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ABSTRACT: We prove a value distribution theorem for meromorphic functions having few poles, which 

improves several results of C.C.Yang and others.Also we obtain a generalized form of Clunie’s result. 

 

C. C. Yang [8] has stated the following. 

Theorem A Let f(z) be a transcendental meromorphic function with   N(r, f) = S(r, f).  

   If   P[f] =     n2n21n1

n a......fafaf        (1) 

Where each  fi  is a homogeneous differential polynomial in f of degree i, then 

    f,rS)f,r(nTfP,rT  . 

This result is required at a later stage and we prove the above theorem on the lines of  G. P. Barker and A. P. 

Singh [1].  

Proof we have, P[f] =      n2n21n1

n a......fafaf    
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Now, since each  isfn a homogeneous differential polynomial in f of degree n,  

we have , 
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                     = S(r, f), using Milloux‟s  theorem [10].  

Hence m(r, Ai) = S(r, f), for i = 1,2, . . . ,n.  

Now on the circle |z | = r, let  
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 Then, m (r, A(z)) = S (r, f)         (3)  

 Let        12

ii

1 Eofcomplementthebe E and   reA2  ref  2,0 E   . 

Then, on E1, we have  
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        1OA,rmn]f[P,rm   

      f,rS]f[P,rm  . 

Thus, n m (r, f)  m (r, P([f]) + S(r, f).       (4) 

Adding n N(r, f) both sides and noting N(r, f) = S(r, f), we get,  

         nT(r, f)  m (r, P[f] ) + S(r, f).  

Or   n T (r, f)  T(r, P(f) ) + S(r, f)       (5) 

Now, m(r, P[f])  =  n1n

2n

2

1n

1

n AfA........fAfAf,rm  


,  by (2) 

          )1(OA,rm}A........fAf{f,rm n1n

2n

1

1n  


 

            f,rSA........fAf,rmf,rm 1n

2n

1

1n  


 

 



On The Value Distribution of Some Differential Polynomials 

www.ijmsi.org                                               43 | P a g e  

Proceeding on induction, we have  

       )f,r(Sf,rmnfP,rm   

Therefore,  T(r, P[f] )  n m(r, f) + N(r, P[f] + S(r, f)  

But, N(r, P[f] ) = S(r, f), since N (r, f) = S(r, f).   

Hence, T(r, P[f] )  n T(r, f ) + S(r, f)       (6) 

From (5) and (6) we have the required result.  

 We wish to prove the following result 

Theorem 1 Let f(z) be a transcendental meromorphic function in the plane and    fQ  , fQ 21  be differential 

polynomials in f satisfying     .0fQ,0fQ 21  Let P(f) be as defined in (1).  

   If   F = P[f]    fQfQ 21  ,      (7) 

Then    
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To prove the above theorem, we require the following Lemmas. 

 

Lemma 1 [5]: If Q[f] is a differential polynomial in f with arbitrary meromorphic co-efficients 

,nj1,q j  then    

        f,rSq,rmf,rmfQ,rm j

n

1j

Q  


. 

Lemma 2 [5]:  Let    fQandfQ*
 denote differential polynomials  in f with arbitrary meromorphic co-

efficients 
s2,1

*

n

*
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*

1 q,...,qqandq,...,q,q  respectively.  

       If P[f] is a homogeneous differential polynomials  in f of degree n and 

      then,nwherefQfQ fP Q

*   

          f,rSq,rmq,rmfQ,rm j
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This leads to a generalised  form of Clunie‟s result.  

Lemma 3 [5]: Suppose that M[f] is a monomial in f. If f has a pole at z = z0 of order m, then z0 is a pole of M[f] 

order (m-1) Mm  . 

Lemma 4 [5]:  Suppose that Q[f] is a differential polynomial in f. Let z0 be a pole of  f  of order m and not a 

zero or a pole of the co-efficients of Q[f]. Then z0 is a pole of Q[f] of order atmost m  QQQ    

Proof of Theorem 1 

 Let us suppose that 
2Qn  . 

