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Abstract: Nanocomposites have been shown to significantly reduce the peak heat release 

rate, as measured by cone calorimetry, for many polymers but they typically have no effect 

on the oxygen index or the UL-94 classification. In this review, we will cover what is 

known about the processes by which nanocomposite formation may bring this about. 

Montmorillonite will be the focus in this paper but attention will also be devoted to other 

materials, including carbon nanotubes and layered double hydroxides. A second section 

will be devoted to combinations of nanocomposite formation with conventional (and 

unconventional) fire retardants. The paper will conclude with a section attempting to 

forecast the future. 
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1. Introduction 

Nanocomposites have received much interest over the past decades due to their significant 

advantages over conventional composites, in which high loadings of additives are often required [1-8]. 

The nanometer-scale material which has been most investigated is layered clay, primarily including 

layered silicates (montmorillonite (MMT) is the most studied member of this family) [9-11]. Other 
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nanometer dimension materials that have been studied include layered double hydroxides (LDHs)  

[12-15] and carbon nanotubes, either single-, double- or multi-wall [16-25]. 

Polymer-layered clay nanocomposites were reported in the patent literature as early as 1950 [26], 

while polyamide nanocomposites were reported in 1976 [27]. However, it was not until the Toyota 

research group began a detailed examination of polymer layered clay mineral composites that 

nanocomposites became more widely studied in academia [28]. Composites formed by the 

combination of polymer and additives have properties superior to those of the individual constituents, 

primarily because there is now a large interfacial region which dominates the properties of the system. 

The structures and properties of composite materials can be significantly influenced by morphologies, 

interfacial properties and dispersion of the additives in the polymer matrix. 

Polymer-MMT nanocomposites are the most common class of nanocomposites and the one which 

has been most investigated [29-32]. Because of the dispersion at the nanometer level, polymer-clay 

nanocomposites exhibit superior properties in comparison with pure polymer or conventional 

composites; this includes properties such as light weight [33,34], high modulus, enhanced physical-

mechanical properties [35-37], barrier properties [38,39], increased solvent resistance [40,41], 

improved thermal stability and flame retardancy [42-44]. Another impressive feature of 

nanocomposites and nano-filled composites is the concurrent improvement of multiple properties, in 

addition to the introduction of new functionalities [33,34]. The mechanical properties of 

nanocomposites are superior to the fiber-reinforced polymers because enhancement from the inorganic 

layers occurs in three dimensions rather than only in the dimension of the fiber [32]. Improvements in 

thermal stability of polymer-clay nanocomposites is due to the nano-sized layers restricting the 

polymer molecular chain motion [45]. 

The outstanding properties of polymer-clay nanocomposites are achieved at a much lower volume 

fraction, compared with conventional composites. For instance, when the clay content is as low as 1% 

in a polystyrene/layered silicate nanocomposite, the initial decomposition temperature increases by  

40 C and the peak heat release rate decreases by 40% compared with virgin PS [2]. Polymer-clay 

nanocomposites can be processed using common techniques, such as extrusion and casting, which are 

superior to the cumbersome techniques used for the conventional composites. In addition,  

polymer-clay nanocomposites could be used to manufacture films, fibers and monoliths. Hence, 

polymer-clay nanocomposites have important potential commercial value [46]. In this review, we will 

focus on the formation and characterization of nanocomposites, fire retardancy and its mechanism and 

an evaluation of fire retardancy, mainly based on cone calorimetric analysis. 

2. Nanocomposite Formation and Characterization 

2.1. Formation of Nanocomposites 

Not all polymer and inorganic additive combinations will form nanocomposites: the compatibility 

and interfacial properties between polymer matrix and inorganic additives significantly influence the 

essential characteristics of materials [46]. Generally, inorganic additives have poor compatibility with 

the polymer matrix, except for water soluble polymers. Therefore inorganic additives must be 

organically-modified, using organic surfactants, to improve compatibility. The organic surfactants in 
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the organically-modified additives play the important role of lowering the surface energy of the 

inorganic host, improving the wetting characteristics and miscibility with the polymer  

matrix [29-31,44,47-48].  

Nanocomposites can be formed by the following four principal methods: (i) in-situ template 

synthesis, (ii) polymerization techniques, (iii) solvent based blending and (iv) melt blending [29,49-50]. 

2.1.1. In-situ Template Synthesis (sol-gel technique) 

This procedure is based on the synthesis of the inorganic host in the presence of a polymer that acts 

as a templating agent for the growing solid, in a way similar to alkylammonium ions or surfactants that 

are used in the formation of certain zeolites or mesoporous silica materials [49]. This procedure 

derives from synthetic inorganic hosts, such as layered double hydroxides (LDHs). In the case of clays, 

this route is relatively new and was applied for the first time by Carrado and coworkers [51] to obtain 

polymer–hectorite nanocomposites. The clay minerals are synthesized within the polymer matrix, 

using an aqueous solution (or gel) containing the polymer and the silicate building blocks. Magnesium 

hydroxide sol and lithium fluoride are utilized as precursors for the silica sol. During the preparation, 

the polymer aids the nucleation and growth of the inorganic host and is trapped within the layers as the 

inorganic host grows. Theoretically, this technique could promote the dispersion of the layers of clay 

in a one-step process. However, it presents serious disadvantages. For example, the temperature 

required for the synthesis of clay minerals is generally high, which could cause the decomposition of 

polymer and, with the growth of clay layers, aggregation will occur. Carrado synthesized hectorites 

from sols consisting of silica, magnesium hydroxide, lithium fluoride and polymers like poly(vinyl 

alcohol), polyaniline and polyacrylonitrile. Some silicate layers aggregated, but most of them remained 

uniformly distributed in the polymer matrix [49]. 

