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Synopsis 
Modulation equations play an essential role in the understanding of complicated systems near the 
threshold of instability. Here we show that the modulation equation dominates the dynamics of the 
full problem locally, at least over a long time-scale. For systems wuh no quadratic interaction term, 
we develop a method which is much simpler than previous ones. It involves a careful bookkeeping of 
errors and an estimate of Gronwall type. 

As an example for the dIssipative case. we find that the Ginzburg-Landau equation is the 
modulation equation for the Swift-Hohenberg problem. Moreover, the method also enables us to 
handle hyperbolic problems: the nonlinear Schrodinger equatton is shown to describe the modulation 
of wave packets in the Sine-Gordon equation 

1. Introduction 

We consider scalar evolutionary problems on the real line. In the parabolic case, 
we are interested in the behaviour of systems close to the threshold of instability. 
If a spatially homogeneous solution becomes unstable, typically a whole band of 
wave numbers turns unstable. In this situation, the bifurcating solutions can be 
approximately described by a so-called amplitude or modulation equation 
([3,8,9]). As an example, we study the (scalar) Swift-Hohenberg equation ([2]): 

a,u(t, x) = LA(ax)u(t, x) - u 3(t, x), with LA(ax)u = -(1 + a;)2u + AU. (1.1) 

The trivial solution u == 0 is unstable for A> 0 and, linearising at u = 0, we find 
solutions of the form u(t, x) = e",+,h, where Il(k) = -(1 - e)2 + A is positive for 
k close to ± 1. One expects that for small A> 0 there are solutions which are slow 
modulations in time and space of the critical modes e±u. Using the scalings 
A = £2, T = £2t and X = EX, we introduce the formal approximation 

(1.2) 

Substituting this ansatz into (1. 1) and equating the coefficients of e'x of order 
0(£3) to zero, we find that the amplitude A has to satisfy the Ginzburg-Landau 
equation 

(1. 3) 

Now taking a solution A, the question arises as to how well UA approximates the 
solution u(t, x) of the original problem which has the same initial data. 

This question was treated in [2] for the Swift-Hohenberg problem and in [11] 
for general scalar equations with quadratic nonlinearities. The result obtained 
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there implies that UA approximates the solution u of the original problem up to an 
error of order 0'( E2), uniformly for all (t, x) E [0, To/ E2] x ~. Yet both studies lead 
to very involved analyses. Here we want to show that it is possible to obtain the 
same results by a much simpler method, which, however, is restricted to the case 
where the nonlinearity starts with cubic terms. This is, for instance, always the 
case for problems with odd nonlinearities. Our method consists in finding a good 
approximate solution VA which is typically one order more accurate than UA­

Then we estimate the error R = (u - VA )/E2 directly from the equation which is 
found by substituting u = VA + E2R into the full problem. The essential in­
gredients of the method are the boundedness of the semigroup generated by the 
linearised problem (at criticality) and the relative smallness of the nonlinear 
terms. In particular, the perturbation to the linear part is of order E2, which 
allows estimates over the time scale 1/E2. 

In contrast to the previous work, our analysis does not rely on the smoothing 
properties of the linearised flow. Hence, we are also able to treat hyperbolic 
problems. The formal derivation of amplitude equations for hyperbolic problems 
is discussed extensively in U-], but rigorous approximation results in the sense 
mentioned above are rare, see e.g. [5], § 6. However, for problems on bounded 
x-domains, the theory of averaging was applied to show that finite mode 
(Galerkin) truncations lead to good approximations over long time-scales, see 
[7, HI]. In the case of an unbounded x-domain, we are interested in the evolution 
of slowly modulated wave packets. For the Sine-Gordon equation a;u = a;u -
sin u, we prove that solutions of the type 

uA(t, x)= E(A(E2t, E(X- vt))e,clu-w,j+c.c.), where w2=e+ 1, v=k/w, (1.4) 

are O'(EJ12)-approximations (in the L2(~)-norm) over the time scale 1/E2 of an 
exact solution u. Here A = A(T, X) has to be a solution of the nonlinear 
Schradinger equation 

(1.5) 

The simplicity of the method makes the theory amenable to several generalisa­
tions discussed in Section 4. For instance, one can treat vector-valued u, even 
with values in an infinite-dimensional Banach space, allowing for applications to 
problems on cylindrical domains. 

