The validity of weighted automata

Jacques Sakarovitch

CNRS / Telecom ParisTech

The results presented in this talk are based on a joint work with

Sylvain Lombardy (Univ. Bordeaux)

and have been published in
International Journal of Algebra and Computation, vol. 23 (4).

Work supported by ANR Project 10-INTB-0203 VAUCANSON 2.

Outline

This work addresses, and proposes a solution to, the problem of ε-transition removal in weighted automata.

The problem lies in effectivity.
The solution is based on a new, and more constrained, definition of the validity of weighted automata.

The definition insures that
algorithms are successful on valid automata.
In some (interesting) cases, we are able to establish that success of algorithms implies validity of automata.

This solution provides a sound theoretical framework for the algorithms implemented in VaUcanson.

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} p \xrightarrow{\frac{1}{2} a} p \xrightarrow{\frac{1}{2} b} q \xrightarrow{1} \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} q \xrightarrow{a} q \xrightarrow{b} q \xrightarrow{1}
\end{aligned}
$$

$b a b \quad \longmapsto \quad \frac{1}{2}+\frac{1}{8}=\frac{5}{8}=\langle 0.101\rangle_{2} \quad\left|\mathcal{C}_{1}\right|: A^{*} \longrightarrow \mathbb{Q}$

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} p \xrightarrow{\frac{1}{2} a} p \xrightarrow{\frac{1}{2} b} q \xrightarrow{1} \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} q \xrightarrow{a} q \xrightarrow{b} q \xrightarrow{1}
\end{aligned}
$$

$$
\left|\mathcal{C}_{1}\right|=\frac{1}{2} b+\frac{1}{4} a b+\frac{1}{2} b a+\frac{3}{4} b b+\frac{1}{8} a a b+\frac{1}{4} a b a+\frac{3}{8} a b b+\frac{1}{2} b a a+\ldots
$$

The weighted automaton model

$$
\mathcal{C}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{cc}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle
$$

The weighted automaton model

$$
\begin{gathered}
\mathcal{A}=\langle I, \underline{E}, T\rangle \quad \underline{E}=\text { incidence matrix } \\
\underline{E}_{p, q}=\sum\{\mathbf{w l}(e) \mid e \quad \text { transition from } p \text { to } q\} \\
\underline{E}_{p, q}^{n}=\sum\{\mathbf{w l}(c) \mid c \quad \text { computation from } p \text { to } q \text { of length } n\} \\
\underline{E}^{*}=\sum_{n \in \mathbb{N}} \underline{E}^{n} \\
\underline{E}_{p, q}^{*}=\sum\{\mathbf{w l}(c) \mid c \quad \text { computation from } p \text { to } q\}
\end{gathered}
$$

The weighted automaton model

$$
\begin{gathered}
\mathcal{C}_{1}=\left\langle 1_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle \\
\left|\mathcal{C}_{1}\right|=I_{1} \cdot \underline{E}_{1}{ }^{*} \cdot T_{1}
\end{gathered}
$$

The weighted automaton model

$$
\begin{gathered}
\mathcal{C}_{1} \\
\mathcal{C}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle \\
\left|\mathcal{C}_{1}\right|=I_{1} \cdot \underline{E}_{1}^{*} \cdot T_{1}
\end{gathered}
$$

Every \mathbb{K}-automaton defines a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ whose coefficients are effectively computable

The weighted automaton model

$$
\begin{gathered}
\mathcal{C}_{1} \\
\mathcal{C}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle \\
\left|\mathcal{C}_{1}\right|=I_{1} \cdot \underline{E}_{1}^{*} \cdot T_{1}
\end{gathered}
$$

Every \mathbb{K}-automaton defines a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ whose coefficients are effectively computable

Where is the problem?

