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AB ST R ACT

A physical problem that has received considerable attention 

is that of leakage in mine ventilation. Most underground methods 

of mining leave porous material between roadways^ with the result 

that through leakage> the quantity of air reaching the working 

face is usually less than that entering the mine. Investigations 

into this problem have assumed that air flows through the barrier 

in a direction perpendicular to the roadways. This is clearly 

wrong unless flow is impervious in any other direction. In the 

present stud^ the more general consideration of air movement in any 

direction is made.

It is shown that the pressure of air at points in the 

barrier is governed by Laplace’s equation and from other fluid flow 

relationships, certain non-linear boundary conditions apply. An 

operational method is used to find a solution but an approximation 

must be introduced for this to be achieved. The author wishes to 

establish the accuracy of this solution.

For the special case of streamlined flow in the airways, 

an analytical solution is able to be determined. However, to do 

so depends on the validity of a modified Dini expansion of a 

function. This is established so that the operational and analytical 

solutions can be compared.



Flow in the airways, however, is usually somewhat 

turbulent* A numerical method is developed for comparison 

purposes in this more general case, errors introduced by 

numerical approximation being reduced to a suitable level by 

checking with previous results from the analytical solution* 

Taking the numerical results as being ’exact1, it appears that 

the operational solution is only a fair result.
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INTRODUCTION



1.

THE NATURE OF MATHEMATICS

It is often not realised that the roots of all mathematics 

lie deep in problems arising in the physical world and that through 

abstraction and generalization various strands have been developed 

that may or may not bear some relationship to the initial events. 

The trend is constantly towards abstraction and generalization 

although continual new calls are made on mathematics by problems 

suggested by the outside world. In considering these new problems^ 

all kinds of new methods may evolve. Some of these, as in the 

theory of operators, are used before their logical structure is 

completely understood.

This thesis follows these lines to a large extent. A 

physical problem, that of leakage in mine ventilation, is considered. 

Firstly, a model of an ’ideal* mine is constructed and with 

certain restrictions the pressure and quantity of air at points 

in the airways can be determined. One of the restrictions then is 

removed and it is found that there is no known technique for 

solving the equations that are formed. However, an approximate 

solution can be obtained by using an operational approach. The 

interest then moves from the physical problem to determining the 

accuracy of the operational solution. The aim of this thesis is 

to determine this accuracy.

3 0009 02987 9504
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FIGURE 1

LONG-WALL METHOD OF MINING
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3.

VENTILATION OF COAL MINES

In underground mining, coal is commonly extracted by 

what is called the long-wall method. As shown in figure 1, roadways 

are cut at right angles to the intake. These are lined with pack 

walls of stone and rubble which are obtained in the course of 

ripping down the roof above the roadways. The pack walls help 

support the roof and also aid in constraining the air to pass on 

to the coal face.

Coal is then extracted from the area between the roadways 

and when all is removed the roof is allowed to subside into the 

goaf. The roadways are then extended and the process is repeated 

as often as is necessary to complete the extraction of the coal 

in that direction.

To ventilate the roadways an exhaust fan is placed at the 

end of the return airway. This draws air out of the mine and thus 

causes fresh air to enter the intake and hence into the various 

roadways. However, air can leak through the porous goaf so that 

the quantity of air reaching the working face is usually less 

than the amount that enters the mine.

SCOPE OF THE THESIS

A considerable amount of work was done on the problem of 

leakage in mine ventilation by Keane et al. about fourteen year ago.

By assuming air could only pass through the goaf at right angles 

to the roadways, they were able to obtain results from a mathematical
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model of a mine. A review of this work will firstly be given but 

then it is wished to remove the restriction concerning the passage 

of air through the goaf, for it is clearly wrong unless the goaf is 

impervious in the direction of the roadways.

It will be found in this more general considérâtion,where 

air can flow through the goaf in any direction, that pressure and 

quantity of air are related by Laplace’s equation together with 

certain non-linear boundary conditions. An approximate solution 

is able to be obtained using operational methods but the accuracy 

of this solution needs to be checked.

For the special case where flow in the airways is taken to 

be streamlined, it is found that an analytical solution can be 

found. However, it depends on the validity of a modified Dini 

expansion of a function. This validity is obtained so that the 

operational and analytical solutions can be compared for the case 

of streamlined flow.

For turbulent flow, as is usual since the walls of airways 

are not smooth, a numerical method is needed for comparison purposes.

Such a method is developed and is firstly checked by comparing 

results from it with previous results from streamlined flow considerations. 

With this being satisfactory, operational and numerical solutions 

can then be compared,to determine the accuracy of the former.



CHAPTER '1

THE THEORY OF MINE VENTILATION
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FIGURE 2

MATHEMATICAL MODEL OF A MINE
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A MODEL OF A MINE

To determine the effect of leakage on mine ventilation, 

Peascod and Keane (1955) decided to consider a mine with two 

roadways, an intake and a return, that are of similar uniform 

construction and mathematically parallel. This ensures that the 

pressure drop will be the same in the intake and return so that a 

pressure Pq may be taken at the entrance, -P at the fan and zero 

pressure at the working face. A quantity of air is taken to enter 

the mine while a quantity Q„ reaches the working face. Taking the
r

length of the roadways as L, the mine then is as shown in figure 2.

The barrier is taken as being uniformly porous perpendicular 

to the airways and impervious in a direction parallel to them'#

Thus air leaking through the barrier will flow in a straight line 

from the intake to the return. The total conductance of the barrier 

is taken as G and the conductance per unit length of airway is g 

where g * .

For the airways the total resistance to flow is given

p
by F while the resistance per unit length is r where r » ~  .

For a relationship between pressure P and quantity of air 0 

at any point in the airway, we have from investigations into fluid 

flow that for streamlined flow

P * PQ ( 1 . 1)
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and for fully turbulent flow

P = PQ2 (1.2)

where the constant p is a measure of the resistance to flow.

In the study made by Peascod and Keane it is taken that 

flow in the airways is fully turbulent while flow through the 

barrier is streamlined.

SOLUTION OF THE MODEL

Consider a section in the intake of length 61. In this 

section the pressure will drop by an amount 6P and a quantity of 

air 6Q is lost through the barrier under an influence of a pressure 

drop of 2P.

Since flow in the intake is taken as being fully turbulent, 

we have from equation (1.2) that

6P = r 61 Q2

and hence
dP .2 
d l = rQ

(1.3)

Also from consideration of flow in the barrier, we 

have from equation (1.1) that

6Q « g 61.2P

and thus ^  = 2gP . (1.4)
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Combining equations (1.3) and (1.4) we have the differential

equation

dO . 2& P  

rdP - ™

or ¿2. _ 2Gp = q

' dP

remembering that R * rL and G « gL.

On separating the variables and integrating we find that

3
O 3 - f p 2

K q;

or p 2 = ~(o3 - • (1.5)

Equation (1.5) is the general pressure - quantity 

relationship for flow in the mine airways.

As a particular case of equation (1.5) we have

P2 = -~(Q3 - 0 3) 
o 3Gvxo F

( 1. 6 )

since a quantity 0^ enters the mine under a pressure Pq .

It is also found that another relationship can be

obtained. and Q can be related by certain hypergeometric 
F O

functions by considering equations (1.4) and (1.5). From (1.4)

we have

¿ a  = 2g dl .

Using (1.5) this becomes

,Qo
¿ 2. = 2

Q ^ 3
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Expanding the integrand in a binomial series and then integrating 

term by term, we obtain the relationship

0,
3

r

J l  i d .  i l  _
f Q j i

%F / 1 1 . 7 . f a ] 3 \ 1

RG F \ 2 ’ 6 ’ 6 5 1 /
w

1 2 ’ 6 ’ 6 ' I q J /

2

(1.7)

Equations (1.5) and (1.7) then have been obtained as 

solutions of the mathematical model. They are relationships 

between the variable quantities involved.

IMPROVEMENTS TO THE MODEL

The preceding work is based on the assumption that flow in 

the airways is fully turbulent. It would be more realistic to 

assume that flow is somewhere between the two limits of fully 

turbulent and streamlined and to consider the relationship

P = p0n , 1 $ n i 2

for flow in the airways. Groden (1956) developed the theory for 

this more general case and obtained the results

p2  = d i  l ( ° n+1  " q f +1) (1*8)

as the relationship between pressure and quantity of air at 

points in the airways, and
ï i

n+l , J j j l  fi=2_ i S ± 1.
( n - l ) z ‘ RG{{ 2 ’ 2 n + 2 ’ 2 n + 2 ’

fQplüri (i

<r i-
'•xoJ '•

n-1 .3n+l 
2n+2 2n+2

fa]
n+l\ -

}J
n-1

/

(1.9)
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as the relationship between the quantity of air reaching the working 

face and the quantity of air entering the mine.