2.1.2. Polymerization Techniques 

In-situ polymerization is one of the most widely used techniques to prepare polymer-layered clay 

nanocomposites. During the synthesis, the clay is dispersed in the monomer and the polymerization of 

the monomer is carried out. Polymerization can also occur in solution; Wang reported a comparison of 

bulk, solution, emulsion and suspension polymerization for PMMA and PS nanocomposites. One is 

more likely to obtain exfoliation using bulk, emulsion or suspension polymerization than with solution 

polymerization [52]. Tasdelen et al. [53] reported that a wide variety of polymer/clay nanocomposites 

can be synthesized by in situ living and controlled/living polymerization methods. The silicate layers 

can be either delaminated first, followed by a polymerization step, or can be exfoliated during 

polymerization by triggering polymer chain growth within the clay galleries. An exfoliated Co-Al 

layered double hydroxide/polyamide 6 nanocomposite was prepared by in-situ polymerization [54]. 

Park et al. [55] successfully prepared polyimide/single-wall carbon nanotubes nanocomposites under 

sonication by in-situ polymerization and investigated the dispersion of carbon nanotubes in the 

polymer matrix.  

2.1.3. Solvent-Assisted Blending 

The solvent based process involves mixing a preformed polymer solution with the layered clay [46]. 

The layered clay can be exfoliated into single layers due to the weak forces between the layers, using a 
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solvent in which the polymer could be dissolved. When the layered clay has been expanded in the 

solvent, the polymer is added to the solution and then it intercalates between the clay layers. In the 

next step, the solvent is removed, either by vaporization or by precipitation of the polymer [49]. 

However, this is difficult to use in industry because large amounts of solvents are used during the 

synthesis, which is environmentally disadvantageous [49,56]. Acrylonitrile-butadiene-

styrene/montmorillonite nanocomposites were prepared by Pourabas et al., using solvent  

blending [57]. Qiu et al. reported the preparation of exfoliated polystyrene/Zn-Al layered double 

hydroxides nanocomposite by solution intercalation, using xylene as solvent [58]. 

2.1.4. Melt Blending 

Melt blending is the technique most utilized for the preparation of nanocomposites and it is suitable 

for large scale production in industry. This technique utilizes the existing conventional polymer 

processing equipment, such as extrusion, roll mixing, batch and static mixing, etc. [44]. The melt 

blending process involves mixing the layered clay with the polymer while heating the mixture above 

the softening point of the polymer. During the mixing process, the molecular chain of the polymer 

matrix diffuse from the bulk polymer and melt into the galleries between the clay layers [46]. Su et al. 

[59] prepared polymer nanocomposites of poly (methyl methacrylate), polypropylene and polyethylene 

by melt blending with polymerically-modified montmorillonite. Polyamide-12/tetrasilisic fluoromica 

and polyamide-12/quaternary tallow ammonium chloride modified fluoromica nanocomposites were 

prepared by melt compounding [60]. Wang et al. [61] reported the use of montmorillonite, layered 

double hydroxide and kaolinite to make (nano) composites with poly (methyl methacrylate) by melt 

blending. Zhang et al. utilized single wall carbon tubes and high density polyethylene to prepare 

nanocomposites [62]. 

2.2. Characterization of Nanocomposites 

It is important that the nanocomposites are carefully investigated by various analytical methods to 

determine if a nanocomposite has been formed and how the clay layers are arranged. Many methods 

are used to characterize the nanocomposites, including X-ray diffraction (XRD), transmission electron 

microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, atomic force microscopy 

(AFM), scanning electron microscopy (SEM), etc. The most frequently used technique for 

characterization of nanocomposites is the combination of XRD and TEM. 

2.2.1. X-ray Diffraction 

It is well known that only materials ordered enough to diffract X-ray can be detected; disordered 

materials will show no pattern with the X-ray technique [57]. The layer spacing of clay in the polymer 

matrix can be calculated using Bragg’s law: sin θ = n λ/2d [46,63]. Generally, the formation of an 

intercalated nanocomposite results in an increase in basal spacing in the XRD pattern, while the 

formation of an exfoliated nanocomposite leads to the complete loss of registry between the layers and 

therefore no peak can be observed. In general, the appearance of a strong peak at lower values of 2θ is 

probably indicative of an intercalated structure but the presence of a broad peak at any 2θ leaves open 

the possibility of disorder; this disorder could be caused by exfoliation or it could be a simple 

composite which is disordered. XRD is insufficient to characterize the nanocomposites structure and 
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additional analytical techniques must be utilized to confirm the morphology of a material and explain 

the meaning of the XRD signal [57].  

2.2.2. Transmission Electron Microscopy 

Complementary to XRD, TEM is the most popularly employed technique to determine 

nanocomposite morphology [57]; using TEM one can image the nanocomposite structure. In general, 

one collects several images at high and low magnification and at several positions in the 

nanocomposite sample. Both a low magnification image, to show the global dispersion of the additives 

in the polymer, and a higher magnification image, to evaluate the registry of additives are needed [64].  

2.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy 

The interpretation of TEM images tends to be very subjective; the person who has made the system 

almost always sees more exfoliation than others may see. The NMR technique offers an opportunity to 

quantify, in a way, the type of dispersion. The main objective in solid-state NMR measurement is to 

connect the measured longitudinal relaxation times, T1
H
s, of proton with the quality of clay dispersion; 

the extent and the homogeneity of the dispersion of the silicate layers within the polymer matrix are 

very important for determining physical properties [65-70]. 

