On The Value Distribution of Some Differential Polynomials

${ }^{1,}$ Subhas.S.Bhoosnurmath, ${ }^{2,}$ K.S.L.N.Prasad
${ }^{1,}$ Department of Mathematics, Karnatak University, Dharwad-580003-INDIA
${ }^{2,}$ Lecturer, Department of Mathematics,
Karnatak Arts College, Dharwad-580001-INDIA

ABSTRACT: We prove a value distribution theorem for meromorphic functions having few poles, which improves several results of C.C.Yang and others.Also we obtain a generalized form of Clunie's result.

C. C. Yang [8] has stated the following.

Theorem A Let $\mathrm{f}(\mathrm{z})$ be a transcendental meromorphic function with $\mathrm{N}(\mathrm{r}, \mathrm{f})=\mathrm{S}(\mathrm{r}, \mathrm{f})$.

$$
\begin{equation*}
\text { If } \mathrm{P}[\mathrm{f}]=\mathrm{f}^{\mathrm{n}}+\mathrm{a}_{1} \pi_{\mathrm{n}-1}(\mathrm{f})+\mathrm{a}_{2} \pi_{\mathrm{n}-2}(\mathrm{f})+\ldots \ldots+\mathrm{a}_{\mathrm{n}} \tag{1}
\end{equation*}
$$

Where each $\pi_{\mathrm{i}}(\mathrm{f})$ is a homogeneous differential polynomial in f of degree i , then $\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}])=\mathrm{nT}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$.

This result is required at a later stage and we prove the above theorem on the lines of G. P. Barker and A. P. Singh [1].

Proof we have, $P[f]=f^{n}+a_{1} \pi_{n-1}(f)+a_{2} \pi_{n-2}(f)+\ldots . .+a_{n}$

$$
\begin{align*}
& =\mathrm{f}^{\mathrm{n}}\left\{1+\frac{\mathrm{a}_{1} \pi_{\mathrm{n}-1}(\mathrm{f})}{\mathrm{f}^{\mathrm{n}}}+\frac{\mathrm{a}_{2} \pi_{\mathrm{n}-2}(\mathrm{f})}{\mathrm{f}^{\mathrm{n}}}+\ldots \ldots+\frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{f}^{\mathrm{n}}}\right\} \\
& =\mathrm{f}^{\mathrm{n}}\left\{1+\frac{\mathrm{A}_{1}}{\mathrm{f}}+\frac{\mathrm{A}_{2}}{\mathrm{f}^{2}}+\ldots \ldots+\frac{\mathrm{A}_{\mathrm{n}}}{\mathrm{f}^{\mathrm{n}}}\right\} \tag{2}
\end{align*}
$$

$$
\text { Where } A_{i}=\frac{\mathrm{a}_{\mathrm{i}} \pi_{\mathrm{n}-\mathrm{i}}(\mathrm{f})}{\mathrm{f}^{\mathrm{n}-\mathrm{i}}}, \mathrm{i}=1,2, \ldots \ldots . \mathrm{n}
$$

Now, since each $\pi_{n}(f)$ is a homogeneous differential polynomial in f of degree n,
we have,

$$
\begin{aligned}
\mathrm{m}\left(\mathrm{r}, \frac{\pi_{\mathrm{n}}(\mathrm{f})}{\mathrm{f}^{\mathrm{n}}}\right) & =\mathrm{m}\left(\mathrm{r}, \frac{\sum \mathrm{f}^{\mathrm{lo}}\left(\mathrm{f}^{(1)}\right)^{\mathrm{t}_{1}} \ldots \ldots .\left(\mathrm{f}^{(\mathrm{k})}\right)^{1_{k}}}{\mathrm{f}^{\mathrm{n}}}\right) \\
& =\mathrm{m}\left(\mathrm{r}, \sum\left(\frac{\mathrm{f}^{(1)}}{\mathrm{f}}\right)^{1_{1}}\left(\frac{\mathrm{f}^{(2)}}{\mathrm{f}}\right)^{1_{2}} \ldots .\left(\frac{\mathrm{f}^{(\mathrm{k})}}{\mathrm{f}}\right)^{1_{k}}\right) \\
\leq & \sum \mathrm{m}\left(\mathrm{r},\left(\frac{\mathrm{f}^{(1)}}{\mathrm{f}}\right)^{1_{1}}\left(\frac{\mathrm{f}^{(2)}}{\mathrm{f}}\right)^{1_{2}} \ldots .\left(\frac{\mathrm{f}^{(\mathrm{k})}}{\mathrm{f}}\right)^{1_{k}}\right)+\mathrm{O}(1) \\
= & \mathrm{S}(\mathrm{r}, \mathrm{f}), \text { using Milloux's theorem }[10] .
\end{aligned}
$$

