The Validity of Retiming Sequential Circuits

Vigyan Singhal* Carl Pixley!

Abstract

Reti ming has been proposed as an optimizati on step for sequen-
tial circuits represented at the net-list level. Retiming moves
the latches across the logic gates and in doing so changes
the number of latches and the longest path delay between the
latches. In this paper we show by example that retiming a
design may lead to differing simulation results when the re-
timed design replaces the original design. We also show, by
exampl e, that retiming may not preserve thetestability of a se-
guential test sequence for a given stuck-at fault asmeasured by
asimulator. Weidentifythe cause of theproblemasforwardre-
timing moves across multiple-fanout pointsin the circuit. The
primary contribution of this paper is to show that, while an
accurate logic simulation may distinguish the retimed circuit
fromtheoriginal circuit, a conservative three-valued simulator
cannot do so. Hence, retiming is a safe operation when used
in a design methodology based on conservative three-valued
simulation starting each latch with the unknown value.

1 Introduction

We are interested in the optimization of synchronous digital
circuits represented at the so-called net-list level. A syn-
chronous circuit is defined loosely as an interconnection of
combinational logic gates (gates) and synchronizing memory
elements (latches) where where each cycle contains at least
one latch. For simplicity, we consider circuits consisting of
edge-triggered latches clocked directly by a single input sig-
nal.

Many sequential optimizationtechniquesfurther assume the
existence of asingleinput signal connected to each latch to set
the state of the latch before the circuit begins operation. The
corresponding pin on the latch is called a synchronous reset
(or synchronous set) pin. However, very few designs satisfy
the requirement that every latch is reset in this manner. For

*Department of EECS, University of California at Berkeley, Berkeley, CA
94720

tMotorola Inc., Bridgepoint Plaza |, 5918 W. Courtyard Dr., Suite 200,
Austin, TX 78730

tsynopsys|nc., 700 East Middlefield Road, Mountain View, CA 94043

32nd ACM/IEEE Design Automation Conference O
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright noticeand the title of the publication and its date appear,
and notice is giventhat copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requiresafee
and/gr specific permission. [J 1995 ACM 0-89791-756-1/95/0006 $3.50

Richard L. Rudell*

Robert K. Brayton*

example, consider adigital signal processing circuit consisting
of acontroller connected to a datapath. The datapath consists
of eg., adders, multiplexors, and registers (latches). The con-
trolleristypicaly reset during thefirst cycle by aninput signa
which isconnected to each latch in the controller. However, it
is unnecessary for the correct operation of the circuit to force
the datapath latches to reset on power-up with the same global
reset line. Once the controller is reset, it Simply applies a se-
guence of inputs to the datapath to ensure that any datapath
registers (e.g., an accumulator) are initialized properly. For
many designs of this style, the controller contributes less than
10% of thetotd latchesin the design. Also, the size of alatch
withareset signd islarger than the size of latch without areset
signal and a significant area penalty arises from the routing of
the reset signal. Therefore, to reduce the size of the design,
none of the datapath latches is directly reset. As an extreme
example, consider a pipelined 32-bit multiplier with 4 pipeline
stages; to force the latches in this finite memory subcircuit to
a defined value with a global reset signd is costly and totally
unnecessary.

The above observation has sparked interest in a gorithmsfor
analyzing and optimizing designs where none of the latches
have reset signals. In these agorithms, latches in the design
which have synchronous control pins (e.g., set, reset, load en-
able) are modelled as simple latches surrounded by additional
gates. For example, a synchronous reset latch with positive
logic reset signal R and data input signa D is modelled by
a simple latch and an AND gate with the AND gate fed by
NOT(R) and D. Modelling latches with reset signa's this way
may restrict the space of retiming moves allowed because this
additiona logic might come in the away of latches being re-
timed. However, we can take care of this problem by treating
each latch along with its reset logic as one block and then re-
timing thisblock as one unit. Also, we can choose to split this
block; this will alow up get even more retimings which we
could not have obtained had we not modelled the reset logic
explicitly.

L ogic optimization modifiesacircuit toimproveacost func-
tiononthecircuit (such as minimizingthearearequiredto meet
a specified clock period) while preserving the behavior of the
circuit. It isimportant to note that these modificationsare done
at the net-list level with no knowledge of the environment in
which the circuit is used;* hence, it is important that the op-

1Sometimes limited knowledge of the environment, such as output don'’t-
cares or an initializing sequence, may be provided by the designer; however,
our goal is to develop optimization algorithms which do not require such
information to be provided.

timized circuit be able to replace the original circuit for any
environment. As asimple example, combinational logic opti-
mization restricts modifications to the gates in the circuit. As
long as the Boolean functions produced at the outputs of the
combinational portion of the circuit remains unchanged, the
optimized circuit can safely replace the origina circuit.

