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Outline

This work addresses, and proposes a solution to,
the problem of ε-transition removal in weighted automata.

The problem lies in effectivity.

The solution is based on a new, and more constrained,
definition of the validity of weighted automata.

The definition insures that
algorithms are successful on valid automata.

In some (interesting) cases, we are able to establish that
success of algorithms implies validity of automata.

This solution provides a sound theoretical framework for
the algorithms implemented in Vaucanson.
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The weighted automaton model

A = 〈 I ,E ,T 〉 E = incidence matrix

E p,q =
∑

{wl(e) | e transition from p to q}

E n
p,q =

∑
{wl(c) | c computation from p to q of length n}

E ∗ =
∑
n∈N

E n

E ∗
p,q =

∑
{wl(c) | c computation from p to q}
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Where is the problem ?



The weighted automaton model

We want to deal with automata whose transitions

may be labelled by the empty word ε
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A basic result in (classical) automata theory

Theorem
Every ε-NFA is equivalent to an NFA

Usefulness of ε-transitions:

Preliminary step for many constructions on NFA’s:

� Product and star of position automata

� Thompson construction

� Construction of the universal automaton

� Computation of the image of a transducer

� ...

May correspond to the structure of the computations

Removal of ε-transitions is implemented in all automata software
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A basic result in (classical) automata theory

Theorem
Every ε-NFA is equivalent to an NFA

A proof

A = 〈 I ,E ,T 〉 E transition matrix of A
Entries of E = subsets of A ∪ {ε}

L(A) = I · E ∗ · T
E = E 0 + Ep

L(A) = I · (E 0 + E p)
∗ · T = I · (E ∗

0 · Ep)
∗ · E ∗

0 · T
A = 〈 I ,E ,T 〉 equivalent to B =

〈
I ,E ∗

0 · Ep,E
∗
0 · T
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Theorem
Every ε-NFA is equivalent to an NFA

A proof

A = 〈 I ,E ,T 〉 E transition matrix of A
Entries of E = subsets of A ∪ {ε}

L(A) = I · E ∗ · T
E = E 0 + Ep

L(A) = I · (E 0 + E p)
∗ · T = I · (E ∗

0 · Ep)
∗ · E ∗

0 · T
A = 〈 I ,E ,T 〉 equivalent to B =

〈
I ,E ∗

0 · Ep,E
∗
0 · T

〉

One proof = several algorithms for computing E ∗
0 or E ∗

0 · Ep
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Question
Is every ε-WFA is equivalent to a WFA?

certainly not !

New questions

Which ε-WFAs have a well-defined behaviour? i.e. are valid ?

How to compute the behaviour of a valid ε-WFA ?

How to decide if an ε-WFA is valid?



A chicken and egg problem

automaton algorithm

A A

valid ? success ?



A chicken and egg problem

automaton algorithm

A A

valid ? success ?

valid =⇒ success



A chicken and egg problem

automaton algorithm

A A

valid ? success ?

valid =⇒ success

valid
?⇐= success
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Trivial case

Every u in A∗ is the label of a finite number of paths



no circuits of ε-transitions in A

acyclic K-automata

First solution

behaviour well-defined ⇐⇒ acyclic

(Kuich–Salomaa 86, Berstel–Reutenauer 84-88;11)
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Behaviour of weighted automata

A not acyclic ⇒ weight of u in A may be an infinite sum.

Second solution

Accepting the idea of infinite sums

Topological point of view

Infinite sums are given a meaning via a topology on K

Topology on K defines a topology on K〈〈A∗〉〉
Topology allows to define summable families in K〈〈A∗〉〉
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Behaviour of weighted automata

A = 〈K,Q,A,E , I ,T 〉 possibly with ε-transitions

PA set of all paths in A
A well-defined ⇐⇒ ∀p, q ∈ Q WL

(
PA(p, q)

)
summable

Definition taken in previous works (Lombardy, S. 03 –)

� Yields a consistent theory
� Two pitfalls for effectivity

� effective computation of a summable family may not be possible
� effective computation may give values to non summable families



Valid weighted automata

A = 〈K,Q,A,E , I ,T 〉 possibly with ε-transitions

E ∗ free monoid generated by E

PA set of paths in A (local) rational subset of E ∗

Definition
R rational family of paths of A R ∈ RatE ∗ ∧ R ⊆ PA

Definition
A is valid iff

∀R rational family of paths of A, WL(R) is summable
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Valid weighted automata

Validity implies well-definition of behaviour

Theorem
A is valid iff the behaviour of every covering of A is well-defined

Theorem
If A is valid, then ‘every’ removal algorithm on A is successful

Remark
If every (rational) subfamily of a summable family in K is summable,

then validity is equivalent to well-definition of behaviour

Eg. R , Q .

Reminder
We do not know yet how to decide whether

a Q - or an R -automaton is valid.