Hence $m\left(r, A_{i}\right)=S(r, f)$, for $i=1,2, \ldots, n$.
Now on the circle $|z|=r$, let

$$
\begin{equation*}
A\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\operatorname{Max}\left\{\left|\mathrm{A}_{1}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right|,\left|\mathrm{A}_{2}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right|^{1 / 2}, \ldots \ldots,\left|\mathrm{A}_{\mathrm{n}}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right|^{1 / n}\right\} \tag{3}
\end{equation*}
$$

Then, $m(r, A(z))=S(r, f)$
Let $E_{1}=\left\{\theta \in[0,2 \pi]\left|\mathrm{f}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right|>\left|2 \mathrm{~A}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right|\right\}$ and E_{2} be thecomplementof E_{1}.
Then, on E_{1}, we have

$$
\begin{aligned}
|\mathrm{P}[\mathrm{f}]|= & \left.\left|\mathrm{f}^{\mathrm{n}}\right| 1+\frac{\mathrm{A}_{1}}{\mathrm{f}}+\frac{\mathrm{A}_{2}}{\mathrm{f}^{2}}+\ldots \ldots .+\frac{\mathrm{A}_{\mathrm{n}}}{\mathrm{f}^{\mathrm{n}}} \right\rvert\, \\
& \geq|\mathrm{f}|^{\mathrm{n}}\left\{1-\left|\frac{\mathrm{A}_{1}}{\mathrm{f}}\right|-\left|\frac{\mathrm{A}_{2}}{\mathrm{f}^{2}}\right|-\ldots \ldots \ldots . .\left|\frac{\mathrm{A}_{\mathrm{n}}}{\mathrm{f}^{\mathrm{n}}}\right|\right\} \\
& \geq|\mathrm{f}|^{\mathrm{n}}\left\{1-\frac{1}{2}-\frac{1}{2^{2}}-\ldots \ldots \ldots . .-\frac{1}{2^{\mathrm{n}}}\right\} \\
& =\frac{1}{2^{\mathrm{n}}}|\mathrm{f}|^{\mathrm{n}}
\end{aligned}
$$

Hence, on $\mathrm{E}_{1}, \quad \log ^{+} 2^{\mathrm{n}}|\mathrm{P}[\mathrm{f}]| \geq \log ^{+}\left[|\mathrm{f}|^{\mathrm{n}}\right]$
Therefore, $\mathrm{n} \log ^{+}|\mathrm{f}| \leq \mathrm{n} \log 2+\log ^{+}|\mathrm{P}[\mathrm{f}]|$
Therefore, $n m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} n \log ^{+}|f| d \theta$

$$
\begin{align*}
& =\frac{1}{2 \pi} \int_{\mathrm{E}_{1}} n \log ^{+}|\mathrm{f}| \mathrm{d} \theta+\frac{1}{2 \pi} \int_{\mathrm{E}_{1}} n \log ^{+}|\mathrm{f}| \mathrm{d} \theta \\
& \leq \frac{1}{2 \pi} \int_{\mathrm{E}_{1}}\left(\mathrm{n} \log 2+\log ^{+}|\mathrm{P}[\mathrm{f}]|\right) \mathrm{d} \theta+\frac{\mathrm{n}}{2 \pi} \int_{\mathrm{E}_{2}} \log ^{+}|2 \mathrm{~A}| \mathrm{d} \theta \\
& \leq \frac{1}{2 \pi} \int_{\mathrm{E}_{1}} \log ^{+}|\mathrm{P}[\mathrm{f}]| \mathrm{d} \theta+\frac{\mathrm{n}}{2 \pi} \int_{\mathrm{E}_{2}} \log ^{+}|\mathrm{A}| \mathrm{d} \theta+\mathrm{O}(1) \\
& =\mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}])+\mathrm{nm}(\mathrm{r}, \mathrm{~A})+\mathrm{O}(1) \\
& =\mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}])+\mathrm{S}(\mathrm{r}, \mathrm{f}) . \tag{4}
\end{align*}
$$