A sufficient condition which allows a design to be replaced
independent of itsenvironment isthe classical notion of equiv-
alent FSMs (i.e, for every state in the first machine there is
an equivaent state in the second machine, and vice-versa).
A weaker condition, which is both necessary and sufficient
for replacement was described? by Pixley et al. and is called
safe-replacement [7].

Pixley introduced Sequential Hardware Equivalence (SHE)
[6] to consider the equivalence of digita circuits under the
assumption that digital circuits must operate correctly start-
ing from a random power-up state. Consider the state tran-
sition graph of a digita circuit, which, by his definition, is a
compl etely-specified machine with 27 states given n latches.
Collapse this machine by merging equivalent states. Strongly
connected component analysis of any directed graph yields
a directed acyclic graph of strongly connected components
(SCC). Pixley argued that for the behavior of the circuit to be
well-defined under the assumption of arandom power-up state,
the state-minimal graph of the circuit must have a single sink
SCC (i.e, asingleterminad SCC or TSCC). All interesting
notions of replacement require equivaence of the TSCC of
the two designs, as the TSCC defines the steady-state behav-
ior of the machine. The subtlety which distinguishes SHE
and various notions of replacement isin dealing with the tran-
sient behavior of the machine (all states outside the TSCC).
Replacement requires that the environment be able to drive a
replacement machine into its steady-state behavior (i.e., reset
the machine) with the same sequence used to reset the original
machine,

Retiming was first formulated by Leiserson and Saxe [4] in
the context of systolic systems. When applied to digital cir-
cuits, retiming is an optimization step which moves thelatches
across the logic gates and in doing so changes the number of
latches and the longest path delay between the latches. In this
manner, the number of latches can bereduced, and/or thecycle
time of the circuit can be improved. Recent resultsby Shenoy
and Ruddll [9] have improved the efficiency of retiming so that
circuits up to 50,000 equivaent gates can be retimed for min-
imum area under adelay constraint. This has sparked further
interest in exploring the application of retiming as a genera
optimization step during logic synthesis.

Prior literature has assumed that retiming can be directly
appliedto sequential circuit optimization. However, it hasbeen
recently pointed out by Pixley et al. [7] that retiming does not
satisfy the safe-replacement condition. Note that the theorem
of Leiserson and Saxe on the vaidity of retiming is not in
doubt. They simply made the assumption that the environment
of thecircuit could bemodified towait afixed number of cycles

2|n the context of fault detection, Pomeranz and Reddy [8] have presented
an equivalent condition which isused toidentify sequentially redundant faults.

(dependent upon the retiming) before applying its inputs. It
is this requirement which violates safe-replacement and casts
a doubt on whether retiming is valid as part of a synthesis
methodology for net-list level sequential circuits.

In this paper, we first show in Section 2 how a designer who
applies retiming to a circuit could be surprised during simu-
lation when the retimed design replaces the origina design.
Specifically, it is possiblethat alogic simulator could produce
a different output sequence when simulating the retimed cir-
cuit. Wea so show on the same exampl e that an input sequence
which testsafault in acircuit cannot test the same fault in the
retimed circuit. In Section 3 we formalize our model of retim-
ing on sequentia circuits, which is dightly different from that
of Leiserson and Saxe in that we distinguish the case where a
latch moves from the output of one gate to the inputs of each
of its fanouts. We then re-prove in Section 4 the Leiserson
and Saxe result that retiming is a safe operation as long as
one can wait long enough after power-up before applying the
input sequence. As a consequence of our proof, we identify
that the only incorrect retiming transformation is one which
moves a latch forward across a multiple-fanout junction; i.e.,
if welimit the retiming transformations, then retiming satisfies
the condition of safe-replacement. Section 5 isthe key to the
paper. We define a conservative three-valued logic simulator
(CLS) asathree-valued simulator using thevalues0, 1, and X
which performs only local propagation of the X values (i.e,
AND(0, X) = 0 but AND(1, X) = X).2 Further, the CLS
begins operation with &l latches in the X state. In Section
5 we show that while a simulator could distinguish a retimed
circuit from the original, in fact, a conservative three-valued
logic simulator cannot. In other words, retiming retains an
invariant on the output sequences produced by conservative
three-valued simulation.

As afina comment, note that our model of a synchronous
circuit does not require a latch to have a set or reset line and
does not require any notion of the initia state of the circuit.
Hence, we avoid the problem pursued by Touati and Brayton
[1Q] in retiming the initial state.

2 Retiming Violates Safe-Replacement

2.1 Simulation Example

Here we show how a simple retiming move might change the
behavior of a design. Consider the circuit) and the retimed
version C'in Figure 1. The STGs for these circuits are shown
in Figure 2. Design D has two states and isinitialized to state
0 onthelength-1input sequence 0, whereas C' isnot initialized
with thisinput sequence.