We want to deal with automata whose transitions may be labelled by the empty word ε

A basic result in (classical) automata theory

Theorem
Every $\varepsilon-N F A$ is equivalent to an NFA

A basic result in (classical) automata theory

Theorem
Every ε-NFA is equivalent to an NFA

Usefulness of ε-transitions:
Preliminary step for many constructions on NFA's:

- Product and star of position automata
- Thompson construction
- Construction of the universal automaton
- Computation of the image of a transducer

A basic result in (classical) automata theory

Theorem
Every ε-NFA is equivalent to an NFA

Usefulness of ε-transitions:
Preliminary step for many constructions on NFA's:

- Product and star of position automata
- Thompson construction
- Construction of the universal automaton
- Computation of the image of a transducer

May correspond to the structure of the computations

A basic result in (classical) automata theory

Theorem
Every ε-NFA is equivalent to an NFA

Usefulness of ε-transitions:
Preliminary step for many constructions on NFA's:

- Product and star of position automata
- Thompson construction
- Construction of the universal automaton
- Computation of the image of a transducer
- ...

May correspond to the structure of the computations
Removal of ε-transitions is implemented in all automata software

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

Theorem
Every ε-NFA is equivalent to an NFA
A proof

$$
\begin{gathered}
\mathcal{A}=\langle I, \underline{E}, T\rangle \\
\text { Entries of } \underline{E}=\text { subsets of } A \cup\{\varepsilon\} \\
L(\mathcal{A})=I \cdot \underline{E}^{*} \cdot T \\
\underline{E}=\underline{E}_{0}+\underline{E}_{\mathrm{p}} \\
L(\mathcal{A})=I \cdot\left(\underline{E}_{0}+\underline{E}_{\mathrm{p}}\right)^{*} \cdot T=I \cdot\left(\underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}\right)^{*} \cdot \underline{E}_{0}^{*} \cdot T \\
\mathcal{A}=\langle I, \underline{E}, T\rangle \text { equivalent to } \mathcal{B}=\left\langle I, \underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}, \underline{E}_{0}^{*} \cdot T\right\rangle
\end{gathered}
$$

A basic result in (classical) automata theory

Theorem
Every $\varepsilon-N F A$ is equivalent to an NFA
A proof

$$
\begin{gathered}
\mathcal{A}=\langle I, \underline{E}, T\rangle \\
\text { Entries of } \underline{E}=\text { subsets of } A \cup\{\varepsilon\} \\
L(\mathcal{A})=I \cdot \underline{E}^{*} \cdot T \\
\underline{E}=\underline{E}_{0}+\underline{E}_{\mathrm{p}} \\
L(\mathcal{A})=I \cdot\left(\underline{E}_{0}+\underline{E}_{\mathrm{p}}\right)^{*} \cdot T=I \cdot\left(\underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}\right)^{*} \cdot \underline{E}_{0}^{*} \cdot T \\
\mathcal{A}=\langle I, \underline{E}, T\rangle \text { equivalent to } \mathcal{B}=\left\langle I, \underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}, \underline{E}_{0}^{*} \cdot T\right\rangle
\end{gathered}
$$

One proof $=$ several algorithms for computing \underline{E}_{0}^{*} or $\underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\xrightarrow{1} q \xrightarrow{a} r \xrightarrow{1},
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$a \longmapsto 1+2+4+\cdots$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$a \longmapsto 1+2+4+\cdots$
undefined

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$a \longmapsto 1+1+1+\cdots \quad$ undefined

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \stackrel{1}{\longrightarrow} q \stackrel{a}{\longrightarrow} r \stackrel{1}{\longrightarrow}, \quad \stackrel{1}{\longrightarrow} q \stackrel{\frac{1}{2} \varepsilon}{\longrightarrow} q \stackrel{a}{\longrightarrow} r \stackrel{1}{\longrightarrow} \\
& \stackrel{1}{\longrightarrow} q \stackrel{\frac{1}{2} \varepsilon}{\longrightarrow} q \stackrel{\frac{1}{2} \varepsilon}{\square} q \stackrel{a}{\longrightarrow} r \stackrel{1}{\longrightarrow}
\end{aligned}
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
a \quad \longmapsto \quad 1+\frac{1}{2}+\frac{1}{4}+\cdots
$$

$$
\begin{aligned}
& \xrightarrow{1} q \xrightarrow{a} r \xrightarrow{1} \quad, \quad \xrightarrow{1} q \stackrel{\frac{1}{2} \varepsilon}{\longrightarrow} q \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \stackrel{\frac{1}{2} \varepsilon}{ } q \xrightarrow{a} r \xrightarrow{1} \quad, \quad \ldots
\end{aligned}
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} q \xrightarrow{a} r \xrightarrow{1}, \quad \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{a} r \xrightarrow{1}, \ldots
\end{aligned}
$$

