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ABSTRACT: We prove a value distribution theorem for meromorphic functions having few poles, which 

improves several results of C.C.Yang and others.Also we obtain a generalized form of Clunie’s result. 

 

C. C. Yang [8] has stated the following. 

Theorem A Let f(z) be a transcendental meromorphic function with   N(r, f) = S(r, f).  

   If   P[f] =     n2n21n1

n a......fafaf        (1) 

Where each  fi  is a homogeneous differential polynomial in f of degree i, then 

    f,rS)f,r(nTfP,rT  . 

This result is required at a later stage and we prove the above theorem on the lines of  G. P. Barker and A. P. 

Singh [1].  

Proof we have, P[f] =      n2n21n1
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Now, since each  isfn a homogeneous differential polynomial in f of degree n,  

we have , 
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                     = S(r, f), using Milloux‟s  theorem [10].  

Hence m(r, Ai) = S(r, f), for i = 1,2, . . . ,n.  

Now on the circle |z | = r, let  
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        1OA,rmn]f[P,rm   

      f,rS]f[P,rm  . 

Thus, n m (r, f)  m (r, P([f]) + S(r, f).       (4) 

Adding n N(r, f) both sides and noting N(r, f) = S(r, f), we get,  

         nT(r, f)  m (r, P[f] ) + S(r, f).  

Or   n T (r, f)  T(r, P(f) ) + S(r, f)       (5) 
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Proceeding on induction, we have  

       )f,r(Sf,rmnfP,rm   

Therefore,  T(r, P[f] )  n m(r, f) + N(r, P[f] + S(r, f)  

But, N(r, P[f] ) = S(r, f), since N (r, f) = S(r, f).   

Hence, T(r, P[f] )  n T(r, f ) + S(r, f)       (6) 

From (5) and (6) we have the required result.  

 We wish to prove the following result 

Theorem 1 Let f(z) be a transcendental meromorphic function in the plane and    fQ  , fQ 21  be differential 

polynomials in f satisfying     .0fQ,0fQ 21  Let P(f) be as defined in (1).  

   If   F = P[f]    fQfQ 21  ,      (7) 
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To prove the above theorem, we require the following Lemmas. 

 

Lemma 1 [5]: If Q[f] is a differential polynomial in f with arbitrary meromorphic co-efficients 

,nj1,q j  then    
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Lemma 2 [5]:  Let    fQandfQ*
 denote differential polynomials  in f with arbitrary meromorphic co-
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This leads to a generalised  form of Clunie‟s result.  

Lemma 3 [5]: Suppose that M[f] is a monomial in f. If f has a pole at z = z0 of order m, then z0 is a pole of M[f] 

order (m-1) Mm  . 

Lemma 4 [5]:  Suppose that Q[f] is a differential polynomial in f. Let z0 be a pole of  f  of order m and not a 

zero or a pole of the co-efficients of Q[f]. Then z0 is a pole of Q[f] of order atmost m  QQQ    

Proof of Theorem 1 

 Let us suppose that 
2Qn  . 

 We have    F  = P[f] Q1 [f] + Q2 [f]  
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Hence, it follows that      f QfQ fP *         (8) 



On The Value Distribution of Some Differential Polynomials 

www.ijmsi.org                                               44 | P a g e  

where    
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We have by Lemma 2 and (8),  
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which is the required result. 
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which is the result of Zhan Xiaoping [9] 
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which implies 0)F,a(1  . 

Or     1)F,a(    for 0a  . 

Hence the result. 

Theorem 4 Let    fQfPF   where P[f] is as defined in (1) and Q[f] is a differential polynomial in f such that 
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Proof  Let G = F – a, where a(0) is a finite complex number. Then by Theorem 1, 

      f,rSf,rN
f

1
,rN

G

1
,rNf,rTn 

















  

Obviously, the zeros and poles of f are that of F respectively  

 Therefore,      f,rSF,rN
F

1
,rNf,rN

f

1
,rN 

















  

         Thus, n T(r, f)    f,rSF,rN
F

1
,rN

aF

1
,rN 



















  

              f,rSF,rT3   

Therefore,       r as  F,rTOf,rT  

      Also,       r as  f,rTOF,rT  

Hence the theorem follows.  

As an application of Theorem 1, we observe the following . 

Theorem 5  No transcendental meromorphic function f can satisfy an equation of the form   

      0afQafQ fPa 321  ,where  fP,0a,0a 31   is as in (1) and Q[f] is a differential 

polynomial  in f. 

Putting   nffP   in the above theorem, we have the following. 

Theorem 6  No transcendental meromorphic function f can satisfy an equation of the form  

0a]f[Qa]f[Qfa 32

n

1  ,where ,0a,0a 31  n is a positive integer and Q[f] is a differential 

polynomial in f.  

 This improves our earlier result namely , 

Theorem 7:  No transcendental meromorphic function f with N(r, f) = S(r, f) can satisfy an equation of the form  

              0zafzafzfza 32

n

1       (1)  

where          





1i

1j

jji1 fM zafMf  and  0za,1n  is a differential polynomial in f of degree n and 

each Mi(f) is a monomial in f. 

(Communicated to Indian journal of pure and applied mathematics) 
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