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ABSTRACT

The moving k nearest neighbor (MkNN) query finds the k nearest
neighbors of a moving query point continuously. The high potential
of reducing the query processing cost as well as the large spectrum
of associated applications have attracted considerable attention to
this query type from the database community. This paper presents
an incremental safe-region-based technique for answering MkNN
queries, called the V*-Diagram. In general, a safe region is a set
of points where the query point can move without changing the
query answer. Traditional safe-region approaches compute a safe
region based on the data objects but independent of the query lo-
cation. Our approach exploits the current knowledge of the query
point and the search space in addition to the data objects. As a re-
sult, the V*-Diagram has much smaller IO and computation costs
than existing methods. The experimental results show that the V*-
Diagram outperforms the best existing technique by two orders of
magnitude.

1. INTRODUCTION
Current location-based services provide accurate position infor-

mation with a high degree of temporal precision. Consider the fol-
lowing two scenarios. A driver in a GPS-equipped car issues a con-
tinuous query to find the nearest gas station while driving in a city.
A tourist uses a location-aware mobile device to issue a continuous
query for the nearest restaurant while walking to a museum. The
queries are sent to a server that processes the queries and returns the
answers. In these scenarios, the server has to continuously maintain
the answer set which may change depending on the location of the
query point. These queries are location-based continuous spatial

queries [23] and the scenarios above are typical examples of mov-

ing k nearest neighbor queries (MkNN). A straightforward way to
process a MkNN query is using a sampling-based method, which
processes the MkNN query as a kNN query at sampled locations.
This method does not provide answers between sampled locations.
In order to provide an (almost) continuous answer to the query, a
high sampling rate is required, which makes the method inefficient
due to the frequent processing of kNN queries. The concept of the
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safe region provides a more effective way to achieve continuous
answers to location-based spatial queries. In a safe-region-based
method, an answer is returned with a safe region. As long as the
query point stays in the safe region, the answer remains the same.
When the query point moves out of the safe region, another answer
with its associated region is returned. Therefore, a safe-region-
based method always (that is, continuously) provides accurate an-
swers without the need for sampling. This approach also requires
much less frequent communication between the mobile client and
the server.

A classic example of safe-region-based techniques is the Voronoi

Diagram [14]. The Voronoi Diagram is a well known space decom-
position determined by distances to a given discrete set of objects,
typically, a set of points. Specifically, the Voronoi Diagram of a set
of points P = {p1, p2, ..., pn} is defined as a set of cells where
each cell V (pi) is a region of space that consists of all points of
the data space that are closer to pi than any other point in P . An
example is given in Figure 1. Figure 1(a) is a set of points in a
2-dimensional (2D) space and Figure 1(b) is the Voronoi Diagram.

(a) Point set S,
{a, b, c, d, e, f}

(b) Voronoi Diagram of S

Figure 1: The Voronoi Diagram

Processing a 1NN query using the Voronoi Diagram involves:
(i) locating which Voronoi cell the query point falls into; and (ii)
identifying the associated object. In the above example, q1 falls in
V (a) (the grey region) and therefore a is the nearest neighbor of
q1. The answer remains valid as long as the query point stays in
V (a). When the query point moves across the boundary of V (a)
to V (c), c becomes the NN.

The Voronoi Diagram can be generalized to the kth-order

Voronoi Diagram (kVD). In a kVD, each region is associated with
the set of k nearest neighbors, termed kNN set or k NNs, rather
than only the nearest one. The kVD can handle MkNN queries in
the same manner as the basic first order VD handles 1NN queries.

Another useful generalization of the Voronoi Diagram is order
sensitivity. The ordered kVD partitions the space into cells where
each cell is associated to a particular ordering of the kNN set. The
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ordered kVD can be used to answer MkNN queries that require the
ranking of the k NNs by their distances to the query point.

The kVD has the following shortcomings:
1. Expensive precomputation. The kVD requires precomput-

ing all the kVD cells and access to all the data points. Both
computation and storage costs are high.

2. No support for dynamically changing k values. The kVD
can only accommodate kNN queries with a specific k value;
the ordered kVD can only accommodate kNN queries with
k values no larger than the order of the diagram. As a result,
the technique is not suitable for situations where the value of
k is unknown in advance or can change dynamically.

3. Inefficient update operations. Many cells have to be recom-
puted for each insertion or deletion on the dataset.

The expensive precomputation is especially not justified if the
query point is confined to a small region of the whole data space.
For example, if a car is moving in a small part of a city, then it is
unnecessary to compute the kVD for the entire city. Furthermore,
one may require different kVDs for different needs. For example, a
driver may need to find a gas station with a restroom facility while
another driver needs one with a special type of fuel. Precomputing
kVDs for all possible scenarios may be prohibitive.

In [23], Zhang et al. proposed an algorithm to locally compute
a kVD cell, which mitigates the precomputation and update prob-
lems (shortcomings 1 and 3). However, the algorithm is still rela-
tively expensive and does not address the problem of dynamically
changing k values (shortcoming 2).

In this paper, a technique called the V*-Diagram for MkNN
queries is proposed. The V*-Diagram has the following key ad-
vantages:

1. It requires no precomputation.
2. It incrementally computes answers and therefore efficiently

adapts to changes – such as insertions and deletions of ob-
jects, as well as, dynamically changing values of k.

The V*-Diagram is based on the safe-region concept, but dif-
fers from any previous technique for MkNN queries in the follow-
ing aspect: previous safe-region-based techniques compute safe re-
gions purely based on the data (for example, you can compute the
kVD without referring to the query point); the V*-Diagram com-

putes safe regions based on not only the data objects, but also

the query point and the current knowledge of the search space.

This is one of the main novelties of the technique. By doing so,
both computation and data retrieval of the V*-Diagram are more
economical than those of the other techniques.

The contributions of this paper are summarized as follows:
• We propose the V*-Diagram technique and the associated

algorithm, called V*-kNN, to support efficient processing of
MkNN queries.
• We show how the V*-Diagram technique can be applied to

the domain of spatial networks.
• We perform an extensive experimental study with the results

showing that the V*-Diagram outperforms the best existing
technique [23] by two orders of magnitude.

The rest of the paper is organized as follows: Section 2 describes
the problem setup. Related work is discussed in Section 3. We for-
mulate the V*-Diagram in Section 4 and present the algorithm for
MkNN queries based on the V*-Diagram in Section 5. In Sec-
tion 6, we show how the V*-Diagram technique can be applied
to the domain of spatial networks. A performance analysis of the
V*-Diagram is given in Section 7. Section 8 presents experimental
results and Section 9 concludes the paper.

2. PROBLEM SETUP
Let D be a set of data objects (represented by points) in a d-

dimensional space and dist( . ) be the distance function. The k

nearest neighbor (kNN) query is defined as follows: given D and a

static query point q, find a set H that consists of k objects from D
such that for any p1 ∈ H and any p2 ∈ D − H , dist(p1, q) ≤
dist(p2, q).

The moving k nearest neighbor query (MkNN) is defined as fol-
lows: given D and a moving query point q, find the k NNs of q for

every position of q.
Due to the nature of location-based applications, MkNN queries

are discussed in the context of two settings: (i) Centralized pro-

cessing paradigm. Both the query issuer and the processor are on
the same machine. Then the main performance measure is the query
processing cost. (ii) Client-server paradigm. The query is issued
by a client to a server through a wireless network (such as a mo-
bile phone network). The performance measure involves both com-
munication and query processing costs on the server side, and the
former one is more important in delay-sensitive applications.

We assume an unknown trajectory which means that the location
of q gets updated in a periodic manner. We also assume that no
kVD is maintained but there is a generic spatial index such as the
R-tree [4] built on the data objects, since it can be used for various
query types and is efficient to maintain. This is also argued as a
valid assumption in previous work [23].