2. The parabolic case 

We prove the following approximation result for the Swift-Hohenberg problem 
(SHE) (1.1) through the Ginzburg-Landau equation (GLE) (1.3). It is shown in 
[2, Lemma 3.1] that (1.3) has for each initial datum A(O, X) E C~(~) a unique 
solution which is defined for all T > 0 and bounded in C~(~). The same 
statement holds for the SHE. (Here Cb(~) denotes the space of bounded and 
uniformly continuous functions.) 

TIIEOREM 2.1. Let A = A(T, X) be a solution of the GLE and UA the formal 
approximation (1.2). Then, for each 7;) > 0 and d > 0, there exist En, C > Osuch 
that for all E E (0, En) the following statement holds. Let u = u (t, x) be a solution of 
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the SHE such that lu(O, x) - uA(O, x)1 ~ dE2; then the estimate 

Iu(t, x) - uA(t, x)1 < CE2, for alI (t, x) E [0, 7;./E2] x IR, (2.1) 

is satisfied. 

Remarks 2.2. Note that UA, and hence u, are O(E) and that the error is one 
order smaller. The approximation occurs on the natural time-scale O(I/E2) for the 
modulations. Taking solutions U J and U2 with two initial conditions O(E2)-close to 
uA(O, .) we find, by using (2.1) and the triangle inequality, that U J and U2 stay 
O( E2)-close over the time interva~ [0, 7;)/E2]. 

Proof of Theorem 2.1. We want to show that the error u(t, x) - UA(t. x) 
remains of order O( E2) over the time t ~ To/ E2. However, substituting UA into 
(1.1) leaves the residual term EJAJeJ/x (ct. [2J) which, upon integration over 
[0, To/E 2], leads to an error O( E). To avoid this difficulty, we use an improved 
approximation: 

vA(t, x) = EA(T, X)e lX - EJiiA(T. X)JeJ'X + c.c. 

Using the relation 

- Lo(ax)(B(EX)e"lX) 

= [(1 - n2)2B + E4in(1 - n2)B' + E2(2 - 6n2)B" + EJ4inB'" + E4 B .... ]e"lX. 

we find the residuum 

p(E, t, x) = a,VA - LOVA - E2VA + v~ 
= EJ[(aTA - 4 aiA - A)eU 

- (1 - 32)2iiAJeJ'X + c.c.] 

+ E3(Ae'X + Ae-'X)J + O( E4
). 

Since A solves the GLE, the whole O(EJ)-term vanishes. 
We let E2R(t, x) = u(t, x) - vA(t, x) and obtain 

aiR = LoR + E2a(E, t, x)R + EJN(E, t, x, R) + E2r(E, t, x), 

R(O, x) = (u(O, x) - vA(O, X))/E2, 
(2.2) 

where a(E, t, x) = 1 - 3(VA(t, X)/E)2, N(E, t, x, R) = -3(vA /E)R 2 
- ER J, r = p/E~ 

is bounded over (0, Eo) X [0, x) X IR, and IR(O, x)1 ~ 2d for sufficiently small Ell' 
We solve this equation by turning it into an integral equation in C,,(IR) 

equipped with the standard supremum norm. Henceforth, we omit the depend­
ence on the x-variable. The linear problem aIR = L"R + f(t), R(O) = g, can be 
solved by the semigroup G(t) = e14

. In Lemma 2.3 we prove that G(t) is a 
uniformly bounded strongly continuous semigroup on C,,(IR). Thus, (2.2) 
transforms into 

R(t) = G(t)R(O) + E2L' G(t - s )[a( E, s )R(s) + EN( E, s, R(s)) + r(s)] ds. (2.3) 
o 

For each D > 0, we have IIN(E, s, R)II ~ M for all R with IIRII ~ D and E E (0, Ell)' 
With IIG(s)ll, Ilrll, la(s)1 ~ C, we estimate 

IIR(/)II ~ 2Cd + L' E 2C2 1IR(s)11 ds + E2/C(EM + C), 
o 
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as long as R(t) stays in the ball of radius D. With £Zt ~ 1;" Gronwall's inequality 
yields 

t"" 2Cd + 1;,C( EM + C), (2.4) 

for t;§ To/ £2, Let C = 2Cd + Toc( C + C) and D = 0<:110. and make Eo smaller. 
such that EM ~ C (hence t;§ C). Then (2.4) shows that IIR(t)H;§ D for all 
t:?:To/E2. The desired result now follows from u(t. X)-UA(t. X) ==E2R(t. x) 
E3(A )e3

U' + c.c.)/64. 0 

LEMMA 2.3. The semigroup G(t):::: eL.,,: Ch(R)- Ct;(R). t ~ 0, is uniformly 
bounded. 