Thus, $\mathrm{nm}(\mathrm{r}, \mathrm{f}) \leq \mathrm{m}(\mathrm{r}, \mathrm{P}([\mathrm{f}])+\mathrm{S}(\mathrm{r}, \mathrm{f})$.
Adding $\mathrm{n} N(\mathrm{r}, \mathrm{f})$ both sides and noting $\mathrm{N}(\mathrm{r}, \mathrm{f})=\mathrm{S}(\mathrm{r}, \mathrm{f})$, we get,

$$
\begin{equation*}
\mathrm{nT}(\mathrm{r}, \mathrm{f}) \leq \mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}])+\mathrm{S}(\mathrm{r}, \mathrm{f}) . \tag{5}
\end{equation*}
$$

Or $\mathrm{n} T(\mathrm{r}, \mathrm{f}) \leq \mathrm{T}(\mathrm{r}, \mathrm{P}(\mathrm{f}))+\mathrm{S}(\mathrm{r}, \mathrm{f})$
Now, $m(r, P[f])=m\left(r, f^{n}+A_{1} f^{n-1}+A_{2} f^{n-2}+\ldots \ldots . .+A_{n-1} f+A_{n}\right)$, by (2)

$$
\begin{aligned}
& \leq m\left(r, f\left\{f^{n-1}+A_{1} f^{n-2}+\ldots \ldots . .+A_{n-1}\right\}\right)+m\left(r, A_{n}\right)+O(1) \\
& \leq m(r, f)+m\left(r, f^{n-1}+A_{1} f^{n-2}+\ldots \ldots . .+A_{n-1}\right)+S(r, f)
\end{aligned}
$$

Proceeding on induction, we have

$$
\mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \mathrm{nm}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Therefore, $\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \mathrm{n} \mathrm{m}(\mathrm{r}, \mathrm{f})+\mathrm{N}(\mathrm{r}, \mathrm{P}[\mathrm{f}]+\mathrm{S}(\mathrm{r}, \mathrm{f})$
But, $N(r, P[f])=S(r, f)$, since $N(r, f)=S(r, f)$.
Hence, $\mathrm{T}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \mathrm{n} T(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$
From (5) and (6) we have the required result.
We wish to prove the following result
Theorem 1 Let $f(z)$ be a transcendental meromorphic function in the plane and $Q_{1}[f], Q_{2}[f]$ be differential polynomials in f satisfying $Q_{1}[f] \not \equiv 0, Q_{2}[f] \not \equiv 0$. Let $P(f)$ be as defined in (1).

$$
\begin{equation*}
\text { If } F=P[f] Q_{1}[f]+Q_{2}[f] \tag{7}
\end{equation*}
$$

Then $\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right) \mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{P}(\mathrm{f})}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$
To prove the above theorem, we require the following Lemmas.

Lemma 1 [5]: If $Q[f]$ is a differential polynomial in f with arbitrary meromorphic co-efficients $\mathrm{q}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{n}$, then

$$
\mathrm{m}(\mathrm{r}, \mathrm{Q}[\mathrm{f}]) \leq \gamma_{\mathrm{Q}} \mathrm{~m}(\mathrm{r}, \mathrm{f})+\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~m}\left(\mathrm{r}, \mathrm{q}_{\mathrm{j}}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Lemma 2 [5]: Let $\mathrm{Q}^{*}[\mathrm{f}]$ and $\mathrm{Q}[\mathrm{f}]$ denote differential polynomials in f with arbitrary meromorphic coefficients $\mathrm{q}_{1}^{*}, \mathrm{q}_{2}^{*}, \ldots, \mathrm{q}_{\mathrm{n}}^{*}$ and $\mathrm{q}_{1,} \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{s}}$ respectively.

If $\mathrm{P}[\mathrm{f}]$ is a homogeneous differential polynomials in f of degree n and $P[f] Q^{*}[f]=Q[f]$ where $\gamma_{Q} \leq n$, then

$$
\mathrm{m}\left(\mathrm{r}, \mathrm{Q}^{*}[\mathrm{f}]\right) \leq \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~m}\left(\mathrm{r}, \mathrm{q}_{\mathrm{j}}^{*}\right)+\sum_{\mathrm{j}=1}^{\mathrm{s}} \mathrm{~m}\left(\mathrm{r}, \mathrm{q}_{\mathrm{j}}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

This leads to a generalised form of Clunie's result.
Lemma 3 [5]: Suppose that $M[f]$ is a monomial in f. If f has a pole at $z=z_{0}$ of order m, then z_{0} is a pole of $M[f]$ order (m-1) $\gamma_{m}+\Gamma_{M}$.