If we simulate the two design 1 and C' with an input se-
guence, we may get different results. Consider the input se-
guence0-1-1-1. Thesimulationresultsfor thisinput sequence

3In contrast, an exact three-valued simulator will output an X only in the
case that some assignment of valuesto X on theinput yield differing outputs;
for a conservative simulator the local propagation of X’'smay causean X on
the output even though the output is a 0 (or a 1) for every input.

i]_ 2

o1

T:
H”J

i]_ 2

Figurel: Retimed circuitisnot initialized with input sequence
0.

Figure 2: Design where retiming breaks down an initializing
sequence of length 1.

power-up output power-up output

stateof) | sequence stateof C' | sequence
0 0-0-1-0 00 0-0-1-0

1 0-0-1-0 11 0-0-1-0

01 0-0-1-0

10 0-1-0-1

Table 1: Simulation results for 12 and €' on input sequence
0-1-1-1

from al the power-up states of 1 and C' are shownin Table 1.
This input sequence produces the same output sequence from
every power-up state of). However, if design C' powersupin
state 10, it will output O - 1 - 0 - 1, resulting in an input/output
behavior which was not present in the original design.

Suppose we had a sufficiently powerful simulator which
given any input sequence, outputs

e al at an output at some time step iff al power-up states
output 1 at that time step

e a0 at an output at some time step iff al power-up states
output O at that time step

e an X otherwisg, i.e. if there exist two power-up states,
one of which outputsa0 and the outputsa 1.

For theinput sequence 0 -1 - 1 - 1 thissimulator would output
0-0-1-0fordesign D andoutput0- X - X - X for thedesign
C.

Note, however, that if we clock the circuit for one redundant
cycle (witharbitrary input) beforeapplying our input sequence,
even our imaginary powerful simulator will produce the same
output for both circuits. Thisis the sense of adelayed circuit
which we define in Section 3 and is the notion of equivalence
used by Leiserson and Saxe when proving that retiming was a
valid transformation on a circuit.

2.2 Testing Example

Theexamplein the previous subsection showsthat retiming can
change the behavior of a design as measured by a simulator.
Next we show that test sets can also be affected similarly,
contradicting the result of Marchok et al. [5]:

(Theorem 1 in [5]) The retiming transformation preserves
testability with respect to a single stuck-at-fault test set.

Thistheoremimpliesthat if atest sequence uncoversagiven
stuck-at-fault in a circuit, then the same sequence can detects
the same faults in a retimed version of the circuit. For a
counterexample, consider circuits 2 and C' in Figure 3. For
the given stuck-at-1 fault shown, the test sequence O - 1 detects
thefaultintheoriginal circuit D. For theinput sequence 0 - 1,
the fault-free version of D produces the output O - O from all
power-up states wheress the faulty version of D produces the
output sequence 0- 1. Thus, 0- 1isavalid test sequence for
the stuck-at-fault in D since it distinguishes the faulty design
from the fault-free design. However, for the fault-free version
of circuit C', theinput sequence 0- 1 may produce output 0- 0 or

o1

r
FH} D

Host

i1

}

——

PB o
.

Figure 3: Retiming does not preserve test sequence 0 - 1.

i1

0-1 depending on which state C' powersupin (seethe STG for
C inFigure 2); thefaulty version of C still producesQ- 1 from
any power-up state. Thus, 0- 1 isno longer atest sequence for
theretimed design D.

3 Background

3.1 Leiserson-Saxe Retiming Model

Leiserson and Saxe introduced retiming [4] through a graph-
theoreticmoddl. A designismodeled as afinite edge-weighted
directed graph G = (V, E'). Each vertex in V' represents either
a gate in the design, a primary input or output, or a special
dummy node called the host. Thereisan edgein £ from one
gate to another if an output of this gate fans out to the second
gate; there is an edge from the host to each primary input
node; and, an edge from each primary output node to the host.
The non-negative weight of an edge represents the number of
latches on the corresponding path in the design. The host and
primary input and primary output nodes are required to have
alag of 0. A retiming of a design is an assignment of each
vertex v to an integer lag(v) such that for every edge (u, v)
withweight w, thevalue w 4 lag(v) — lag(u) iSnon-negative.
Informally, thelag of avertex denotes the number of backward
retiming moves across this register, for example a lag of —2
on alogic element means that 2 forward retiming moves are
performed across this element.

This model is not well suited for retiming on gate-level
sequentia circuits. The problem is that if a single output of

i1

Figure 4: The edge-weighted digraph representing the circuits
D and C from Figure 1.

an element fans out to more than one element, thismodel does
not distinguishwhere the latches are placed with respect to the
fanout junction. Thisis best seen with respect to the retiming
example discussed in Section 2.1. Boththecircuitsin Figure1
are represented by the same retiming graph, whichis shownin
Figure4.