Proof. We use the representation of G as a Dunford integral over the resolvent 

G(t);:: 1.1 eAl(Lo ).)-1 d)'. 
2m r 

where r c C is a curve from (-1 + i)<Xl to (-1 i)cr; not intersecting (-00,0]. The 
lemma is proved, if the resolvent (Ln - ).)-1 exists in the whole sector 
Cs = {). E C: ). 4= 0, larg).1 < 2n 13} and satisfies 

II(L(I-).r'Il~M/I).1 forall).ECs (2.5) 

(cf. 16. chap.rX. t]). For ).Ees • we define £0=(_).)1 with rmw>O. Then. 
Lllu ).u;:: -(1 + a; + £0)(1 + a; - w)u = f has the solution 

u=(l_o-).)-lf=-K",oK" f. with Kdg(x) = r =-!e-a\X-~'g(~)d~. JR 2a 

where a± = (-1 ± w)~ with Re a± > O. Hence. the resolvent satisfies 

II(L(I-).)-'II~ 1 1 
la+1 Rea+ la_I Rea_ 

(2.6) 

From larg).1 < 2n/3. we find with p2 = IA.I the estimates \-1 ± £01 E; (1 V3p + 
p2)l and larg(-l±w)lE;a(p), where tan(n-a)=p/(1+V3p/2) and aE 
(2n/3.n). This implies Rea±E;(l-V3p+p2)icos(a(p)I2). rn both limits, 
p-O and p- cr.;, we find ViT+1I Re a .. Re a_ > Cp2 =;C 1).1. which is the desired 
estimate (2.5). Thus, the lemma is proved. 0 

3. The hyperbolic case 

We now consider a hyperbolic problem where the interest lies in the time- and 
space-dependent modulations of oscillations around a trivial state. As a model, 
we consider the Sine-Gordon equation (SGE) 

a;u=a;u-u+g(u). where g(u) u sinu. (3.1) 

Here e'(kx-tul) are the solutions of the linearised problem, where k and £0 are 
related by the dispersion relation w2 == k 2 + 1. The group velocity is given by 
v = awlak::: k/w and satisfies Ivl < 1. 
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We are looking for modulated travelling waves in the form U A of (1.4), i.e. we 
define the slow time T = E

2t and the slow space variable X = E(X - VI) (d. [1]). 
Guided by the proof of Theorem 2.1, we use the improved approximation 

VA(t, x) = EA(T, X)e'(Iex-w,) 

Due to the correction term, we find the residuum 

p(E, t, x) = ~VA - a;VA + VA - g(VA) 

= E3( -2im aTA + (v2 - 1) ai-A +! IAI2 A)e'(Iex-w,) + c.c. + 0'(E4). 

Hence, if A satisfies the nonlinear Schrodinger equation (NLSE) (1.5), the 
residuum is 0'(E4). 

We have to be aware of the fact that the above estimates are pointwise in 
(t, x) E [0, (0) x~. However, for wave problems it is more convenient to work in 
energy space, namely (u, a,u) E Y = HI(~) X L2(~). It is well-known that, for 
any initial conditions in Y, the SGE has a unique solution u = u(t, x) such that 
tE~~(U(t, .), a,u(t, ·»E Y is continuous and bounded. Similarly, the NLSE 
has a unique solution A=A(T,X) such that TE~~A(T, ·)EZ=HI(~) is 
continuous and bounded. 

In constructing the approximate solution VA with a given solution A of the 
NLSE, we have to recall the spatial scaling X = E(X - vt). Hence we obtain 

IlvA(t, ·)11 ~2E! IIA(E2t, ·)11 + CEl IIA(E2t, ·)II~· 

Here and further on 11·11 denotes the L 2-norm and 11·111 the HI-norm in the 
appropriate variable. For the residuum we have IIp( E, t, .) II = 0'( E~). Again we 
omit the x-dependence. 