In a practical study of a mine in the Newcastle district,

Rose (1960) found that a highly probable value of the flow index n 

was 1.85.

Another improvement in the model was made by Low (1956),

His investigation takes into account the fact that resistances of 

the intake and return are not equal. This is the usual case since 

the intake is kept in good repair for the transport of men and 

materials while the return airway is neglected. His results indicate 

that the effects of the different resistances can be compensated 

by using the average resistance of the airways.

In the next chapter another modification will be made.



CHAPTER 2

FURTHER DEVELOPMENTS IN THE THEORY OF MIME VENTILATION
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FIGURE 3

PLACEMENT OF AXES IN THE MODEL
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FURTHER MODIFICATION OF THE MODEL

Up to this stage it has been assumed that the air leaking 

through the goaf travels in a direction at right angles to the 

airways. We now wish to remove this restriction and place no 

limitation on the flow of air through the barrier. Flow through 

porous media is discussed by Schneidigger (1960) and Streeter (1961) 

but the approach to be used is suggested by Keane (1969).

Suppose in figure 3 that p is the pressure of air at any 

point (x,y) in the barrier and that u and v are the components 

of the velocity q of the air at this point.

In the case of fluid seeping through a homogeneous 

isotropic porous medium, it is often assumed that the velocity 

vector q of the fluid is given by

q = -a grad p

where a is the porosity of the medium. To allow more generality 

we shall take

u * -k
2

v

( 2 . 1)

(2. 2)

so that if k = 0 we have the type of barrier assumed in the 

previous chapter, and if k * 1 we have the isotropic case where 

there is no preferable direction of motion.



Noting that the continuity equation for an incompressible

fluid is

div q =  0 (2.3)

we have from (2.1), (2.2) and (2.3) that

(2.4)

This is the equation that is satisfied by the pressure in the 

barrier when there is no restriction on the direction of flow. 

Basset (1961), Binder (1958), and Lamb (1953) arrive at a similar 

result when considering two dimensional flow.

The problem now is to consider the solution of equation 

(2.4) subject to the boundary conditions

OPERATIONAL SOLUTION OF THE NEW EQUATION OF FLOW

In order to obtain an analytic solution an operational 

approach will be taken.

P “ (P>y=b

= (2bg ^
dx (2.5)

Putting D = t —  equation (2.4) can be written
3x



U

Treating D like a constant, this differential equation has as a

solution

p » cos ky D.A(x) + • B(x).

Since p » 0 when y » 0 we have that A(x) * 0 so that

P = ^ y p . B <x). (2.6)

Applying the second boundary condition we have that

■j* * 2bg cos kbD . B(x).

But from (2.6)

P - Si£DkbD B(x) .

Thus = 2bgkD cot kbD • P.

Approximating the cotangent by the first two terms in its Laurent 

expansion, we have that

That is

f  : a * *  »<kiD - “ V

^ ¿ 2 g ( p - k 3b D2P).

Remembering that we also have

then

dP -n 

&  = rQ

i 2gP - -2s----.x -  (rOn ) . (2.7)
dx • 3 dx
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Multiplying by rQ «né rearranging terms gives

2 2
.n _  . 2gk b ^ 2^2n-l

rQ dQ + nr Q dQ ^ 2gP dP.

On integration we obtain

nn+l
12___
n+1

2 2 2
. gk c> r rt2n . J  , . .+ X2—  - q a gp + constant,

j •

When P « 0 we have Q = Q . Hence
r

2 .
2 2  2

^ 1 r,^n+l ^n+lN , k b r //%2n
“ Ïh T  I (Q ' QF > + --- 3 ~ (Q

or P2 ‘  4 r  # « f * 1 -  ( fi+ 1 > +  ¿ ¿ ¿ ( Q 2"
• n+l G 3L-

Qf")

(2 . 8)

Equation (2,8) is the pressure - quantity relationship 

for flow in the airways when there is no restriction to the flow 

through the barrier. It corresponds to equation (1.5) where 

n « 2 and k » 0, and to equation (1.8) where k « 0.

It is to be noted that from (2.8) the relationship

(2.9)
^2 . 1 R/^n+1 ^n+lx , k2b2R2,^2n ^2nN 
Po  *  ï i ï T  G(Qo  -  QF > + ^ l 2 ~ (Qo  -  QF >

exists between P , 0 and 0„.
o o F

In attempting to find a relationship between 0-, and Q ,
r O

as was done in the previous chapter, we have from (2.7) that

2, 2

He n ce

(, . 2 k  b n  RG „n - l )  dO . „ „  
l1 + 3 Î J   Q J d ^ * 2gP-

„ 2 k 2 b 2nRG ^n -1

,Qo 1 + 3L^ Q

J P
Qr,

dQ t 2g dx.

' o



16.

Using (2.8) this becomes* *

Q 2k o n  RG „n-l

° i + - * ? — Q

[rrr K(0n+1-(£+1) + (Q2n-0^n ) ]?i
rdQ » 2G. (2.10)

n+1 G 3L‘
F

As we have already seen, equation (2.10) yields a relation

ship between and Qq for the k * 0 case. However, in this more 

general consideration, when k can have values other than zero, 

the integrand has become too involved to proceed further, except, 

as we will later see, for the streamlined case where n * 1.

EXAMINATION OF THE OPERATIONAL SOLUTION

A solution for this more general treatment of mine 

ventilation has been determined but in so doing an approximation 

had to be introduced. We now wish to determine how accurate the 

solution actually is. To do this it will be shown that an 

analytical solution can be found for the case of streamlined flow. 

The operational solution, with n = 1, can then be checked against 

results from this. For general values of n, however, a numerical 

approach will be required to obtain accurate results. The errors 

introduced by numerical approximation can be reduced to a suitable 

level by comparison with the analytical solution for n = 1. The 

range of validity of the operational solution can then be checked 

by comparing results from it with those from the numerical solution.



CH AP T ER  3

A SPECIAL FOURIER-BESSEL EXPANSION
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THE ROLE OF THIS EXPANSION

In order that an analytic solution »ay be obtained it

will be necessary to make use of a series expansion of the form

00

f(x) * l b^siniX^x) (3.1)
m=l

where ^ * ^ 2*^3* ••• are the positive roots of

X sin(kbX) - 2bkgr cos (kb X) « 0 . (3.2)

A similar series occurs as a special case of a Dini expansion , 

namely,

F(x) = T B -°s(XmX> (3.3)
m~l m ^

where, for some constant H, ••• are t l̂e positive roots

z sin z + H cos z « 0. (3.4)

Equations (3.2) and (3.4) are of the same form but (3.1) and (3.3) 

differ.

Dini series are discussed by Lebedev (1965) aid Calif.

Inst, of Tech. - Bateman Mss. Project (1953), and their general 

theory is given by Watson (1944). It is now intended to employ 

similar methods to those used by Watson to establish the validity 

of the expansion (3.1).

A slightly modified form of a special case of a Fourier- 

Bessel expansion will firstly be analysed. This series is
CO

F(x) = l A cos (jx) 
u. m m

m*l
( 3 . 5 )
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where ere the Positive roots of

cos z » 0. (3.6)

An investigation of the more general expansion

00

F(x) - l 15 cos (A x) (3.7)
u t m m

m«l

where X j ,X2»^3» ••• are the positive roots of (3.4) will then 

fiilow. Integration of (3.7) would yield an expansion of the form 

(3.1) but this step, of course, will need careful justification.

INVESTIGATION OF THE FOURIER-BESSEL SERIES

Suppose a function F(x) can be expanded in the form (3.5). 

Multiplying by cos(jnx) and integrating between the limits 0 and 1

we have

r

0

00

F(x)cos(j x)dx * T A 
Jn m

m=l
cos (j x) cos (j x) dx

0

Now

1

cos(j x)cos(j x)dx » 0 
Jm n

0
h

for m \ n 

for m « n.

Hence,
1

A * 2
m

F(t)cos(jm t)dt .

0

(3.8)

To investigate the validity of the expansion we need

to consider, therefore, the limit
1

n r
lim Y 2 cos(j x) 

L , Jm
n-*» m=sl

F(t)cos(jm t)dt .

0
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To do this we shall consider the sum

n

I 2 cos (j x)coe(j t) O < x £ l , 0 $ t $ l  
1 m m
1 (3.9)

which we will denote by Tn <t,x).

th
If we can express the m term of Tn (t,x) as the residue 

at j of a function of the complex variable w, which has poles 

at ^n* t îen T (t,x) can be expressed as an integral

of this function around some suitable path.