For the layered silicates (such as montmorillonite), the octahedrally coordinated Al
3+

 in the basal 

layers is often replaced by Fe
3+

. The presence of Fe
3+

 in the montmorillonite structure facilitates the 

relaxation of nearby protons, which can provide information on the dispersion of the clay in the 

nanocomposites. The relaxation time depends on how close the proton is to a paramagnetic iron atom. 

Generally, the protons of the polymers will be closer to the iron in the clay in an exfoliated system and 

thus will have the smallest relaxation time. For the microcomposite, the protons will be farthest from 

the iron and show a larger relaxation time. This information can be correlated with TEM and XRD 

information and can also be used as a stand-alone technique to ascertain morphology. However, this 

technique has its limitations. The layered silicates are naturally-occurring compounds and so the 

amount and distribution of iron may vary from one lot to the next. When solid state NMR technique is 

utilized for the characterization of nanocomposites, the same batch of clay must be used [44].  

2.2.4. Other Characterization Techniques for Nanocomposites 

Other characterization technique have also been utilized to characterize the structure and properties 

of polymer nanocomposites, such as atomic force microscopy [71-73], X-ray photoelectron 

spectroscopy [71,74], fluorescence [75,76] and rheology [77,78], etc. 

2.3. Nanocomposite Description 

Nanocomposites may be described as either immiscible, intercalated or exfoliated (also called 

delaminated); another possible description is an end tethered structure [49,56]. An immiscible 

nanocomposite is a conventional composite in which the clay is not separated into layers but rather 

only aggregates of clay are present. Intercalated structures are formed when a single (or more) 

extended polymer chain is intercalated between the layers of clay. The result is a well-ordered 

multilayer structure of alternating polymeric and inorganic layers, with a repeat distance between 

them; intercalation causes about 2-3nm separation between the platelets [28]. Exfoliated (delaminated) 
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structures are formed when the clay layers are well separated from one another and individually 

dispersed within the continuous polymer matrix. In an intercalated structure, registry is maintained 

between the clay layers while registry is lost in an exfoliated structure. Because exfoliated 

nanocomposites have higher phase homogeneity than the intercalated counterpart, the exfoliated 

structure is more desirable in enhancing the properties of the nanocomposites. The exfoliated 

configuration is of particular interest because it maximizes the polymer-clay interactions making the 

entire surface of layers available for the polymer, which should lead to the most significant changes in 

mechanical and physical properties [56]. However, it is not easy to achieve complete exfoliation of 

clays and, indeed with few exceptions, the majority of the polymer nanocomposites reported in the 

literature were found to have intercalated nanostructures [79]. One may, in fact, make the case that it is 

rare to form only a single morphology and that most often one obtains a mixed morphology and 

mixture of all three possibilities is more common that one may expect, i.e., mixed  

immiscible-intercalated-exfoliated morphology may be very common. TEM images for PS-MMT and 

PMMA-LDH are shown in Figures 1 and 2; the aspect ratio (ratio of length to thickness) is 

significantly larger for MMT than for LDH, which has an effect on the mechanical properties. 

Two types of end-tethered structures can be produced, one where the end of the polymer is attached 

to the outside of the silicate sheet and the other where the end of the polymer is attached to an 

exfoliated layer of the silicate. The second type is similar to a delaminated structure with polymer 

surrounding exfoliated layers of silicate [80,81]. 

Figure 1. TEM micrographs of PS/MMT nanocomposites (a) at low magnification. (b)at 

higher magnification. Reproduced with permission from reference [82]. 

 

a                                              b 

 

 

 



Materials 2010, 3                            

 

 

4586 

Figure 2. TEM micrographs showing exfoliated/intercalated/ immiscible LDH particles in 

PMMA (a) at low magnification. (b)at higher magnification. Reproduced with permission 

from reference [64].  

0 5 m. μ 100nm

 

a                                           b 

3. Evaluation of Fire Retardancy 

The main evaluation methods for the fire retardancy of nanocomposites include thermal stability, 

cone calorimetry, limiting oxygen index and the UL-94 protocol. 

3.1. Thermal Stability  

The thermal stability of polymeric materials is usually studied by thermogravimetric analysis 

(TGA). The weight loss due to the formation of volatile products after degradation is monitored as a 

function of temperature (and/or time). When heating occurs under an inert gas flow, a non-oxidative 

degradation occurs, while the use of air or oxygen allows oxidative degradation of the samples [49]. 

The data obtained from TGA include the onset temperature of the degradation, typically taken as the 

point at which 10% degradation occurs, T0.1, the mid-point of the degradation, T0.5, and the fraction of 

char which remains at the conclusion of the run [83]. 

For polymer/layered silicate nanocomposites, the incorporation of clay into the polymer matrix is 

generally found to enhance thermal stability by acting as a superior insulator and mass transport barrier 

to the volatile products generated during decomposition, as well as by assisting in the formation of 

char after thermal decomposition [49,84].  

Chigwada [85] reported that thermal stability of polystyrene/OMMT nanocomposites is improved 

relative to that of pristine polystyrene. The T0.1 and T0.5 of nanocomposites with 3% OMMT loading 

increase by 14 °C and 16 °C, respectively.  

