On The Value Distribution of Some Differential Polynomials

¹, Subhas.S.Bhoosnurmath, ², K.S.L.N.Prasad

^{1,} Department of Mathematics, Karnatak University, Dharwad-580003-INDIA ^{2,} Lecturer, Department of Mathematics, Karnatak Arts College, Dharwad-580001-INDIA

ABSTRACT: We prove a value distribution theorem for meromorphic functions having few poles, which improves several results of C.C.Yang and others. Also we obtain a generalized form of Clunie's result.

C. C. Yang [8] has stated the following.

Theorem A Let f(z) be a transcendental meromorphic function with N(r, f) = S(r, f).

If
$$P[f] = f^{n} + a_1 \pi_{n-1}(f) + a_2 \pi_{n-2}(f) + \dots + a_n$$
 (1)

Where each $\pi_i(f)$ is a homogeneous differential polynomial in f of degree i, then T(r, P[f]) = nT(r, f) + S(r, f).

This result is required at a later stage and we prove the above theorem on the lines of G. P. Barker and A. P. Singh [1].

Proof we have, P[f] = $f^{n} + a_{1} \pi_{n-1}(f) + a_{2} \pi_{n-2}(f) + \dots + a_{n}$ $= f^{n} \left\{ 1 + \frac{a_{1}\pi_{n-1}(f)}{f^{n}} + \frac{a_{2}\pi_{n-2}(f)}{f^{n}} + \dots + \frac{a_{n}}{f^{n}} \right\}$ $= f^{n} \left\{ 1 + \frac{A_{1}}{f} + \frac{A_{2}}{f^{2}} + \dots + \frac{A_{n}}{f^{n}} \right\}$ (2) Where $A_{i} = \frac{a_{i}\pi_{n-i}(f)}{a^{n-i}}, i = 1, 2, \dots, n$

$$f^{n-1}$$

Now, since each $\pi_n(f)$ is a homogeneous differential polynomial in f of degree n,

we have,
$$m\left(r, \frac{\pi_{n}(f)}{f^{n}}\right) = m\left(r, \frac{\sum f^{lo}(f^{(1)})^{l_{1}}....(f^{(k)})^{l_{k}}}{f^{n}}\right)$$
$$= m\left(r, \sum \left(\frac{f^{(1)}}{f}\right)^{l_{1}} \left(\frac{f^{(2)}}{f}\right)^{l_{2}}...\left(\frac{f^{(k)}}{f}\right)^{l_{k}}\right)$$
$$\leq \sum m\left(r, \left(\frac{f^{(1)}}{f}\right)^{l_{1}} \left(\frac{f^{(2)}}{f}\right)^{l_{2}}...\left(\frac{f^{(k)}}{f}\right)^{l_{k}}\right) + O(1)$$

= S(r, f), using Milloux's theorem [10].

Hence $m(r, A_i) = S(r, f)$, for i = 1, 2, ..., n. Now on the circle |z| = r, let

$$\mathbf{A}(\mathbf{r}\mathbf{e}^{i\theta}) = \mathbf{Max}\left\{ \left| \mathbf{A}_{1}(\mathbf{r}\mathbf{e}^{i\theta}) \right|, \left| \mathbf{A}_{2}(\mathbf{r}\mathbf{e}^{i\theta}) \right|^{\frac{1}{2}}, \dots, \left| \mathbf{A}_{n}(\mathbf{r}\mathbf{e}^{i\theta}) \right|^{\frac{1}{n}} \right\}$$

$$(\mathbf{r}, \mathbf{A}(\mathbf{r})) = \mathbf{S}(\mathbf{r}, \mathbf{f})$$

$$(2)$$

Then, m(r, A(z)) = S(r, f)

(3)

Let $E_1 = \left\{ \theta \in [0, 2\pi] | f(re^{i\theta}) | > | 2A(re^{i\theta}) | \right\}$ and E_2 be the complement of E_1 .