3. RELATED WORK

3.1 KNN algorithms
Many kNN search algorithms have been proposed based on spa-

tial hierarchical structures. One of their common features is the
application of the branch-and-bound strategy on the tree struc-
ture. The tree can be traversed in a depth-first (DF-kNN) [16] or
a best-first (BF-kNN) [5] manner. BF-kNN can retrieve more near-
est neighbors incrementally if k increases.

Figure 2: R-tree and BF-kNN

Figure 2 shows an example R-tree and the BF-kNN algorithm.
Figure 2(a) shows a set of points and how they can be grouped in
an R-tree, where objects are indexed in a hierarchy of minimum

bounding rectangles (MBRs). The corresponding R-tree is shown
in the upper part of Figure 2(b). Starting from the root, BF-kNN
traverses all the entries in increasing order of their mindist, where
the mindist of an entry is the minimum distance between the entry
and the query point q. To do so, a priority queue is maintained to
keep all the retrieved data points and active nodes. A node is active
if its parent has been accessed but itself has not. The traversal stops
if the first k elements retrieved from the priority queue are all data
points.

An example run of BF-kNN is shown in the lower part of Fig-
ure 2(b). At step 1, all entries in the root are inserted into the prior-
ity queue pq. Then the entries are dequeued and the corresponding
nodes are retrieved in order. The first dequeued item is S and its
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two child entries X and W are put back into pq. Then R is de-
queued. Nodes U and V are put in pq and so on. At step 4, data
point d is the head of pq. Data point d must be the first NN be-
cause all other entries has distances to q (which are bounded by
mindist of their nodes) larger than dist(q, d). d can be retrieved
as the first NN. If another NN is needed, the process continues un-
til another data point is the head of pq. At step 6, f is discovered
as the second NN. By this means, an arbitrary number of NNs can
be incrementally obtained. If the value of k is fixed, an aggres-
sive pruning can be performed on the nodes in pq to reduce the
queue size, though the page access cost cannot be further reduced
due to the search-space optimality of the algorithm [6]. Other tech-
niques such as iDistance [10] has superior performance than these
hierarchical structure based algorithms in high dimensional space.
However, it cannot retrieve k NNs in an incremental manner.

3.2 Techniques for processing MkNN queries
We have discussed two approaches for MkNN queries in Sec-

tion 1: one is sampling based and the other one is safe-region based.
SR-kNN. Song and Roussopoulos [18] introduced a method

which will be referred to as SR-kNN in this paper. SR-kNN re-
duces the access costs in the sampling-based approach by retriev-
ing redundant data entries and caching. It greatly reduces the cost
of query reevaluation, but does not solve the problem of inaccu-
rate answers between sampled locations. Thus, SR-kNN does not
provide truly continuous answers.

The kth-order Voronoi Diagram (kVD). Safe-region based
techniques produce continuous answers and reduce processing and
communication costs. The Voronoi Diagram [14] is a classic ex-
ample and can be used to process M1NN queries as described in
Section 1. For MkNN queries, the kVD is used. However, the kVD
has shortcomings described in Section 1.

TPkNN and CkNN. Tao and Papadias [19] proposed the time-

parameterized kNN (TPkNN) query. Assuming a linear trajectory
of the query point, a TPkNN query finds (i) the current kNN set, (ii)
a position on the trajectory where the kNN set changes and (iii) the
objects that cause the change. This is done by finding the earliest
point on the trajectory that has a different kNN set from the current
one. This point is also known as the influence point (or equivalently
influence time when the speed is known), which can be considered
as the boundary of a safe region.

Tao and Papadias [20] also considered the Continuous kNN

(CkNN) query, which finds the kNN for every single point on a pre-
defined linear trajectory. This is achieved by identifying all influ-
ence points on the trajectory. The main difference between CkNN
and TPkNN is that CkNN obtains all the influence points on the
trajectory but TPkNN finds only the first one. Both TPkNN and
CkNN are limited to known linear trajectories.

RIS-kNN. Zhang et al. [23] proposed an algorithm called
Retrieve-Influence-Set kNN (RIS-kNN) to locally compute kVD
cells using a spatial index. RIS-kNN uses the TPkNN query [19] to
find each edge of a kVD cell, 360 degrees around the query point.

Figure 3 shows how RIS-kNN discovers all edges of V (a) from
the example in Figure 1(a). Initially, a is found to be the NN of
q; the cell is initialized to the whole data space, that is, rectangle
ABCD. At step 1, a TPNN query is executed with the trajectory

from q to the top left corner of the space (
−→
qA) and d is returned as

the object that changes the NN result along
−→
qA. The perpendicular

bisector of a and d, Bad , contributes one edge to the cell. The cell
is updated to the polygon BCDEF . At steps 2 and 3, two TPNN
queries are executed with the trajectories from q to the new corners

(
−→
qE and

−→
qF ). Two new edges are found according to Baf and

Bae . Since kVD cells for data points are convex polygons, this
process continues until all corners of the cell have been checked

(a) Step 1 (b) Steps 2 and 3

(c) Steps 4 and 5 (d) Final steps

Figure 3: Computing a Voronoi cell locally

and they all have the same NN as q.
RIS-kNN mitigates the precomputation problem (shortcoming

1) of the kVD because it only accesses local data, but this algorithm
is still expensive because it performs multiple (on average 12 [23])
TPkNN queries, where each TPkNN query involves a costly tree
traversal. RIS-kNN does not solve the problem of dynamically
changing k values (shortcoming 2); changing k to a larger value
incurs recalculation of the kVD cell. The computation of the pre-
vious kVD cell cannot be reused and hence this algorithm is not
incremental.

Due to the fact that only one kVD cell is maintained at a time,
RIS-kNN handles dataset updates (insertions and deletions of ob-
jects) more efficiently than the traditional kVD technique. How-
ever, in a case where an update effects the kNN answers, the current
kVD cell has to be recalculated.

IRU. Kulik and Tanin [13] introduced an algorithm called incre-

mental rank updates (IRU) to compute regions where the ranking
of all the objects (based on their distances) is the same. This is
equivalent to computing the ordered kVD cell with k = n, where
n is the total number of objects. Rather than computing the whole
nVD, IRU incrementally computes a neighboring nVD cell from
the current cell. In [13], an nVD cell is termed a fixed-rank region

(FRR) since for any point in the region, the ranking of all the ob-
jects based on their distances is fixed. Based on the observation
that only rank-adjacent objects can swap their ranks1, defining the
FRR of n objects requires at most n − 1 bisectors2 of the n − 1
pairs of rank-adjacent objects. Continuous monitoring of the rank-
ing of the objects is done by maintaining a rank-sorted list of ob-
jects and its corresponding list of bisectors of pairs of rank-adjacent
objects (rank-adjacent bisectors). Each time a bisector is crossed
by the query point, the ranks of the two corresponding objects are
swapped and the list of rank-adjacent bisectors are updated.

An example is given in Figure 4, where the grey region is the cur-
rent FRR that q1 is in. Let us assume that q is the location of a mov-
ing query point which starts at q1 and stops at q2. In Figure 4(a), q
is at q1 and the ranking is initially 〈a, c, b, f , e, d〉 and the corre-

1In this paper, the rank of an object means the object’s position in
a list of objects sorted by their distances to some other object. We
use “ranking” and “ordering” interchangeably due to the usage of
both in the literature.
2The bisector of two objects a and b is the set of points where each
point is equidistant to a and b.
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(a) Initial step (b) First update (c) Second update

Figure 4: Incremental rank update

sponding list of bisectors is 〈 Bac , Bcb , Bbf , Bfe , Bed〉. Then
q crosses Bef in Figure 4(b). This causes e and f to swap their
ranks. Therefore Bbf and Bde are replaced by Bbe and Bdf ,
respectively. In Figure 4(c), Bac is crossed. This causes a and c to
swap their ranks and Bbc is replaced by Bab . It is shown in [13]
that only O(n) instead of O(n2) bisectors are maintained during
the iterations in the IRU algorithm. However, IRU still accesses all
data objects to obtain the sorted list and checks n − 1 bisectors
every time q moves.