Consider the function

± f  \ _ 2[t cos(xw) sin(tw) - x cos(tw) sin(xw)]
<pvw; *  --------------------- Try — 7 \ -------- 2-------------------------------  • ( 3 .1 0 ;(t̂ -x̂ ) cos*w

If we put

g(w) * 2ft cos(xw) sin(tw) - x cos(tw) sin(xw)]

and then put w * j + 0, where 0 is small, Taylor's theorem gives

that

g(jm ) + eg'(j ) + %e2g''(jm ) + ...

^ w (t^-xz) [0^sin^jro + o(03)]

tz-xz

i
•jr+ -pep- e + •”

Thus the residue of <i>(w) at j is
m

8 '<-V
-pip-

or 2 cos(xj ) cos(tj ) . 
Jm Jm



20.

Hence T^(t,x) * dw

where we shall take c as a rectangle with vertices at ±Bi and

A ±Bi inhere B will tend to 00 and A is chosen so that i < A < 1 ,,, 
n n Jn n Jn+1*

n being sufficiently large. In fact we may take

A « mr . 
n

From Bi to -Bi the integral Is zero since <j>(w) is odd. To 

consider the integral along either the upper or lower side, put 

w » u + iv and let |v| 00. Then cos w * 0(e^V|) so that

<})(w) « 0(e ^  X ^'V ‘) hence the integrals along these sides

tend to zero as B *> <*.

Thus we have that

Tn (t,x) * 2ÎÏ

A +i» 
m

6 (w) dw (3.11)

A -i°° 
n

We can now determine an upper bound for |Tn (t,x)|. For 

values of w on the line joining A^-i00 to A^+i«5 there exist positive 

constants c^ and C2 such that

cos(tw)| $ c^e^tV ,̂ I cos w| £ c^e^^ . (3.12)

Hence, from (3.10), (3.11) and (3.12)

1
Tn (t,x)| =

A +i°° 
rn

2TTi
2[t cos(xw)sin(tw) - x cos(tw)sin(xw)] ,
----------------------- -—   -----------n-------------------------------------------  GW

(t^-x^1) cos^w

A -i00 
n

TT

^  |t-x|c2J tvl + |xv

I t2-x2 I C2e 12v| 
2

dv

4c.

£
2 1 2 2

7TC2 (2-x-t) 11 -x
( 3 . 1 3 )
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This gives the upper bound of |Tn(tfx)|.

It is also noted that

(t2-x2)X (t,x)dt * .
n ui

tA +i°°
1 t cos(xw)sin(tw) - x cos(tw)sin(xw) ^  ^

cos^w
oA -i» 
n

7ri

A +i°°
m

dw
cos^w

A -i» 
n

t cos(xw)sin(tw)-x cos(tw)sin(xw) j-dt

A “t"i°° 1
. m —cos(xw)sin(tw)-t cos(tw)cos(xw)-xsin(xw)sin(tw)
■M *------------------------------------------------------------------- ~dwirij w coŝ w

A -i00 n

Thus,

(t2-x2)Tn(t,x)dt
* *

7 |t+x|c2e (t+x)lv l _

2 12v| dv
-  AnC2e

4 c
1

TTci A (2-x-t) #
z n

( 3 . 1 4 )

To continue further into the investigation of T^(t,x)

we now wish to consider certain limiting cases of integrals in

which it is involved. Firstly we will consider
;1

lim

n-*»
T.(t,x) dt. 
n

0

We have from (3.9), that

(l

0

T (t,x)dx = 
n

(1 n
l 2cos(jmx)cos(jmt)dt

vm=l
m

>1

m*l
2 cos(j x) I cos(j t)dt m j m

0
n 2 cos(1 x)sin(j ) _  ̂____ m m

m=l .1m
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n 2 cos(j x) 
r m

'_1 jra sin(jm )m= I m m

since sin(jm ) is either 1 or -1.

Putting w » j^+9 the function

2 cos(xw) 

w cos w

and applying Taylor’s theorem, we find that the residue of the

function at 1 is

-2 cos(xj ) 
_______  Jm

j sin (j ) 
m m

so that we have

rl

0
T (t,x)dx * «— r
n 2tti

2 cos(xw) 
w cos w

dw

where c is the same path as before except that it is in the opposite 

direction and the origin is avoided by an indentation to the right 

of the imaginary axis.

As before, the integrals along the upper and lower sides 

of the rectangle tend to zero as B ^ .  However, there is now a pole 

at the origin. Applying Taylor’s theorem again we have

2 2
2 cos (xw) _ 2(1 - >̂x w +*..)

w cos w w (l-*gwz+.. . )

o 1 2 ,= 2 ---x w + • • •
w

so that the residue at the origin is 2.



S i n c e  t h e  i n t e g r a n d  i s  o d d ,  t h e  c o n t r i b u t i o n  o f  t h e  p o l e  a t

the origin is 1 and hence 

rl
A +i°°

0
Tn (t,x)dx « 1 _ J L  [n 2- c o b ,<y >  dw.

2ïïi J W  COS W
A — i00 
n

Now, for values of w on the line A -i«3 to A +i«>,
n n 9

A +Ì°° co x|v!

F1 2 cos (xw) . { cle „
------- -— - dw s --- — r- dv

J w cos w J ~ J v T
A -i°° 
n

A c^e 
n 2

s ^ f V ^ > | v l dv

V 2J0

A +i°°
m

Thus
2 cos(xw) 
w cos w

4c

' A c0(l-x) •
n 2

dw tends to zero as n •* 00, for 0 $ x

A -i°° 
n

that from (3-15)

lim Tn (t,x) dt
n->°° '

1.

Another limiting case we need to consider is

x

lim T (t,x)dt.
rv-*-co J 

0

(3-15)

< 1, so

(3.16)

Following the same procedure as in the previous case, we have
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x n x

|T (t,x)<it » l 2 cos(j x) |cos(j t)dt

0 i

n 2 cos(J x)sin(j x) 
— Y ip m

m=l

« * (2 sin(xw) [cos(w)sin(xw)-cos(xw)sin v]
2ttì w cos w

dw

A +Bi
m

= lim
B-*53 2ttì

-2 sin(xw)sin(w-wx)
w cos w

dw

A -Bi 
n

A +Bi

lim
B-X»

1 f11 cos w - cos(2xw-w)
2tt± w cos w

dw

A -Bi 
n

k -

A +Bi

lim fn cos(2x-l)w
B-x° w cos w

dw • (3.17)

A -Bi 
n

As a consequence of a lemma proved by Watson (1944, p.587) we have 

that
A +Bi

f cos(2x-l)w 
w cos w

dw -* 0 as B ®

A -Bi 
n

and that the integral is bounded for h S x $ 1.

Hence we have the result, from (3.17), that
x

lim
n-xco

T (t,x)dt
J n
0

i
2 (3.18)
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and if we close the range of values of x on the right so that

0 < x $ 1, we can infer that

x

jrn (t,x)dt

o

< u . (3.19)

That is, the integral is bounded for 0 < x $ 1»

similarly shown that the integral

t

jrn (t,x)dt 

0

It can be

is bounded for 0 £ t £ 1«

As a final consideration we note from (3.16) and (3.18) 

that j

lim |T (t,x)dt * h * (3.20)
n-**> J n

x

ANALOGUE OF THE RIEMANN-LEBE SGUE LEMMA

Lemma: If (a,b) is any part of the closed interval (0,1) 

such that x is not an internal point nor an end point of (a,b),

then the existence and absolute convergence of

b
*
F(t)dt

.

a

are sufficient to ensure that as n ■> ®,

b

jF(t) Tn (t,x)dt

a *

tends to zero for 0 < x £ 1.



To prove this lemma we shall firstly suppose F(t) is 

bounded and that the origin is not an end point of (a#b). These 

restrictions will then be removed.