Then, on E_1 , we have

$$\begin{aligned} \left| \mathbf{P}[\mathbf{f}] \right| &= \left| \mathbf{f}^{n} \right| \mathbf{1} + \frac{\mathbf{A}_{1}}{\mathbf{f}} + \frac{\mathbf{A}_{2}}{\mathbf{f}^{2}} + \dots + \frac{\mathbf{A}_{n}}{\mathbf{f}^{n}} \right| \\ &\geq \left| \mathbf{f} \right|^{n} \left\{ \mathbf{1} - \left| \frac{\mathbf{A}_{1}}{\mathbf{f}} \right| - \left| \frac{\mathbf{A}_{2}}{\mathbf{f}^{2}} \right| - \dots - \left| \frac{\mathbf{A}_{n}}{\mathbf{f}^{n}} \right| \right\} \\ &\geq \left| \mathbf{f} \right|^{n} \left\{ \mathbf{1} - \frac{\mathbf{1}}{2} - \frac{\mathbf{1}}{2^{2}} - \dots - \frac{\mathbf{1}}{2^{n}} \right\} \\ &= \frac{1}{2^{n}} \left| \mathbf{f} \right|^{n} \end{aligned}$$

Hence, on E_1 , $\log^+ 2^n |P[f]| \ge \log^+ [|f|^n]$ Therefore, $n \log^+ |f| \le n \log 2 + \log^+ |P[f]|$

Therefore, $nm(r,f) = \frac{1}{2\pi} \int_{0}^{2\pi} n\log^{+} |f| d\theta$

$$\begin{split} &= \frac{1}{2\pi} \int_{E_{1}} n \log^{+} |f| \, d\theta + \frac{1}{2\pi} \int_{E_{1}} n \log^{+} |f| \, d\theta \\ &\leq \frac{1}{2\pi} \int_{E_{1}} \left(n \log 2 + \log^{+} |P[f]| \right) d\theta + \frac{n}{2\pi} \int_{E_{2}} \log^{+} |2A| \, d\theta \\ &\leq \frac{1}{2\pi} \int_{E_{1}} \log^{+} |P[f]| \, d\theta + \frac{n}{2\pi} \int_{E_{2}} \log^{+} |A| \, d\theta + O(1) \\ &= m(r, P[f]) + n m(r, A) + O(1) \\ &= m(r, P[f]) + S(r, f). \end{split}$$

Thus, n m (r, f) \leq m (r, P([f]) + S(r, f).

(4)

Adding n N(r, f) both sides and noting N(r, f) = S(r, f), we get,

$$nT(r, f) \le m(r, P[f]) + S(r, f).$$
Or $n T(r, f) \le T(r, P(f)) + S(r, f)$
Now, $m(r, P[f]) = m(r, f^{n} + A_{1}f^{n-1} + A_{2}f^{n-2} + \dots + A_{n-1}f + A_{n}), by (2)$

$$\le m(r, f\{f^{n-1} + A_{1}f^{n-2} + \dots + A_{n-1}\}) + m(r, A_{n}) + O(1)$$

$$\le m(r, f) + m(r, f^{n-1} + A_{1}f^{n-2} + \dots + A_{n-1}) + S(r, f)$$

(6)

Proceeding on induction, we have

$$m(r, P[f]) \le n m(r, f) + S(r, f)$$

Therefore, $T(r, P[f]) \le n m(r, f) + N(r, P[f] + S(r, f)$

But, N(r, P[f]) = S(r, f), since N(r, f) = S(r, f).

Hence, $T(r, P[f]) \le n T(r, f) + S(r, f)$

From (5) and (6) we have the required result.

We wish to prove the following result

Theorem 1 Let f(z) be a transcendental meromorphic function in the plane and $Q_1[f]$, $Q_2[f]$ be differential polynomials in f satisfying $Q_1[f] \neq 0$, $Q_2[f] \neq 0$. Let P(f) be as defined in (1).

If
$$\mathbf{F} = \mathbf{P}[\mathbf{f}] \mathbf{Q}_1[\mathbf{f}] + \mathbf{Q}_2[\mathbf{f}],$$
 (7)

$$\mathbf{P} = \mathbf{P}[\mathbf{f}] \mathbf{Q}_1[\mathbf{f}] + \mathbf{Q}_2[\mathbf{f}],$$
(7)

Then
$$(n - \gamma_{Q_2})T(r, f) \le \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{P(f)}\right) + \left(\Gamma_{Q_2} - \gamma_{Q_2} + 1\right)\overline{N}(r, f) + S(r, f)$$

To prove the above theorem, we require the following Lemmas.

