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THE VALENCE OF HARMONIC POLYNOMIALS
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Abstract. The paper gives an upper bound for the valence of harmonic poly-
nomials. An example is given to show that this bound is sharp.

Interest in harmonic mappings in the complex plane has increased due to the
publication of [1] in 1984. Most of this interest has centered on univalent harmonic
mappings. It is, however, the purpose of this paper to present the fundamental
valence results of complex valued polynomials which are harmonic in the plane.
Specifically a harmonic polynomial is a function P (z) = S(z) + T (z) where S(z)
and T (z) are analytic polynomials. The degree of P is defined as the larger of the
degrees of S and T . Lyzzaik studied the local topology of harmonic mappings in [4];
in particular he put a bound on the local valence of P but did not obtain a global
valence bound. In this paper it will be shown that, apart from certain degenerate
examples, P (z) is at most n2-valent, where n is the degree of P . An example is
exhibited to show this to be the sharp bound.

To prove the n2 valence bound we need the following classical result from alge-
braic geometry; a proof may be found in [2].

Theorem 1 (Bézout’s Theorem). Let A and B be relatively prime polynomials in
the real variables x and y with real coefficients, and let degA = n and degB = m.
Then the two algebraic curves A(x, y) = 0 and B(x, y) = 0 have at most mn points
in common.

To apply Bézout’s theorem to the valence problem we restate it in an equivalent
form.

Theorem 2 (Alternate form of Bézout’s Theorem). Let A and B be polynomials
in the real variables x and y with real coefficients. If degA = n and degB = m, then
either A and B have at most mn common zeros or have infinitely many common
zeros.

Proof. If A and B are relatively prime, then, by Bézout’s theorem, the polynomial
equations A(x, y) = 0 and B(x, y) = 0 have at most mn common zeros. Otherwise
A and B are not relatively prime and they have a greatest common factor, say
C. Let degC = q. If C(x, y) = 0 has no solutions, then A and B have at most
(n − q)(m − q) common zeros. But if there exists a point on C(x, y) = 0 with
either ∂C

∂x 6= 0 or ∂C
∂y 6= 0, then, by the implicit function theorem, C(x, y) = 0
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is an arc in some neighbourhood of the point, and in this case A and B have
infinitely many common zeros. The only other possibility left to consider is that of
∂C
∂x = ∂C

∂y = 0 at every point on C(x, y) = 0. Clearly if a factor of C is repeated

it will give the same zeros, and since we are only concerned with the number of
distinct zeros without regard for any multiplicity, we may assume that C(x, y) = 0
has no repeated factors. Therefore C and ∂C

∂y do not have any common factors

involving y. But by a preliminary rotation, we may assume that there are no
factors of C which contain only x. Therefore we may now assume C and ∂C

∂y are

relatively prime. Thus, by Bézout’s theorem, C and ∂C
∂y have at most q(q − 1)

common zeros. It follows that C has at most q(q−1) zeros, since every zero of C is
a zero of ∂C

∂y . Applying Bézout’s theorem again, we see at once that A and B have

at most (n− q)(m− q) + q(q − 1) ≤ nm− q common zeros, since 2q ≤ n+m.

We may write P (z) in terms of its real and imaginary parts, so P (x + iy) =
A(x, y)+ iB(x, y). Clearly Theorem 2 gives immediately the result that P (z) either
has at most n2 zeros, or has infinitely many zeros. So in order to prove n2 valence
it is now sufficient to determine conditions on P (z) which imply finite valence. To
do this we will require the following, previously unpublished, theorem of T. Sheil-
Small.

Theorem 3. Let a function f be harmonic in some domain D and have a sequence
of distinct zeros (zm)∞m=0 converging to a point z∗ in D. Then f(z) ≡ 0 on some
simple analytic arc containing z∗ as an interior point. Further, there are at most
finitely many such arcs unless f(z) ≡ 0 in D.