The work of Liu et al. [86] reveals that thermal degradation of boron phenolic resin (BPR) and BPR 

/ modified-MWCNTs nanocomposites takes place through a one-step process. The Td, defined as the 

temperature at 5% weight loss, of BPR is about 434 °C, while this temperature is shifted 36 °C to 

higher temperature when 1 wt % of MWCNT is added; it is clear that the addition of MWCNTs leads 

to a remarkable increase of BPR thermal stability. The stabilization effect of m-MWCNTs is mainly 
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attributed to good matrix–nanotubes interaction, thermal conductivity of the nanotubes, as well as the 

barrier effect. Likewise, the char yield at 800 °C of the nanocomposites increases from 66% in BPR to 

72% when 1 wt % of MWCNT is added [86].  

3.2. Cone Calorimetry 

The cone calorimeter is one of the most widely used methods for assessing the flammability of 

polymeric materials and is the most effective bench-scale method for studying fire retardancy. The 

cone calorimeter monitors a comprehensive set of fire properties in a well-defined fire scenario. These 

results can be used to evaluate materials’ specific properties, setting it apart from many of the 

established fire tests which are designed to monitor the fire response of a certain specimen. The cone 

calorimeter evaluates ignition followed by subsequent flaming combustion. The time to ignition 

depends on the thermal inertia, critical heat flux and critical mass loss for ignition, or alternatively the 

critical surface temperature for ignition. Fire response data obtained from cone calorimeter include 

mass loss, heat release rate, total heat release, smoke production, and CO and CO2 production, etc. Fire 

response properties more typical of fully developed or post flashover fire scenarios are not replicated 

in the cone calorimeter [87].  

The heat release rate information from the cone-calorimeter is important to evaluate the 

flammability performance of polymeric materials [4,80]. Cone calorimetric analysis of different 

polymeric nanocomposites reveals significant improvements in flammability properties. The results of 

this analysis are expressed in terms of various combustion relevant properties, like heat release rate 

(HRR) and its maximum value (called peak HRR or PHRR), carbon monoxide yield, smoke release 

rate, etc. 

The heat release rate is usually considered to be the most important piece of information that is 

obtained from the cone calorimeter. The calculation of the HRR is based on oxygen consumption 

principle, as described by Hugget [88]. According to this principle, for a given amount of oxygen 

consumed during the combustion process, the amount of heat released is constant and independent of 

type of the material undergoing combustion. The heat release rate, determined by oxygen consumption 

calorimetry, can be influenced by material specific properties, such as the specimen characteristics and 

the physical and chemical mechanisms active during the combustion. The PHRR is strongly dependent 

on the fire scenario as well as the intrinsic fire properties of the test specimen.  

The total heat released (THR) during a cone calorimeter run is the integral of the HRR with respect 

to time- the total heat output up to that point - and is the fireload of the specimen in the cone 

calorimeter. For materials with a constant effective heat of combustion, the mass loss rate controls the 

HRR and the total mass loss controls the THR. Ignition occurs when the mass loss rate produces 

sufficient volatiles, at the characteristic air flow in the cone calorimeter, capable of ignition by a spark. 

Both CO production and smoke production result from incomplete combustion. Flame retardants 

working through flame inhibition result in a significant increase in the amount of CO and smoke yields 

in the forced flaming combustion of a cone calorimeter test [87]. CO production and smoke production 

play an important role that affect the safety of those trying to escape from the fire [89]. 
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3.3. Limiting Oxygen Index (LOI) and UL-94 Protocol 

The LOI test is one of the tests commonly used in the laboratory; it measures the oxygen content in 

an oxygen-nitrogen mixture that will sustain flaming combustion. The general assumption is that if 

more oxygen is required for combustion, a material will be more difficult to burn and thus fire 

retarded. In almost all cases, the oxygen index of polymer-clay nanocomposites is not increased and 

this is not an evaluation that is common for nanocomposites. The UL-94 protocol is designed to assess 

the ease of extinguishment of a plastic part; this is very dependent upon the sample thickness and thus 

this must be specified. As with the oxygen index, there are very few, if any, cases in which a 

nanocomposites can be classified by the UL protocol and thus it is not commonly reported for  

these systems. 

4. Fire Retardancy of Polymer-Clay Nanocomposites 

Nanocomposites have many outstanding properties, including fire retardancy, barrier effect and 

improved mechanical properties; probably the most important characteristic of these systems is that 

they provide all of these properties and thus they are multi-functional additives. One may choose to use 

a nanocomposite to enhance one particular property but one will obtain improvements in all of these, 

which is unusual for an additive. 

Zheng et al. [90] reported the fire retardancy of PS/OMMT, HIPS/OMMT, ABS/OMMT, 

PE/OMMT, and PP/OMMT nanocomposites prepared by melt blending. Cone calorimetry indicated a 

substantial reduction in the peak heat release of all the nanocomposites, which mirrored a reduction in 

the mass loss rate, but there was an increase in amount of smoke evolved. The heat release rate curves 

for some of nanocomposites are shown in Figure 3; the reduction is very dependent on the amount of 

clay and 1% is, in general, not very effective. In some cases there is a larger reduction when 5% clay is 

used while in other cases, 3% and 5% clay are about equally effective. The relationship between the 

amount of clay and the reduction in PHRR is one of the questions that still must be answered for  

these systems. 

A variety of polymer-MMT nanocomposites have been evaluated by cone calorimetry and it is 

found that the reduction in the PHRR is quite dependent upon the particular polymer. For instance, 

PMMA [91,92] gives the lowest reduction, about 25%, while PS [2], EVA [93] and PA-6 [94] are all 

at about 60% reduction. ABS and HIPS [95] fall in-between these extremes at about 40 to 45% 

reduction in the PHRR. In the discussion of the mechanism by which fire retardancy occurs, an 

explanation will be offered for these different values. 