Lemma 1 [5]: If Q[f] is a differential polynomial in f with arbitrary meromorphic co-efficients $q_j, 1 \le j \le n$, then

$$m(\mathbf{r},\mathbf{Q}[\mathbf{f}]) \leq \gamma_{\mathbf{Q}} m(\mathbf{r},\mathbf{f}) + \sum_{j=1}^{n} m(\mathbf{r},\mathbf{q}_{j}) + S(\mathbf{r},\mathbf{f}).$$

Lemma 2 [5]: Let $Q^*[f]$ and Q[f] denote differential polynomials in f with arbitrary meromorphic coefficients $q_1^*, q_2^*, \dots, q_n^*$ and $q_{1,1}, q_2, \dots, q_s$ respectively.

If P[f] is a homogeneous differential polynomials in f of degree n and $P[f]Q^*[f] = Q[f]where\gamma_0 \le n$, then

$$m(\mathbf{r}, \mathbf{Q}^{*}[\mathbf{f}]) \leq \sum_{j=1}^{n} m(\mathbf{r}, \mathbf{q}_{j}^{*}) + \sum_{j=1}^{s} m(\mathbf{r}, \mathbf{q}_{j}) + S(\mathbf{r}, \mathbf{f}).$$

This leads to a generalised form of Clunie's result.

Lemma 3 [5]: Suppose that M[f] is a monomial in f. If f has a pole at $z = z_0$ of order m, then z_0 is a pole of M[f] order (m-1) $\gamma_m + \Gamma_M$.

Lemma 4 [5]: Suppose that Q[f] is a differential polynomial in f. Let z_0 be a pole of f of order m and not a zero or a pole of the co-efficients of Q[f]. Then z_0 is a pole of Q[f] of order at most m $\gamma_Q + (\Gamma_Q - \gamma_Q)$

Proof of Theorem 1

Let us suppose that
$$n > \gamma_{Q_2}$$
.
We have $F = P[f] Q_1 [f] + Q_2 [f]$
Therefore, $F' = \frac{F'}{F} P[f] Q_1 [f] + \frac{F'}{F} Q_2 [f]$
and $F' = P[f]' Q_1 [f] + P[f] (Q_1 [f])' + (Q_2 [f])'$
it follows that $P[f] Q^*[f] = Q[f]$

Hence, it follows that $P[f]Q^*[f] = Q[f]$

(8)

(9)

where $Q^{*}[f] = \frac{F'}{F}Q_{1}[f] - \frac{(P[f])'}{P[f]}Q_{1}[f] - (Q_{1}[f])'$

and
$$Q[f] = (Q_2[f])' - \frac{F'}{F}Q_2[f].$$
 (10)

We have by Lemma 2 and (8),

$$m(\mathbf{r}, \mathbf{Q}^*[\mathbf{f}]) = \mathbf{S}(\mathbf{r}, \mathbf{f})$$
⁽¹¹⁾

Again from (8), $P[f] = \frac{Q[f]}{Q^*[f]}$

Therefore,
$$m(\mathbf{r}, \mathbf{P}[\mathbf{f}]) \le m(\mathbf{r}, \mathbf{Q}[\mathbf{f}]) + m\left(\mathbf{r}, \frac{1}{\mathbf{Q}^*[\mathbf{f}]}\right)$$
 (12)

From (10) and Lemma 1, we have

$$\mathbf{m}(\mathbf{r},\mathbf{Q}[\mathbf{f}]) \leq \gamma_{Q_2} \mathbf{m}(\mathbf{r},\mathbf{f}) + \mathbf{S}(\mathbf{r},\mathbf{f}).$$
(13)

By the First Fundamental Theorem and (11), we get

$$\mathbf{m}\left(\mathbf{r},\frac{1}{\mathbf{Q}^{*}(\mathbf{f})}\right) = \mathbf{N}\left(\mathbf{r},\mathbf{Q}^{*}\left[\mathbf{f}\right]\right) - \mathbf{N}\left(\mathbf{r},\frac{1}{\mathbf{Q}^{*}\left[\mathbf{f}\right]}\right) + \mathbf{S}\left(\mathbf{r},\mathbf{f}\right).$$
(14)

Clearly, the poles of $Q^*[f]$ occur only from the zeros and poles of F and P[f], the poles of f and the zeros and poles of the co efficients. Suppose that z_0 is a pole of f of order m, but not a zero or a pole of the co-efficients of P[f], $Q_1[f]$ and $Q_2[f]$.

