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Abstract: The present study was performed to investigate the validity of a wireless earbud-type
inertial measurement unit (Ear-IMU) sensor used to estimate head angle during four workouts. In
addition, relationships between head angle obtained from the Ear-IMU sensor and the angles of
other joints determined with a 3D motion analysis system were investigated. The study population
consisted of 20 active volunteers. The Ear-IMU sensor measured the head angle, while a 3D motion
analysis system simultaneously measured the angles of the head, trunk, pelvis, hips, and knees
during workouts. Comparison with the head angle measured using the 3D motion analysis system
indicated that the validity of the Ear-IMU sensor was very strong or moderate in the sagittal and
frontal planes. In addition, the trunk angle in the frontal plane showed a fair correlation with the head
angle determined with the Ear-IMU sensor during a single-leg squat, reverse lunge, and standing
hip abduction; the correlation was poor in the sagittal plane. Our results indicated that the Ear-IMU
sensor can be used to directly estimate head motion and indirectly estimate trunk motion.

Keywords: head; motion; wearable sensor; wireless earbud; workout; validity

1. Introduction

Athletes and active people have continued exercising during the coronavirus disease
2019 (COVID-19) pandemic quarantine period to maintain their physical fitness, decrease
pain and fatigue, and prevent injury [1]. The results of a survey completed by 606 respon-
dents from 132 countries indicated that squats, single-leg squats, push-ups, and lunges
were the most commonly applied workouts during by athletes the COVID-19 quarantine
period [1]. The COVID-19 pandemic has led to rapid changes in the traditional workout
industry (from contact to noncontact workout settings) via online platforms and wearable
devices [2]. Wearable sensors have the advantages of portability, suitability for indoor
workouts, facilitation of large population analysis, and longitudinal tracking of motion
data for patients with musculoskeletal pain [3]. Wearable waist-belt and wristband sensors
can be used to continuously monitor pain intensity in patients with chronic back pain and
knee pain, and for investigating the relationship between wearable sensor data and pain
intensity [3]. Wearable sensors can also be used for managing chronic musculoskeletal pain
in digital therapy programs, including sensor-guided exercise therapy and behavioural
health coaching [4], such that they helped with reducing pain intensity and improving
exercise adherence in a longitudinal study of 10,000 patients with lower back and knee
pain [3].

Inertial measurement units (IMUs) are commonly used in wearable devices to capture
and monitor human motion [5,6]. The validity of IMU sensors was demonstrated when
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measuring the acceleration or joint angle during squats, single-leg squats, walking, and
running exercises, compared with a 3D motion analysis system [7–9]. According to a
review article, three or more IMU sensors were used on the chest, lumbar region, upper
limbs, and lower limbs for motion analysis in 37 previous studies [5]. The accuracy of
kinematic measurement increases in proportion to the number of IMU sensors attached
to the body [10]. However, the attachment of multiple sensors negates the wearable
sensor’s advantages of portability, comfort, and ease of acceptance by users in real-world
environments [11]. The smartwatch, which has only a single IMU sensor, is the most
popular wearable device for the assessment of physical activity via energy expenditure
and steps during daily activities [10,12]. However, because the smartwatch relies on the
degrees of upper limb motion [6], the data are subject to motion artefacts and do not
measure the trunk motion during squat and lunge exercises; notably, trunk kinematic data
in the sagittal or frontal plane have been used for effective training (e.g., to contract hip
and knee muscles) and screening (e.g., to identify people developing knee pain during
lunge and squat exercises) [11,13]. Excessive, uncontrolled trunk motion is also seen in
people with knee pain and chronic ankle instability during single-leg squats [14,15], so the
assessment of trunk motion using wearable sensors attached to the body would be valuable
in sports rehabilitation.