Proof. Without loss of generality it may be assumed that z∗ = 0. A function f is
harmonic in a disc if, and only if, it can be expressed as the sum of an analytic
function and the conjugate of an analytic function. So in some neighbourhood of
the origin f may be written as

f(z) =

∞∑
n=1

anz
n +

∞∑
n=1

a−nz̄n.

If an = 0 for every n, then f(z) ≡ 0 in the neighbourhood and so vanishes identically
in the domain. Otherwise let k be the lowest positive integer such that ak 6= 0 or
a−k 6= 0. Then

lim
m→∞

f(zm)

|zm|k = 0

or

lim
m→∞ ake

ikθm + a−ke−ikθm = 0,

where zm = |zm|eiθm . This is possible only if |ak| = |a−k|, so f has the form

f(z) = zkg(z)+zkh(z) where g and h are analytic functions with |g(0)| = |h(0)| 6= 0.
The derivatives of (zkh(z))1/k and (zkg(z))1/k are non-zero at 0 so the functions
are univalent in some neighbourhood of 0. Therefore zkg(z) = p(z)k and zkh(z) =
−(q(z))k where p and q are analytic and univalent in a neighbourhood of 0. Now

for m large enough q(zm)k = p(zm)k, and so for infinitely many m it is true that

p(zm) = ωq(zm)
def
= r(zm)(1)
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where ω is some fixed kth root of unity. But p has an inverse, so writing wm = p(zm)
we have zm = p−1(wm) and (1) becomes

w̄m = r(p−1(wm))
def
= s(wm).(2)

Multiplying (2) by e−iθ/2 where s′(0) = eiθ and defining ζ = eiθ/2w and t(ζ) =
e−iθ/2s(e−iθ/2ζ) we obtain ζ̄m = t(ζm). Transforming again, this time to the σ-
plane gives

σ = u(ζ) =
1

2
(ζ + t(ζ)), u′(0) = 1.

But u is univalent in some neighbourhood of 0, so has an inverse there. Therefore
by defining σm = u(ζm) we have

σm =
1

2
(ζm + t(ζm)) = Re(ζm) = Re(u−1(σm)).

Therefore Re(u−1(σm)− σm) = 0. What we have now is a real harmonic function
v(σ) = Re(u−1(σ) − σ) that is zero at every σm and further (since u is univalent
and the ζm are distinct) the σm are distinct real numbers which tend to zero.
Now for σ real v(σ) is an analytic function of σ, so v(σ) ≡ 0 for all real σ in some
neighbourhood of the origin. Performing all of the above transformations in reverse
we see that f(z) = 0 for all z on the curve p−1(e−iθ/2u−1(σ)), where σ is real and
sufficiently small. Thus f(z) ≡ 0 on an open arc through 0, the arc having an
injective analytic parametrization. The other kth roots of unity may give k − 1
more such open arcs.

Theorem 4. Let f be a function harmonic in the (entire) complex plane. If
lim infz→∞ |f(z)| > 0, then f has finitely many zeros.

Proof. By hypothesis f(z) 6= 0 outside some disc. If f does have infinitely many
zeros, then there exists a sequence of (distinct) zeros of f converging to a point in
the disc. By Theorem 3 f(z) ≡ 0 on an analytic simple arc through this point. This
arc may then be continued through its end points, and so on for each subsequent
continuation. Since the zero set of f is bounded this continuation process must
eventually result in the formation of a loop [6]. But f(z) ≡ 0 on this loop and so,
by the maximum principle, f(z) ≡ 0 in the entire plane, a contradiction. Thus f(z)
has only finitely many zeros.

Combining Theorems 2 and 4 we now have

Theorem 5. Let P (z) be an harmonic polynomial of degree n. If limz→∞ P (z) =
∞, then P (z) has at most n2 zeros.

Although limz→∞ P (z) = ∞ implies an upper bound on the number of zeros of
P it is too general to imply the existence of any zeros. For example take P (z) =
z̄2 + z̄+ 1− z+ z2. Then Re(P (x+ iy)) = 2x2− 2y2 + 1 and Im(P (x+ iy)) = −2y
so P (z) →∞ as z →∞. But when Im(P (z)) = 0 it is clear that Re(P (z)) ≥ 1, so
P cannot have any zeros.