Hence, from Lemma 4, z_0 is a pole of Q[f] of order atmost $m \gamma_{Q_2} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)$

If z_0 is a pole of $Q^*[f]$, we have from (8), $Q^*[f] = \frac{Q[f]}{P[f]}$ and hence z_0 is a pole of $Q^*[f]$ of order atmost $m\gamma_{Q_2} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1) - mn$ $= m(\gamma_{Q_2} - n) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)$ Also, from (8), $\frac{1}{O^*[f]} = \frac{P[f]}{O[f]}$

Hence z_0 is a zero of Q*[f] of order at least $mn - \{m\gamma_{Q_2} + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)\}$ Thus, we have,

$$N(\mathbf{r}, \mathbf{Q}^{*}[\mathbf{f}]) - N\left(\mathbf{r}, \frac{1}{\mathbf{Q}^{*}[\mathbf{f}]}\right) \leq \overline{N}\left(\mathbf{r}, \frac{1}{\mathbf{F}}\right) + \overline{N}\left(\frac{1}{\mathbf{P}[\mathbf{f}]}\right) + \left(\Gamma_{\mathbf{Q}_{2}} - \gamma_{\mathbf{Q}_{2}} + 1\right)\overline{N}(\mathbf{r}, \mathbf{f}) + \left(\gamma_{\mathbf{Q}_{2}} - n\right)N(\mathbf{r}, \mathbf{f}) + S(\mathbf{r}, \mathbf{f})$$

$$(15)$$

we have from (8), $P[f] = \frac{Q[f]}{Q*[f]}$

Therefore, $m(r, P[f]) = m\left(r, \frac{Q[f]}{Q*[f]}\right)$

Therefore, $m(r, P[f]) \le m(r, Q[f]) + m\left(r, \frac{1}{Q^*[f]}\right)$

Using (14) we have,

$$\mathbf{m}(\mathbf{r},\mathbf{P}[\mathbf{f}]) \le \mathbf{m}(\mathbf{r},\mathbf{Q}[\mathbf{f}]) + \mathbf{N}(\mathbf{r},\mathbf{Q}*[\mathbf{f}]) - \mathbf{N}\left(\mathbf{r},\frac{1}{\mathbf{Q}*[\mathbf{f}]}\right) + \mathbf{S}(\mathbf{r},\mathbf{f})$$

Using (4), (13) and (15) we have

$$\begin{split} n \ m(r,f) &\leq \gamma_{Q_2} m(r,f) + \overline{N} \Biggl(r,\frac{1}{F} \Biggr) + \overline{N} \Biggl(r,\frac{1}{P[f]} \Biggr) + \Bigl(\Gamma_{Q_2} - \gamma_{Q_2} + 1\Bigr) \overline{N} (r,f) \\ &+ \Bigl(\gamma_{Q_2} - n\Bigr) N(r,f) + S(r,f) \,. \end{split}$$

Hence, we get ,
$$\Bigl(n - \gamma_{Q_2}\Bigr) T(r,f) &\leq \overline{N} \Biggl(r,\frac{1}{F} \Biggr) + \overline{N} \Biggl(r,\frac{1}{P[f]} \Biggr) + \Bigl(\Gamma_{Q_2} - \gamma_{Q_2} + 1\Bigr) \overline{N} (r,f) + S(r,f) \,. \end{split}$$

which is the required result.