In a study in which measurements were taken using IMU sensors placed inside a
baseball cap and attached to the waist of healthy subjects while walking, the head motion
was strongly correlated with trunk motion based on acceleration data [16]. When visual
feedback to young or older healthy adults on trunk translation in the anteroposterior and
mediolateral positions while walking was provided, the head–neck translation decreased
significantly, implying that head motion is related to trunk motion [17]. Head motion
data can help minimise horizontal head translation while walking in older people and
patients with chronic diseases such as Parkinson’s disease, multiple sclerosis, and vestibular
impairment [16,18]. To measure head motion, the current study used wireless earbuds,
which are increasingly popular wearable devices [19]. A wireless earbud brings the sensor
closer to the trunk than a wrist-worn smartwatch would; therefore, an earbud IMU sensor
can potentially estimate head and trunk motion more accurately during workouts.

Wearable sensors have been used to prevent injury in healthy athletes, which is
an important element of modern healthcare [20]. Incorrect motion sequences lead to
musculoskeletal pain after exercise, halting exercise training [21]; for instance, excessive
trunk lateral lean during single-leg squats and an inappropriate amount of trunk forward
bending during squats can induce knee and lower back pain after training [15,22]. Excessive
lateral trunk leaning during single-leg drop jumps in healthy athletes was found to predict
future non-contact knee injury in a 1-year prospective study [23]. Therefore, a study of
the validity of wireless earbud IMU sensors for measuring head and trunk motions is key
for assessing whether wearable sensors can predict and prevent injuries in healthy active
people. Thus, the primary purpose of the present study was to confirm the concurrent
validity of wireless earbud-type IMU sensors for estimating head angle, compared with a
3D motion analysis system during workout activities (squat, single-leg squat, lunge, and
standing hip abduction) in healthy active adults. The secondary purpose was to investigate
the pairwise relationships between head angle (measured by each IMU sensor and the
3D motion analysis system) and the angles of other joints (trunk, pelvis, hip, and knee,
measured by the 3D motion analysis system) to determine which joints show movement
patterns similar to head movement during workout activities.

2. Materials and Methods
2.1. Participants

The study population consisted of 20 healthy volunteers from XX University, all of
whom regularly engaged in exercise training or workouts (Table 1). The inclusion criteria
were age = 20 years; 1–3 h of regular workout activities per day, 1–3 days per week; ability
to fully engage in squats, single-leg squats, lunges, and standing hip abduction activities
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without pain in the lower back or lower extremities for at least 1 month prior to the study.
The exclusion criteria were prior lower back or lower extremity surgery, current pregnancy,
or existing neurological impairments in cognitive or vestibular systems [24,25]. This study
was conducted in accordance with the ethical principles for medical research involving
human participants, established by the Declaration of Helsinki. The study was approved
by the Institutional Review Board of Jeonju university (approval No: jjIRB-210114-HR-2021-
0113) and all participants provided written informed consent prior to enrolment.

Table 1. Demographic characteristics of the participants.

Variables Mean ± Standard Deviation

Male/female, n 9/11
Age, years 21.1 ± 3.1
Weight, kg 63.7 ± 11.3
Height, cm 169.3 ± 7.8
Body mass index, kg/m2 22.1 ± 2.6
Exercise frequency per week, times/week 3.6 ± 1.7
Daily exercise duration, min 69.5 ± 33.3

2.2. Instruments

The experimental study was carried out in a laboratory setting. While participants
performed four exercises, kinematic data in sagittal and frontal planes were recorded
simultaneously using both the earbud-type IMU sensor and a 3D motion analysis system
(Vicon, Oxford, UK). The 3D motion analysis system was used as a reference to collect
kinematic data via six infrared cameras at a frequency of 100 Hz. Signals emitted from
the Vicon camera were reflected from markers attached to anatomical landmarks on the
participant according to the full-body plug-in-gait marker model. In this study, 39 markers
measuring 15 mm2 each were placed on each participant: on the second metatarsal head,
posterior calcaneus and fibular lateral malleolus of both feet, both shins, lateral epicondyles
of both knees, both thighs, anterior and posterior superior iliac spine, 7th cervical and
10th thoracic vertebrae, sternum, clavicle, right scapula, superior to both acromioclavicular
joints, both upper arms, both lateral epicondyles of the elbow, both forearms, medial and
lateral styloid processes of both wrists, and 2nd metacarpals bilaterally; four other markers
were attached to a headband [26].