(I) Let F(t) * (t^-x^)G(t) where |G (t) | has an

upper bound K in (a,b). Divide (a,b) into p equal parts by the 

points tj,t2> ••• where p is such that for any arbitrary positive

number e

m=l

2'6>

w  -L )(t -t .) < e

where U and L are the upper and lower bounds of G(t) in (t . ,t ). 
m m  m— i m

Let G(t) = G(t .) + w (t) 
m-1 m

where |w (t)| S U - L  in (t -,t ). Then ' m m m  m— 1 m

F(t)T (t,x)dt 
n

m

m=l
G(tm 1>m-l

(t^-x^T (t,x)dt+
n m»li

'm-1

rm
(t2-x2)T (t,x)w (t)dt 

n m

'm-l

$
m*l

(t ,x)dt

"m—1

E
t

f

n
m=l •

t

2  2
(t -x )T (t,x)w (t)dt

n m

m-l

8 Cj pK 4c'
t
rm

* ttc'ÎA (2-x-b) + TTC? (2-x-b) ^  ̂ Um Lm^
2 n L m-l ;

dt

"m-l

from the inequalities (3.13) and (3.14)
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Hence,

b
t
F(t)T (t,x>dt 

n

4c
i— + c)

* Trc2 (2-x-b) (a
n

Now, the choice of £ fixes p so that we can choose A such that

A ' > a S .  ”
n c ,

Hence F(t)T (t,x)dt 
n

•> 0 as n ■> “ for 0 < x $ 1.

(II) Now suppose G(t) is bounded only on intervals

■*'* ^r+1 not on t îe remainin8 intervals

y^,y2 , •••» yr so that

l f |G(t)|dt < e. 

i=l J

When t lies in one of the intervals we have

4c^

|(t2-x2)Tn (t,x)| $ 'li'c|(2-x-bj *

Hence, if K is the upper bound of |G(t) I in the intervals

Y 1,Y2> ... Yr+1> then

F(t)Tn (t,x)dt

r+1 f
V
L

i=l '
Y

2 2
r

* 1
i=l-

2 2

r+1 ' 9 9 r r

I G(t) (t -x )Tn (t,x)dt +1
i® 1

r-tII
•H

y

wi

2 2

4c?

 ̂ttc? (2-x-b)
r2(r+l)pK

+ £

n

4c
1

^ irc2 (2-x-b) e

8c
1

 ̂TTC? (2-x-b)
(r+l)pK +

A
n

,x)dt
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If we take e sufficiently small and then take sufficiently

large, then the expression on the right is arbitrarily small and 

we have the required result. ,

(III) Finally, suppose F(t)dt exists and is absolutely

0
convergent. We can then choose a n so small that

n

0

< e

Then,
n n

F(t)T (t,x)dt
J
0

«

0

|F(t)||T (t,x)|dt

4 c"
n

^ TTC« (2-x-b)

2 0 
4c^ e

< ttc|(2-x-b) *

I F(t) 
t^-x l d t

From part (II), if K is the upper bound of |G(t)|in (n,b) when

the intervals are omitted, then

F(t)Tn (t,x)dt

0

8cl [(r+l)pK 3s 

< ïïcÎ(2-x-b) [ a  2

and once again the right hand side and hence the left, tends to 

zero, thus completing the proof.

VALIDITY OF THE FOURIER-BESSEL EXPANSION

We are now able to examine the conditions under which the 

expansion (3.5) is valid.
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To do this we can firstly consider the following theorem.

Theorem: If F(t) is defined on an interval (0,1), and

has limited total fluctuation in any interval (a,b) where

rl

0 < a < b < 1, and if

0
F(t)dt exists and is absolutely convergent,

then for x e (a,b) the series

l A cos (j x) 
i m m

m=l

is convergent and its sum is

^[F(x-O) + F(x+0)].

To prove this, we note that from (3.8) and (3.9)

n

l A cos(lx) =
, m m

m =l

F(t)Tn (t,x)dt

0

and since
x

lim T (t,x)dt « lim
tv-x» J n->°°

0

T (t,x)dt = h

x

as shown in (3.18) and (3.20), we have

x

%[F(x-0)+F(x+0)) = lim F(x-O)

n-*°°

P u t

0

T (t,x)dt + lim F(x+0) 
n v

n**00
T (t,x)dt. 
n

sn (x) * j{F(t)-F(x-0)}Tn (t,x)dt + 

0

{F(t)-F(x+0)}Tn (t,x)dt.

x

We then wish to show that S (x) ** 0 as n
n

Consider the integral 

I « {F(t)-F(x+0)}Tn (t,x)dt. (3.21)

x
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The function F(t)-F(x+0) has limited total fluctuation in (x,b) 

and so we may write

F(t)-F(x+0) * X 1(t)~x2 (t)

where x^(t)» X2(t) are bounded positive increasing functions in 

(x,b) such that

X-^x+0) = x2(*+o) * °*

Hence, for any arbitrary positive number e there exists a positive 

number 6 $ b - x such that for x s t £ x + 6 we have

0 $ x^(t) < e, 0 $ X2(t) < e- ( 3 . 22)

Now, (3.21) can be expressed in the form

x+6 x+6

I = (F(t)-F(x+0)}T (t,x)dt+ 
n

x l(t)Tn (t,x)dt;- x2 (t)Tn (t »x )dt*

x+6 x X

From the analogue of the Riemann-Lebesgue lemma it follows

that for n sufficiently large

1

(F(t)-F(x+0)}T (t,x)dt 
n

x+6

< e

and from the second mean-value theorem, there is a nimiber £ between

0 and 6 such that

x+6 x+6
9

x l/t)Ti/t,x)dt = x i*x+<^
T (t,x)dt . 
n

x+t



But from (3.14) we have that

and from (3.22)

x

JT n ( t , x ) d t

0

< U

X^(x-hS) < e, so that

x+5

|Xt(t)Tn (t,x)dt

X

< 2eU .

Similarly,

Hence I 0 as n

x-f-5

jx,(t)Tri(t,x)dt < 2eU .

X

® for e sufficiently small.

The other part of S^(x) can be shown to tend to zero in

a similar manner. Thus S (x) +  0 as n ®, This means that the
n

n

difference between 7 A cos(j x) and %[F(x-0)+F(x+0)] is arbitrarily
u , m m 

m=l

small and hence the required result is obtained.

Finally we can place one more condition on F(t). If 

F(t) has all the properties of the previous result and is also
CD

continuous on (0,1), then we can show that 7 A cos(j x) is uniformly
u, m m 

m=l

convergent to F(x) throughout the interval (a,b) where 0 < a < b < 1.

To prove this, the integral 

»

(F(t)-F(x)}T (t,x)dt 
j n

x*f6

would have to tend to zero uniformly as n -► 00. This means, from



32

the analogue of the Riemann-Lebesgue letama -that

1

f{F(t)-F(x)}dt

x+6

1» bounded.

Now»

F(t)Idt + 1 F(x)I dt

0 0

{F(t)-F(x)}dt 

x+6

and this is bounded since F(x) is continuous and therefore bounded 

in (a,b).

Similarly, the other integrals introduced in the previous

n

proof tend to zero uniformly. Hence» as n «,^Am cos(j?nx)->-F(x)
m*l

m

uniformly.

Thus» in summary, if F(t) is defined and continuous on

(0 ,1) and F(t)dt exists and is absolutely convergent, then for

0
x c (a,b) where 0 < a < b < l , w e  have that

F(x) a I A cos(j x) 
m Jm

m«l

where the coefficients A are given by
m

A - 2 
m

F(t)cos (jmt)dt

0

and the j are the positive roots of 
m

CO

cos z « 0.



CH A P T ER  4

A SPECIAL DINI EXPANSION
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INVESTIGATION OF THE PINT SERIES

Suppose now that a function F(x) can be expanded in the

form
CO

F(x) = £ B cos(X x) (4.1)
u - m m 

m=l

where ••• are t îe positive roots of the equation

z sin z +  H cos z * 0 , (4.2)

H being some constant. This is basically the Dini expansion

(3.3), although the theory must be modified slightly.

We note that for the case m ^ n

f X sinX cosX -X sinX cosX

Jcos(Xmx)cos (Xnx)dx ** — ------—-p p ---------- - ------— . (4 .3 )

o m n m ~ n

From (4.2)

X sinX * -HcosX 
n n n

and

X sinX « -HcosX 
m m  m

so that the right hand side of (4.3) is zero.

For the case m * n we have

* - X +sinX cosX
2 „  x . m m  m

cos (X x)dx * ---- rr--------
m za

(4.4)

6 m

On multiplying (4.1) by cos(Xnx) and then integrating 

between the limits 0 and 1, we obtain as a consequence of (4.3)
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and (4.4) that

2X

B
m

m X +sinX cosX 
m m m i

F(t)cos(X t)dt . 
m

(4.5)

0

Thus, to examine the validity of expansion (4.1) we need

to investigate the sum

n 2X cos(X x) cos(X t) 
r m______ m_________m

X +sinX cosX - *
m*l m  m m

To do this we will proceed in a similar manner as before. 