Remark (1) Putting $P[f] = f^n$ in the above result, we get

$$F = f^{n}Q_{1}[f] + Q_{2}[f] \quad \text{and}$$
$$\left(n - \gamma_{Q_{2}}\right)\Gamma(r, f) \leq \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{f}\right) + \left(\Gamma_{Q_{2}} - \gamma_{Q_{2}} + 1\right)\overline{N}(r, f) + S(r, f),$$

which is the result of Zhan Xiaoping [9]

(2) Putting $P[f] = a_n f^n + a_{n-1} f^{n-1} + \dots + a_0$ in the above result,

We get, $F = P[f] Q_1[f] + Q_2[f]$ and

$$\left(\mathbf{n}-\gamma_{Q_{2}}\right)\mathbf{T}(\mathbf{r},\mathbf{f}) \leq \overline{\mathbf{N}}\left(\mathbf{r},\frac{1}{F}\right) + \overline{\mathbf{N}}\left(\mathbf{r},\frac{1}{P[\mathbf{f}]}\right) + \left(\Gamma_{Q_{2}}-\gamma_{Q_{2}}+1\right)\overline{\mathbf{N}}(\mathbf{r},\mathbf{f}) + \mathbf{S}(\mathbf{r},\mathbf{f})$$

which is the result of Hong Xun Yi[4].

Theorem 2 Let $F = f^n Q[f]$, where Q[f] is a differential polynomial in f and $Q[f] \neq 0$.

If
$$\lim_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{f}\right) + \overline{N}(r, f)}{T, (r, f)} < n$$
, then $\Theta(a, F) < 1$ where $a \neq 0$.

Proof Let $F = f^n Q[f]$. Putting $Q_2[f] \equiv 0$ in the result of Zhan Xiaoping (remark 1) we have,

$$\operatorname{n} \operatorname{T}(\mathbf{r}, \mathbf{f}) \leq \overline{\operatorname{N}}\left(\mathbf{r}, \frac{1}{F}\right) + \overline{\operatorname{N}}\left(\mathbf{r}, \frac{1}{f}\right) + \overline{\operatorname{N}}(\mathbf{r}, \mathbf{f}) + \operatorname{S}(\mathbf{r}, \mathbf{f})$$

Hence
$$n - \overline{\lim_{r \to \infty}} \frac{\overline{N}\left(r, \frac{1}{F}\right)}{T(r, f)} < n$$
 using hypothesis
Therefore, $\overline{\lim_{r \to \infty}} \frac{\overline{N}\left(r, \frac{1}{F}\right)}{T(r, f)} > 0$
Hence, $\overline{\lim_{r \to \infty}} \frac{\overline{N}\left(r, \frac{1}{F-a}\right)}{T(r, F)} > 0$, for $a \neq 0$.

Therefore, $1 - \Theta(a, F) > 0$

Or $\Theta(a, F) < 1$ for $a \neq 0$.

Hence the result.

Theorem 3 Let $F = f^n Q_1[f] + Q_2[f]$ where $Q_1[f]$ and $Q_2[f]$ are as defined in Theorem 1.

$$\begin{split} & \mathrm{If} \quad \overline{\lim_{r \to \infty}} \frac{\overline{N}\!\left(r, \frac{1}{f}\right) \! + \left(\!\Gamma_{Q_2} - \gamma_{Q_1} + 1\right)\! \overline{N}\!\left(r, f\right)}{T\!\left(r, f\right)} \! < \! \left(\!n - \gamma_{Q_2}\right) \; \mathrm{and} \\ & Q_2\!\left[f\right] \! \neq 0, \; \mathrm{then} \; \; \Theta\left(a, F\right) \! < \! 1 \; \mathrm{where} \; \; a \not \equiv 0. \end{split}$$

Proof Let $F = f^n Q_1[f] + Q_2[f]$ where $Q_1[f]$ and $Q_2[f]$ are as defined in Theorem .

By the result of Zhan Xiaoping [Remark 1], we have

$$(n - \gamma_{Q_2}) + T(r, f) \le \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{f}\right) + (\Gamma_{Q_2} - \gamma_{Q_2} + 1)\overline{N}(r, f) + S(r, f)$$

Or $(n - \gamma_{Q_2}) - \overline{\lim_{r \to \infty}} \frac{\overline{N}\left(r, \frac{1}{F}\right)}{T(r, f)} \le (n - \gamma_{Q_2})$ using hypothesis
 $\overline{N}\left(r, \frac{1}{F}\right)$

Hence, $\lim_{r\to\infty} \frac{\Gamma(r, F-a)}{\Gamma(r, f)} > 0$

which implies $1 - \Theta(a, F) > 0$.

Or
$$\Theta(a, F) < 1$$
 for $a \neq 0$.

Hence the result.