A single IMU (36 × 15 × 7.5 mm; weight including battery: 8 g) was embedded
into the right wireless earbud (QCY-T6, Dongguan Hele Electronics Co., Ltd., Dongguan,
China) (Figure 1). To measure linear acceleration and angular rotation, a high-resolution
IMU (BNO080; Ceva Technologies, Rockville, MD, USA) was equipped with a triaxial
accelerometer and triaxial gyroscope. The orientations of the axes of the accelerometer were
aligned with the gravitational axis while the participant was standing. The accelerometer of
the IMU recorded gravitational acceleration (g) in the vertical axis when the participant was
in a standing position. IMU data which were collected by the Microprocessor (STM32G030,
STMicroelectronics, Geneva, Switzerland) were sent through a BLE module with a sampling
frequency of 100 Hz. Every sample contains signed 16 bits acceleration outputs for the x-,
y- and z-axis. Acceleration outputs were scaled to be a proportional value of Earth gravity
which are Gpx, Gpy and Gpz. Full-scale IMU sensor value (=8 G) was equal to the maximum
value of singed 16 bits integer.
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Figure 1. Earbud-type IMU sensor. (A) IMU sensor. (B) IMU sensor attached to the ear.

The orientation of the IMU can be defined with its roll(φ), pitch(θ), and yaw(ψ). The
roll, pitch, and yaw matrices are as follows:

Rx(φ) =

 1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 (1)

Ry(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2)

Rz(ψ) =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (3)

When the IMU sensor is rotated, Earth’s gravitation field vector g is rotated by pitch,
roll, and yaw matrices

Ry(φ)Rx(θ)Rz(ψ)

 0
0
1

 =

 − sin θ cos φ
sin φ

cos θ cos φ

 (4)

When arbitrary accelerometer reading is Gp,

1√
Gpx2 + Gpy2 + Gpz2

 Gpx
Gpy
Gpz

 =

 − sin θ cos φ
sin φ

cos θ cos φ

 (5)

Solving for the roll and pitch angles gives

φ = tan−1

 Gpy√
Gpx2 + Gpz2

 (6)

θ = tan−1
(−Gpx

Gpz

)
(7)
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Before angle calculation, the accelerometer output was filtered with a low-pass filter
to remove linear acceleration caused by the participant’s motion. Without this removal
of linear acceleration, the acceleration added by the participant’s movement increased
the error of the estimated angles. To properly calculate roll and pitch angle from an
accelerometer, the magnitude of accelerometer output should be near 1 G, which means only
gravitational acceleration exists. After low-pass filtering, the magnitude of accelerometer
output converged to 1 G within a 5% difference.

For offset calibration, pre-measurement was performed for 1 s when measurement
began. The measured mean offsets in sagittal and frontal angles were used to remove
offsets. During a 1 s calibration period, a subject was told to remain stationary, 100 data
samples were collected and assessed to confirm calibration. Only when (Maxφ − Minφ)
and (Maxθ − Minθ) are less than 0.5◦, it was accepted as a successful calibration. If not, a
test started over from the calibration period.

2.3. Procedure

This experimental study consisted of three stages: general preparation, warm-up, and
data acquisition.

1. General preparation stage:

All participants provided responses to questions regarding demographic characteris-
tics, exercise frequency per week, and daily exercise duration (Table 1); they also confirmed
that they had no surgical history and no current musculoskeletal pain or symptoms. An-
thropometric data (leg length and knee, ankle, elbow, and wrist width, hand thickness, and
shoulder offset) were measured with a measuring tape and digital calliper prior to use of
the 3D motion analysis system [27,28].

2. Warm-up stage:

The participants performed 5 min of indoor cycling as a warm-up while wearing their
own shoes; they then engaged in a 5 min rest period [29]. The wireless earbud-type IMU
sensor was worn on the right ear. To record kinematic data using the 3D motion analysis
system, 39 markers were attached using double-sided tape with the participant in the
standing position. To become familiar with the procedure, each participant was asked to
perform each workout activity three times while watching a video on a screen set at eye
level directly in front of them.