Consider the function

,(  V _ 2w cos(xw)cos(tw) (f

^ W cosw(wsinw + Hcosw)  ̂ ^

which has poles at ••• and X^,X2»X^, ... , where

the j are as previously defined in (3.6).
m

Putting w  * j +0 and applying Taylor’s theorem we have
'm

ip(w)

2j cos(j x)cos(j t)^ , 
Jm m Jm 1

-j sinzj 
Jm Jm

.  • •

so that the residue of ijb(w) at j is

-2 cos(jx)cos(j t). 
m m

Putting w ■ X^+0, we ^ ave that

\p(w)

2X cos(X x) cos(X t) 
m m m 1

cosX (sinX +X cosX -HsinX )J 0 
m m m  m m

t  + . •.

2X cos(X x) cos(X t) 
m m  m

X -sinX (X sinX +HcosX )+sinX cosX 
 ̂m m m m m m m'

+ . . .
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thus giving the residue of A(w) at X as
m

2X cos(X x)cos(X t) 
m m  m

X +sinX cosX 
m m m

since X sinX +HcosX = 0 from (4.2). 
m m m

Now if we let D be a number between X and X ., such
n n n+1

that it is not equal to any of the 1 , and if is the greatest
m n

of the j that is less than D . then we can define 
m  n

n 2X cos(X x)cos(X t) N

Sn (t,x;H) = l  - V  VsiriA^cosX--- ------  ~  I  2cos(Jm x)cos(jiiit>
m *l  m m m  m *l

m m

(4.7)

and we will wish to prove that

n N

T B cos(X x) - T A cos(1 x) 
Ln m m m Jm

m*l m=l

a n d  (4.t)

We have from (4.7)Kthat

F(t)Sn (t,x;H)dt

(4.8)

S (t,x;K)
n * (w )  dw

c

where c is the rectangle with vertices ±Bi, D ± Bi where B -*■ ».
n

The integral tends to zero along the upper and lower sides as 

before when B « and so we have

S (t,x;H) 
n

D +i°° ” 00

2ïïi
U(w)dw - v~rP

D -i°° 
n

2tt1
i|>(w)dw

~ i ° °

1

where P denotes Cauchy’s principal value



3 6 .

Since i|f(w) is odd, the second integral vanishes and thus 

D +i°°
/t»7 / » A C  f t*TV 1 A A C  /M f  1

dw . (4.9)
q /> Y .u\ Ä 2w cos(wx)cos(wt) ,
n vc,x,n; 2rrij cosw(wsinvH-Hcosw) öw *

D -i«> 
n

By considering values of w on the line D -i°° to D +i°° we
n n

have from (4.9) and from similar considerations to (3.12) that

D +ico

Sn (t,x;H) s 1
2TTi

2w cos (wx) cos (wt) 
cosw(wsinwfHcosw)

D -i°°
n

(D +iv)c?e(x+t>lv l 
n 1

* 7  ~TJ7\
J c«e1v 1 (D +iv)e^V^ + H e ^ } 
•°° 2 n

dv

< t)|v|

2 o°

dv

TTC
2 o

2c:

T ^ U - x - t )

We also have that

1
t D +i{

Sn (t,x;H)dt -

0

r n
2w cos(xw)cos(tw) 
cosw (ws inwfHcosw)

dw dt

0 D -i» 
n

(4.10)

D +ico

i _ r
TriJ

cos (xw) sin (tw) 

co sw (ws inw+H co sw)
dw .

D -i°° 
n

Hence,

S (t,x;H)dt 
n

0

” 2 (t+x)|v

< i f  1

“ TTJ 2 |2v _
J c«e1 1D

dv

2 

2
2c

1

ttc0D (2-x~t) 
z n

(4.11)
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ANALOGUE OF THE RIEMANN-LEBE SGUE LEMMA

Lemma: If (a,b) is any part of the interval (0,1)

then the existence and absolute convergence of

b
►

F(t)dt

a

are sufficient to ensure that as n -*■ 00,

b
►

F(t)Sn (t,x;H)dt

a

tends to zero for 0 < x $ 1.

The proof is similar to that given before and so much 

of the same terminology can apply again.

(I) Suppose F(t) is bounded and let K be the

upper bound of |F(t)| In (a,b) where a > 0. Then by dividing 

(a,b) into p parts as before and putting

F(t) - Fit^j) + wm (t)

we have that

F(t)S (t,x;H)dt 
n m s

t t
m  n an

F(t .) S (t,x;H)dt+£ 1
1 m_1 j n m=l{

m-1

w (t)S (t,x;H)dt 
m n

m-1

2c

i ^ W - x - b )

'|EK+ e '

"*n -

using (4.10) and (4.11). The expression on the right can be made
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as small as we like so that as n -»■ «%

b

F(t)S (t,x;H)dt 
n

0 .

(II) Now suppose F(t) is only bounded in intervals

•••* Yr+1 *n kut not in the remaining intervals

• ••> and that 

r r
l |F(t)|dt < e. 

i=l

Then

F(t)Sn (t,x;H)dt £

rfl

I

is l
Y

F(t)Sn (t,x;H)dt +1 f|F(t)S (t,x ;H) | dt 

i=lJ

______ i..̂ ,l ) p K _ +  ]

-/o u  P i ^ ^ - x - b )   ̂ n  '

which again tends to zero as n •*
b

(III) Finally, suppose |F(t)dt exists and is absolutely

convergent so that for an arbitrariiy small n

n

J|F(t)|dt < e .

Then since

F(t)S (t,x;H)dt 
n

2 c
1

n
r

irc2(2-x-b)
|F(t)|dt
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we have

b
»

F(t)Sn (t,x;H)dt
J

0

$
2  fry

ttc2(2

4c r
1 J

;(2-x-b)l

(r+l)pK
D 
n

3c
T *j

which tends to zero as n 03 as required.

VALIDITY OF THE DINI EXPANSION

As a result of the last theorem, if 

is absolutely convergent, then for 0 < x $

F(t)dt exists, and
m

? we have from (4.8)

that
n N

£ B cos(Ax) - £ A cos(j x) -* 0 (4.12)
, m m m m

m=l m=l

as n 00.

Now, in a monotonie function the positive zeros are

interlaced with the positive poles. If we consider the function

z sinz + H'cosz
g(z) = cos z

= z tan z + H

we note that this is monotonic so that the numbers \ and 1
m m

are interlaced. Therefore, D^ may be chosen ao that after a 

certain stage, n - N has the same value for all values of n.

Then, since

? A cos (jx) + 0 
l m m

m =N+l

throughout (0,1) we have from (4.12) that

n n
Y B cos(A x) - Y A cos(j x) 0 (4.13)
¿ m  m L. m  Jm 

m =l tn=l

as n 4 °°.
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Further, as a result of work done in the -previous chapter, 

if F(x) has limited total fluctuation in (a,b) where 0 < a < b < l ,  

then from (4.13) the series

oo

T B cos(X x)
, m m 

m*l

converges to the sum

^[F(x-O) + F(x+0)]

for all x e(a,b).

If, also, F(x) is continuous in (a,b) then the series 

converges uniformly to F(x). That is, if F(x) satisfied all 

these conditions, then

CO

F(x) * T B cos(Ax) 
u , m m 

m=l

where B is given by 
m

B
m

2A
m

A +sinA cosA 
m m m^

F(t)cos(A t)dt 
m

and the A are the positive roots of 
m

z sin z + H cos 2 * 0.
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FURTHER CONSIDERATION OF THE PIN! SERIES

We have shown that under certain conditions a function 

F(x) can be expanded as a series of the form
CO

y B cos (A x) (5.1)
u, m m 

m=l

where B and X are determined as indicated in (4.5) and (4.2). 
m m

We have, however, only established the validity of the expansion 

for values of x within the interval (a,b) where 0 < a < b < 1.

We have not considered the behaviour of the series for x values 

in the intervals (0,b) and (a,l). However, we can infer from 

Watson (1944, pp.601-605) that provided the same conditions hold 

in these two intervals, the expansion will converge as before.

Our interest now moves to a consideration of the series

l b sin (A x) 
m m

m=l

(5.2)

where ^£»^2*^3’ ... are as before. This series can be obtained 

by either differentiation or integration of (5.1) but the use of 

these operations will need to be carefully considered.

DIFFERENTIATION AND INTEGRATION OF THE SERIES
CO

Suppose that £ B cos(X x) converges uniformly to F(x) in 
ra=l

(0,1). That is,

F(x) = Y B cos(X x). 
v ' L. m m 

m=l

CO

CO

(5.3)
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Integration of (5.3) yields

where f(x) *

f(x) * I C sin(X x)
, in m 

_ m*l

F(t)dt, x $ 1 and f(0) * 0.