$$
a \longmapsto 1+\frac{1}{2}+\frac{1}{4}+\cdots
$$

undefined?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} q \xrightarrow{a} r \xrightarrow{1}, \quad \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{a} r \xrightarrow{1}, \ldots
\end{aligned}
$$

$$
a \longmapsto 1+\frac{1}{2}+\frac{1}{4}+\cdots
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} q \xrightarrow{a} r \xrightarrow{1}, \quad \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{\frac{1}{2} \varepsilon} q \xrightarrow{a} r \xrightarrow{1}, \ldots
\end{aligned}
$$

$$
a \quad \longmapsto \quad 1+\frac{1}{2}+\frac{1}{4}+\cdots
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$a \quad 1+\frac{1}{2}+\frac{1}{4}+\cdots$
defined

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

a

defined

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

certainly not !

Question

$$
\text { Is every } \varepsilon-W F A \text { is equivalent to a WFA? }
$$

certainly not !

New questions
Which ε-WFAs have a well-defined behaviour? i.e. are valid ?
How to compute the behaviour of a valid ε-WFA ?
How to decide if an ε-WFA is valid?

A chicken and egg problem

automaton

valid ?
algorithm

success ?

A chicken and egg problem

automaton

valid ?
valid
algorithm

success ?
success

A chicken and egg problem

automaton

valid ?
valid
valid
algorithm

success ?
success
success

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle$
$u \in A^{*} \quad$ paths labelled by u in $\mathcal{A} \quad$ possibly infinitely many $\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ paths labelled by u in $\mathcal{A} \quad$ possibly infinitely many
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}

Trivial case
Every u in A^{*} is the label of a finite number of paths

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ paths labelled by u in \mathcal{A} possibly infinitely many
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}

Trivial case
Every u in A^{*} is the label of a finite number of paths

$$
\Uparrow
$$

no circuits of ε-transitions in \mathcal{A}
acyclic \mathbb{K}-automata

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ paths labelled by u in \mathcal{A} possibly infinitely many
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}

Trivial case
Every u in A^{*} is the label of a finite number of paths

$$
\Uparrow
$$

no circuits of ε-transitions in \mathcal{A}
acyclic \mathbb{K}-automata
First solution behaviour well-defined $\quad \Longleftrightarrow \quad$ acyclic
(Kuich-Salomaa 86, Berstel-Reutenauer 84-88;11)

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Second solution

Accepting the idea of infinite sums

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Second solution

Accepting the idea of infinite sums

Topological point of view Infinite sums are given a meaning via a topology on \mathbb{K}

Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
Topology allows to define summable families in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle \quad$ possibly with ε-transitions
$\mathrm{P}_{\mathcal{A}}$
$|\mathcal{A}|$ well-defined

set of all paths in \mathcal{A}
$\mathbf{W L}\left(\mathrm{P}_{\mathcal{A}}\right)$ summable

Behaviour of weighted automata

$$
\begin{gathered}
\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle \quad \text { possibly with } \varepsilon \text {-transitions } \\
\mathrm{P}_{\mathcal{A}} \\
\text { set of all paths in } \mathcal{A} \\
|\mathcal{A}| \text { well-defined } \quad \Longleftrightarrow \quad \forall p, q \in Q \quad \mathbf{W L}\left(\mathrm{P}_{\mathcal{A}}(p, q)\right) \text { summable }
\end{gathered}
$$

Behaviour of weighted automata

$$
\begin{gathered}
\mathcal{A}=\langle\mathbb{K}, Q, A, E, I, T\rangle \quad \begin{array}{c}
\text { possibly with } \varepsilon \text {-transitions } \\
\quad \text { set of all paths in } \mathcal{A}
\end{array} \\
\mathrm{P}_{\mathcal{A}} \\
|\mathcal{A}| \text { well-defined } \quad \Longleftrightarrow \quad \forall p, q \in Q \quad \mathrm{WL}\left(\mathrm{P}_{\mathcal{A}}(p, q)\right) \text { summable }
\end{gathered}
$$