3. Data acquisition stage:

The order of the four exercises (reverse lunge, squat, single-leg squat, and standing hip
abduction) was randomised using Excel (Microsoft, Redmond, WA, USA). Each workout
was performed three times at a self-selected speed with a 1 min break time between
workouts. The supporting leg during a single-leg squat, reverse lunge, and standing hip
abduction was regarded as the supporting side when kicking a soccer ball. To synchronise
the two datasets obtained with the 3D motion analysis system and IMU sensor, participants
were asked to perform rapid neck flexion at the beginning of each workout [30]. Each
workout was performed while gazing at a screen placed at eye level directly in front of the
participant, and the specific methods of each workout were explained as follows (Figure 2):

Squat: The participant standing with hands placed on the waist and the feet shoulder-
width apart was asked to perform a mini-squat to a self-determined depth within an angle
of 90◦ knee flexion, then return to the starting position [31].

Single-leg squat: The participant stood on the single supporting leg with the hands
placed on the waist, then squatted down and up while maintaining balance. The squat
depth was not controlled because this study focused on capturing the true movement
patterns of the participants [9].

Reverse lunge: The reverse lunge was initiated by moving the non-supporting foot
backwards, while the supporting foot remained planted. The front knee continued to flex
until achieving a position parallel to the floor; the back knee was brought closer to the floor



Sensors 2022, 22, 597 6 of 13

using a 6 cm foam pad as a tactile depth cue. The distance between the front foot and back
foot was approximately 75% of leg length. The participant was then asked to return to the
starting position [32].

Figure 2. Comparisons of head angle between earbud-type IMU sensor and the 3D motion analysis
system during each workout in sagittal plane and frontal plane. The two datasets were synchronised
with each peak of rapid neck flexion (data sync.): (A) squat, (B) single-leg squat, (C) reverse lunge,
and (D) standing hip abduction.
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Standing hip abduction: The participant was asked to abduct the arm of the non-
supporting side to 90◦ while standing with the feet shoulder-width apart. Subsequently,
the participant was asked to abduct the hip of the non-supporting leg as far as possible and
then return to the starting position [33].

2.4. Data Processing

The raw data of head, trunk, pelvis, hip, and knee obtained from the 3D motion
analysis system were analysed using Nexus software ver. 1.8.5 (Oxford Metrics Ltd.,
Oxford, UK); they were filtered using a low-pass, zero-lag, 4th order Butterworth filter
with a cut-off frequency of 6 Hz [8]. The angle data in the sagittal and frontal planes were
calculated based on global coordinates by deriving ‘YXZ’ Cardan angles. The raw IMU
data were filtered using a MATLAB program (MathWorks). First, raw acceleration data
were filtered to remove linear acceleration using a low-pass, 2nd order Butterworth filter
with a cut-off frequency of 1 Hz. The sagittal and frontal plane angles were estimated using
filtered acceleration data. To synchronise the two datasets, each peak of rapid neck flexion
obtained by the 3D motion analysis system and IMU data was matched; the concurrent
validity was analysed (Figure 2) [30].

2.5. Statistical Analysis

Statistical analysis was performed with SPSS (ver. 25.0; SPSS, Chicago, IL, USA).
The alpha level for statistical significance was set at 0.05. According to the results of the
Shapiro–Wilk test for the normality of the data distribution, the Spearman rho correlation
coefficient (ρ) was used to investigate the concurrent validity of head angle data between
the IMU sensor and the 3D motion analysis system; the pairwise correlations between
head angle (determined with the IMU sensor) and the angles of the trunk, pelvis, hip, and
knee (recorded with the 3D motion analysis system); the pairwise correlations between
the head angle and the angles of the trunk, pelvis, hip, and knee (all recorded with the 3D
motion analysis system). The correlations were expressed as perfect (ρ = 1), very strong
(0.8 ≤ ρ < 1), moderate (0.6 ≤ ρ < 0.8), fair (0.3 ≤ ρ < 0.6), or poor (0 < ρ < 0.3) [34].

3. Results
3.1. Concurrent Validity of the Earbud Type IMU Sensor

The observed concurrent validities of the head angle determined with the earbud-type
IMU sensor, compared with the angle determined with the 3D motion analysis system,
were very strong during the squat, single-leg squat, and standing hip abduction exercises;
the concurrent validity was moderate during reverse lunge in the sagittal plane. In addition,
the head angle measured with the earbud-type IMU sensor showed moderate validity
in the frontal plane, compared with the 3D motion analysis system, during all workout
activities (Table 2).