0

From (5.4) and (4.5) we have that

B

Cm = X

m

m

X +sinX cosX 
m m m

f*(x)cos(X x)dx, 
m

0

That is,

'm X +sinX cosX 
m m m

1

f(l)cosX *f X |f(x)sin(X x)dxy 
m mj m I

0  J

2X
1

m

X +sinX cosX 
m m mJQ

f(x)sin(X x)dx + 
m

2f(l)cosX
m

X +sinX cosX 
m m m

Now suppose G(x) is a continuous function on (0,1) 

is such that

G(x) = y D cos (X x) 
u, m m 

m*»!

where

D
m

2X
m

X +sinX cosX 
m m mj

G(x)cos(X x)dx 
m

(5.4)

(5.5)

.(5.6)

and

(5.7)

(5.8)
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Differentiation of (5.7) yields

f(x) « T C sin(X x) 
m«l

(5.9)

where it is taken that G f(x) « f(x) and C » -X D .
m m m

Thus, from (5.8) we now have that 0^ is given by

-2X2
1

C « m
X -fsinX cosX
m m m'

0

-2X2
1

m
X -fsinX cosX 1
m m

mo

-2X2 #
m

X +sinX cosX
m m

mo

2X
m

cos(X x)dx f(t)dt 
m J

0

f(t)dt cos(X x)dx 
m

m m
f(t)dt

m m

X +sinX cosX 
m m m

2X sinX

f(x)sin(X x)dx - v 1 ?;y'1 ---T
m X +sinX cosX

0
m m m

f (x)dx

0

(5.10)

Comparing (5.6) and (5.10) we therefore require for

consistent results that

1
« -2X sin(X )sin(X x)

l — *
m m

, X +sinX cosX 
m= 1 m m m

f(x)dx = l
00 2f(l)cosX

m

0
ra»l m

X +sinX cosX 8^n ^ mx) •
m m

Now from (4.2) we have that

—X sinX « H cosX • 
m m  m
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Therefore, we require

00 2HcosA sin (A x) 
£ m m
«, A +sinA cosA 

m*l m m mt
0

00 2f(I)cosA sin(A x)

f<x)dx " l.T  +sinX' " cos V ‘"'~ 
m=l m m m

This is so if

R f(x)dx = f (1 )

0

which is not likely, or if

°° 2cosA sin(A x) 
V m m

A +sinA cosA 
m=l m m m

* 0

%o prove this result, consider the function

h (w) =
2sin(xw)

wsinw + Hcosw

which has poles at A^A^jA^,

To find the residue at A , put w * A +0
m m

Then,

h(w) =

2sin(A x) 
m

AcosA +sinA -HsinA 
m m  m m

+ • • •

2sin(A x)cosA 
m m

A -sinA (A sinA +HcosA )+sinA cosA 
 ̂m m m m  m m m - '

4* •

from which we see that the residue at A^ is

2sin(A x)cosA 
______ m m

A 4-sinA cosA 
m m m

0

(5.11)
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Therefore,

n 2cosX sin(X x) 
r _____ tn m
, X +sinX cosX 

m*»! m m m

1
27ri

2sin(xw)
wsinwfHcosw

dw

where c is the same rectangular path as in the previous chapter. 

Now, since h(w) is odd, the integral from Bi to ~Bi is zero and 

the integrals along the upper and lower sides vanish as B 

Then, for values of w on the line joining D^-i00 to D^+i», we have

n 2cosX sin(X x) 
r m_____ m

X +sinX cosX 
m« 1 m m m

1

'"7

00 XIVI 
r c,e

3 D c0 
-co n 2

dv

2c
1

" irc«D (1-x) * 
l n

The right hand side vanishes as n 00 so that result (5,11) is 

proved.

This means that the expansion (5.2) can be obtained from 

(5.1) either by integration or differentiation.

VALIDITY OF THE MODIFIED DINI EXPANSION

We have now established an expansion

co

f(x) = l b sin(X x) 
u - m m 

m=l

where *** are the Posltlve roots of

z sin z + H cos 2 * 0

and b is given by 
m

b = 
m X +sinX cosX 

m m nr

f'(x)cos(X x)dx 
' m

0
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or
2X

b
m

m X +sinX cosX 
m m m

f (x)sin(Xmx)dx.

0

We note, however, that such an expansion is only valid 

if f(x) is such that fT (x) satisfies the conditions in the previous

chapter*



CH AP T ER  6

COMPARISON OF THE OPERATIONAL AND ANALYTICAL

SOLUTIONS FOR STREAMLINED FLOW
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EQUATION OF FLOW FOR THE STREAMLINED CASE

As previously mentioned, the value of the flow index n 

may be taken as 1 for streamlined flow. Then, from (2.4) and

(2.5), for flow in the airways and barrier,we have that pressure 

and quantity are connected by the differential equation

with the associated boundary conditions

P

dQ

dx

dP

dx

(p)y=b

7 y=b

rQ.

It is noted that now the last two equations in these 

b o m d a r y  conditions can be combined to give the relationship

( 6 . 1)

for y = b.

Also it will be found that further consideration can be 

given to the operational solution obtained in chapter 2 and that 

an analytical solution may be determined. These two solutions can 

then be compared to establish the degree of accuracy of the 

operational solution for n * 1.
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OPERATIONAL SOLUTION FOR STREAMLINED FLOW

Putting n = 1 in equations (2.8), (2.9) and (2.10) we 

have the solutions

„2 • ,R . k2b2R2w „2 „2,

P 7 (2G + ( Q '  V  ’
(6 . 2)

being the general relationship between pressure and quantity 

in the airways,

2 2 29 . P lr k^p*- 9 9
(6.3)

2 2 2
„2 . ,R . k T R \  J  ^2V 
P" * <“  + - 3 L 2“ ) ( W  ’0 • 2G

giving the relationship between Prt, QA , Q„, and
U U F

%
dQ

i---------  2 2 T
ft k V i r

. 2GJ2G + ~liï?

1 + 2 k | p (6.4)

The integral in (6.4) can now be evaluated to yield the 

relationship between and 0^,

„ „ . fi 6RGL2 ]
Qo = Qf  c°sh[j3I2+2k2pRGj (6.5)

This case lends itself to still more relationships between 

the variables P , Q , and Q_. Substituting Q from (6.5) into
O O r  O

(6.3) we have that

£ Q^i—
0 7 ^F[2G

2 2 2n 
k d

“1 5 7 ^
sinh‘

/6RGL2 ’ 
¿3lf +2\? i/ RG

or Ä . Po 6RGL2 . . A t  6RGI2 1
QF ¥ T  /3L2+2k2b’2RG COSech(/3L2+2k2b2RGj

( 6 . 6)
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Thus for streamlined flow we have several results that 

may be used to determine the pressure and quantity of air at 

points in the airways.

ANALYTICAL SOLUTION FOR STREAMLINED FLOW

To solve the differential equation analytically we can 

separate the variables by putting

p * X(x)Y(y). (6.7)

This gives the equation

2 2 2 
k d^X , l d l  A

IT dx2" + Y dy7 * 0

from which we have that

6 -  ¡ A
dx^

(6.8)

and 2

4-t  = -^2k2Y 
dyz

(6.9)

where X is some constant.,

Now, equations (6.8) and (6.9) have as solutions

X * A cost(Xx) + B sintAx)

Y * C cos&ky) + D siiAky) 

where A,B,C,D are arbitrary constants.