Lemma 4 [5]: Suppose that $Q[f]$ is a differential polynomial in f. Let z_{0} be a pole of f of order m and not a zero or a pole of the co-efficients of $\mathrm{Q}[\mathrm{f}]$. Then z_{0} is a pole of $\mathrm{Q}[\mathrm{f}]$ of order atmost $\mathrm{m} \gamma_{\mathrm{Q}}+\left(\Gamma_{\mathrm{Q}}-\gamma_{\mathrm{Q}}\right)$

Proof of Theorem 1

Let us suppose that $\mathrm{n}>\gamma_{\mathrm{Q}_{2}}$.
We have $\mathrm{F}=\mathrm{P}[\mathrm{f}] \mathrm{Q}_{1}[\mathrm{f}]+\mathrm{Q}_{2}[\mathrm{f}]$
Therefore, $\mathrm{F}^{\prime}=\frac{\mathrm{F}^{\prime}}{\mathrm{F}} \mathrm{P}[\mathrm{f}] \mathrm{Q}_{1}[\mathrm{f}]+\frac{\mathrm{F}^{\prime}}{\mathrm{F}} \mathrm{Q}_{2}[\mathrm{f}]$

$$
\begin{equation*}
\text { and } \quad \mathrm{F}^{\prime}=\mathrm{P}[\mathrm{f}]^{\prime} \mathrm{Q}_{1}[\mathrm{f}]+\mathrm{P}[\mathrm{f}]\left(\mathrm{Q}_{1}[\mathrm{f}]\right)^{\prime}+\left(\mathrm{Q}_{2}[\mathrm{f}]\right)^{\prime} \tag{8}
\end{equation*}
$$

Hence, it follows that $P[f] Q^{*}[f]=Q[f]$
where

$$
\begin{equation*}
\mathrm{Q}^{*}[\mathrm{f}]=\frac{\mathrm{F}^{\prime}}{\mathrm{F}} \mathrm{Q}_{1}[\mathrm{f}]-\frac{(\mathrm{P}[\mathrm{f}])^{\prime}}{\mathrm{P}[\mathrm{f}]} \mathrm{Q}_{1}[\mathrm{f}]-\left(\mathrm{Q}_{1}[\mathrm{f}]\right)^{\prime} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \mathrm{Q}[\mathrm{f}]=\left(\mathrm{Q}_{2}[\mathrm{f}]\right)^{\prime}-\frac{\mathrm{F}^{\prime}}{\mathrm{F}} \mathrm{Q}_{2}[\mathrm{f}] . \tag{10}
\end{equation*}
$$

We have by Lemma 2 and (8),

$$
\begin{equation*}
\mathrm{m}\left(\mathrm{r}, \mathrm{Q}^{*}[\mathrm{f}]\right)=\mathrm{S}(\mathrm{r}, \mathrm{f}) \tag{11}
\end{equation*}
$$

Again from (8), $\mathrm{P}[\mathrm{f}]=\frac{\mathrm{Q}[\mathrm{f}]}{\mathrm{Q}^{*}[\mathrm{f}]}$

$$
\begin{equation*}
\text { Therefore, } \mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \mathrm{m}(\mathrm{r}, \mathrm{Q}[\mathrm{f}])+\mathrm{m}\left(\mathrm{r}, \frac{1}{\mathrm{Q}^{*}[\mathrm{f}]}\right) \tag{12}
\end{equation*}
$$

From (10) and Lemma 1, we have

$$
\begin{equation*}
\mathrm{m}(\mathrm{r}, \mathrm{Q}[\mathrm{f}]) \leq \gamma_{\mathrm{Q}_{2}} \mathrm{~m}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \tag{13}
\end{equation*}
$$

By the First Fundamental Theorem and (11), we get

$$
\begin{equation*}
m\left(r, \frac{1}{Q^{*}(f)}\right)=N\left(r, Q^{*}[f]\right)-N\left(r, \frac{1}{Q^{*}[f]}\right)+S(r, f) . \tag{14}
\end{equation*}
$$

Clearly, the poles of $Q^{*}[f]$ occur only from the zeros and poles of F and $P[f]$, the poles of f and the zeros and poles of the co efficients. Suppose that z_{0} is a pole of f of order m, but not a zero or a pole of the co-efficients of $\mathrm{P}[\mathrm{f}], \mathrm{Q}_{1}[\mathrm{f}]$ and $\mathrm{Q}_{2}[\mathrm{f}]$.