Table 2. Concurrent validity of head angle determined with the earbud-type IMU sensor, compared
with the 3D motion system.

Sagittal Plane Frontal Plane

Spearman’s ρ 95% CI Spearman’s ρ 95% CI

Squat 0.906 * 0.861, 0.951 0.760 * 0.695, 0.825
Single-leg squat 0.897 * 0.879, 0.915 0.753 * 0.706, 0.799
Reverse lunge 0.624 * 0.56, 0.689 0.784 * 0.74, 0.828

Standing hip abduction 0.912 * 0.887, 0.938 0.766 * 0.691, 0.841

* p-values were significant (p < 0.05).
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3.2. Pairwise Correlations between Head Angle Determined with the IMU Sensor and Angles of
Other Joints Determined with the 3D Motion Analysis System

We investigated the pairwise correlations between the head angle (determined with the
IMU sensor) and the angles of other joints (determined with the 3D motion analysis system)
to determine which joints had movement similar to head movement during the workout.
In the frontal plane, the trunk angle showed a fair correlation with IMU sensor head angle
during the single-leg squat, reverse lunge, and standing hip abduction. In addition, the
pelvis and knee angles showed fair correlations with head angle during the single-leg squat
and standing hip abduction exercises, respectively. The pairwise correlations between the
head angle and the angles of other joints in the sagittal plane were poor (Table 3).

3.3. Pairwise Correlations between Head Angle and Angles of Other Joints Determined with the 3D
Motion Analysis System

For comparison, we also investigated the pairwise correlations between head angle
and the angles of other joints using only the 3D motion analysis system data. These
correlations were similar to the results when using both the IMU sensor and the 3D motion
analysis system. Specifically, the trunk angle in the frontal plane showed a moderate or fair
correlation with the head angle during the single-leg squat, reverse lunge, and standing
hip abduction exercises; the pelvis angle in the frontal plane showed a fair correlation with
the head angle during the single-leg squat exercise. The pairwise correlations between the
head angle and the angles of other joints in the sagittal plane were poor (Table 3).

Table 3. Pairwise correlations between the head and other joints during workout activities.

Spearman’s ρ (95% CI) in Sagittal Plane Spearman’s P (95% CI) in Frontal Plane

IMU vs. VICON VICON vs. VICON IMU vs. VICON VICON vs. VICON

Squat

Trunk −0.028 (−0.22, 0.164) 0.043 (−0.166, 0.252) 0.268 * (0.094, 0.442) 0.222 (0.059, 0.384)
Pelvis −0.005 (−0.173, 0.162) 0.067 (−0.113, 0.246) 0.002 (−0.145, 0.198) −0.035 (−0.153, 0.083)

Hip_Rt 0.019 (−0.166, 0.203) 0.076 (−0.121, 0.274) 0.069 (−0.086, 0.224) 0.143 (0.01, 0.276)
Hip_Lt 0.014 (−0.169, 0.198) 0.07 * (−0.127, 0.267) 0.071 (−0.079, 0.221) 0.071 (−0.102, 0.244)

Knee_Rt −0.063 * (−0.268, 0.141) −0.006 * (−0.228, 0.216) −0.024 (−0.195, 0.148) 0.021 (−0.148, 0.191)
Knee_Lt −0.023 * (−0.22, 0.173) 0.048 * (−0.166, 0.262) 0.003 (−0.153, 0.159) 0.021 (−0.131, 0.174)

Single-leg squat

Trunk −0.216 (−0.339, 0.094) −0.137 (−0.277, 0.003) 0.536 * (0.405, 0.667) 0.606 * (0.498, 0.715)
Pelvis −0.122 (−0.25, 0.005) −0.069 (−0.204, 0.066) 0.366 * (0.231, 0.501) 0.33 * (0.182, 0.479)

Hip_Rt −0.146 (−0.295, 0.003) −0.115 (−0.273, 0.043) −0.272 (−0.414, −0.129) −0.197 (−0.352, −0.041)
Hip_Lt −0.086 (−0.221, 0.049) −0.049 (−0.186, 0.089) 0.267 (0.118, 0.416) 0.260 (0.114, 0.406)