 We have    F  = P[f] Q1 [f] + Q2 [f]  

 Therefore,      fQ
F

F
fQfP

F

F
F 21





  

         and              





  fQfQ fPfQfPF 211  

Hence, it follows that      f QfQ fP *         (8) 
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where    
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We have by Lemma 2 and (8),  

          f,rSfQ,rm *                  (11) 

Again from (8),  
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From (10) and Lemma 1, we have  

            f,rSf,rmfQ,rm
2Q  .              (13)  

By the First Fundamental Theorem and (11), we get  
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Clearly, the poles of  fQ*
 occur only from the zeros and poles of F and P[f], the poles of f and the zeros and 

poles of the co efficients. Suppose that z0 is a pole of f of order m, but not a zero or a pole of the co-efficients                                      

of      fQandfQ , fP 21 .  

Hence, from Lemma 4, z0 is a pole of Q[f] of order atmost  1 m
222 QQQ   

 

If  z0 is a pole of  fQ*
, we have from (8),  fQ*

 = 
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 of order atmost   mn1m

222 QQQ   

)1()n(m
222 QQQ   

Also, from (8), 
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Hence  z0 is a zero of Q*[f] of order atleast   1mmn
222 QQQ   

Thus, we have,  
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we have from (8),  
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Therefore,   
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Using (14) we have,  
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Using (4), (13) and (15) we have  
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Hence, we get ,         
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which is the required result. 

Remark (1) Putting P[f] = 
nf  in the above result, we get      

    fQfQfF 21

n     and  
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which is the result of Zhan Xiaoping [9] 

(2) Putting   0

1n

1n

n

n a...........fafafP  

 in the above result, 

       We get,      fQfQ  fPF 21   and 
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      which is the result of Hong Xun Yi[4].  

Theorem  2  Let  fQfF n , where Q[f] is a differential polynomial in f 

 and Q[f]  0. 

         If 
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Proof  Let ].f[Q fF n  Putting 0]f[Q2   in the result of Zhan Xiaoping ( remark 1) we have, 
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Or 1)F,a(   for 0 a  . 

Hence the result. 

Theorem 3 Let    fQfQfF 21

n   where Q1[f] and Q2[f] are as defined in Theorem 1.  

  If  
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Proof  Let ]f[Q]f[QfF 21
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 By the result of Zhan Xiaoping [Remark 1], we have  
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which implies 0)F,a(1  . 

Or     1)F,a(    for 0a  . 

Hence the result. 

Theorem 4 Let    fQfPF   where P[f] is as defined in (1) and Q[f] is a differential polynomial in f such that 

Q[f]   0. If n > 1, then fFfF and   
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Proof  Let G = F – a, where a(0) is a finite complex number. Then by Theorem 1, 

      f,rSf,rN
f

1
,rN

G

1
,rNf,rTn 

















  

Obviously, the zeros and poles of f are that of F respectively  
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              f,rSF,rT3   

Therefore,       r as  F,rTOf,rT  

      Also,       r as  f,rTOF,rT  

Hence the theorem follows.  

As an application of Theorem 1, we observe the following . 

Theorem 5  No transcendental meromorphic function f can satisfy an equation of the form   

      0afQafQ fPa 321  ,where  fP,0a,0a 31   is as in (1) and Q[f] is a differential 

polynomial  in f. 

Putting   nffP   in the above theorem, we have the following. 

Theorem 6  No transcendental meromorphic function f can satisfy an equation of the form  

0a]f[Qa]f[Qfa 32

n

1  ,where ,0a,0a 31  n is a positive integer and Q[f] is a differential 

polynomial in f.  

 This improves our earlier result namely , 

Theorem 7:  No transcendental meromorphic function f with N(r, f) = S(r, f) can satisfy an equation of the form  

              0zafzafzfza 32

n

1       (1)  

where          





1i

1j

jji1 fM zafMf  and  0za,1n  is a differential polynomial in f of degree n and 

each Mi(f) is a monomial in f. 
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