Definition taken in previous works (Lombardy, S. 03 -)

- Yields a consistent theory
- Two pitfalls for effectivity
- effective computation of a summable family may not be possible
- effective computation may give values to non summable families

Valid weighted automata

$$
\begin{array}{cc}
\mathcal{A}= & \langle\mathbb{K}, Q, A, E, I, T\rangle
\end{array} \begin{gathered}
\text { possibly with } \varepsilon \text {-transitions } \\
\\
E^{*} \\
\mathrm{P}_{\mathcal{A}}
\end{gathered} \quad \text { set of paths in } \mathcal{A} \quad \text { (local) rational subset of } E^{*} . ~ \$
$$

Definition
R rational family of paths of $\mathcal{A} \quad R \in \operatorname{RatE}^{*} \wedge R \subseteq \mathrm{P}_{\mathcal{A}}$

Definition
\mathcal{A} is valid iff
$\forall R$ rational family of paths of $\mathcal{A}, \mathbf{W L}(R)$ is summable

Valid weighted automata

Validity implies well-definition of behaviour

Valid weighted automata

Validity implies well-definition of behaviour

Theorem
\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined

Valid weighted automata

Validity implies well-definition of behaviour

Theorem
\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined

Theorem
If \mathcal{A} is valid, then 'every' removal algorithm on \mathcal{A} is successful

Valid weighted automata

Validity implies well-definition of behaviour

Theorem
\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined
Theorem
If \mathcal{A} is valid, then 'every' removal algorithm on \mathcal{A} is successful
Remark
If every (rational) subfamily of a summable family in \mathbb{K} is summable, then validity is equivalent to well-definition of behaviour
Eg. \mathbb{R}, \mathbb{Q}.

Valid weighted automata

Validity implies well-definition of behaviour

Theorem

\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined
Theorem
If \mathcal{A} is valid, then 'every' removal algorithm on \mathcal{A} is successful
Remark
If every (rational) subfamily of a summable family in \mathbb{K} is summable, then validity is equivalent to well-definition of behaviour
Eg. \mathbb{R}, \mathbb{Q}.
Reminder
We do not know yet how to decide whether
a \mathbb{Q} - or an \mathbb{R}-automaton is valid.

Deciding validity

Straightforward cases

- Non starable semirings (eg. \mathbb{N}, \mathbb{Z})
\mathcal{A} valid $\quad \Longleftrightarrow \quad \mathcal{A}$ acyclic
- Complete topological semirings (eg. \mathcal{N}) every \mathcal{A} valid
- Rationally additive semirings (eg. Rat A^{*}) every \mathcal{A} valid
- Locally closed commutative semirings every \mathcal{A} valid

Deciding validity

Definition
\mathbb{K} topological, ordered, positive semiring (TOPS)
is star-domain downward closed (SDC) if

$$
\forall k, h \in \mathbb{K}, k<h \quad h \text { starable } \Longrightarrow k \text { starable }
$$

Deciding validity

Definition
\mathbb{K} topological, ordered, positive semiring (TOPS)
is star-domain downward closed (SDC) if

$$
\forall k, h \in \mathbb{K}, k<h \quad h \text { starable } \Longrightarrow k \text { starable }
$$

$\mathbb{N}, \mathcal{N}, \mathbb{Q}_{+}, \mathbb{R}_{+}, \mathbb{Z} \min , \operatorname{Rat} A^{*}, \ldots$
\mathbb{N}_{∞}, (binary) positive decimals, \ldots

are TOPS SDC
are TOPS not SDC

Deciding validity

Definition

\mathbb{K} topological, ordered, positive semiring (TOPS) is star-domain downward closed (SDC) if

$$
\forall k, h \in \mathbb{K}, k<h \quad h \text { starable } \Longrightarrow k \text { starable }
$$

$\mathbb{N}, \mathcal{N}, \mathbb{Q}_{+}, \mathbb{R}_{+}, \mathbb{Z} \min , \operatorname{Rat} A^{*}, \ldots$
\mathbb{N}_{∞}, (binary) positive decimals,...
are TOPS SDC
are TOPS not SDC