For polymer/LDHs nanocomposites, there are similarities, but also differences, with the behavior of 

polymer-MMT systems. In all cases with LDHs, the amount that is required is much larger than with 

an MMT; typically about 10% loading of an LDH is needed to achieve a reduction in the PHRR which 

is comparable to that obtained when 3% MMT is used (Figure 4). In some cases, Figure 4a, there is a 

rather large dependence on the amount of the LDH while in others, Figure 4c, changing the amount of 

the LDH has almost no effect. Polymer-LDH systems require further study to understand how and why 

they are effective. 
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Figure 3. Heat release rate curves for (a) PS/MMT nanocomposites,(b)HIPS/MMT 

nanocomposites, (c)ABS/MMT nanocomposites, (d)PE/MMT nanocomposites and (e) 

PP/MMT nanocomposites. Reproduced with permission from reference [90]. 

 

a                                                     b 

 

c                                                   d 

 

e 

 

Compared to LDH, it is relatively easy to obtain good dispersion of MMT in polymers. The 

reduction that is obtained for an LDH must follow a different mechanism than does MMT, since the 

LDH is rarely obtained with what one may call good nano-dispersion and thus the reduction in the 

PHRR with an LDH cannot be attributed to dispersion and it is usually ascribed to some combination 

of endothermic decomposition, formation of a glassy surface deposit with perhaps some contribution 

from the dispersion [83,96-109]. One goal for future work is to obtain a well-dispersed LDH in order 

to ascertain how much of the reduction in the PHRR is attributable to dispersion. 

Rakhimkulov et al. [110] investigated the flammability of PP/MWCNT nanocomposites using the 

cone calorimeter. The maximum heat release rate for pristine PP is 2076 kW/m
2
, whereas those for the 

PP/MWCNT nanocomposites (at 1, 3 and 5 wt %), are 729, 553, and 456 kW/m
2
, respectively; the 

peak heat release rates decreased by 65, 73, and 78% [110]. 

 

 



Materials 2010, 3                            

 

 

4590 

Figure 4. Heat release rate curves for (a, b)PMMA/LDH nanocomposites,(c)PS/LDH 

nanocomposites and (d) PE/LDH nanocomposite. Reproduced with permission from 

reference [14,64,107]. 

 

a                                                           b 

 

c                                                  d 

5. Mechanisms by Which Polymer-MMT Nanocomposites Reduce the PHRR 

In general, the popularly accepted mechanism to explain the reduction of peak heat release rate for 

polymer-MMT nanocomposites is based on barrier effects [111-114]. The combustion process of 

polymers is a complex coupling of energy feedback from a flame to the polymer surface with 

gasification of the polymer to generate combustible degradation products [115]. When the polymer 

matrix is heated to thermal degradation temperature, volatile flammable products are released from the 

polymer matrix, which combust after mixing with O2 at the matrix surface. The reduction of PHRR of 

polymer-montmorillonite nanocomposites is due to the accumulation of clay, perhaps at the surface or 

perhaps within the polymer. The accumulation at the surface will insulate the polymer from the heat 

and thus prevent degradation and it will also serve as a barrier to mass transport from the polymer to 

the vapor phase. Within the polymer, individual clay layers can inhibit the diffusion of radicals so that 

radical recombination reactions can occur, thus reforming new polymers which will again have to 

undergo degradation; this has been termed nanoconfinement [116]. This has the effect of spreading out 

the degradation over a longer time period.  

The work of Kashiwagi and coworkers has shown that the formation of a network structure of 

nanoparticles with a polymer matrix can significantly reduce nanocomposite flammability. It is 

believed that one flame retardant approach is to suppress the bubbling rate - the superheated 

degradation products nucleate to form bubbles during combustion - so as to reduce the supply rate of 

fuel by forming a protective and heat shielding char layer. The formation of solid jammed network 

structure consisting of nanoparticles with tangled polymer chains can inhibit the vigorus bubbling 

process during combustion [22,77].  
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At a clay level of about 10% by mass, a network structure is formed for PS and the PMMA clay 

nanocomposites; it requires a level of about 0.5% with the SWNT and 2% with the MWNT. The tubes 

with their large aspect ratio, dense entanglement network and with strong bridging interaction form a 

physically stronger network compared to the less entangled clay platelet. This can explain why the 

flammability properties of clay-based polymer nanocomposites are not as good as those of carbon 

nanotube-based nanocomposites at relatively low particles concentration [77]. 

In a systematic study on the effect of clays on thermal degradation and fire retardancy, it was found 

that most often the products of thermal degradation of a polymer-MMT nanocomposite are different 

from those of the virgin polymers [94,117-119]. Only one exception to this statement has been found 

and that is with PMMA. Here the degradation pathway is an unzippering reaction which is apparently 

not affected by the presence of the clay [120]. When a polymer-MMT nanocomposite degrades, it will 

form radicals which are, at least momentarily, nano-confined by the clay layers which are nearby and 

this momentary nanoconfinement permits radical recombination reactions which means that a new 

polymer is reformed which must again undergo degradation; this has the effect of spreading out the 

time for thermal degradation or combustion, exactly what is observed for the polymer-clay 

nanocomposites. The change in the composition of the degradation products for polystyrene 

nanocomposites only in the mass region where two benzene rings occur is shown in Figure 5. For 

virgin PS only a single peak, attributable to the styrene dimer, is seen while many peaks are seen for 

the nanocomposites and the amount of these new products increase as the amount of clay, and hence 

the amount of nanoconfinement, increases. 