Hence, from Lemma $4, \mathrm{z}_{0}$ is a pole of $\mathrm{Q}[\mathrm{f}]$ of order atmost $\mathrm{m} \gamma_{\mathrm{Q}_{2}}+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right)$

If z_{0} is a pole of $Q^{*}[f]$, we have from (8), $Q^{*}[f]=\frac{Q[f]}{P[f]}$
and hence z_{0} is a pole of $Q^{*}[f]$ of order atmost $m \gamma_{\mathrm{Q}_{2}}+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right)-m n$
$=m\left(\gamma_{\mathrm{Q}_{2}}-\mathrm{n}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right)$
Also, from (8), $\frac{1}{Q^{*}[f]}=\frac{P[f]}{Q[f]}$
Hence z_{0} is a zero of $\mathrm{Q} *[\mathrm{f}]$ of order atleast $\mathrm{mn}-\left\{\mathrm{m} \gamma_{\mathrm{Q}_{2}}+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right)\right\}$
Thus, we have

$$
\begin{align*}
\mathrm{N}(\mathrm{r}, \mathrm{Q} *[\mathrm{f}])-\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{Q} *[\mathrm{f}]}\right) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+ & \overline{\mathrm{N}}\left(\frac{1}{\mathrm{P}[\mathrm{f}]}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f}) \\
& +\left(\gamma_{\mathrm{Q}_{2}}-\mathrm{n}\right) \mathrm{N}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \tag{15}
\end{align*}
$$

we have from (8), $\mathrm{P}[\mathrm{f}]=\frac{\mathrm{Q}[\mathrm{f}]}{\mathrm{Q} *[\mathrm{f}]}$

Therefore, $m(r, P[f])=m\left(r, \frac{Q[f]}{Q^{*}[f]}\right)$
Therefore, $\mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \mathrm{m}(\mathrm{r}, \mathrm{Q}[\mathrm{f}])+\mathrm{m}\left(\mathrm{r}, \frac{1}{\mathrm{Q} *[\mathrm{f}]}\right)$
Using (14) we have,

$$
\mathrm{m}(\mathrm{r}, \mathrm{P}[\mathrm{f}]) \leq \mathrm{m}(\mathrm{r}, \mathrm{Q}[\mathrm{f}])+\mathrm{N}(\mathrm{r}, \mathrm{Q} *[\mathrm{f}])-\mathrm{N}\left(\mathrm{r}, \frac{1}{\mathrm{Q}^{*}[\mathrm{f}]}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Using (4), (13) and (15) we have

$$
\begin{aligned}
\mathrm{nm}(\mathrm{r}, \mathrm{f}) \leq \gamma_{\mathrm{Q}_{2}} \mathrm{~m}(\mathrm{r}, \mathrm{f})+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}(& \left.\mathrm{r}, \frac{1}{\mathrm{P}[\mathrm{f}]}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f}) \\
& +\left(\gamma_{\mathrm{Q}_{2}}-\mathrm{n}\right) \mathrm{N}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) .
\end{aligned}
$$

Hence, we get, $\quad\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right) \mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{P}[\mathrm{f}]}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$,
which is the required result.
Remark (1) Putting $P[f]=f^{n}$ in the above result, we get

$$
\mathrm{F}=\mathrm{f}^{\mathrm{n}} \mathrm{Q}_{1}[\mathrm{f}]+\mathrm{Q}_{2}[\mathrm{f}] \text { and }
$$

$\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right) \mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$,
which is the result of Zhan Xiaoping [9]
(2) Putting $P[f]=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots \ldots \ldots . .+a_{0}$ in the above result, We get, $\mathrm{F}=\mathrm{P}[\mathrm{f}] \mathrm{Q}_{1}[\mathrm{f}]+\mathrm{Q}_{2}[\mathrm{f}]$ and

$$
\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right) \mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{P}[\mathrm{f}]}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

which is the result of Hong Xun Yi[4].
Theorem 2 Let $F=f^{n} Q[f]$, where $Q[f]$ is a differential polynomial in f and $\mathrm{Q}[\mathrm{f}] \equiv 0$.