Theorem
\mathbb{K} topological, ordered, positive, star-domain downward closed
$A \mathbb{K}$-automaton is valid if, and only if, the state-by-state ε-removal algorithm succeeds

Deciding validity

Definition
If \mathcal{A} is a \mathbb{Q} - or \mathbb{R}-automaton, then $\operatorname{abs}(\mathcal{A})$ is a \mathbb{Q}_{+}- or \mathbb{R}_{+}-automaton

Theorem
$A \mathbb{Q}$ - or \mathbb{R}-automaton \mathcal{A} is valid if and only if abs (\mathcal{A}) is valid.

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich) :

Th: A starable star-strong semiring is an iteration semiring.

- References to previous work (on removal algorithm):
- locally closed srgs (Ésik-Kuich), k-closed srgs (Mohri)
- links with other algorithms: shortest-distance algorithm (Mohri), state-elimination method (Hanneforth-Higueira)

Conclusion

- Semiring structure is weak, topology does not help so much.
- This weakness imposes a restricted definition of validity, in order to guarantee success of validity algorithms.
- Axiomatic approach does not allow
to deal wit most common numerical semirings: $\mathbb{Z} m i n, \mathbb{Q}$
- On 'usual' semirings, the new definition of validity coincides with the former one.

Conclusion (2)

- Apart the trivial cases, and the TOPS SCD case, decision of validity is never granted, and has to be established.
- On 'usual' semirings, validity is decidable.
- The new definition of validity
fills the 'effectivity gap' left open by the former one.

Hidden parts

- The problematic examples

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

$(1)^{*}=$ undefined

Problems in computing the behaviour of a weighted automaton

$$
(1)^{*}=+\infty
$$

natural integers
$\mathcal{N} \quad \mathbb{N} \cup+\infty$ compact topology
$\left|\mathcal{A}_{1}\right|$ not defined
$\left|\mathcal{A}_{1}\right| \quad$ defined

Problems in computing the behaviour of a weighted automaton

\mathbb{N}		natural integers	$\left\|\mathcal{A}_{1}\right\|$	not defined
\mathcal{N}	$\mathbb{N} \cup+\infty$	compact topology	$\left\|\mathcal{A}_{1}\right\|$	defined

Problems in computing the behaviour of a weighted automaton

$(1)^{*}=$ undefined
natural integers
$\mathcal{N} \quad \mathbb{N} \cup+\infty$ compact topology
$\mathbb{N}_{\infty} \mathbb{N} \cup+\infty$ discrete topology
$\left|\mathcal{A}_{1}\right|$ not defined
$\left|\mathcal{A}_{1}\right| \quad$ defined
$\left|\mathcal{A}_{1}\right|$ not defined

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

$\mathcal{N} \quad \mathbb{N} \cup+\infty$ compact topology $\quad\left|\mathcal{A}_{1}\right| \quad$ defined

Problems in computing the behaviour of a weighted automaton

$\begin{array}{lllll}\mathcal{N} & \mathbb{N} \cup+\infty & \text { compact topology } & \left|\mathcal{A}_{1}\right| & \text { defined } \\ \mathbb{N}_{\infty} & \mathbb{N} \cup+\infty & \text { discrete topology } & \left|\mathcal{A}_{1}\right| & \text { defined }\end{array}$

Problems in computing the behaviour of a weighted automaton

$(1)^{*}=$ undefined

\mathcal{N}	$\mathbb{N} \cup+\infty$	compact topology	$\left\|\mathcal{A}_{1}\right\|$	defined
\mathbb{N}_{∞}	$\mathbb{N} \cup+\infty$	discrete topology	$\left\|\mathcal{A}_{1}\right\|$	defined