This has been extended to other nano-dimensional materials, notable LDHs and CNTs [96,120]. 

The results are a bit ambiguous – because there is a significant difference in the dispersion, one 

observes that the same products are obtained from the (nano) composites as are seen with the polymer. 

For the best dispersed systems, there may be a change in the product distribution but this is not certain. 

All that can be said with certainty at this time is that the process by which LDHs and CNTs provide a 

reduction in the PHRR is uncertain and this must be further investigated. 

The presence of paramagnetic iron naturally occurring in clays allows for radical recombination 

reactions with the clay, preventing degradation. The investigation of Zhu et al. indicates that clays 

which contain iron show enhanced thermal stability whether measured by TGA or cone calorimetry. It 

then appears that structural iron is the operative site for radical trapping within the clay. On the other 

hand, iron appears to have no role in the thermal stability of graphite-polystyrene nanocomposites, 

since it is not nano-dispersed as the structural iron is in the clay [113]. The heat release rate plots for 

PS nanocomposites with (MMT) and without (SMM) iron are shown in Figure 6. It is obvious that the 

plots are quite different when iron is absent and that it plays a role in the burning process. 
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Figure 5. GC-MS traces for virgin PS and its nanocomposites containing varying amount 

of organically-modified clay. Reproduced with permission from reference [117]. 

 

Figure 6. Heat release rate plots for polystyrene, and a polystyrene nanocomposite 

containing iron (MMT) and one in which iron is absent (SMM). Reproduced with 

permission from Reference [113]. 

 

6. Extension to Other Nanomaterials 

Other nanomaterials are also used to prepare nanocomposites, e.g., graphite and graphite oxide, 

nanoscale silica particles, metals or metal oxides, metal hydroxides, cellulose whiskers, etc. 

6.1. Graphite and Graphite Oxide 

Graphite and graphite oxide nanocomposites have been prepared and evaluated in terms of fire 

retardancy for PS, HIPS, ABS, PA-6 and PMMA [112,121-124]. The reductions in the PHRR for 

graphite are quite comparable to those obtained using MMT as the nano-dimensional material. The 
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reduction for PS is 48%, 36% for HIPS and 48% for ABS, 62% for PA-6 and 35% for PMMA. Thus it 

is likely that one can use graphite as a replacement for MMT. MMT does have an advantage in that the 

mechanical properties are enhanced while this does not happen with graphite. On the other hand, 

graphite nanocomposites should be able to conduct electricity and there may be situations in which this 

is important. Another obvious disadvantage for graphite nanocomposites is that they are black rather 

than transparent as are those of MMT. More work must be carried out with graphite as the nano-

dimensional material to permit an evaluation of its relative merits. 

Zhang et al. [125] investigated the flammability and thermal stability studies of styrene-butyl 

acrylate copolymer/graphite oxide nanocomposite. The PHRR is reduced by 45% in an styrene-butyl 

acrylate copolymer / graphite oxide nanocomposite with graphite oxide content as low as 1 wt %. 

Furthermore, this system can also decrease the total smoke production and the smoke release rate 

during the combustion. Graphite oxide can be used as a flame retardant additive to obtain halogen-free, 

non-toxic, low-smoke and green flame retardant materials. This study will be beneficial to the further 

investigation and development of new ecological fire retardants. Figure 7 illustrates the heat release 

rate (HRR) for styrene–butyl acrylate copolymer /graphite oxide nanocomposites with different 

graphite oxide mass fractions. 

Figure 7. Heat release rate curves for styrene–butyl acrylate copolymer/graphite oxide 

nanocomposites with different graphite oxide mass fractions. Reproduced with permission 

from reference [125]. 

 

6.2. Nanoscale Silica Particles 

Nanoscale silica particles have a huge interfacial area because the diameter of the particles is in the 

nanometer range. Improved mechanical properties and thermal stability of polymer/ nanoscale silica 

nanocomposites has been reported [126]. The presence of nanosilica significantly reduced the heat 

release rate of the polymer matrix [127]. Ji et al. [128] reported the synthesis of poly(ethylene 

terephthalate) (PET)/SiO2 nanocomposites via the Sol–Gel method and the flame retardancy of the 

composites was improved. As compared to neat PET, PET/SiO2 nanocomposite containing 2.0 wt % 

SiO2 shows a lower HRR; this behavior can be explained considering that: 1) crosslinked structures are 

caused by SiO2 enhancing the interactions among macromolecules and 2) as an inorganic material, the 

SiO2 particles have inherent flame retardancy which can lead to a reduction in the combustion rate. In 

contrast to HRR, PET/SiO2 nanocomposites also show a significant decrease in the Total Heat 

Released as compared to neat PET. Therefore PET/SiO2 nanocomposites exhibit some improvement in 
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fire retardancy compared to pristine PET [128]. The accumulation of silica on the surface of the burned 

polymer has been also observed in PMMA. In this study, two types of silica (fused silica and silica gel) 

were incorporated in two different molecular weight PMMA samples. The specific surface area of the 

silica and its porosity affected the thermal stability and flame retardant properties of the polymer by 

modifying the viscosity of the system in the molten state. Viscosity control proved to be a key-factor in 

the formation of the protective layer [127].  

Kashiwagi et al. [129] prepared PMMA / colloidal silica nanocomposites by in situ radical 

polymerization of methyl methacrylate to study the effects of nanoscale silica particles on the 

mechanical and flammability properties of PMMA. The addition of nanosilica particles (13% by mass) 

did not significantly change the thermal stability, but it made a small improvement in modulus, and it 

reduced the peak heat release rate roughly 50%.  