Related spatial-network queries. Several kNN techniques for
static query points were proposed in [8, 9, 15, 17]. There are also
MkNN techniques specific to the domain of spatial networks. Ko-
lahdouzan et al. [12] proposed an algorithm that utilizes the Voronoi

Network Nearest Neighbor (VN3) [11]. Cho et al. [3] proposed a
technique that issues static kNN queries at the intersection points
on the query path.

Related moving-object queries. Hu et al. [7] proposed a safe-
region-based technique for static window and kNN queries on mov-
ing objects. Each moving object maintains its own safe region and
only report if its new location changes the results of any of the
queries. Yu et al. [22] presented a query-indexing technique for
monitoring kNN queries for moving objects and a given set of
queries, where each query object maintain its own critical region

to keep track of the kNN set. The similarity between [7,22] and the
MkNN techniques [13,14,18–20,23] including the V*-Diagram is
the use of the safe-region concept to reduce the access cost.

Benetis et al. [2] presented algorithms to process NN and reverse
NN queries for moving objects with known trajectories. Result va-
lidity is thus expressed as a function of time. Similar to our work,
Benetis et al. included methods to handle insertions and deletions
of data points.

These techniques [2, 7, 22] focus on monitoring changes caused
by location updates of data objects. The emphasis of the MkNN
techniques, on the other hand, is on the changes caused by location
updates of the query point.

Summary. The MkNN techniques are summarized in Table 1
on five features: providing continuous answer, incremental eval-
uation, accessing only local data (instead of all data), working on
unknown query path, and providing order-sensitive k NNs. Only
our proposed algorithm, V*-kNN, has all these features.

Table 1: Comparison of MkNN techniques

Technique Continuous

Incremental

Local access

Unknown path

Order-se
nsitiv

e

SB-kNN [18] × X X X X

kVD [14] X × × X ×
Ordered kVD [14] X × × X X

TPkNN [19] X × X × ×
CkNN [20] X × X × ×
RIS-kNN [23] X × X X ×
IRU [13] X X × X X

V*-kNN X X X X X

4. THE V*DIAGRAM
We formulate the V*-Diagram in this section. The V*-Diagram

is a safe-region-based technique. Previous techniques compute safe
regions purely based on the data. The V*-Diagram computes safe
regions based on not only the data, but also the query point and the
current knowledge of the search space.

The V*-Diagram assumes a metric space and a spatial hierarchi-
cal index on the dataset. Hence the BF-kNN algorithm can be used
to retrieve NNs incrementally as discussed in Section 3.1.

In the V*-Diagram, the (k+x) NNs of the moving query point q
are maintained, where x is the number of auxiliary objects to help
the V*-Diagram work effectively (more analysis on x is in Sec-
tion 5.1). The V*-Diagram comprises two types of regions, which
are discussed in Section 4.1 and Section 4.2. These regions are
then put together to form a combined safe region, discussed in Sec-
tion 4.3. Commonly used symbols are summarized in Table 2.

Table 2: Symbols

Symbol Meaning

n The number of objects in the database.
k The number of requested nearest neighbors.
x The number of auxiliary objects.
q The moving kNN query point.
qb The position where the latest BF-kNN call is made.

q′ The current position of the query point.
p A data object.

pk The current kth NN of q.

z The (k + x)th NN of qb when q is at qb .
Sk The safe region with regard to pk .

Bpipj
The bisector of two objects pi and pj .

4.1 Safe region with regard to a data object
To help explain the concept of a safe region with regard to a

data object, the notions of search sphere, known region and reli-

able region are first introduced. Recall the BF-kNN algorithm in
Section 3.1. Each object/node retrieved from the priority queue
corresponds to an implicit search sphere (centered at the query
point), which delimits the current search coverage, and the sphere
expands gradually as more nodes/objects are accessed. Numbers
are assigned to those spheres in Figure 2(a) according to the steps
in Figure 2(b) that access the corresponding nodes. For example,
sphere 2 corresponds to step 2 where node S is retrieved; sphere
5 corresponds to step 5 where object d is retrieved. Intuitively, the
search sphere denotes the region we have full knowledge of, be-
cause all the objects in the sphere are already retrieved.

In the V*-Diagram, BF-kNN is called repeatedly to help main-
tain (k + x) NNs. Let qb be the position of q where the latest

BF-kNN call is made. Let z be the (k +x)th NN to qb . The search
sphere corresponding to z centered at qb is the latest one (since
BF-kNN stops when z is obtained), and we call this search sphere
the known region, denoted by W (qb , z). We highlight z because
it determines the boundary of the known region. Figure 5 gives an
example. W (qb , z) is actually a sphere centered at qb with the ra-
dius dist(qb , z). Point p is one of the (k + x− 1) NNs of qb and
other objects in W (qb , z) are not shown.

Next, we formulate a region within which q can move while p
remains one of the (k +x) NNs of q. Let q′ denote a later position
of q after qb . Suppose q′ is at the position as shown in Figure 5.

We extend the line segment qbq′ and it exits W (qb , z) at χ. Let
sph(v, l) denote a sphere with center v and radius l. As long as p
is in sph(q′, dist(q′, χ)), it is one of the (k + x) NNs of q′ . This
is because any object outside sph(q′, dist(q′, χ)) must be farther
to q′ than p to q′ and there are at most (k + x) objects inside
sph(q′, dist(q′, χ)). Since any object in sph(q′, dist(q′, χ)) re-
mains one of the (k + x) NNs of q′ , we call sph(q′, dist(q′, χ))
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Figure 5: The known, reliable, and safe regions

the reliable region with regard to q 3 and any object in the reliable
region a reliable object. If p is a reliable object, p is said to be reli-

able; otherwise, it is said to be unreliable. Mathematically, p being
in the reliable region with regard to q′ is expressed as

dist(q′, p) ≤ dist(qb , z)− dist(qb , q′), (1)

where dist(qb , z)− dist(qb , q′) is the length of q′χ.
If we view q′ as a variable, then Equation (1) actually describes

all the possible positions of q′ that guarantee p remaining among
the (k + x) NNs. Consequently, we can formulate the safe region
with regard to p as follows.

DEFINITION 1 (SAFE REGION WITH REGARD TO A POINT).
Given a known region W (qb , z) and a data point p within

W (qb , z), the safe region with regard to p is:

S(qb , z, p) = {q′ : dist(q′, p) + dist(qb , q′) ≤ dist(qb , z)}.
For Euclidean distance in a 2D space, the boundary of S(qb , z, p)
is an ellipse as illustrated in Figure 5. The two foci of the ellipse
are qb and p; the sum of the distances from qb and p to any point
on the ellipse is dist(qb , z). We further have the following results.

COROLLARY 1. In Euclidean space, the safe region with re-

gard to z, S(qb , z, z), is the line segment qbz.

PROOF. For any q′ in S(qb , z, z), dist(q′, z)+dist(qb , q′) ≤
dist(qb , z). By the triangular inequality, we have dist(q′, z) +
dist(qb , q′) ≥ dist(qb , z). The set of points that satisfies both
inequalities is {q′ : dist(q′, z) + dist(qb , q′) = dist(qb , z)}. In
Euclidean space, this is the line segment qbz.

COROLLARY 2. p is unreliable iff q′ is outside of S(qb , z, p).

The proof is straightforward and we omit it.

4.2 Fixedrank region
As discussed in Section 3.2, the fixed-rank region (FRR) was

introduced in [13] to denote a set of possible query-point locations
that share a specific ranking of all objects. For the V*-Diagram, the
FRR is applied to a subset of all objects, specifically, the (k+x)NN.
The IRU algorithm is used to incrementally maintain the FRR.