Problems in computing the behaviour of a weighted automaton

$$
\mathcal{A}_{3}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Problems in computing the behaviour of a weighted automaton

$$
\mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Problems in computing the behaviour of a weighted automaton

$$
\begin{gathered}
\mathcal{A}_{3} \rightarrow \bigcap_{\infty_{\mathbb{S}}} \\
\mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Problems in computing the behaviour of a weighted automaton

$$
\begin{aligned}
& \mathcal{B}_{3} \\
& \mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Problems in computing the behaviour of a weighted automaton

$$
\mathcal{A}_{3} \rightarrow \mathcal{B}^{\substack{y}}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Problems in computing the behaviour of a weighted automaton

$$
\mathcal{A}_{3} \rightarrow \mathcal{B}^{\substack{y}}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

$$
\begin{gathered}
\mathcal{A}_{4}=\left\langle I_{4}, \underline{E_{4}}, T_{4}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right),\binom{1}{0}\right\rangle \\
\left|\mathcal{A}_{4}\right|=I_{4} \cdot \underline{E}_{4}^{*} \cdot T_{4} \\
\underline{E}_{4}^{2}=0 \Longrightarrow \underline{E_{4}}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \Longrightarrow\left|\mathcal{A}_{4}\right|=2
\end{gathered}
$$

Problems in computing the behaviour of a weighted automaton

$$
\begin{gathered}
\mathcal{A}_{4}=\left\langle I_{4}, \underline{E_{4}}, T_{4}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right),\binom{1}{0}\right\rangle \\
\left|\mathcal{A}_{4}\right|=I_{4} \cdot \underline{E}_{4}^{*} \cdot T_{4} \\
\underline{E}_{4}^{2}=0 \Longrightarrow \underline{E_{4}}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \Longrightarrow\left|\mathcal{A}_{4}\right|=2
\end{gathered}
$$

Problems in computing the behaviour

Problems in computing the behaviour

$$
\begin{gathered}
\mathcal{A}_{5}=\left\langle I_{5}, \underline{E_{5}}, T_{5}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right),\binom{1}{0}\right\rangle \\
\left|\mathcal{A}_{5}\right|=I_{5} \cdot \underline{E}_{5}^{*} \cdot T_{5}
\end{gathered}
$$

$\underline{E}_{5}^{3}=\underline{E_{5}} \Longrightarrow \underline{E}_{5}^{*}$ undefined $\Longrightarrow\left|\mathcal{A}_{5}\right|$ undefined

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues

Termination issues

weighted ε-removal procedure does not terminate if newly created ε-transitions are stored in a stack

Termination issues

weighted ε-removal procedure does not terminate if newly created ε-transitions are stored in a queue

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity

Automata and expressions validity

'Kleene' theorem
Automata

Expressions

\mathcal{A}
Weighted automata

Weighted expressions

Automata and expressions validity

'Kleene' theorem
Automata
\mathcal{A}

E
Expressions

Weighted automata

$\Longleftrightarrow \quad$ Weighted expressions

Notion of a valid expression
E valid
$c(E)$ well-defined
$c(E)$ computed by a bottom-up traversal of the syntactic tree of E

Automata and expressions validity

Valid \mathcal{A} yields valid E
Valid E yields valid \mathcal{A}
with Glushkov construction
Valid E may yield non valid \mathcal{A} with Thompson construction

Automata and expressions validity

Valid \mathcal{A} yields valid E
Valid E yields valid \mathcal{A} with Glushkov construction
Valid E may yield non valid \mathcal{A} with Thompson construction

The Thompson automaton of $\left(a^{*}+\{-1\} b^{*}\right)^{*}$

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings

Definition
A topological semiring is a strong semiring
if the product of two summable families is a summable family

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a strong semiring
if the product of two summable families is a summable family
Theorem
\mathbb{K} strong semiring $\quad s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ starable iff $s_{0} \in \mathbb{K}$ starable

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a strong semiring if the product of two summable families is a summable family

Definition
A topological semiring is a star-strong semiring if
the star of a summable family, whose sum is starable, is summable

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich):

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich):

Theorem
A starable star-strong semiring is an iteration semiring

Group identities

Hidden parts

- The problematic examples
- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues
- Automata and expressions validity
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich):
- References to previous work (on removal algorithm):
- locally closed srgs (Ésik-Kuich), k-closed srgs (Mohri)
- links with other algorithms:
shortest-distance algorithm (Mohri), state-elimination method (Hanneforth-Higueira)