3.2 Circuit Modd

Our model of a sequentia circuit is the traditiona net-list
level model which consists of elementary cells from alibrary
interconnected with wire connections(for example, thecircuits
in Figure 1). The library cells consist of combinationa gates
and latches. Asdiscussed intheintroduction, we allow latches
with synchronous control signals (set, reset, load enable) but
do not requirethat al latches be of thistype.

The reason retiming caused a problem in the example of
Section 2.1 isthat we retimed alatch forward across a fanout
junction and created a power-up state which could not occur
in the original circuit. If there are multiple-output gates in
the cell library such that there exist output vectors of the cell
which cannot be produced by any input vector to the cell, then
retiming | atchesforward across such € ementsleadsto the same
problem as retiming latches forward across fanout junctions.

Thismotivatesthedefinition of justifiableand non-justifiable
multiple-output gates. Consider a multi-output gate 7 with n
inputs and m outputs. The m output functions are denoted
by f1,..., fm. F isjudtifiableif and only if for every output
y € 27, there existsan input = € 2" such that y = F(x); if
thereexists y € 2™ such that for al « € 27, y # F(z), then
I isnon-justifiable.

A k-way fanout junction (¢ > 1) isaspecia case of amulti-
output gate (which we call JUNC) with 1 input line « and &
(k > 1) outputlinesya, yo, .. ., yx, Wherey; = - = yp = «
(Figure5). The element JUNC is clearly non-justifiable since
only two of the 2* output vectors (000...0and 111...1) are
possible. For the remainder of this paper we assume that all
fanout junctionsare replaced by JUNC elements. Thisimplies
that each output of each gate (latch) fans out to exactly one
other gate (latch).

For a gate-level network which replaces junctions with

— —_—T - El

Figure5: A junction can be treated as a multi-output gate.

backward
f1 _{F ; H f1
P 1 L fn
F forward F

Figure 6: Forward and backward retiming moves across a
multi-output element.

multi-output gates as described above, there are two kinds
of atomic retiming moves. forward and backward. A forward
move removes one latch from each of the n inputs and places
onelatch at each of them outputs; areverse move removesone
latch from each of the m outputsand places one latch at each
of the n inputs (Figure 6). We view retiming starting from an
initial circuit and applying a sequence of these atomic moves
to result in the retimed circuit.

3.3 Notionsof Replaceability

Here we discussthe various notions of design replacement that
are relevant to our work.

The notion of safe replaceability was presented in [7]. A
design C' is a safe replacement for a design D (denoted by
C < D)if for any state s indesign C and any input sequence,
thereexistsastate sq in design D such that the output behavior
from s1 is the same as that from s on that input sequence. It
was shown that the above conditionis necessary and sufficient
so that the replacement cannot be detected by any environment
that can only control and observe only the primary inputs and
outputs, respectively, of the design.

A stronger notion of design replacement isthe classical no-
tion of state machineimplication usually defined in the context
of state machine equivalence. A design C' implies design D
(wedenotethat by C' C D) if for any state s1 indesign C' there
exists a state so in design D such that s; is equivalent to sg
(i.e., on any input sequence, the output behavior from s; isthe
same as that from so).

The difference between < and C liesin thefact that for the
former the state so in D dependsnot only on s; but also on the
input sequence, whereas for C sg only depends on s; and is
the same for any input sequence. It has been shownin [7], that
if C' < D, theremay beastatein C' whichis not equivalent to

any statein D. Thus, C isastrictly stronger notion than <.
Inthefollowing sectionswewill prove resultswhich charac-
terize the conditionsunder which therdation C holdsbetween
two designs. The following proposition shows that these re-
sultsautomatically imply safe replaceability (<) aswell.

Proposition 1 If C' C D, thenC < D.

Proof Consider any states; € C'. SinceC C D, thereexists
astate sp € D whichisequivalent to s;. Thus, given s, for
any input sequence , thereisa state in D (namely sp) such
that s1 and s output the same sequenceon . =

3.4 Delayed Designs

We need the notion of delayed designs (similar to sufficiently
old configuration of [4]) to show theresultsin our paper. Given
adesign D, an n-cycle-delayed design (denoted by D™) isthe
set of states of D if we alow arbitrary inputsto run through
design D for n clock cycles after power-up. The design D™
will be design D minus some transient behavior of design D
which can be seen only duringthefirst n cycles after power-up.
For example, consider thedesign C' in Figures1 and 2. If we
run arbitrary inputs through C' for one cycle after power-up,
we can never reach states 01 or 10. The delayed design C*
consists of states 11 and 00 only and thus C* is equivalent to
thedesign D.

