. Not only that,
for better delivery of exosomes, MSC exosomes that deliver
biological scaffolds have also been invented and used and were
fabricated in a 3D-printed cartilage extracellular matrix (ECM)/
gelatin methacrylate (GelMA)/exosome scaffold (198).

Besides, in the future, with the help of mass spectrometry and
high-throughput sequencing (199, 200), a pathological molecular
spectrum of exosomes derived from body fluids of diabetic
patients will be formed, covering molecules such as proteins,
nucleic acids, and metabolites, which can provide new ideas and
research for early diagnosis and prognosis of diabetes. This
direction can also provide more options for the treatment
of diseases.
5 SUMMARY

Exosomes can function not only as biomarkers for early
diagnosis of DM but also as potential therapeutic tools in DM
and its complications. However, some key challenges exist. The
cost of exosome isolation for high volume use is high; no
diagnostic and therapeutic standards have been established;
and most supporting studies were animal model studies.
Frontiers in Endocrinology | www.frontiersin.org 9
Further study is needed before extensive clinical use of
exosomes can be recommended.
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FIGURE 2 | Potential approach of exosomes derived from mesenchymal stem cell in diabetes mellitus and diabetic complication repair. Exosome derived from
mesenchymal stem cell may downregulate blood glucose through reversing peripheral tissue (liver and muscle) insulin resistance and increasing b-cell survival during
remission of diabetes mellitus; exosome derived from mesenchymal stem cell can inhibit apoptosis, oxidative stress, and immune reaction to reduce vascular or
neuron injury and carry growth factors to increase damaged tissue or cell repair, which may participate in alleviating diabetic complications.
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Extracellular microRNAs and Endothelial Hyperglycaemic Memory: A
Therapeutic Opportunity? Diabetes Obes Metab (2016) 18(9):855–67. doi:
10.1111/dom.12688

70. Wan S, Wang J, Wang J, Wu J, Song J, Zhang C-Y, et al. Increased Serum
miR-7 Is a Promising Biomarker for Type 2 Diabetes Mellitus and Its
Microvascular Complications. Diabetes Res Clin Pract (2017) 130:171–9. doi:
10.1016/j.diabres.2017.06.005
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