Yang et al. [130] investigated the flammability of polymer-silica nanocomposites. TGA results 

indicate that PMMA-silica nanocomposites show higher degradation temperatures than pristine 

PMMA; an increase in degradation temperature with increasing silica content and decreasing particle 

size is also found. Since there are more particles per weight for smaller size silica, more particles will 

offer more restriction sites for the polymer chain, and the scission of the polymer chain will become 

more difficult, and thus require more thermal energy for degradation. The better interfacial interaction 

between the additives and polymer chain introduced by the deeper penetration of smaller particles in 

the polymer matrix will also restrict the movement of the polymer chain. The LOI evaluation of 

PMMA–silica nanocomposites indicate that nanocomposites show very little improvement, although 

fillers in general lead to lower oxygen indices for thermoplastic samples due to decreased dipping.  

6.3. Metal Oxides 

The flammability of nanocomposites containing nanoscale titanium oxide, iron oxide and 

manganese oxides in polymer matrix has been investigated [131-133]. PMMA/TiO2 and PMMA/Fe2O3 

nanocomposites were prepared by melt blending. The oxide is well distributed in the material but with 

some tendency to aggregation, the size of the aggregates being much less than 0.2 μm except for very 

few cases in which the size of the aggregates is in the micrometer range. The tendency to aggregation 

can be explained by the fact that no surface treatment was performed on the oxides. TGA analysis of 

PMMA/TiO2 and PMMA/Fe2O3 nanocomposites shown that the nanoparticles of TiO2 and Fe2O3 very 

significantly enhance the thermal stability of PMMA; this effect seems to be stronger in the case of 

TiO2 than for Fe2O3. For PMMA/TiO2 nanocomposites containing 20% wt TiO2, the PHRR decreased 

from 620 kW/m
2
 in pristine PMMA to 320 kW/m

2
. For PMMA/Fe2O3 nanocomposites containing 20% 

wt Fe2O3, the PHRR decreased from 620 kW/m
2
 in pristine PMMA to 400 kW/m

2
 [131]. 

Manganese oxide nanoparticles are also used for polymer nanocomposites. In an inert atmosphere, 

the thermal stability of the polypropylene is not affected by the addition of 10 wt % of MnO or Mn2O3. 

The situation is completely different in air; the degradation of the polypropylene filled with MnO and 

Mn2O3 starts 30 °C before that of pure polypropylene and the thermal stability is then significantly 

enhanced at higher temperatures. The temperature of maximum decomposition increases from 298 °C 

for pure PP to 371 and 379 °C for PP + 10 wt % Mn2O3 and PP + 10 wt % MnO, respectively. The 

heat release rates (HRRs) for knitted fabrics based on polypropylene filaments increase when 
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polypropylene filaments filled with manganese oxide nanoparticles are used. The addition of fillers 

increases the PHRR and the time to ignition [132]. An increased time to ignition is advantageous 

while, of course, an increase in the PHRR is not desirable. It is difficult to understand how the addition 

of a non-burning oxide particle can increase PHRR. 

6.4. Metal Hydroxides 

The typical metal hydroxides used for polymer nanocomposites are magnesium hydroxide (MH) 

and aluminum hydroxide (alumina trihydrate ATH). Qiu et al. [134] used the surfactant-mediated 

solution method to synthesize nanoscale Mg(OH)2. Powders with the size of 3–6 nm in diameter and 

50–100 nm in length for needle-like nanoparticles, or 3–10 nm in thickness and less than 100 nm in 

width for lamella-like nanoparticles were obtained. The value of LOI of the Mg(OH)2/EVA 

nanocomposite increases to 38 from 24 in traditional Mg(OH)2/EVA composites. The enhancement of 

flame-retardant property may be due to the good dispersion of Mg(OH)2 nanoparticles in EVA matrix 

and the formulation of the compact chars. 

Ethylene vinyl acetate copolymer (EVA)/aluminum hydroxide nanocomposites were prepared by 

melt-blending. Pure EVA resin is flammable with an LOI of 17, and ATH exhibits flame retardancy at 

high loadings. For instance, the addition of 60 wt % of untreated ATH gives an LOI of 30 and a V-2 

rating in the UL-94 protocol. In comparison to the previous case, the flame retardancy of the coupling 

agent treated system is improved, i.e., this specimen obtained a V-1 UL-94 classification with an LOI 

of 37 [135].  

7. Combinations of Nanomaterials with Conventional Fire Retardants 

At one time, it was thought that the addition of the organically-modified clay would solve the 

problem of fire retardancy. It is now well known that this is not true and that, in fact, all we can do is 

to reduce the peak heat release rate but we do not affect the ignitability or extinguishability. Therefore 

the clay can be a part of the FR solution for some polymers but it is only one part. Nanomaterials have 

been used together with conventional fire retardants in the polymer matrix to see if they can interact to 

develop a system which is more effective looking at all aspects. 

The combination of aluminum hydroxide with the organically-modified clay has been studied in 

EVA and compared with the classic (ATH only) system. Traditionally one uses 65% ATH and 35% 

EVA in a wire and cable situation and this gives a PHRR of about 200 kW/m
2
 at a heat flux of  

50 kW/m
2
. When 5% of the ATH was replaced by the clay, the PHRR dropped to 100 kW/m

2
. With 

EVA – ATH only, one needs 78%ATH to obtain this value. If 200 kW/m
2
 is sufficiently low, then one 

can decrease the ATH from 65% to 45% and add 5% clay and thus 50% EVA. This leads to not only 

improved fire performance but also to improved mechanical and rheological properties [136].  