Deciding validity

Straightforward cases

� Non starable semirings (eg. N, Z)
A valid ⇐⇒ A acyclic

� Complete topological semirings (eg. N ) every A valid

� Rationally additive semirings (eg. RatA∗ ) every A valid

� Locally closed commutative semirings every A valid
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Deciding validity

Definition
K topological, ordered, positive semiring (TOPS)

is star-domain downward closed (SDC) if

∀k , h ∈ K , k < h h starable =⇒ k starable

N, N , Q+, R+, Zmin, RatA∗,... are TOPS SDC
N∞, (binary) positive decimals,... are TOPS not SDC

Theorem
K topological, ordered, positive, star-domain downward closed
A K-automaton is valid if, and only if,

the state-by-state ε-removal algorithm succeeds



Deciding validity

Definition
If A is a Q- or R-automaton,

then abs(A) is a Q+- or R+-automaton

Theorem
A Q- or R-automaton A is valid if and only if abs(A) is valid.



Hidden parts

� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues

� Automata and expressions validity

� ‘Infinitary’ axioms : strong, star-strong semirings

� Links with the ‘axiomatic’ approach (Bloom–Ésik–Kuich) :
Th: A starable star-strong semiring is an iteration semiring.

� References to previous work (on removal algorithm):
� locally closed srgs (Ésik–Kuich), k-closed srgs (Mohri)
� links with other algorithms:

shortest-distance algorithm (Mohri),
state-elimination method (Hanneforth–Higueira)



Conclusion

� Semiring structure is weak, topology does not help so much.

� This weakness imposes a restricted definition of validity,
in order to guarantee success of validity algorithms.

� Axiomatic approach does not allow
to deal wit most common numerical semirings: Zmin, Q

� On ‘usual’ semirings,
the new definition of validity coincides with the former one.



Conclusion (2)

� Apart the trivial cases, and the TOPS SCD case,
decision of validity is never granted, and has to be

established.

� On ‘usual’ semirings, validity is decidable.

� The new definition of validity
fills the ‘effectivity gap’ left open by the former one.
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� The problematic examples
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N N ∪ +∞ compact topology A1 defined

N∞ N ∪ +∞ discrete topology A1 defined
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3 = E5 =⇒ E5

∗ undefined =⇒ A5 undefined
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� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues
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weighted ε-removal procedure does not terminate

if newly created ε-transitions are stored in a queue
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� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues

� Automata and expressions validity
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Automata and expressions validity

‘Kleene’ theorem

Automata ⇐⇒ Expressions

A ⇐⇒ E

Weighted automata ⇐⇒ Weighted expressions

Notion of a valid expression

E valid ⇐⇒ c(E) well-defined

c(E) computed by a bottom-up traversal of the syntactic tree of E
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Automata and expressions validity

Valid A yields valid E

Valid E yields valid A with Glushkov construction

Valid E may yield non valid A with Thompson construction

a |1

b |1

1ε 1ε
1ε

1ε 1ε
1ε

1ε 1ε

1ε

1ε

1ε

1ε

1ε

1ε

1ε

−1ε

1ε

The Thompson automaton of (a∗ + {−1}b∗)∗
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� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues

� Automata and expressions validity

� ‘Infinitary’ axioms : strong, star-strong semirings

Definition
A topological semiring is a strong semiring

if the product of two summable families is a summable family

Theorem
K strong semiring s ∈ K〈〈A∗〉〉 starable iff s0 ∈ K starable
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� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues

� Automata and expressions validity

� ‘Infinitary’ axioms : strong, star-strong semirings

Definition
A topological semiring is a strong semiring

if the product of two summable families is a summable family

Definition
A topological semiring is a star-strong semiring if
the star of a summable family, whose sum is starable, is summable
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Hidden parts

� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues

� Automata and expressions validity

� ‘Infinitary’ axioms : strong, star-strong semirings

� Links with the ‘axiomatic’ approach (Bloom–Ésik–Kuich):

Theorem
A starable star-strong semiring is an iteration semiring
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x0 + x1 + x2

0

1
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1, 1

2, 11, 2

2, 2

0, 2

2, 0

1K

x01K

1K

x1

x2

1K

1K
x0

1K
x2

x1

1K

1K

1K

x0

x1

x2

0

1

2

x0

x1

x2

x2

x0

x1

x1

x2

x0

partial ε-removal
partial ε-removal

covering



Hidden parts

� The problematic examples

� The removal algorithm itself:

� Termination issues (weighted versus Boolean cases)
� Complexity issues

� Automata and expressions validity

� ‘Infinitary’ axioms : strong, star-strong semirings

� Links with the ‘axiomatic’ approach (Bloom–Ésik–Kuich):

� References to previous work (on removal algorithm):
� locally closed srgs (Ésik–Kuich), k-closed srgs (Mohri)
� links with other algorithms:

shortest-distance algorithm (Mohri),
state-elimination method (Hanneforth–Higueira)