To provide an example of a polynomial of degree n with as many as n2 zeros
we begin with the observation that the level curve Im(zn) = 0 is composed of n
straight lines passing through the origin. Denote by F1 the family of lines

Im(e−iπ/4zn) = 0
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obtained by rotating the above n lines by an angle of π/4n. Denote by F2 the
family of lines

Im(eiπ/4(z − 1)n) = 0

obtained by rotating the original lines by −π/4n and translating by 1 to the right.
Looking at the two families of lines, we see that no line in F1 is parallel to a line in
F2. Thus each line in F1 intersects every line of F2 exactly once. So the two level
curves Im(e−iπ/4zn) = 0 and Im(eiπ/4(z − 1)n) = 0 intersect in exactly n2 points.
That all these points are distinct follows easily since each line in F1 intersects F2

in exactly n distinct points, none of which is the origin, and the lines of F1 only
intersect each other at the origin.

Therefore the harmonic polynomial

Im(e−iπ/4zn) + i Im(eiπ/4(z − 1)n)

of degree n has exactly n2 distinct zeros. We can rewrite this polynomial in the
form

1

2i
(e−iπ/4zn − eiπ/4z̄n) +

1

2
(eiπ/4(z − 1)n − e−iπ/4(z̄ − 1)n).

Multiplying by −2eiπ/4 and swapping z and z̄ gives the more pleasing polynomial

Q(z) = zn + (z − 1)n + iz̄n − i(z̄ − 1)n.

In fact(
1

i

)n
Q(iz + 1/2) = (z − i/2)n + (z + i/2)n + i(−z̄ − i/2)n − i(−z̄ + i/2)n

is a polynomial with n2 zeros and all its coefficients real.

Remark 1. Sheil-Small defined the following class in [5]. Let Γ be a convex Jordan
curve parametrized by the homeomorphism F (eit) : [0, 2π] → Γ. Define f(eit) =
F (eiφ(t)) where φ is an increasing function satisfying φ(2π)− φ(0) ≤ 2πN . We can
extend f into the unit disc by Poisson’s formula, the class so defined is written

Φ̃(Γ, N). It is still an open problem to determine an upper bound on the valence

of non-degenerate members of Φ̃(Γ, N), but Q(z) combined with Lyzzaik’s method
of [3] shows that the upper bound for the valence (if it exists) of such functions is
at least N2.

Remark 2. Let P (z) = S(z) + T (z), where deg(z) = m and degT (z) = n, satisfy
P (z) → ∞ as z → ∞. By conjugating P (z), if necessary, we may assume that
n ≥ m. For m = n and m = n − 1 we have shown the valence bound n2 to be
sharp, but for m < n− 1 it would be surprising if it were still possible to obtain n2

valence. I conjecture the correct bound to be m(m− 1)+3n− 2 for 1 ≤ m ≤ n− 1.
For m = 1 this becomes z̄+T (z) is at most 3n− 2 valent, or equivalently, that the
number of fixed points of the conjugate of an analytic polynomial of degree n is at
most 3n− 2.

Remark 3. For P (z) = a−nz̄n+ · · ·+a−1z̄+a0 +a1z+ · · ·+anz
n with |a−n| 6= |an|

we can use the affine transformation P (z) 7→ P (z) − (an/a−n)P (z) to reduce the
coefficient of z̄n to zero. From this it can be deduced that the resultant of P (z)
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and P (z) with respect to z̄ is a polynomial in z of degree n2. It can then be shown
that

(i) Re(P (x, y)) and Im(P (x, y)) are relatively prime. So, by Bézout’s theorem,
we have a new proof of Theorem 5 in the case |a−n| 6= |an|.

(ii)
∑

j |m(P, zj)| ≥ n.

(iii)
∑

j |m(P, zj)|2 ≤ n2.

Here m(P, zj) is the topological multiplicity of the zero zj . Further details can be
found in [6].
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