Theorem 4 Let F = P[f]Q[f] where P[f] is as defined in (1) and Q[f] is a differential polynomial in f such that $Q[f] \neq 0$. If n > 1, then $\rho_F = \rho_f$ and $\lambda_F = \lambda_f$

Proof Let G = F - a, where $a(\neq 0)$ is a finite complex number. Then by Theorem 1,

$$\operatorname{n} \operatorname{T}(\mathbf{r}, \mathbf{f}) \leq \overline{\operatorname{N}}\left(\mathbf{r}, \frac{1}{\operatorname{G}}\right) + \overline{\operatorname{N}}\left(\mathbf{r}, \frac{1}{\operatorname{f}}\right) + \overline{\operatorname{N}}\left(\mathbf{r}, \mathbf{f}\right) + \operatorname{S}\left(\mathbf{r}, \mathbf{f}\right)$$

Obviously, the zeros and poles of f are that of F respectively

Therefore,
$$\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,f\right) \le \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,F\right) + S(r,f)$$

Thus, $n T(r, f) \le \overline{N}\left(r,\frac{1}{F-a}\right) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}(r,F) + S(r,f)$
 $\le 3T(r,F) + S(r,f)$

Therefore, $T(r, f) = O\{T(r, F)\}$ as $r \to \infty$

Also,
$$T(r,F) = O\{T(r,f)\}$$
 as $r \to \infty$

Hence the theorem follows.

As an application of Theorem 1, we observe the following .

Theorem 5 No transcendental meromorphic function f can satisfy an equation of the form $a_1P[f]Q[f] + a_2Q[f] + a_3 = 0$, where $a_1 \neq 0$, $a_3 \neq 0$, P[f] is as in (1) and Q[f] is a differential polynomial in f.

Putting $P[f] = f^n$ in the above theorem, we have the following.

Theorem 6 No transcendental meromorphic function f can satisfy an equation of the form $a_1 f^n Q[f] + a_2 Q[f] + a_3 = 0$, where $a_1 \neq 0$, $a_3 \neq 0$, n is a positive integer and Q[f] is a differential polynomial in f.

This improves our earlier result namely,

Theorem 7: No transcendental meromorphic function f with N(r, f) = S(r, f) can satisfy an equation of the form

$$a_1(z)[f(z)]^n \pi(f) + a_2(z)\pi(f) + a_3(z) = 0$$
⁽¹⁾

where $n \ge 1$, $a_1(z) \ne 0$ and $\pi(f) = M_i(f) + \sum_{j=1}^{i-1} a_j(z) M_j(f)$ is a differential polynomial in f of degree n and

each $M_i(f)$ is a monomial in f.

(Communicated to Indian journal of pure and applied mathematics)

Acknowledgement: The second author is extremely thankful to University Grants Commission for the financial assistance given in the tenure of which this paper was prepared

REFERENCES

- [1.] Barker G. P. And Singh A. P. (1980) : Commentarii Mathematici Universitatis : Sancti Pauli 29, 183.
- [2.] Gunter Frank And Simon Hellerstein (1986) : 'On The Meromorphic Solutions Of Non Homogeneous Linear Differential Equation With Polynomial Co-Efficients', Proc. London Math. Soc. (3), 53, 407-428.
- [3.] Hayman W. K. (1964) : Meromorphic Functions, Oxford Univ. Press, London.
- [4.] Hong-Xun Yi (1990) : 'On A Result Of Singh', Bull. Austral. Math. Soc. Vol. 41 (1990) 417-420.
- [5.] Hong-Xun Yi (1991): "On The Value Distribution Of Differential Polynomials", JI Of Math. Analysis And Applications 154, 318-328.
- [6.] Singh A. P. And Dukane S. V. (1989) : Some Notes On Differential Polynomial Proc. Nat. Acad. Sci. India 59 (A), Ii.
- [7.] Singh A. P. And Rajshree Dhar (1993) : Bull. Cal. Math. Soc. 85, 171-176.
- [8.] Yang C. C. (1972): 'A Note On Malmquist's Theorem On First Order Differential Equations, Ordering Differential Equations', Academic Press, New York.
- [9.] Zhan-Xiaoping (1994) : "Picard Sets And Value Distributions For Differential Polynomials", Jl. Of Math. Ana. And Appl. 182, 722-730.