$$
\text { If } \varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)}{T,(r, f)}<n \text {, then } \Theta(a, F)<1 \quad \text { where } a \not \equiv 0 .
$$

Proof Let $\mathrm{F}=\mathrm{f}^{\mathrm{n}} \mathrm{Q}[\mathrm{f}]$. Putting $\mathrm{Q}_{2}[\mathrm{f}] \equiv 0$ in the result of Zhan Xiaoping (remark 1) we have,

$$
\mathrm{nT}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Hence $\mathrm{n}-\varlimsup_{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}<\mathrm{n}$ using hypothesis.
Therefore, $\lim _{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})}>0$
Hence, $\lim _{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}-\mathrm{a}}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{F})}>0$, for $\mathrm{a} \neq 0$.
Therefore, $1-\Theta(\mathrm{a}, \mathrm{F})>0$
Or $\Theta(\mathrm{a}, \mathrm{F})<1$ for $\mathrm{a} \neq 0$.
Hence the result.
Theorem 3 Let $F=f^{n} Q_{1}[f]+Q_{2}[f]$ where $Q_{1}[f]$ and $Q_{2}[f]$ are as defined in Theorem 1.

$$
\begin{aligned}
& \text { If } \varlimsup_{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{~N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{1}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})}<\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right) \text { and } \\
& \mathrm{Q}_{2}[\mathrm{f}] \not \equiv 0 \text {, then } \Theta(\mathrm{a}, \mathrm{~F})<1 \text { where } \mathrm{a} \not \equiv 0 .
\end{aligned}
$$

Proof Let $F=f^{n} Q_{1}[f]+Q_{2}[f]$ where $Q_{1}[f]$ and $Q_{2}[f]$ are as defined in Theorem.
By the result of Zhan Xiaoping [Remark 1], we have

$$
\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right)+\mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\left(\Gamma_{\mathrm{Q}_{2}}-\gamma_{\mathrm{Q}_{2}}+1\right) \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) .
$$

Or $\quad\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right)-\varlimsup_{\mathrm{r} \rightarrow \infty} \frac{\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)}{\mathrm{T}(\mathrm{r}, \mathrm{f})} \leq\left(\mathrm{n}-\gamma_{\mathrm{Q}_{2}}\right)$ using hypothesis
Hence, $\quad \varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{F-a}\right)}{T(r, f)}>0$
which implies $1-\Theta(\mathrm{a}, \mathrm{F})>0$.
Or $\Theta(\mathrm{a}, \mathrm{F})<1$ for $\mathrm{a} \not \equiv 0$.
Hence the result.
Theorem 4 Let $F=P[f] Q[f]$ where $P[f]$ is as defined in (1) and $Q[f]$ is a differential polynomial in f such that $\mathrm{Q}[\mathrm{f}] \not \equiv 0$. If $\mathrm{n}>1$, then $\rho_{\mathrm{F}}=\rho_{\mathrm{f}}$ and $\lambda_{\mathrm{F}}=\lambda_{\mathrm{f}}$

Proof Let $\mathrm{G}=\mathrm{F}-\mathrm{a}$, where $\mathrm{a}(\neq 0)$ is a finite complex number. Then by Theorem 1,

$$
\mathrm{nT}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{G}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

Obviously, the zeros and poles of f are that of F respectively

$$
\begin{aligned}
\text { Therefore, } \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{f}}\right)+ & \overline{\mathrm{N}}(\mathrm{r}, \mathrm{f}) \leq \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{~F})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \\
\text { Thus, } \mathrm{n}(\mathrm{r}, \mathrm{f}) \leq & \overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}-\mathrm{a}}\right)+\overline{\mathrm{N}}\left(\mathrm{r}, \frac{1}{\mathrm{~F}}\right)+\overline{\mathrm{N}}(\mathrm{r}, \mathrm{~F})+\mathrm{S}(\mathrm{r}, \mathrm{f}) \\
& \leq 3 \mathrm{~T}(\mathrm{r}, \mathrm{~F})+\mathrm{S}(\mathrm{r}, \mathrm{f})
\end{aligned}
$$