For the error we use the ansatz E~R = u - VA and obtain the equation 

~R = a;R - R + E2a(E, t)R + ElN(E, t, R) + E2r(E, t), (3.2) 

where a(E, t) = (1 - cos VA(t»1E2, r = plE~. To show that N is 0(1), we use 

N(E, t, R) = E-4[g(E~R + VA) - g(vA) - g'(vA)E~R] 

1 
= E-4g"(VA + fh~R)E3R2 = - sin (VA + fh'R)R 2, 

E 

where fJ E [0, 1] from the mean value theorem. Since lIE sin ( ... ) as well as 
a(E, t) act as multiplication operators in L2(~)' their operator norm is the 
supremum norm. Hence, using IlvAllx = O'(E) and IIRlix ~ C IIRIII = 0'(1), we 
have the desired result. 

Now, the analysis of Theorem 2.1 can be repeated by writing (3.2) as a 
first-order system for (R, a,R) in the Banach space Y. The linear part is 
a,(R, S) = L(R, S) = (S, a;R - R) and the associated semigroup G(t) = eLI is an 
isometry for the norm II(R,S)II~=fR[(axRf+R2+S2]dx. Moreover, the 
nonlinear mapping N is well defined from Y into L2(~). Going through the 
estimates of the proof of Theorem 2.1 gives the following result: 

THEOREM 3.1. Let A = A(T, X) be a solution of the NLSE such that the 
derivatives aT a~A are in C([O, Tr], L2(~» for n + k ~ 2 and let UA be the formal 
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approximation (1.4). Then, for each To ~ 7; and each d> 0, there exist Eo, C > 0 
such that for all E E (0, Eo) the following statement holds. Let u = u(t, x) be a 
solution of the SGE such that lI(u(O), a,u(O» - (UA(O), a,uA(O» II y ~ dE~; then the 
estimate 

is satisfied. 

We remark here that the theory cannot be carried out in spaces of functions 
which are bounded (e.g. quasi-periodic), since the semigroup G(t) of the 
dispersive wave operator is not uniformly bounded on spaces like Cb(IR). 

4. Discussion and generalisations 

From the proof of Theorem 2.1 we see that the result can be generalised in 
several directions. Firstly, we may increase the order of accuracy of the formal 
solution VA- This can be done as described in [11] or [4]. Having the residuum 
p = a,VA - LEVA + V! of order O(En) with n > 4, we introduce the scaling 
R = E2-n(U - VA) and again obtain the same equation (2.2) but with En-I as a 
factor of N(E, .. . ). Again we obtain IR(t, x)1 = 0(1) on the time interval 
[0, To/E2], and thus lu(t, x) - vA(t, x)1 ~ CEn- 2. A similar result holds in the 
hyperbolic casco 

Secondly, we can treat arbitrary nonlinearities g with g(u) = 0(luI 3
) instead of 

u3 or u - sin u. Moreover, in the parabolic case g could also depend on the 
derivatives a!u, k = 1, 2, 3. Then the smoothing properties of the semigroup have 
to be exploited, see [2, ll]. Moreover, an explicit t- and x-dependence for g can 
be allowed, as long as this dependence is uniform and we are able to construct 
approximate solutions which have a sufficiently small residuum. 

The case of a quadratic leading term in the nonlinearity is explicitly excluded, 
since there the linear perturbation term g'(vA(t, x»R would only be of order 
O(E). An error estimate would only be possible on the shorter time-scale I/E, 
which is not the natural time-scale for the modulations. For the quadratic case, 
the only rigorous results over the correct time scale are given in [ll]. 

Thirdly, we note that the method is simple enough to allow for the case when u 
is vector-valued, in particular for studying partial differential equations on 
cylindrical domains, where u(t, x) can be thought of as having values in a Banach 
space. We leave this for future research. 

From the integral equation (2.3), we can also prove the existence of the 
solution R by the standard contraction mapping principle. Note that the Lipschitz 
constant is small even over time intervals of length To/ E2, due to the factor EO 

with cr > 0 in front of N( E, t, R). This observation is helpful in problems where 
the full system does not guarantee global existence for all initial data. Then the 
solutions with initial conditions of modulation type, i.e. as in (1.2), exist as long 
as predicted by the associated modulation equation, while general initial 
conditions might lead to blow up in finite time, independently of E. 
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