Knee_Rt −0.151 (−0.295, −0.007) −0.145 (−0.298, 0.008) 0.258 (0.098, 0.417) 0.276 (0.12, 0.431)
Knee_Lt −0.121 (−0.23, −0.012) −0.101 (−0.212, 0.01) 0.132 (0.017, 0.247) 0.195 (0.068, 0.322)

Reverse lunge

Trunk −0.129 (−0.239, −0.019) −0.168 (−0.325, 0.011) 0.437 * (0.335, 0.54) 0.459 * (0.329, 0.589)
Pelvis −0.138 (−0.225, −0.051) −0.193 (−0.327, −0.06) −0.005 (−0.134, 0.123) −0.008 (−0.156, 0.141)

Hip_Rt −0.292 (−0.384, −0.2) 0.009 (−0.089, 0.107) −0.148 (−0.242, −0.053) −0.027 (−0.142, 0.087)
Hip_Lt 0.076 (−0.064, −0.217) −0.014 (−0.166, 0.137) 0.033 (−0.1, 0.166) −0.008 (−0.157, 0.141)

Knee_Rt 0.026 (−0.106, −0.158) 0.099 (−0.05, 0.249) 0.231 (0.103, 0.36) 0.191 (0.051, 0.33)
Knee_Lt 0.094 (−0.036, −0.223) 0.053 (−0.097, 0.202) 0.189 (0.072, 0.305) 0.198 (0.074, 0.323)

Standing hip
abduction

Trunk −0.158 (−0.323, −0.007) −0.152 (−0.328, 0.025) 0.384 * (0.185, 0.582) 0.467 * (0.27, 0.665)
Pelvis −0.183 (−0.349, −0.017) −0.187 (−0.359, −0.015) 0.254 * (0.05, 0.458) 0.234 * (0.022, 0.447)

Hip_Rt −0.171 (−0.348, −0.006) −0.201 (−0.382, −0.02) −0.124 (−0.365, 0.117) −0.074 (−0.319, 0.171)
Hip_Lt −0.146 (−0.312, −0.02) −0.15 (−0.323, 0.024) −0.155 (−0.354, 0.044) −0.105 (−0.313, 0.104)

Knee_Rt −0.239 (−0.357, −0.122) −0.237 (−0.354, −0.119) 0.337 * (0.145, 0.529) 0.296 * (0.112, 0.479)
Knee_Lt −0.155 (−0.227, −0.038) −0.132 (−0.272, 0.008) −0.095 (−0.188, 0.173) 0.025 (−0.173, 0.223)

* p-values were significant (p < 0.05). Rt: Right; Lt: Left.

4. Discussion

This study confirmed the moderate-to-very-strong validity of measuring the head
angle during four types of workouts using an earbud-type IMU sensor, compared with a
3D motion analysis system. The head angle determined with the IMU sensor in the frontal
plane showed a fair correlation with trunk angle determined with the 3D motion analysis
system during the single-leg squat, lunge, and standing hip abduction activities. The
earbud type-IMU sensor could be useful for measuring the motion of the head and trunk,
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as an alternative to the use of a 3D motion analysis system for workout motion-focused
coaching, for active people who prefer to listen to music during workouts.