Therefore, $\mathrm{T}(\mathrm{r}, \mathrm{f})=\mathrm{O}\{\mathrm{T}(\mathrm{r}, \mathrm{F})\}$ as $\mathrm{r} \rightarrow \infty$

$$
\text { Also, } \mathrm{T}(\mathrm{r}, \mathrm{~F})=\mathrm{O}\{\mathrm{~T}(\mathrm{r}, \mathrm{f})\} \text { as } \mathrm{r} \rightarrow \infty
$$

Hence the theorem follows.
As an application of Theorem 1, we observe the following .
Theorem 5 No transcendental meromorphic function f can satisfy an equation of the form $\mathrm{a}_{1} \mathrm{P}[\mathrm{f}] \mathrm{Q}[\mathrm{f}]+\mathrm{a}_{2} \mathrm{Q}[\mathrm{f}]+\mathrm{a}_{3}=0$, where $\mathrm{a}_{1} \not \equiv 0, \mathrm{a}_{3} \not \equiv 0, \mathrm{P}[\mathrm{f}]$ is as in (1) and $\mathrm{Q}[\mathrm{f}]$ is a differential polynomial in f.
Putting $P[f]=f^{n}$ in the above theorem, we have the following.
Theorem 6 No transcendental meromorphic function f can satisfy an equation of the form $\mathrm{a}_{1} \mathrm{f}^{\mathrm{n}} \mathrm{Q}[\mathrm{f}]+\mathrm{a}_{2} \mathrm{Q}[\mathrm{f}]+\mathrm{a}_{3}=0$, where $\mathrm{a}_{1} \neq 0, \mathrm{a}_{3} \neq 0, \mathrm{n}$ is a positive integer and $\mathrm{Q}[\mathrm{f}]$ is a differential polynomial in f .

This improves our earlier result namely ,
Theorem 7: No transcendental meromorphic function f with $N(r, f)=S(r, f)$ can satisfy an equation of the form

$$
\begin{equation*}
\mathrm{a}_{1}(\mathrm{z})[\mathrm{f}(\mathrm{z})]^{\mathrm{n}} \pi(\mathrm{f})+\mathrm{a}_{2}(\mathrm{z}) \pi(\mathrm{f})+\mathrm{a}_{3}(\mathrm{z})=0 \tag{1}
\end{equation*}
$$

where $\mathrm{n} \geq 1, \mathrm{a}_{1}(\mathrm{z}) \not \equiv 0$ and $\pi(\mathrm{f})=\mathrm{M}_{\mathrm{i}}(\mathrm{f})+\sum_{\mathrm{j}=1}^{\mathrm{i}-1} \mathrm{a}_{\mathrm{j}}(\mathrm{z}) \mathrm{M}_{\mathrm{j}}(\mathrm{f})$ is a differential polynomial in f of degree n and each $M_{i}(f)$ is a monomial in f.
(Communicated to Indian journal of pure and applied mathematics)
Acknowledgement: The second author is extremely thankful to University Grants Commission for the financial assistance given in the tenure of which this paper was prepared

REFERENCES

[1.] Barker G. P. And Singh A. P. (1980) : Commentarii Mathematici Universitatis : Sancti Pauli 29, 183.
[2.] Gunter Frank And Simon Hellerstein (1986) : 'On The Meromorphic Solutions Of Non Homogeneous Linear Differential Equation With Polynomial Co-Efficients', Proc. London Math. Soc. (3), 53, 407-428
[3.] Hayman W. K. (1964) : Meromorphic Functions, Oxford Univ. Press, London.
[4.] Hong-Xun Yi (1990) : ‘On A Result Of Singh’, Bull. Austral. Math. Soc. Vol. 41 (1990) 417-420
[5.] Hong-Xun Yi (1991) : "On The Value Distribution Of Differential Polynomials", Jl Of Math. Analysis And Applications 154, 318-328.
[6.] Singh A. P. And Dukane S. V. (1989) : Some Notes On Differential Polynomial Proc. Nat. Acad. Sci. India 59 (A), Ii
[7.] Singh A. P. And Rajshree Dhar (1993) : Bull. Cal. Math. Soc. 85, 171-176.
[8.] Yang C. C. (1972) : 'A Note On Malmquist's Theorem On First Order Differential Equations, Ordering Differential Equations', Academic Press, New York
[9.] Zhan-Xiaoping (1994) : "Picard Sets And Value Distributions For Differential Polynomials", Jl. Of Math. Ana. And Appl. 182, 722-730.