Given a list L of objects, 〈p1, p2, ..., pm〉, the FRR of L is the
set of all points such that for any point v in the set, p1, p2, ..., pm

are already in sorted (ascending) order by their distances to v. Let
Hpipj

be defined as {v ∈ DS : dist(v, pi) ≤ dist(v, pj )},
where DS is the data space. An FRR is a function of a list and is
formulated as follows.

DEFINITION 2 (FIXED-RANK REGION).

F 〈p1, p2, ..., pm〉 =

m−1
⋂

i=1

Hpipi+1
.

3We omit “with regard to q” when the context is clear.

F 〈p1, p2, ..., pm〉 may be written in the compact format of F (L).
In Figure 4(a), the ranking of the objects according to their dis-

tances to q1 is L = 〈a, c, b, f , e, d〉. The FRR F (L) is defined as
Hac ∩Hcb ∩Hbf ∩Hfe ∩Hed . The boundary of F (L) is defined
by five bisectors, Bac , Bcb , Bbf , Bfe and Bed .

We use the IRU algorithm described in Section 3.2 to incremen-
tally compute F (L) in which q currently resides for the (k + x)
maintained objects. An FRR is represented as (i) a list B of the
(k+x−1) rank-adjacent bisectors, Bpipi+1

, for i = 1, 2, ..., k+

x−1, and (ii) a reference point (which could be any point in F (L),
qb in our case). The FRR is incrementally maintained by (i) check-
ing whether q crosses a bisector in B, and (ii) if yes, performing
updates accordingly.

The purpose of maintaining the FRR using the IRU algorithm is
to keep the (k + x) objects sorted according to their distances to
q. One alternative solution to IRU is to computing distances be-
tween the (k + x) objects and q for every position of q, which is
sampling-based. Although both methods have the same complex-
ity, the FRR is important to the formulation of a region where the
(order-sensitive) kNN does not change.

4.3 Integrated safe region
We are now ready to formulate the safe region for the MkNN

query, called the integrated safe region (ISR). The ISR is the inter-
section of the current FRR of the (k + x) maintained objects and
the safe regions with regard to the k nearest objects. We will first
define the ISR formally and then prove that ISR satisfies the MkNN
safe-region requirements.

Let O denote the (k + x)NN set of qb , L be the list of these
(k + x) objects sorted by their distances to q, and z still be the
farthest retrieved object to qb , which is pk+x . The ISR is then
formulated as:

F (L) ∩ (

k
⋂

i=1

S(qb , z, pi)) (2)

The computation of the ISR can be greatly reduced based on
Lemma 1 and Theorem 3 below.

LEMMA 1. F 〈pi , pj 〉 ∩ S(qb , z, pj ) ∩ S(qb , z, pi) =
F 〈pi , pj 〉 ∩ S(qb , z, pj ).

PROOF. For any point v ∈ F 〈pi , pj 〉, v satisfies

dist(v, pi) ≤ dist(v, pj ). (3)

For any point v ∈ S(qb , z, pj ), by definition v satisfies

dist(v, pj ) + dist(qb , v) ≤ dist(qb , z). (4)

For any v ∈ F 〈pi , pj 〉 ∩ S(qb , z, pi), it satisfies inequalities (3)
and (4). By adding the two inequalities,

dist(v, pi) + dist(qb , v) ≤ dist(qb , z). (5)

Inequality (5) shows that v ∈ S(qb , z, pi), given that v ∈
F 〈pi , pj 〉 ∩ S(qb , z, pj ). It can be concluded that: F 〈pi , pj 〉 ∩
S(qb , z, pj ) ⊆ S(qb , z, pi) and hence S(qb , z, pi) can be dis-
carded in F 〈pi , pj 〉 ∩ S(qb , z, pj ) ∩ S(qb , z, pi).

An example is given in Figure 6. The grey region F 〈a, c, b, f 〉∩
S(q1, f , c) ∩ S(q1, f , a) is exactly the same as F 〈a, c, b, f 〉 ∩
S(q1, f , c).

THEOREM 3. For k ≥ 2,

F 〈p1, p2, ..., pk〉 ∩ (
k

⋂

i=1

S(qb , z, pi)) =

F 〈p1, p2, ..., pk〉 ∩ S(qb , z, pk)
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PROOF. Lemma 1 shows the case of k = 2, that is, F 〈p1, p2〉∩
S(qb , z, p2) ∩ S(qb , z, p1) = F 〈p1, p2〉 ∩ S(qb , z, p2).

If the theorem holds for k = l, that is,

F 〈p1, p2, ..., pl〉 ∩ (

l
⋂

i=1

S(qb , z, pi)) =

F 〈p1, p2, ..., pl〉 ∩ S(qb , z, pl),

then the theorem can be verified for k = l + 1 as follows.

F 〈p1, p2, ..., pl+1〉 ∩ (

l+1
⋂

i=1

S(qb , z, pi))

= F 〈p1, p2, ..., pl〉 ∩ F 〈pl, pl+1〉

∩(
l

⋂

i=1

S(qb , z, pi)) ∩ S(qb , z, pl+1)

= F 〈p1, p2, ..., pl〉 ∩ F 〈pl, pl+1〉 ∩ S(qb , z, pl)

∩S(qb, z, pl+1).

By applying Lemma 1, S(qb , z, pl) can be removed from the
above expression. Hence, we obtain a final result of

F 〈p1, p2, ..., pl〉 ∩ F 〈pl, pl+1〉 ∩ S(qb , z, pl+1)

= F 〈p1, p2, ..., pl+1〉 ∩ S(qb , z, pl+1).

The theorem therefore holds for any integer value of k greater
than or equal to 2.

Since F (L) = F 〈p1, p2, ..., pk〉 ∩ F 〈pk , pk+1..., pk+x〉,
based on Theorem 3, expression (2) can be reduced to F (L) ∩
S(qb , z, pk). Therefore, the ISR can be defined as follows.

DEFINITION 3 (INTEGRATED SAFE REGION (ISR)). Let O
be the (k + x)NN set of qb , L be the list of these (k + x) objects

sorted by their distances to q, z be the farthest retrieved object to

qb , and pk be the kth object in L. The integrated safe region with

respect to qb , z, pk and L is defined as:

I(qb , z, pk , L) = F (L) ∩ S(qb , z, pk) (6)

Next, we prove that the ISR defined above satisfies the require-
ments of being a safe region for the MkNN query, that is, the k NNs
as well as their order do not change when q remains in the ISR.

THEOREM 4. If the ISR I(qb , z, pk , L) is not an empty set, ev-

ery point q′ in I(qb , z, pk , L) has the same order-sensitive k NNs.

PROOF. According to Definition 3, (1) since I ⊆ F (L) (param-
eters of I omitted), the ranking of the (k + x) objects is fixed for
all points in I , which satisfies the order-sensitivity requirement; (2)
every point q′ in I is also in the safe regions with regard to the first
k objects in L. As a result, there can be no object outside W (qb , z)
nearer to q′ than any of the first k objects in L. Therefore, for any
q′ in I , q′ has the same order-sensitive k NNs as qb .

Figure 6: Integrated safe region example (k = 2, x = 2)

As exemplified in Figure 6, four objects retrieved by a 4NN
query (k = 2 and x = 2) at q1 are 〈a, c, b, f 〉. Point q1 is the most

recent point where (k+x) NNs are retrieved from the database. As
long as q′ remains in F 〈a, c, b, f 〉∩S(q1, f , c) (the grey region),
then: (i) no object outside W (q1, f ) is nearer to the two objects: a
and c; and (ii) the ranking of 〈a, c, b, f 〉 is unchanged.