4 Safety of Retiming Moves

In this section we classify retiming moves into those which
are gtrictly safe for safe-replacement, and those which are safe
only under the assumption of a delayed design.

There are four kinds of atomic retiming moves:

(i) Backward across ajustifiable el ement.
(if) Forward across ajustifiable element.
(iii) Backward across a non-justifiable element.

(iv) Forward across a non-justifiable el ement.

Proposition 2 If design C' is obtained from design D by a
singleretiming movewhichiseither a backward moveor across
ajustifiableelement, then C C D.

Proof Let the retiming move be across a multi-output com-
binational element I = (f1, ... fmn).

Cases (i) and (iii) (backward retiming moves). As
sume that design D has latches /3, l5, . . ., [,. Let the latches
li,lo, ..., beretimedtolatches !y, (5, ..., /.. Consider any
state in design C, say s1 = [({1, 0, .., U g1, -, i) =
(Y, Y4, . Y Yoga, . Vel Let Y’ denote
(YI’YZ/’ .. ’Yr;) We claim that state sg = [(l]_, I, .. ,lk) =
(fl(Y/)a fZ(Y/)’ EA) fm(Y/)a Yn+la B Yk)] in deﬂgn D has
the same input-output behavior as s;. The proof of this

claim is by induction on the length of an input sequence.
Outside of the retimed area, the two circuits D and C' are
identical. On the first clock cycle, the local output of F' is
(fo(Y"), f20Y"), ..., fm(¥Y")) in both designs D and C'. Sup-
posetheloca outputsare identical upto the k-th primary input
vector. Thenthek-thlocal input vector W reachi ng theretimed
area will be identical for both designs. Now, for (k¥ + 1)-th
primary input vector, the local outputs of the retimed areain
both designs is (f1(W), f2(W), ..., fm(W)). Thus, by in-
duction, for every input sequence, the loca outputs are equal
inboth designs. Sincethetwo designsareidentical outsidethe
retimed area the two primary outputs of the two designs are
also equal. Thus, sp and s, are equivalent.

Case (ii) (forward retiming move across a hon-
judgtifiable element) Assume that design D has latches

0, ... 1y, Let the latches I11,05,...,1, be retimed
to laches 14,05,...,0,. Consder any state in de
Sign C, sy s§1 = [(11,1/2,...,l;n,ln+]_,...,lk) =

(Y1, Yy, ..., Y, Yo, ..., Y:)]. Since the logic dement is
justifiable, there must exist an input vector 7= (Z1y. .oy Zn)
suchthat foreachi € {1,...,m}: fi(Z) = Y. Now, consider
thestateso = [(l]_, 12, .. ,lk) = (Z]_, R Zn,Yn+l, .. ,Yk)]
indesign D. Using an induction argument, similar to the last
case, on the length of the input sequence, we can easily show
that the two states s and s; are equivalent.

Thus, for all three cases, for every statein C' thereisa state
in D whichiseguivaenttoit. m

Proposition 3 If design C' is obtained from design DD by a
singleforward retiming move across a hon-justifiable el ement,
thenC* C D.

Proof Assume that design D has latches iy, 15, ..., 1. Let
the latches {1, >, . .., , be retimed to latches (1,15, ..., 1.,.
Consider any
state in design 2, say sq = [(14, 06, .. U bayr, - le) =
(Y, Y3, ..., Y Yai1,...,Y:)]. Sincethe design C? repre-
sentsthedesign C' after it has been clocked throughfor 1 cycle,
there must exist avector 7 = (Z1, ..., Zy) such that for each
i€{1,...,m}: fi(Z) = Y{. Therest of theproof isidentical
to that of case (ii) in Proposition 2. m

Propositions 2 and 3 lead to the following corollary, which
isthe primary correctness result proven by L eiserson and Saxe
[4] (noticethat our proof ismuch simpler than the 4-page proof
givenin [4]).

Corollary 4 (RetimingLemmain [4]) If C isobtained from
D using an arbitrary sequence of retiming moves, then " C
D, for some positivefiniteinteger n.

The retiming lemma requires us to delay using the retimed
designfor n clock cycles after power-up. Inthat sensethismay
change the observed behavior from a design, as shown by the
examplein Section 2.1. However, if we disallow the forward
retiming moves across non-justifiable elements we have the
following result which shows that the retimed design is a safe
replacement of the original design.

Corollary 5 If C is obtained from D using an arbitrary se-
guence of retiming moves, none of which isa forward retiming
move across a non-justifiableelement, then C' C D.

In the proof of Lemma 1 in [4], the integer n was shown to
be the equal to max,cv (—lag(v)), i.e. the maximum number
of forward retiming moves across any combinationa e ement
in the circuit.* We can tighten this result to make it inde-
pendent of the number of forward retiming moves across any
non-justifiable el ement.