Applying the first boundary condition, which implies that 

p » o when x * 0 or y 8 0, and using (6.7) we have that

p « BD sinh(Xx) sin &ky) .
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The other boundary condition, (6.1), gives us that X is a root 

of the equation

X sin (Xkb) » 2bgrk cos(Xkb). (6.10)

Thus we have as solution

p 8 J c sinh(X x)sin(X ky) 
r m m m J

m*l
(6. 11)

where X-,X ,X0, ... are the roots of (6.10)*and the c are constants. 
i z j  m

Now, if a function f(y) is such that it can be expanded 

in the form

f(y) * l bmsin(Xmky)
m*l

(6. 12)

where the X are roots of 
m

z sin(kbz) + H cos(kbz) * 0

then the coefficients b are given by
TO

b

b » V‘V»r ̂ Y ‘ — \----?i iT v I f1 (t)cos(kX t)dt. (6.13)
m kbX +sin(kbX )cos(kbX )J m

m m m
0

Thus, if we assume that no air leaks into the barrier

between the mine entrances so that

* Pd p __ O
9y ~ b

(6.14)

when x * L, then from (6.11), (6.12), (6.13) and (6.14)

b,

m m Kb A +sm(kbX )cos(kbX ) |"b*x o s ''K'/m
2 fo

cm S^n^^m^ * kbX +sin^kbX )cos(kbX ) j ̂  "CosikX^Odt
m m m '

P / 2sin(kbX ) 
o m

bkX lkbX +sin(kbX )cos(kbX )j 
m v m m m J
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Hence the pressure of the air at points in the roadways 

is given by

P 00 2sin (kbX ) sinh(A x)
P as ® V ® EH £ (\ t c\

b L. kX [kbX +sin(kbX )cos(kbX sinh(X L) ' *l;>; 
m® 1 in m m m m

and since

dP . 

d ? = rQ>

the quantity of air entering the mine is given by

P  00

o
2sin (kb A )

m

^o rb kzbX +ksin(kbX )cos(kbA )cot^ 
m= 1 m m m

(6.16)

while the quantity of air reaching the working face is 

P 00 2sin^(kbX )

QF * rb E k2bX +ksin(kbX )cos(kbX ) cosech<xmL>- (6*17> 
m= 1 m m m

COMPARISON OF THE TWO SOLUTIONS

So that results from the operational solution may be 

compared with those from the analytical solution, values will need 

to be given to the variables concerned. As a guide to the values 

that might be taken, it is noted that Rose (1960,p.215 considers 

a problem of determining R and G for a mine of efficiency 0.4, 

efficiency being determined by the ratio to Qq . With a unit 

quantity of air entering the mine under a pressure of one unit, 

it is calculated that for a flow index of 1.4, R « 2.35 and

G - 1.54.

A. more efficient mine would have a smaller resistance 

and conductance while a less efficient one would have larger 

values. To take this into account, R will be given values 1.0,
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2.0, 3.0 while G will have corresponding values of 0.5, 1.5, 2.5. 

By letting k * 1 the isotropic case will be considered so that 

there is no preferable direction of flow through the barrier. The 

width of the barrier can be set by putting b =» 1 and then the 

effect of various lengths of airways can be seen by letting L 

be 1, 3 and 5. It is noted, however, that the longer the airway, 

the more realistic is the case. Then, by putting P ® 1, values 

of Q and Q- can be determined from (6.5), (6.6) and (6.16),
O r

(6.17).

Results from these equations are listed in table 1 and 

are shown diagramatically in graphs 1 to 6. It appears that the 

solutions obtained by the two methods agree reasonably well for 

small values of R and G but as the resistance and conductance 

increase, so does the difference between the results. However, 

this difference does seem to decrease as the length of airway 

increases so that for streamlined flow and for long airways, the 

operational solution might be reasonably accurate.
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RESULTS FROM THE OPERATIONAL AND ANALYTICAL SOLUTIONS

TA B LE 1

Operational Analytical

Solution Solution

R = 1.0, G - 0.5 L * 1
Qo

1.238 1.273

q f
0.885 0.877

. L » 3
Qo

1.303 1.305

j. ..- Qf
0.856 0.856

!
L = 5

!
Q
xo

1.310 1.310

: Qu : 0.853 , 0.853

k 2.0, G 1.5

L- ........

R *» 3*0, G * 2.5

j
tf
»

I

I

L - 1
! Q° - 

q f

0.796

0.365

0.965

0.344

L » 3 Q 1.135 1.164
0

i
i Qp

0.245 0.244

I

j L * 5 Q 1.200 1.208
0

i
Qp

0.225 0.225 |

> L ** 1
Qo

0.574 0.868

q f
0.227 0.210

L - 3 Q 1.039 1.117
Ir 0

q f
0.093 0.093

L « 5
j

i

Qo I 1.181 1.207

!
i

q f !
0.069 0.069



GRAP H  1

QUANTITY OF AIR ENTERING A MINE OF LENGTH 

L = 1 FOR VARIOUS RESISTANCES TO FLOW.
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GRAPH 2

QU A N T IT Y OF  A I R  E N T ER IN G A  M IN E  O F LEN GTH

L  =  3  FOR  VA R IO U S  R E S I S T A N CE S  TO FLOW .
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GRAPH 3

QU A N T IT Y OF  A I R  E N T ER IN G A  M IN E O F LEN GTH

L  =  5  FOR  VA R IO U S  R E S IS T A N CE S  TO FLOW .



1.35

1 .2 5  -

1 . 15

1 .0 5  -

0 .9 5

0 .8 5  -

0 .7 5

0 . 6 5  "

0 .5 5  -------------------- 1--------------------------------1---------------------------- — i-----

R - 1 - 0  R - 2 . 0  R » 3 . 0

0 * 0 . 5  G - l . 5 G**2 .5

Graph 3



GRAP H  4

QUANTITY OF AIR REACHING THE WORKING FACE OF 

A MINE OF LENGTH L = 1 FOR VARIOUS RESISTANCES

TO FLOW
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GRAP H  5

QUANTITY OF AIR REACHING THE WORKING FACE OF 

A MINE OF LENGTH L = 3 FOR VARIOUS RESISTANCES

TO FLOW .
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GRAP H  6

QUANTITY OF AIR REACHING THE WORKING FACE OF 

A MINE OF LENGTH L = 5 FOR VARIOUS RESISTANCES

TO FLOW
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CHAPTER 7

COMPARISON OF THE OPERATIONAL AND NUMERICAL 

SOLUTIONS FOR TURBULENT FLOW
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REVIEW OF THE OPERATIONAL SOLUTION FOR THE TURBULENT CASE

The streamlined case was considered because analytic 

results could be obtained. However, because of the method of 

construction of airways, flow through them is usually somewhat 

turbulent. This means that the value of the flow index is in 

the range 1 £ n $ 2. We now wish to consider this more general 

situation.

It has been shown that the pressure and quantity of the

air in the mine are related by equation (2.4) together with its

boundary conditions (2.5). An approximate sdLution, given by

(2.8), has been obtained but its accuracy needs to be determined.

To do this it will suffice if we consider (2.9), that is,

«2 . 1 R/^n+1 ^n+lx , k2b2R2 ,^2n ^2nx 

Po * inT G (Qo - QF > + “ 3 i T ~ (Q0 - QF >•

P , k, b, R, G and L can be given values as before and n can 

take values in the above range. If, then, values can be obtained 

for Q and Q_ by some other means, they can be compared with 

corresponding values from (2.9). This can be done by solving

(2.4) numerically to obtain values of Qq and Q̂ ,. These values 

of Q can then be used in (2.9) and corresponding values of Q 

can be determined by using the Newton-Raphson procedure. 

Corresponding values of Qq , as obtained by the numerical and 

operational solutions, can then be compared.
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NUMERICAL SOLUTION FOR TURBULENT FLOW

It is required to find a numerical solution of the 

differential equation

There is no lack of information concerning a numerical solution 

of Laplace’s equation. Fox (1962), Milne (1953) and Southwell 

(1946) all discuss the topic in detail and it is the approach 

outlined in Shaw (1953) that will be largely followed. However, 

most problems discussed have simpler boundary conditions. In our 

problem only values along three sides are known, those along the 

remaining boundary need to be determined. To do this values will 

firstly be estimated, and using these, the partial differential 

equation will be solved. From the other boundary conditions 

values of Q can be determined as well as new boundary values of P. 

The process can then be repeated as many times as is necessary to 

obtain the desired accuracy.

with boundary conditions

P = (p)
y=b



FIGURE 4

SUB D IVISION OF THE BARRIER INTO A MESH
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To explain the numerical method more fully, the part of 

the barrier in the first quadrant is divided into a mesh as show

in figure 4. This part is chosen because of symmetric relationships 

of the barrier.

For the partial differential equation, (2.4), we can set 

up the finite difference equations

P8 + p2 + p6 + p12 " 4P7 " 0

p9 + p3 + p7 + P13 - 4Pg - 0

p20 + p 14 + p 18 + p24 ~ 4p19 * 0 

where, for any internal point w, we have

(7.1)

p + + p + p x - 4p « 0
ra 3 Y 6 a)

according to the point pattern in figure 5.

To solve (7.1) we rewrite the equations in residual

form. That is, 

R, p 8 + p 2 + p6 + p 12 - *p7

R2 = p9 + P 3 + P 7 + P 13 ~ 4p8

»9 " p20 + p 14 + P 18 + p24 - 4p19

(7.2)

Then, for correct values of p everywhere, all the will be zero. 