The diagram that contains the information used in computing
the ISR is called the V*-Diagram. It consists of: (i) the bisectors
of the rank-adjacent pairs in L; and (ii) the boundary of the safe
region with regard to pk . We may also use the V*-Diagram to refer
generally to the whole technique based on it, including the algo-
rithms. Although the V*-Diagram in the example of Figure 6 only
computes a single ISR, it actually allows incremental computation
of new ISRs, which is further discussed in Section 5.

5. ALGORITHMS
In this section, we present V*-kNN, an algorithm for MkNN

queries based on the V*-Diagram, followed by a discussion on the
effect of x, the number of auxiliary objects. We also present the al-
gorithms to handle insertions/deletions and dynamically changing
k values.

The V*-kNN algorithm uses the following data structures and
variables to compute and maintain the ISR.

1. L: a list of (k + x) objects always sorted in ascending order
by their distances to q; these objects are the (k + x) NNs
retrieved at qb .

2. z: the farthest retrieved object in the known region when q
is at qb .

3. pk : the kth object in L.
4. Sk: the safe region with regard to pk .
5. B: a list of bisectors of pairs of rank-adjacent objects (rank-

adjacent bisectors) in the order corresponding to L.
We do not explicitly maintain F (L) because it is represented by B,
and checking whether q moves out of the current F (L) is also done
by checking whether q crosses any bisector in B.

V*-kNN produces answers continuously as shown in Algo-
rithm 1. It has an initialization part (lines 1 to 3) and a continuous
processing part (lines 4 to 19). The initialization part calls the algo-

Algorithm 1: V*-kNN(q0, k, x)

qb ← q01

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)2

ReportResult(L.Head(k))3

while (Event← GetEvent()) do4

q← Event.Position5

switch Event.Type do6

case RankUpdate7

Bisector← Event.Bisector8

L.OrderSwap(Bisector.Index)9

B.Update(L,Bisector.Index)10

if Bisector.Index ≤ k then11

ReportResult(L.Head(k))12

if Bisector.Index ∈ [k − 1, k] then13

pk ← L.Item(k)14

Sk ← S(qb , z, pk)15

ISR← ConstructISR(Sk,B,q)16

case ReliabilityUpdate17

qb ← q18

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)19

rithm Compute-V* (Algorithm 2) to compute the initial ISR using
the starting point q0 of the trajectory as qb . Then the continuous
processing part starts.
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Algorithm Compute-V* (Algorithm 2) runs as follows. It first
calls the BF-kNN algorithm to retrieve (k + x) objects with qb as
the query point; with the retrieved objects, it sets z and pk accord-
ingly; then, it computes S(qb , z, pk) and rank-adjacent bisectors
based on L and assigns them to Sk and B, respectively; finally, the
current ISR is computed. To determine the correct half plane for
each bisector in B, qb is used as the reference point. Readers may
notice that symbol z is explained differently here from Table 2. Ob-
ject z is used to determine the known region and it is the (k +x)th

NN of qb when q is at qb . When deletion is taken into account,
if the (k + x)th NN of qb gets deleted, we still use the deleted
object to determine the known region. Therefore, we make it more
accurate here than in Table 2 when we did not consider deletions.

The continuous processing part of V*-kNN is event driven. It ba-
sically maintains the ISR as q moves. An event is triggered when q
exits the current ISR. There are two types of events with this regard,
RankUpdate and ReliabilityUpdate. These events are generated by
a separate inexpensive process that constantly checks the current
position of q against the ISR. When an event is generated, it is as-
sociated with a timestamp and the corresponding query position.

Algorithm 2: Compute-V*(qb , k, x)

L← BF-kNN(qb , k + x)1

z← L.Item(k + x)2

pk ← L.Item(k)3

Sk ← S(qb , z, pk)4

B← CreateBisectorList(L)5

ISR← ConstructISR(Sk,B,qb)6

return (L, z, Sk, B, ISR)7

Given that the query trajectory is unknown, the query positions
are updated discretely and checking for new events has to be done
based on these discrete updates. To provide accurate answers, the
checking should be performed at a high frequency, which is accept-
able because of the low cost. Note that this is different from pro-

cessing the query based on sampling, which requires frequent tree
searches instead of event checking. The answer we provide is con-
tinuous, not based on sampled locations. Since the query positions
are updated discretely, the events could happen anytime between
two consecutive query updates. To compute the exact time (posi-
tion) the events happen, we assume a linear trajectory between two
consecutive query positions.

We describe the two event types, RankUpdate and ReliabilityUp-

date below and discuss how to handle them with reference to Al-
gorithm 1 (in the algorithm, q is used to denote the position of the
query point when an event happens).
RankUpdate This event is triggered when q exits the current

F (L), that is, crossing a rank-adjacent bisector. Besides the
timestamp and query position, a RankUpdate event also con-
tains the information of the bisector crossed by q (line 8).
For this event, the ranks of the two objects corresponding to
the bisector are swapped (line 9) and the bisector list B is
updated accordingly (line 10) as explained in the IRU algo-
rithm (Section 3.2). If the event affects the rank of any of the
k NNs (line 11), then the new k NNs are reported. Moveover,
if the rank update changes pk (line 13), Sk also needs to be
updated (lines 14 to 15). Changes are reported to the user if
at least one of the k nearest objects is affected.

ReliabilityUpdate This event is triggered when q is leaving Sk

(that is, on the boundary of Sk). It means that the kth NN
is about to become unreliable and hence the number of re-
liable objects is about to become less than k. Therefore, the
ReliabilityUpdate event calls Compute-V* using the event
position, q, to obtain x new auxiliary objects so that all the

(k+x) maintained objects are reliable again. The new ISR is
constructed accordingly. This event does not cause result up-
date because neither the kNN set nor their ordering changes.
If another object really becomes nearer than the kth NN, a
RankUpdate will be triggered, which will update the result.

Next, we give a running example of the algorithm. Recall the
example in Figure 6. At the starting point q1, 4 NNs are retrieved
in the order of 〈a, c, b, f 〉. The ISR is F 〈a, c, b, f 〉∩S(q1, f , c).
On the trajectory of q (starting at q1), two events happen when q

(a) F 〈c, a, b, f 〉 ∩S(q1, f , a) (b) F 〈c, a, b, e〉 ∩ S(γ2, e, a)
Figure 7: Example for Algorithm 1, (k = 2, x = 2)

crosses Bac at γ1 and exits S(q1, f , a) at γ2. Figure 7 shows the
effects of these two events.

Figure 7(a) shows how the ISR changes after q crosses Bac .
At the instant that q is crossing Bac at γ1, a RankUpdate event
is triggered, which causes a and c to swap their ranks. The list
L becomes 〈c, a, b, f 〉, and this causes both F (L) and Sk to

change. Now a becomes pk (2ndNN), and hence the ISR becomes
F 〈c, a, b, f 〉 ∩ S(q1, f , a) (the grey region). The current 2 NNs,
c and a, are reported to the user in that order.

Figure 7(b) shows how the ISR changes after q exits
S(q1, f , a). At the instant that q is exiting S(q1, f , a) at γ2, a
ReliabilityUpdate event is triggered, which calls Compute-V* to re-
trieve more objects. The new (k +x) NNs are 〈c, a, b, e〉, with the
corresponding ISR, F 〈c, a, b, e〉 ∩ S(γ2, e, a) (the grey region).

5.1 On the number of auxiliary objects
Auxiliary objects are an important part of the V*-Diagram tech-

nique. They allow q to move away from qb while retaining the
current k NNs by providing the knowledge beyond the coverage
of the search sphere of the original k NNs. This makes it possi-
ble to continuously evaluate the MkNN query. In this subsection,
we discuss possible values of x, the number of auxiliary objects.
Generally, we find that x should not assume the values of 0 and 1,
which are explained below.