Theorem 6 If C'isobtained from I> using a sequence of retim-
ing moves such that there are no more than £ forward retiming
MoVves across any non-justifiable element, then C* C D.

The proof of the above theorem isquitelong, and is omitted
here because it is not the focus of this paper. This result
would imply, for example, that if a design has only single-
output gates, then any number of retiming moves (forward or
backward) across those gates is fine, but we must restrict the
number of forward retiming moves across any fanout junction
to be at most k£ for C* C D to hold.

Note that the maximum number of forward retiming moves
across any gate can be bounded by the maximum number of
registersin any simple cycle in thecircuit.

Test Set Preservation

The example given in Section 2.2 showed that retiming may
invalidate a single-stuck-at-fault which was valid before re-
timing. We can use the results discussed above to show the
following result:

Theorem 7 If C'isobtained from I> using a sequence of retim-
ing moves such that there are no more than £ forward retiming
moves, then the test set for 1 isalso a test set for C*.

Proof (Sketch) Consider the fault-free circuit ¢ and the
faulty circuit F'. Createacircuit? = (G || F') which denotes
the two circuits next to each other and each pair of outputs of
G and F' fed to an XNOR gate. Any single stuck-at-fault test
will produce a0 at one of the outputsof 7. Consider any single
forward retiming transformation which modifies the two parts
of T' in the same way; the resulting circuit is 7”. Now, for
any single stuck-at-fault outside the retimed area we can use
the techniques in the proof of Theorem 6 to prove the desired
result. The forward retiming step creates m new nets between
the logic element and the m retimed latches. For any single
stuck-at-fault on any such input net to a latch, we use the ob-
servation that we can use the same test as for the output net of
the latch but we may have to delay the circuit by 1 clock cycle
to let the stuck-at-value settle inside the latch. =

4Since the host is required to have lag(v) = 0, n is well-defined for a
given retiming.

5Recall that the primary outputsof the circuit are connected to the host and
the primary inputs are fed by the host; hence, cycles may include paths from
the primary outputs through the host to the primary inputs.

For the example in Section 2.2 this theorem concludes that
the test sequence O - 1 is a test sequence for the same fault
in design C' (Figure 3). Thus, either of the two sequences
0-0-1or1-0-1would serve as atest sequence for C'. It
can be seen by simulating the design that either of these test
sequences produces X - 0- 0inthefault-freeversion of C' and
the sequence X - 0- 1inthefaulty version, thus distinguishing
the two versions on the 3rd clock cycle.

5 Retiming Preserves Conservative Th-
ree-valued Simulation

Consider again theexample of Figure 1 of Section 2. Incircuit
D the output of AND gate-1 is O whether the latch has value
0 or 1. For this reason, it is easy to deduce that a single
cycle with primary input O will reset the latch to vaue O.
However, noticethat if the latch is assigned the indeterminate
value X, then a conservative three-valued ssmulator (CLS)
will propagate X values to both of the inputs of AND gate-1.
Furthermore, the CLS will propagate an X as output of the
AND gate because the CLS has lost the information that the
X'sare complements of each other. Hence asinglecycleinput
of 0 that will actually reset design D will not appear to reset
design D in three-valued simulation. This should not surprise
us because the amount of information lost by three-vaued
simulation is precisely the same information lost by moving a
latch forward across an unjustifiable element. We show that
thisis a genera phenomena relating three valued simulation
and retiming.

Simulationis an important component of the IC design ver-
ification process. The most popular and fastest way of sim-
ulating gate-level designs is three-valued simulation [3]. It
is assumed that all latches power up as X, meaning that the
value is undetermined. Three-valued logic is well-known for
gate-level elements [2]. Three-valued simulation results give
the output sequences for a given input sequence. However, it
iswell-known that three-valued simulation is more conserva-
tive than redlity: if three-valued ssimulation shows a 0 (or a
1) for an output, that output will be 0 (or 1) for all power-up
states; however, the converse is not true because three-valued
simulation might show an X for an output even though that
output may be determined to be either O or 1 from all power-up
states. Although three-valued simulation is conservative, in
the absence of other fast methods of verificationitispopularin
the design process. In fact, if athree-valued simulation shows
an X where a designer expects a O or a 1, the designer often
changes the design so that the output of a CLS agrees with the
desired output, even though the origina design may also have
been correct.

This motivates the work presented in this section. Here, we
show that if our yardstick for correctness of a design is the
output of aCLS, starting fromthe statein which al latchesare
initialized to X, then retiming transformations do not change
the observed behavior of a design (as seen from the output of
the CLS).