A similar investigation has been carried out on polypropylene. A 76% reduction in PHRR is seen 

when 60% PP and 40% ATH are combined. An equivalent reduction is observed with only 20% ATH 

by the addition of 5% organoclay, thus increasing the amount of polymer very substantially [137,138]. 

If one adds triphenylphosphate (TPP) to polystyrene, there is severe plasticization of the polymer so 

that it will actually flow. When the clay is present, the plasticization is reduced and some measure of 

fire retardancy is achieved. The rather typical situation for a nanocomposite is that the peak heat 
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release rate is lowered but the total heat released is unchanged, which means that eventually everything 

does burn but it takes a little longer time. When 30% of the phosphate is present, there almost an 80% 

reduction in PHRR with almost a 60% reduction in the total heat released [139]. 

Copolymers of styrene and dibromostyrene were used to make nanocomposites. A polymer which 

contained only 10% dibromostyrene and 3% organically-modified clay gave a reduction in the peak 

heat release rate of 72% and a V-2 classification in the UL-94 protocol [140]. 

The reaction to fire of polymer nanocomposites (thermoplastic polyurethane and polyamide-6) 

containing two different nanofillers (organoclay and carbon nanotubes) has been investigated. Polymer 

nanocomposites exhibit significant reduction of peak of heat release rate but the nanomorphology 

(exfoliation, intercalation and presence of tactoids) does not play any significant role, although a 

reasonable level of nanodispersion is necessary to achieve good flame retardancy in specific cases 

(mass loss calorimetry experiment). Modeling for the time to ignition is also proposed. It is shown that 

the nanocomposite approach gives the best results combined with conventional flame retardants 

(phosphinate and phosphate) and leads to synergistic effects [141]. 

The recent work on PP/LDH (nano)composites shows that there are no significant change in PHRR 

reductions for the PP/organo-LDHs (nano)composites, the PHRR reductions of PP/organo-LDHs 

(nano)composites were 0, 6 and 30% at 3, 5 and 10% LDHs loading, respectively. On the other hand, 

when 10% of zinc borate was addded to the PP composites, the PHRR reductions changed 

significantly. The PHRR reductions of PP/10% BZn was 38%, and the reductions of PP/organo-

LDHs/10%BZn (nano)composites at 3, 5 and 10% organo-LDH loading are 48, 50 and 63%. This 

implies, but does not prove, synergy between the organo-LDHs and zinc borate for PP. 

8. The Future of Nano-Dimensional Materials in Fire Retardancy 

We expect that in the future nano-dimensional materials will be a part of commercial fire retardant 

additives. In the past, fire retardants have usually been a single compound (perhaps in combination 

with a synergist as with Sb2O3 and bromine compounds). We think that nano-dimensional materials 

will play a role; the enhanced mechanical properties that arise when MMT is used, for instance, may 

be of value to offset the reduction in mechanical properties due to some additives.  

In order to aid in the development of these products, researchers must identify the processes by 

which nano-dimensional materials can effectively reduce the PHRR so that one can combine 

mechanisms to achieve fire retardancy. In the case of LDHs, one must determine how to obtain an 

LDH well-dispersed in a polymer to see if dispersion plays any role in the fire retardancy with these 

materials. Far and away the most commonly investigated nano-dimensional material is MMT and work 

must continue with this material to refine its use and identify the optimal loading at which it should be 

used. Carbon nanotubes are currently very popular and are being more and more investigated as the 

price of this material falls. This will continue and CNTs may well become more important; the single 

disadvantage is the color. New growth will occur with other nano-dimensional materials which are not 

now under serious investigation for fire retardancy. It is important to investigate these novel materials, 

such as metal oxides, sulfides and phosphates, to see if they can be well-dispersed in polymers and 

how they affect the properties of those polymers. 
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ABS                                              Acrylonitrile-butadiene-styrene terpolymer 

AFM                                             Atomic force microscopy 

ATH                                             Alumina trihydrate  

BPR                                              Boron phenolic resin 

BZn                                              Zinc borate 

EVA                                             Poly(ethylene-co-vinyl acetate) 

GC-MS                                        Gas chromatograph-mass spectrometer 
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HIPS                                            High impact polystyrene 

HRR/RHR                                   Heat release rate 

LDH                                            Layered double hydroxide 

LOI                                              Limiting oxygen index 

MH                                              Magnesium hydroxide 

MMT                                           Montmorillonite 

MWNT/MWCNT                        Multi-wall carbon nanotubes 

m-MWCNT                                  Modified multi-wall carbon nanotubes 

NMR                                           Nuclear magnetic resonance 

OMMT                                         Organically modified montmorillonite 

PA-6                                             Polyamide-6 

PE                                                Polyethylene 

PET                                             Poly(ethylene terephthalate) 

PHRR                                          Peak heat release rate 

PMMA                                        Poly(methyl methacrylate) 

PP                                                Polypropylene 

PS                                                Polystyrene 

SEM                                            Scanning electron microscopy 

SWNT/SWCNT                          Single-wall carbon nanotubes 

TEM                                            Transmission electron microscopy 

TGA                                             Thermogravimetric analysis 

THR                                             Total heat released 

TPP                                              Triphenylphosphate 

UL-94                                          Underwriter’ Laboratory Test 94 

XRD                                            X-ray diffraction  
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