Having x equal to 0 implies that z and the kth object in L, pk ,
are the same object. According to Corollary 1, in Euclidean space,
the safe region with regard to z (which is Sk) is the line segment
qbz. Unless q moves along qbz, q exits Sk as it starts moving.
Probabilistically, it is highly unlikely that q moves along qbz since
qbz is just one direction among the infinite possible directions q
can move towards. Therefore, it is probable that q always exits Sk

as it moves and it triggers the ReliabilityUpdate event infinitely. As
a result, x should not be set to 0 for Euclidean space.

When x is a positive integer, the problem of infinitely triggering
the ReliabilityUpdate event does not happen except under the co-
incidence described in the next paragraph. Therefore, any integer
greater than 1 is a valid value for x. The effect of the value of x on
performance is further investigated in Sections 7 and 8.

In theory, the problem of Sk being a line segment may hap-
pen with any value of x when the last (x + 1) objects in
L have the same distance to qb , which is dist(qb , z). In this
case, dist(qb , pk) equals to dist(qb , z). By definition, Sk =
{q′ : dist(q′, pk) + dist(qb , q′) ≤ dist(qb , z)}. If we replace
dist(qb , z) by dist(qb , pk) in the inequality of the definition, we
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get Sk = {q′ : dist(q′, pk) + dist(qb , q′) ≤ dist(qb , pk)},
which is a line segment in Euclidean space. To completely avoid
this problem, we can check whether dist(qb , pk) is equal to
dist(qb , z) after we retrieve (k + x) objects by a BF-kNN call.
If they are equal, then we increase the value of x until dist(qb , pk)
is different from dist(qb , z).

In general, a larger value of x provides a larger Sk, and hence
the less frequent we need to retrieve new objects from the database.
Having the value of x too small will result in highly frequent BF-
kNN calls. On the other hand, a too large x value also incurs the
overhead of retrieving more objects in every BF-kNN call and more
computation for maintaining them.

5.2 Insertions and deletions of objects

Algorithm 3: DatasetUpdate(q,p,Operation)

if p ∈W (qb , z) then1

if Operation = Insertion then2

L← Insert(L,p,q)3

else4

L← Delete(L,p)5

B.Update(L)6

if k > L.Length() then7

qb ← q8

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)9

ReportResult(L.Head(k))10

else if dist(q, p) ≤ dist(q, pk) then11

pk ← L.Item(k)12

Sk ← S(qb , z, pk)13

if q /∈ Sk then14

qb ← q15

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)16

else17

ISR← ConstructISR(Sk,B,q)18

ReportResult(L.Head(k))19

else20

ISR← ConstructISR(Sk,B,q)21

In this subsection, we describe the algorithm to perform updates
(that is, insertions and deletions) to the dataset for V*-kNN. The
algorithm is called DatasetUpdate and is presented in Algorithm 3.
In this algorithm, q denotes the position of the query point when
the update happens and it is passed in as an input. Let p be the ob-
ject to be inserted or deleted. First, the algorithm checks whether
the p is in W (qb , z). If not, the update can be safely ignored be-
cause it cannot affect the ISR. Otherwise, an insertion/deletion of p
into/from L is performed and B is updated accordingly (lines 2 to
6): insertion of p needs q for computing distances from q and the
maintained objects to find the correct insertion slot in L; deleting p
from L requires only a simple lookup operation. After the bisector
update, the ISR and L could be in one of the following three cases:

(i) The length of L becomes smaller than k as a result of a dele-

tion (line 7). In this case, qb is set to q and Compute-V* is
called to retrieve more objects and compute the new ISR ac-
cordingly (lines 8 and 9). The new result is reported (line 10).

(ii) The length of L is still greater than k but the update affects

the kNN set (line 11). We update pk and Sk (lines 12-13) and
check if q is inside the new Sk (line 14). If q is not inside the
new Sk, then Compute-V* is called (line 16). Otherwise, the
ISR is updated to reflect the changes in B and Sk. Since the k
NNs have changed, the new result is reported to the user (line

19).
(iii) The update has no effects to the kNN set (line 20). Only the

ISR is updated to reflect the change in B.

5.3 MkNN with dynamically changing k values
The ability to gracefully handle changes to the value of k is cru-

cial for the distance browsing functionality [6]. For static kNN
queries, distance browsing is a feature that allows NNs to be in-
crementally retrieved without having to specify the value of k in
advance. In this paper, we allow the value of k to be changed with-
out incurring heavy computation.

Algorithm KUpdate (Algorithm 4) shows how V*-kNN handles
dynamically changing k values. The algorithm has two inputs: the
current location q of the query point and the new k value. We first
check if the new k is greater than the length of L. If yes, qb is set
to q and Compute-V* is called. Otherwise, pk and Sk are updated
for the new k (lines 5 and 6). If q is not inside the new Sk, qb is
set to q and Compute-V* is called. Otherwise, only the ISR has to
be updated to incorporate the new Sk (line 11). Finally, the new k
NNs are reported (line 12). As we can see, the V*-kNN algorithm
can easily accommodate dynamically changing k values due to its
incremental nature.

Algorithm 4: KUpdate(q,k)

if k > L.Length() then1

qb ← q2

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)3

else4

pk ← L.Item(k)5

Sk ← S(q, z, pk)6

if q /∈ Sk then7

qb ← q8

(L, z, Sk, B, ISR)← Compute-V*(qb , k, x)9

else10

ISR← ConstructISR(Sk,B,q)11

ReportResult(L.Head(k))12

6. THE V*DIAGRAM IN SPATIAL NET

WORKS
When the movement of q is constrained by network connectivity,

NN problems should be solved based on the network distance. For
example, a car is travelling on a road and it keeps track of the k
nearest gas stations based on the road network distance.

In this section, we show how the V*-Diagram technique can be
applied to the domain of spatial networks, which also satisfies our
metric space assumption. Due to the space limitation, we could
not fully elaborate the application of V*-Diagram in the spatial-
network model, but only present the essential components of the
technique.

The essence of the V*-Diagram is the ISR, which consists of
two key components: safe regions with regard to data objects and
the fixed-rank region (FRR). Hence, we focus our discussions on
how to determine these two components in spatial networks, while
the algorithms to compute the ISR and process MkNN queries can
be reused. To avoid an exhaustive discussion, we use an example to
illustrate the main idea.

A spatial network is usually represented as a set of vertices and a
set of edges, where an edge is defined by two vertices. Given points
p1 and p2 in the network, dist(p1, p2) is the length of the shortest
path between p1 and p2. Figure 8 shows a spatial network of eight
nodes, a to h. Distance dist(qb , p) is 2 using the path via b.
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We use pnt(p1, p2, l) to denote a point on the edge (p1, p2)
with distance l to p1, and seg(p1, p2, l) to denote a section on the
edge (p1, p2) with the starting point p1 and length l. For exam-
ple, z is at pnt(a, e, 3), and all points between a and z can be
represented as seg(a, e, 3).

Consider an MkNN query with k = 1. Suppose x is 2 for the
V*-Diagram and qb is at pnt(a, b, 3). The 3 NNs for qb are: p, r
and z. We can use any kNN technique for spatial networks (such as
those described in [8, 9, 15, 17]) to retrieve the (k + x) NNs at qb .
The algorithm also returns the edges in the range of dist(qb , z) to
qb (that is, W (qb , z)), (a, b), (a, c), (a, e), (b, d), (b, f ), (d, c),
(d, g), and the distances from the vertices of these edges to qb .