Given that aconservative three-valued simulationisused for
the design, we can assume that three-valued logic is aready
defined for all the combinationa logic elementsin the design,
for example, for a 2-input NOR gate, the output is 1 if both
inputsare 0, O if either input is 1, and X otherwise. We have
to show that if two designs Do and D,, start off with each latch
initializedto X, and D,, is obtained from Dg by a sequence of
retiming moves, then any sequence of three-valued inputswill
produce the same outputsfrom both D,, and Dy. Asinthelast
section, we model junctionsas aspecia single-input multiple-
output combinational element JUNC. Also, assume that if all
inputs of any combinationa element are X's, then dl outputs
are X's. We need this condition to guarantee that when all of
thelatchesareinitializedto X ’sinbothaninitial and aretimed
circuit, they will generate the same outputs. For example, if a
gatehad aconstant valueof, say 0, thenthen aforward retiming
move across thisgate would assign thevalue of X intheinitial
state. If the output of the gate were a primary output, they
would obvioudly have different observable behavior.

We prove the main result in this section by considering
one retiming move at atime, and then using induction on the
number of retiming moves. Supposethat design D is obtained
from design C' by a single retiming move (Figure 7). We
define arelation R between the states of €' and the states of
D. We will assume that the retiming move is backward across
F'. The case for a forward retiming move is symmetric —
just the roles of €' and D are interchanged in the definition
of R. Since D results from C' by a single retiming move,
designs €' and D are identical except for the retiming area
around the logic lement /' shown in the figure. Suppose that
F implements the functions f1, f>, ..., f,. For design C, let
inputsto F' be (41,42, ..., i), thelatches C be (11,3, ..., 1,)
and the outputs be (01,02, ...,04). For design D, let the
inputs be (i1, 145, . . ., i), the latches be (ll4, I, .. ., ;) and
the outputs of F' be (0}, 05, .. ., 0}).

Now consider any state s of C' and state s; of D. We are
going to define what it means for so and s1 to berelated by R.
First we require that (1) corresponding latches outside of the
retiming area have the same valuesfor states s and s;. Second
we requirethat (2) corresponding outputs of the retiming area
have equal values, that is for each 7, o; = of. We observe
that conditions (1) and (2) imply that, for the same primary
input vector, the primary outputsof the two circuits have equal
values.

We now show that that if soRs1 and if both designs are
clocked one cycle with the same primary inputsto get states
sq and s, respectively, then sgRs7. Thisimpliesthat for any
sequence of the same three-valued inputs to the two designs,
the primary outputswill also be equal.

Theorem 8 Suppose circuit D is obtained from C' by one re-
timing move. Suppose also that sg and s; are three-valued
states of C' and D respectively, and suppose that soRs1. Let
sq and s be states of C' and D respectively after introducing
the same input sequence. Then sgR s].

i1
i2

i

Ao
F "
retiming

D

i1
i2

1
iy —

I

l

.

f1

Ja

Figure7: Backward retiming move across amulti-outputlogic

element.

Proof Suppose circuit D is obtained from C' by a backward
retiming move. The forward case is the same with C' and D
reversed. Suppose that so and s; are states of designs C' and
D respectively, such that soRs1. Consider the case where the
input sequence is of length 1. We aim to show that next states
sp and sy are also related by R. Conditions (1) and (2) of R
and the fact that primary inputsare the same imply that outside
the retiming area, the next state functions of corresponding
latches have the same value. Therefore condition (1) of R is
satisfied for next states s, and .

We observe that conditions (1) and (2) imply that (3) the
corresponding inputsto theretiming area are equal, that is, for
al j, i; = 4. But (3) implies that that the inputs (i.e., next
state) to latches iy, Iy, . . ., I, equal F'(i1,15,...,4},). Thatisto
say, the inputsto the [latches equal F' of the inputs of the I!
latches. Thisinturnimpliesthat, inthe next state, correspond-
ing outputs of the retiming area are equal, i.e., condition (2)
holdsin the next state. We therefore conclude that sy R s} .

By induction on the length of the input sequence, we con-
cludethat therelation R ispreserved by any sequence of inputs
starting from states in which R is true and the theorem is es-
tablished. =

By induction on the number of retiming moves, we have the
following corollary:

Corollary 9 Suppose circuit D,, is obtained from Dy by a
sequence of n retiming moves. Supposealso that sg and s, are
statesof Dg and D,, respectively andthat soR s1. Then for any
sequence of three-valued input vectors, the output sequences
of Do and D,, from the states so and s1, respectively, are the
same.