For values of p that are approximately correct they will be small, 

whilst for values of p far from correct, one or more of the



FIGURE 5

POINT PATTERN FOR FINITE DIFFERENCE EQUATIONS
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FIGURE 6

DIAGRAMETRIC REPRESENTATION OF THE RESIDUAL OPERATOR
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residuals will be large. Thus we can assign values to p at 

all internal points, calculate the residuals at these points 

from (7.2) and then by relaxation methods reduce these residuals.

The residual operators indicated in (7.2) can be more 

conveniently expressed diagramatically by figure 6. Thus to 

compute the value of the residual at a point to, we multiply 

the values of the p ’s at the five points w, a, 3, Y, <$ by the 

multipliers shown on the left of the respective points and then 

add the products. The residual at w may then be placed on the 

right of the point.

The residuals can then be systematically reduced to 

values as small as desired by applying the relaxation operator 

given in figure 7.

This operator is applied so as to approximately liquidate 

the largest residual at each step. By a unit alteration to the 

value of p at point u), this operator alters the residual R^ by 

-4 and at the same time alters the residuals at the four surrounding 

points each by 1. The largest residual then is again sought and 

reduced. This process is repeated until the desired accuracy is 

achieved.

To speed up the calculations a block operator may be 

used initially to reduce the sum of the residuals to zero. The



FIGU RE 7

THE RELAXATION OPERATOR AT A POINT w
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F IGU R E  8

A BLOCK OPERATOR
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block operator is formed by considering unit alterations at the 

various points in the block. Doing this at each internal point 

in figure 4, for example, results in the block operator shown in 

figure 8.

The sum of the residuals of this block operator is -12.

If then the sum of the residuals at the internal points of the 

mesh can be determined, a suitable multiple of the block operator 

can be used to reduce the sum of residuals to zero. Point relaxation 

can then be used to reduce the residuals to be required level.

The method to be used for the nunerical solution of equation

(2.4) has just been outlined. We now wish to consider the role 

of the boundary conditions (2.5).

Referring to figure 9 and to initial considerations of the 

model we have that there is zero pressure along the working face, 

so that p * 0 along BC, and because of symmetric relationship of 

the model, p will be zero along CD.

Along AD we have assumed that

a P 
iE. = _o
3y b

so that the pressure drops linearly from 1 to 0.

Values of P along AB, however, will need to be approximated.

In an article by Peascod (1955) it is suggested that the pressure

as

distribution along the intake might be depictedAin figure 9.
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FIGURE 9

BOUNDARY VALUES FOR THE NUMERICAL SOLUTION



Figure 9
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For purposes of numerical calculation then, we might approximate 

P along AB from

n / 2**4m* 2 / 1*-4mx /<M „v
p * 2T)x  - (— — )x (7.3)

which is a parabolic relationship such that p * 0 when x * 0,

P * 1 when x = L and P » m when x = _L . The value of m is

2
estimated from (6.15).

Using these boundary values, equation (2.4) can be solved 

numerically by relaxation methods to obtain values of p at the 

internal points of the mesh.

Then from

dP

dx

we have that

— (P 
2hv i+1

(7.4)

where h is the width of the mesh subdivisions and i * 1,2,3,... j, 

j being the number of points in each line of the mesh.

Using fictitious values Pq and P^+ ^, calculated from (7.3), 

values of Qj, Q2> Q 3> •.. Qj can be found from (7.4).

However, values of can also be determined from

¿2 = 
dx

2bg 22.

3y
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since this can be considered in the form

Qi " Qi-2
2bg(p

i-1 " Pi+2j^’ ^7*5^

the i and j having the same meanings as before^ but i « 3,4̂ 5 .̂. .j# 

Setting the same, equation (7.5) can be used to 

determine Q^. Then, since the pressure drop at that end of the

airway is small, Q~ may be approximated linearly from

Q1 + Q3 
Q2 - - 2  '

Thereafter,the remaining 0^, 0^, ... can be found by repeated 

application of (7.5).

For correct initial values of P in the intake it would be 

expected that the values of the as obtained from (7.4) and

(7.5) would agree reasonably well. On the other hand, the correlation 

would probably be poor if the values of P were not correct. In 

that case it is thought that the averages might be better approximations 

for the values of Q at the various points of the airway. Using 

these new values of equation (7.4) could then be used to determine 

another set of values of P in the intake.

This cycle can be continued until the differences between 

corresponding values of Q are small enough to give the accuracy 

required.

COMPARISON OF THE TWO SOLUTIONS

So that results from the operational and numerical solutions 

can be compared for various degrees of turbulence, only the values
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R * 1.0 and G ® 0.5 will be considered for the resistance and

conductance, but n will be given the values 1.0, 1.2, 1.4, 1.6,

1.8 and 2.0. The other variables will have the same values as

were taken for previous calculations.

For numerical results a mesh size of one ninth is taken.

Values of Q and Q are determined and as was mentioned earlier 
o r

in the chapter, the values are then used in the operational 

solution to obtain corresponding values of Q^. The results from 

phe two approaches are given in table 2 , and are depicted

graphically in graphs 7, 8 and 9.

Figures from the numerical solution for the case n ■ 1 

agree quite favourably with those from the series solution in 

table 1. Thus, taking the numerical results as being’exact1, 

it seems that the difference between the operational and numerical

solutions increases as n increases.
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TABLE 2

RESULTS FROM THE OPERATIONAL AND NUMERICAL SOLUTIONS

R » 1.0, G » 0.5
------------- i

Operational Numerical j

Solution Solution 1

L = 1
«0

1.223 1.262

q f
0.863 0.863

"1 it-------------

n » 1.0 L - 3 1.300 1.295

q f
0.852 0.852

L - 5
Qo

1.308 1.302

q f
0.851 0.851

.

L = 1
^ 0

1.137

0.754

1.184

0.754

n = 1.2 L “ 3
%

1.227 1.220

«F
0.741 0.741

L = 5 Q 1.237 1.227
o

P
m

O
' 0.740 0.740

!
L = 1 Q0

1.087 1.095

!

q f
0.678 0.678

n = 1.4 L = 3 Qo
1.185 1.167

Qp
0.653 0.653

L = 5 Q 1.196 1.176
o

0.652 0.652
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TABLE 2 (Continued)

RESULTS FROM THE OPERATIONAL AND NUMERICAL SOLUTIONS (Continued)

w , v v« ̂ ; Ir
1

Operational

Solution

Numerical

Solution

L * 1
QC

1.059 1.025

q f
0.619 0.619

n * 1.6

coft

Q0
1.160 1.126

QF
0.579 0.579

L * 5
Q<>

1.173 1.140

q f
0.578 0.578

L * 1 Q 1.044 1,006
o

q f
0.576 0.576

n * 1.8 L * 3 0 1.149 1.103
‘o

q f
0.516 0.516

L * 5
%

1.162 1.107

<>f
0.513 0.513

______________

L = 1 Q0

q f

1.037

0.536

0.971

0.536

n * 2.0 L 8 3 Q 1.145 1.082
o

Qf
0.456 0.456

L * 5 Q 1.159 1.086
°

-• Qf
0.454 0.454
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QUANTITY OF AIR ENTERING A MINE OF LENGTH L 

FOR VARIOUS FLOW INDICES.
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CHAPTER 8

CONCLUSION
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In considering the problem of leakage in mine ventilation, 

it has been shown that pressure and quantity of air at points in 

the mine are governed by Laplace’s equation together with 

associated boundary conditions* An approximate solution pertaining 

to flow in the airways was obtained using operational methods, but 

its accuracy needed to be checked.

The situation of streamlined flow in airways was firstly 

investigated to see if an analytic solution could be determined*

It was found that provided the pressure at the entrance could be 

expanded in a modified Dini series, such a solution existed*

Chapters 3, 4 and 5 were devoted to establishing the validity of 

this expansion* The theory of a special case of a Fourier-Bessel 

series was firstly modified, this then being extended to Dini series 

considerations* Integration was shown to be permissible so that 

the expansion was established and its use verified*

In chapter 6 series solutions were obtained analytically 

giving, in terms of the pressure at the entrance, the pressure at 

points in the airway, the quantity of air entering the mine and 

the quantity of air reaching the working face. The opportunity 

was taken at this juncture to compare results from the operational 

solution with those from the series. It was found the results 

agreed quite favourably for reasonably long airways.
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However, flow in the airways is usually turbulent. For 

comparison purposes it was necessary to obtain ’exact* results 

from a numerical solution. The numerical approach was developed 

in chapter 7 and using relaxation methods the quantities of air 

at the entrance and at the working face were determined for 

various degrees of turbulence. Compared with these results 

it appears that the discrepancy of the operational solution 

increases as the turbulence increases, and hence it is only

a fair result.
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