Figure 8: V*-Diagram in a spatial network (k = 1 and x = 2)

Next, we determine the safe region for pk (which is p in this
example). The safe region S(qb , z, p) is the region where for any
point q′ in the region, the sum of dist(qb , q′) and dist(p, q′) is
less than or equal to dist(qb , z), which is 6. We need to explore all
the edges in S(qb , z, p) to identify its boundary. Since W (qb , z)
encloses S(qb , z, p), and we already know the edges that are in
W (qb , z) via the kNN query executed at qb , we only need to con-
sider those edges. We use edge (b, f ) as an example. For a point
q′ on (b, f ) to be in S(qb , z, p), dist(qb , q′) + dist(p, q′) has
to be less than 6 according to the definition. Since dist(qb , q′) +
dist(p, q′) is equal to dist(qb , b)+dist(p, b)+2dist(b, q′), and
both dist(qb , b) and dist(p, b) are 1, q′ is in S(qb , z, p) when
dist(b, q′) is less than or equal to 2. Consequently, pnt(b, f , 2)
forms part of the boundary of S(qb , z, p). The boundary points on
other edges can be computed in a similar manner. After obtaining
all boundary points, we get S(qb , z, p), which consists of edge
(b, d), seg(b, a, 3) and seg(b, f , 2), plotted as grey thick seg-
ments in the figure.

As discussed in Section 4.2, the FRR is determined by the rank-
adjacent bisectors the maintained objects. In a spatial network, a bi-
sector reduces to points on edges. For example, Bpr has two bisect-
ing points, one on pnt(b, d, 2.5) and the other on pnt(a, c, 0.5).
The FRR F 〈p, r, z〉 is the region with Bpr and Brz as the
boundary and containing qb . It consists of (b, f ), seg(b, a, 1.5)
and seg(b, d, 2.5), shown as the segments in the dashed triangle.

As a result, the ISR (S(qb , z, p) ∩ F 〈p, r, z〉) consists of
seg(b, a, 1.5), seg(b, d, 2.5) and seg(b, f , 2). It is shown as the
segments in the grey region. According to Algorithm 1, exiting the
ISR via pnt(b, a, 1.5) ( Brz ) or seg(b, d, 2.5) ( Bpr ) triggers a
RankUpdate event, and exiting the ISR via pnt(b, f , 2) triggers a
ReliabilityUpdate event.

7. PERFORMANCE ANALYSIS
Among all techniques listed in Table 1, only RIS-kNN by Zhang

et al. [23] and V*-kNN provide continuous answers for the MkNN
query with unknown query trajectory and without accessing all the
data. Therefore, this section focuses on a comparative performance
analysis on RIS-kNN and V*-kNN in terms of tree node accesses
(that is, IO cost). We assume a 2D space, although the analysis can

be extended to higher dimensional spaces. We also assume that the
data objects are uniformly distributed.

V*-kNN only has node accesses in the calls to BF-kNN, which
are triggered by the ReliabilityUpdate event (line 19 of Algo-
rithm 1). We analyze the frequency of ReliabilityUpdate events,
fb, as follows. A ReliabilityUpdate event happens when q exits
S(qb , z, pk). We denote the point of exit as qe . The ReliabilityUp-

date event happens only once during the process of q moving away
from qb until reaching qe . Then a BF-kNN is performed and qe

becomes the new qb . A ReliabilityUpdate event will happen again
when the next time q exits S(qb , z, pk). Therefore, fb is inversely
proportional to the distance q travels from qb to qe . In the worst
case, q moves in a straight line, and fb is inversely proportional
to dist(qb , qe). The expected value of dist(qb , qe) is obtained as
follows. When q moves to qe , pk is on the boundary of the reliable
region (with regard to qe). For a better understanding, imagine in
Figure 5, p is pk , q′ is qe and it is on the boundary of S(qb , z, p).
We can see that dist(qb , qe) equals dist(qb , χ) − dist(qe , χ).
Note that dist(qb , χ) is the radius of W (q, z), which is a sphere
that contains (k+x) points; dist(qe , χ) is the radius of the reliable
region with regard to qe , which is a sphere that contains k points.

According to [21], the distance between the query point qb and

the kth NN is 2/Cv(1 −
√

1−
√

k/n), where Cv is the vicin-

ity constant [21]. Therefore dist(qb , qe), which is dist(qb , χ) −
dist(qe , χ), can be expressed as

2

Cv
(

√

1−
√

k/n−
√

1−
√

(k + x)/n).

Since fb is inversely proportional to dist(qb , qe),

O(fb) = O(1/(

√

1−
√

k/n−
√

1−
√

(k + x)/n)).

The expression of O(fb) can be relaxed as follows:

1
√

1−
√

k/n−

√

1−
√

(k+x)/n
=

√

1−
√

k/n+
√

1−
√

(k+x)/n√
(k+x)/n−

√
k/n

≤ 2
√

1−
√

k/n√
(k+x)/n−

√
k/n
≤ 2√

(k+x)/n−
√

k/n

= 2

√
(k+x)/n+

√
k/n

(k+x)/n−k/n
= 2

√
(k+x)/n+

√
k/n

x/n
≤ 4

√
(k+x)/n

x/n
.

Therefore O(fb) is O(
√

(k+x)n

x2 ). Typically, x is comparable to

k and (k + x) is much smaller than xk. Thus, we obtain that fb is

O(
√

kn
x

). Let Cnn be the cost of a BF-kNN call. Then we obtain

the total IO cost of V*-kNN, CnnO(
√

kn
x

).

The RIS-kNN processes the MkNN query as follows. Every time
q exits the current kVD cell, RIS-kNN is executed to obtain the
new kVD cell and the corresponding kNN. The total cost depends
on the frequency of crossing kVD cells and the cost of each RIS-
kNN run. In the worst case, q moves along a straight line. The
frequency of q crossing kVD cells is proportional to the average
linear density4 of the kVD cells. The number of the kVD cells is
O(kn − k) in 2D space [14]. We assume that k is much smaller
than n. Thus, the density of kVD cells is O(kn), which corre-

sponds to a linear density ofO(
√

kn). Each RIS-kNN run requires
12 TPkNN queries on average [23]. Let Ctpnn be the cost of a
TPkNN call. Then the total IO cost of RIS-kNN for the MkNN
query is 12CtpnnO(

√
kn).

4The number of kVD cells crossed per unit length along a straight
line.
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We now compare the costs of V*-kNN and RIS-kNN. For the
frequency component, V*-kNN is smaller than RIS-kNN espe-
cially when x is large. For the cost-per-kNN-algorithm-call com-
ponent, the first TPkNN call of an RIS-kNN run is always more
expensive than a BF-kNN call because TPkNN has to retrieve at
least the kNN and it needs to access more nodes to obtain the in-
fluence object. In addition, there are 11 subsequent TPkNN calls of
an RIS-kNN run, where each call is much more expensive than a
BF-kNN call in practice. Consequently, the IO cost of V*-kNN is
much lower than that of RIS-kNN.

In terms of the CPU cost, V*-kNN maintains the rank of (k +
x) objects, which causes more computation than RIS-kNN on the
client side. However, given today’s mobile devices and trends (e.g.,
phones with multimedia and graphical functionalities), we argue
that the CPU power of these devices is adequate to check (k +
x − 1) bisectors at a reasonably high frequency (e.g., once every
second) for practical values of k and x. In many realistic settings,
the benefits from the communication-cost reduction will outweigh
this overhead on the client side.

On the server side, V*-kNN has a lower CPU cost than RIS-
kNN. It is because RIS-kNN uses the TP-kNN query which incurs
a much higher computational cost than BF-kNN.

8. EXPERIMENTAL STUDY
This section presents the results of our experimental study. In our

implementaion, the R*-tree [1] is used to index the data objects.
The page size is 1 KB, which has a node capacity of 50 entries.