4.1. Concurrent Validity of the Earbud-Type IMU Sensor

Comparison of head angles measured using the earbud-type IMU sensor and the 3D
motion analysis system confirmed moderate-to-very-strong validity in the sagittal and
frontal planes during the squat, single-leg squat, reverse lunge, and standing hip abduction
exercises. The validity in the sagittal plane was higher than the validity in the frontal
plane in this study. Previous studies suggested that the higher validity in the sagittal plane,
compared with the frontal plane, was caused by greater angles in the sagittal plane during
squats and single-leg squats, as determined using a Kinect camera and 3D motion capture
system [9,35,36]. Although there have been no reports on the validity of head-worn IMU
sensors for measuring kinematic data during workouts, some reports were consistent with
our findings regarding functional activities and standing head motions [24]. A previous
study comparing acceleration between an IMU sensor embedded into eyeglasses and a
3D motion analysis system reported weak-to-strong validity during sit-to-stand motion
(Pearson r = 0.37–0.94 for the vertical axis and 0.36–0.61 for the anteroposterior axis) [24].
Two other studies also found good agreement between IMU sensors attached to the forehead
and a 3D motion-capture system for measuring head angles during head flexion/extension,
lateral bending, and rotation in standing healthy young subjects [37,38]. In individuals with
and without mild traumatic brain injury, IMU sensors attached to the forehead exhibited
moderate-to-excellent validity for estimating head angles while walking and turning or
nodding the head [39]. The IMU sensor locations (eyeglasses and forehead) and activities
(head motions while standing and walking) differed in the previous studies, compared
with our study on IMU earbud sensor use during workout activities [24,37–39]. Although
the IMU earbud sensor was less stable than a sensor attached to the forehead, and the
workout activities (single-leg squats, lunges, and standing hip abduction) were less-stable
motions than standing and walking, the earbud IMU sensor exhibited similar moderate-to-
very-strong validity for measuring head angles. Therefore, wireless earbuds may be useful
for providing appropriate exercise movements based on the head angle, particularly when
used with future machine-learning algorithms.

4.2. Pairwise Correlations between Head Angle and Angles of Other Joints

We found that head movement was similar to trunk movement in only the frontal
plane, based on data obtained from the 3D motion analysis system during the single-
leg squat, reverse lunge, and standing hip abduction exercises. Consistent with these
results, the frontal head angle measured by the earbud-type IMU sensor showed a similar
pattern to the frontal trunk angle measured with the 3D motion analysis system, based
on the fair correlation between head and trunk angles. There are two plausible reasons
for these observations. First, the trunk is closer to the head than to the hips and knees,
resulting in a fair correlation between the trunk and head angles. The second reason may
be explained by vestibular function in healthy people. Our observations are consistent
with previous findings that healthy people have a greater head–trunk correlation than
people with unilateral vestibular hypofunction while walking on a treadmill because the
vestibular system controls movements of the head and trunk together through the vestibulo-
cervical reflex and vestibulospinal reflex, respectively [40]. In people with vestibular system
impairment, the head and trunk tend to move independently because they are controlled
by other signals, such as visual signals and somatosensory information, respectively [41].
All participants in the present study were healthy without vestibular function impairment;
they showed similar patterns of movement between the head and trunk.

An earbud IMU sensor could be used for measuring the trunk motion indirectly in
clinical and sports settings. Specifically, earbud IMU sensors can be used to prevent knee
injury by assessing frontal trunk motion during functional performance tests, such as
single-leg squats and forward step-down tests, because frontal trunk motions can directly
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influence the knee moment in the frontal plane; people with knee pain reportedly exhibited
greater ipsilateral trunk lean than did healthy controls [33,42]. An earbud IMU sensor can
also provide real-time music-based feedback for effective training to reduce excessive trunk
lateral lean while contracting weak hip muscles for knee rehabilitation because excessive
trunk lateral lean means poorer hip abductor and external rotator function during workout
activities (single-leg squats, lunges, and standing hip abduction) [33]; for example, music
played through the wireless earbud during a workout could be distorted if trunk lateral
lean occurs during single-leg squats and lunges. However, in order to use earbud IMU
sensors for detecting the excessive trunk lateral leaning during workout activities based on
the correlation of trunk motion with head motion in the current study, an additional study
would be needed. In the future study, classification model should be developed based on
the frontal head angle measured by the earbud-type IMU sensor to discriminate between
excessive and non- excessive trunk lateral leaning during single-leg squats, lunges, and
standing hip abduction, in people with and without lower back and lower limb pain using
supervised machine learning methods such as logistic regressions, decision trees, random
forests, support vector machines, and k-nearest neighbours. This future classification
study also could suggest the cut-off values of frontal head motion to discriminate between
excessive and non-excessive trunk lateral leaning.