When a CLS is used to verify the correctness of designs,
all latches are initialized to X’s and input vector sequences
are supplied to the CLS. If al latches are initialized to X’sin
both the origina design Dy and the retimed design D,,, then
clearly thetwoinitial three-valued statesin thetwo designsare
related by therelationR (itisherethat we need our assumption
that for any combinational element in the design if al inputs
are X's, then al outputsare X's). The above results lead to
the following result, which establishes the validity of retiming
moves, if three-valued simulation is used as a criterion for
correctness of the design:

Corollary 10 Supposecircuit D,, isobtained from Dg by any
sequence of retiming moves. Suppose that sp and s; are the
states of Dy and D,, respectively obtained by initializing each
of thelatchestothevalue X . Then for any sequence = of three-
val ued inputs, the output sequences fromof Dy and D,, arethe
same. If 7 resets Dy then it also resets D,, and vice-versa.

6 Conclusions

Much of the prior logic synthesis literature has pursued re-
finements of retiming without first addressing the vaidity of
retiming as part of a design methodology. Our goa in this pa-
per has been to show how tofit retiming into asynthesisdesign

flow. We strongly advocate that useful sequential optimiza
tion techniques must deal with circuits which contain latches
without reset signals. Hence, we have explored retiming un-
der this model and demonstrated that retiming could cause a
simulator to produce different results. We then showed that
the conservative nature of traditional three-valued simulators
allowsretiming to maintain asimulationinvariant. Because, in
practice, al current design methodologiesrely on thistype of
three-valued simulation, we conclude that retiming of designs
without set and reset signalsfitsinto a synthesis methodol ogy.

We have not addressed a technical point: whether retiming
materialy affects the operation of the real circuit. We know
that if wewait long enough (anumber of clock cycles bounded
by the number of latchesin any cycle) then retiming does not
affect the circuit operation. When a circuit powers-up thereis
always some delay before the circuit begins operation; it takes
time, potentially many clock cycles, for the voltages to settle,
etc. Therefore, the requirement that the circuit settle for a
dlightly longer number of cycles before it begins computation
may not, in actuality, cause a problem. However, modern
design methodologies rely heavily on logic ssimulation to the
point that if simulation says the circuit doesn’t work, then the
designer must assume the circuit doesn’t work.

One future area we wish to explore further is the notion of
three-valued safe replacement. Thisissimilar to the notion of
equivaence used by Cheng [1] for synthesis via redundancy
removal. We have shown in this paper that if we replace the
strict notion of equivalent output sequences with the weaker
notion of equivalent output from a conservative three-valued
simulator, that retiming can be viewed as an operation preserv-
ing safe replaceability. We would like to develop agorithms
to validate three-valued simul ation equival ence and other opti-
mization algorithmswhich seek only to preserve thisinvariant
(and not the invariant of safe replaceability).

7 Acknowledgements

We would like to thank Sharad Malik of Princeton University
for pointing out the problem with modelling reset logic explic-
itly. During this research, the first author was supported by
NSF/DARPA Grant MIP-8719546.

References

[1] K.-T. Cheng. Redundancy Removal for Sequential Circuits
Without Reset States. |EEE Transactions on Computer-Aided
Design of Integrated Circuits, 12(1):13-24, January 1993.

[2] E. B. Eichelberger. Hazard Detection in Combinational and
Sequential Circuits. I1BM J. Res. and Devep., pages 90-99,
March 1965.

[3] J.S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg. A Three-
Value Computer Design Verification System. IBM J. Res. and
Devep., pages 178-188, 1969.

[4] C.E. Leiserson and J. B. Saxe. Optimizing Synchronous Sys-
tems. Journal of VLS and Computer Systems, 1(1):41-67,
Spring 1983.

(3]

(6]

(9]

[10]

T. E. Marchok, A. El-Maleh, W. Maly, and J. Rajski. Test Set
Preservation under Retiming Transformation. Technical Report
CMUCAD-94-23, CarnegieMellon University, 1994. Presented
at Intl. Test SynthesisWorkshop, SantaBarbara, CA, May 1994.

C. Pixley. A Theory and Implementation of Sequential Hardware
Equivalence. |EEE Transactions on Computer-Aided Design of
Integrated Circuits, 11(12):1469-1494, December 1992.

C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton. Multi-
level Synthesisfor Safe Replaceability. In Proc. Intl. Conf. on
Computer-Aided Design, pages 442—449, November 1994.

I. Pomeranz and S. M. Reddy. Classification of Faultsin Syn-
chronous Sequential Circuits. IEEE Transactionson Computers,
42(9):1066-1077, September 1993.

N. Shenoy and R. Rudell. Efficient Implementation of Retiming.
In Proc. Intl. Conf. on Computer-Aided Design, pages 226233,
November 1994,

H. J. Touati and R. K. Brayton. Computing the Initial States
of Retimed Circuits. |EEE Transactions on Computer-Aided
Design of Integrated Circuits, 12(1):157-162, January 1993.