We used both synthetic and real datasets in our experiments. All
datasets span the space of 10, 000× 10, 000 square units. We gen-
erated synthetic datasets with uniform (U) and Zipfian (Z) distri-
butions with the default cardinality of 25, 000 data points. The real
datasets are 65, 743 and 119, 897 postal addresses from California
(C) and North-Eastern USA (N), respectively.
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Figure 9: Trajectory types

We generated two different types of query trajectories, random
(R) and directional (D), as shown in Figure 9. Each trajectory con-
sists of 1, 001 points. Between two points, the trajectory is assumed
to be a straight line segment. The length of each segment is 1 unit.
For each type of trajectory, we generated 20 different trajectories.
We run these 20 trajectories as a query set for each experiment and
present the average result. We measured both the cumulative total
response time and the cumulative number of page accesses for a
whole trajectory as the performance metric.

8.1 Choosing the value of x

In the first set of experiments, we study the impact of the value
of x on the performance of V*-kNN. We varied x from 3 to 36 with
k set to 20 and no buffer space. We did not use the values less than
3 for x because too small values of x do not yield a reasonable size
of Sk to make V*-kNN effective. Figure 10 shows result of the
response time and number of page accesses as functions of x for
both query trajectory types. The response time first decreases as x
increases but becomes more constant as x keeps increasing. There
is a small increase when x becomes large (around 30). The num-

ber of page accesses always decreases as x increases. This is be-
cause as x becomes larger, Sk becomes larger and hence BF-kNN
is called less frequently. This reduces both CPU time and IO cost.
When x becomes too large, the computational overhead of main-
taining more objects becomes more significant and may overweigh
the savings in CPU time. Therefore, the CPU time increases for a
large x value. The number of page accesses mainly depends on the
frequency of BF-kNN calls and hence always decreases. These re-
sults confirms our discussion in Section 5.1 and the analysis in 7. In
all these experiment, the x value of 9 provides a good performance,
so 9 is used as the default value of x for the rest of the experiments.
As we can see, some variations around the value of 9 do not affect
the performance much.

 0.1

 1

 3  6  9  12  15  18  21  24  27  30  33  36

ti
m

e
 (

s
e
c
)

x

U
Z
C
N

(a) Total Cost (D)

 100

 1000

 10000

 3  6  9  12 15 18 21 24 27 30 33 36

P
a
g
e
 A

c
c
e
s
s

x

U
Z
C
N

(b) Page Access (D)

 0.1

 1

 10

 3  6  9  12  15  18  21  24  27  30  33  36

ti
m

e
 (

s
e
c
)

x

U
Z
C
N

(c) Total Cost (R)

 10

 100

 1000

 10000

 3  6  9  12 15 18 21 24 27 30 33 36

P
a
g
e
 A

c
c
e
s
s

x

U
Z
C
N

(d) Page Access (R)

Figure 10: Effect of x

8.2 Comparative study: centralized
Among all the techniques discussed in the related work, RIS-

kNN by Zhang et al. [23] is the only algorithm that is comparable
to our work. Therefore, we perform a comparative experimental
study on V*-kNN and RIS-kNN. The next four sets of experiments
compare these two techniques using different experimental param-
eters.

The effect of the buffer size. In this set of experiments, we use
the buffer sizes of 0, 8, 16, 24 and 32 pages. Figure 11 shows the re-
sults for two synthetic datasets with the default dataset size and the
two real datasets. V*-kNN outperforms the RIS-kNN in all settings
in terms of both total response time and number of page accesses.
In most cases, the improvement factor is two orders of magnitude.
For both methods, the page access cost decreases as the buffer size
increases as expected.

The effect of the number of query location updates. In this
set of experiments, we vary the number of location updates in the
query trajectory from 0 to 1000. Figure 12 shows the response time
on the four datasets. In all experiments, V*-kNN outperforms RIS-
kNN and the improvement factor is two orders of magnitude in
most cases. The results of the number of page accesses have very
similar behavior as those of the total response time. Therefore we
do not present them for the remaining experiments due to space
limitation. For both techniques, the total response time increases as
the number of location updates increases.

The effect of the dataset size. In this set of experiments, we
vary the number of objects in the dataset from 5,000 to 25,000 for
the synthetic datasets. Figure 13 shows the response time results.
Again, V*-kNN outperforms RIS-kNN in all settings and the im-
provement factor is two orders of magnitude in most cases. For
both techniques, the total response time increases as the number of
objects increases.
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Figure 11: Effect of buffer size
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Figure 12: Effect of the number of location updates
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Figure 13: Effect of dataset size
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Figure 14: Effect of k
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Figure 15: Communication cost: effect of x
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Figure 16: Communication cost: effect of k
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The effect of k. In this set of experiments, we vary the value
of k from 5 to 20 for the four datasets. Figure 14 shows the re-
sponse time results. We observe similar results as in previous ex-
periments. V*-kNN outperforms RIS-kNN in all settings and the
improvement factor is two orders of magnitude in most cases. For
both techniques, the total response time increases as the value of k
increases, but the total response time of V*-kNN increases slower
than that of RIS-kNN.

8.3 Comparative study: clientserver
In a high-latency client-server setting, communication costs be-

tween the mobile client and the server dominate the other costs.
The following experiments compare the communication costs of
V*-kNN and RIS-kNN. The number of times a client has to com-
municate with the server is used as the performance measure.

For V*-kNN, the communication cost is measured by the num-
ber of times the BF-kNN query is executed because other opera-
tions are local. For RIS-kNN, the communication cost is the num-
ber of times the query itself is executed, i.e., the number of kVD
cells crossed.

Figure 15 shows the communication costs with the increasing
x values in the four datasets and two trajectory types. The default
buffer size of 16 pages is used. Since the parameter x does not ap-
ply to RIS-kNN, its communication cost is constant as x changes.
For all datasets, we can see that the communication cost of V*-
kNN decreases as the value of x increases. This conforms with the
cost analysis in Section 7, which states that the retrieval cost of the

V*-kNN with respect to x is x−1/2. The V*-kNN starts to outper-
form the RIS-kNN algorithm when x is: 3 for the uniform dataset
(U), 3 for the Zipfian dataset (Z), 6 for the California dataset (C),
and 6 for the North-Eastern USA dataset (N).

The difference between the communication and total response
time costs (Figure 10) is notable. Unlike the total response time,
the communication cost measure disregards the CPU cost. Only the
database-access count is considered, and thus there is no penalty for
large values of x.

The next experiment is a study on how the communication cost
changes as k is varied from 5 to 20. For all datasets, x is set to 9
and the buffer size is 16 pages. Since a larger value of k produces
denser Voronoi cells in the space, the cost of RIS-kNN increases
as k increases due to more frequent cell crossings. The commu-
nication cost of V*-kNN also has a positive correlation with k as
suggested by the analysis in Section 7. V*-kNN still outperforms
RIS-kNN in all settings, as shown in Figure 16. The effect of k on
the communication and total costs are very similar. This is because
k has positive correlations with: communication, tree-traversal and
computation costs.

8.4 Summary
The V*-kNN algorithm consistently outperforms the RIS-kNN

algorithm for all settings using the measures of total response time,
number of page accesses and communication costs. V*-kNN is also
more scalable with increasing k values. There is a tradeoff between
CPU time and data retrieval costs for V*-kNN, controlled by the
value of x. In other words, x provides the ability to tune the query
performance for different application domains.

9. CONCLUSIONS
In this paper, the V*-Diagram and the associated algorithm V*-

kNN have been introduced to efficiently process moving k near-
est neighbor queries (MkNN). A key difference between the V*-
Diagram and previous safe-region-based techniques for MkNN
queries is that, previous techniques only utilizes the knowledge on
the data while the V*-Diagram exploits also the query location and

the knowledge of the current search space. As a result, the V*-
Diagram is more economical in terms of both IO and CPU costs.
We also showed that the V*-Diagram can be applied to other use-
ful domains such as spatial networks. We performed an extensive
experimental study and the results show that our algorithm outper-
forms the best existing technique by two orders of magnitude.
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