An earbud IMU sensor may also be useful for vestibular rehabilitation using visual
and auditory feedback. A previous study provided visual feedback on the anteroposterior
and mediolateral displacement of the trunk on a TV screen using two webcams and showed
that a 4-week visual feedback program significantly improved balance in older people with
vestibular loss or sensory impairment by increasing their awareness of body motion while
walking. In another auditory feedback study, the volumes of four loudspeakers increased
linearly, from 60 to 95 dB, towards the swaying side depending on the trunk angle velocity,
improving postural control in patients with vestibular dysfunction [43]. In an example
of harnessing this feedback methodology in the current earbud IMU sensors, the virtual
head–trunk image can tilt in a visual display for visual feedback or the volume of music
heard through the earbud can change to provide auditory feedback depending on the
extent of mediolateral head–trunk sway while walking; this could improve the balance of
people with vestibular dysfunction by maintaining upright head–trunk motion.

This study found poor pairwise correlations between frontal head angle (measured
by the earbud-type IMU sensor) and the hip and knee angles (measured by the 3D motion
analysis system). To our knowledge, there have been no studies regarding direct correla-
tions of movement between the head and other joints. However, some studies reported
the pattern of trunk motion, compared with lower limb motion, in terms of compensatory
mechanisms [44,45]. In people with patellofemoral pain syndrome, the trunk moves more
laterally towards the stance limb, while the pelvis and hips move in the opposite direction
(i.e., contralateral pelvic drop and hip adduction), compared with movement in healthy
people [46]. Consistent with these results, in people with knee osteoarthritis, the trunk leans
laterally to gain mechanical benefit for the knee via compensatory mechanisms [47,48].
However, it would have been unnecessary for the healthy participants in the present study
to use compensatory trunk leaning, regardless of lower limb movement, to reduce the
moment of the painful hip and knee during workout activities; this presumably led to poor
correlations between the head–trunk complex and hips/knees.

There was no significant correlation between head and trunk motions in the sagittal
plane during workout activities in this study, meaning that the earbud IMU sensor cannot
inform excessive trunk flexion or extension during squats, single-leg squats, lunges, and
standing hip abduction. Participants had to gaze at the front during performing workout
activities in this study, so the head was maintained without excessive head flexion or
extension even though the trunk was flexed or extended during performing squat and
lunge. This may be the reason why no significant correlation was found between head
and trunk motions in the sagittal plane in the current study. This study found correlations
only in the sagittal and frontal planes because a systematic review found low validity for
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the rotation components of the trunk and lower limb joints [49], and trunk lateral leaning
in the frontal plane has commonly been considered as the target movement that needs
to be detected during rehabilitation exercise in previous studies rather than sagittal and
transverse planes in people with pain in the lower back, knee, and ankle [33,42,50,51].
However, another study reported that runners who performed single-leg squats poorly had
excessive trunk rotation in the transverse plane towards the stance limb [52], indicating
the need to measure motion with three degrees of freedom using wearable sensors in the
future study.

4.3. Limitations

First, the participants in this study were young active people who exercised regularly
and had no musculoskeletal pain. Therefore, the results cannot be generalised to sedentary
or inactive people, older adults, and people with musculoskeletal pain. Second, only a gyro-
scope and an accelerometer were used to maximise battery life, with the aim of facilitating
the commercial development of the wireless earbud-type IMU sensor. A previous study
suggested that using a gyroscope, accelerometer, and magnetometer together can overcome
the limitations of each sensor type and improve measurement accuracy, although sensor
fusion could not completely compensate for all sensor limitations [53]. Further validation
studies are needed to support applications of 3D body motion tracking using nine-axis
IMU sensors that include a gyroscope, accelerometer, and magnetometer in people with
knee pain or sedentary lifestyles, or professional athletes.

5. Conclusions

The wireless earbud-type IMU sensor showed moderate-to-very-strong concurrent
validity in head angle measurement with 3D motion analysis results in sagittal and frontal
planes during the squat, single-leg squat, lunge, and standing hip abduction exercises. The
earbud-type IMU sensor can be used for indirect measurement of frontal trunk motion; it
showed a fair correlation between the head and trunk in the frontal plane during workout
activities. These findings suggest that a wireless earbud incorporating a single IMU sensor
could be useful for measuring the head motion directly or frontal trunk motion indirectly
in workout and sport settings.
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