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We take a decision theoretical approach to fisheries management, using a Bayesian approach to integrate the uncertainty about stock
dynamics and current stock status, and express management objectives in the form of a utility function. The value of new information,
potentially resulting in new control measures, is high if the information is expected to help in differentiating between the expected
consequences of alternative management actions. Conversely, the value of new information is low if there is already great certainty
about the state and dynamics of the stock and/or if there is only a small difference between the utility attached to different potential
outcomes of the alternative management action. The approach can, therefore, help when deciding on the allocation of resources
between obtaining new information and improving management actions. In our example, we evaluate the value of obtaining hypothe-
tically perfect knowledge of the type of stock–recruitment function of the North Sea herring (Clupea harengus) population.
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Introduction
Fisheries management falls into the category of decision-making
under uncertainty. Inherent in such a task is the problem of invest-
ing in new information. How much will the new information
improve the performance of decision-making, and what is the
maximum price that should be paid for new information? The
problem of the value of information (VoI) has been recognized
and discussed in basic fisheries stock assessment textbooks
(Hilborn and Walters, 1992) and journal papers (e.g. Hansen
and Jones, 2008a), but examples where the VoI has been explicitly
quantified in a fisheries context are scarce. However, McDonald
and Smith (1997) provided a tutorial on the basic concepts, and
Kuikka et al. (1999) and Moxnes (2003) applied the approach in
the context of cod (Gadus morhua) management. Punt and
Smith (1999) also evaluated VoI, but neglected parameter uncer-
tainty and relative credibility of alternative model structures.

Quantifying the VoI is more common in fields of decision-
making under uncertainty other than fisheries. The concept of
the VoI belongs naturally to the theory of information economics,
a branch of microeconomic theory (Quirk, 1976). In practical
applications, the VoI has been studied, for example, in the
context of medical decision-making (Groot Koerkamp et al.,
2008; Singh et al., 2008), environmental health-risk management
(Yokota and Thompson, 2004a, b), and measuring the importance
of space-derived data for resource management (Macauley, 2006).

Our purpose here is to demonstrate the concept of the VoI in a
fishery decision-making context. We first introduce the concept

with the help of a theoretical example, then provide a more realis-
tic example of the VoI in knowing the functional form of the
stock–recruitment relationship (SRR) for North Sea herring
(Clupea harengus).

The value of information
The VoI assigns a numerical value to obtaining a particular form of
new knowledge. Most often, the value is understood as a measure
of the economic VoI, but there is no need to be so restrictive; any
quantitative measure of utility can be used, such as the number of
fish landed or a perception of happiness on a scale of 0–100. The
theoretical example below illustrates the concept.

An example: the value of perfect information
on the location of a fish population
The following example illustrates the calculation of VoI under the
framework of Bayesian decision analysis. For more details about
Bayesian decision analysis, see, for example, Raiffa (1968) and
McAllister and Pikitch (1997). Consider a situation in which a
population of 1000 fish moves between two habitats (e.g. offshore
and estuary) in such a manner that 80% of the population is
always in one of the two habitats. Further, assume that by
placing our fishing gear in the same habitat as the fish, we
would be able to catch the entire school present in that habitat.
Therefore, we have two alternative decisions to be made: DE,
fishing in the estuary, or DO, fishing offshore. Furthermore,
there are two possible states of nature: FE, where 80% of the fish
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are in the estuary, and FO, where 80% of the fish are offshore.
These alternatives result in four possible combinations leading
to different catches, which specify the utility function: C(FE,
DE) ¼ 800; C(FO, DE) ¼ 200; C(FE, DO) ¼ 200; and C(FO,
DO) ¼ 800.

Our problem is that we have imperfect information regarding
the location of the fish stock at the time we are going to fish.
Guided by our earlier experience, our expectations about the
location of the fish stock are represented by two probabilities:
P(FE) ¼ 0.7 and P(FO) ¼ 0.3. The expected utilities of the alterna-
tive decisions DE or DO are given as

EðCjDEÞ ¼ PðFEÞCðFE;DEÞ þ PðFOÞCðFO;DEÞ

¼ 0:7� 800þ 0:3� 200 ¼ 620; and

EðCjDOÞ ¼ PðFEÞCðFE;DOÞ þ PðFOÞCðFO;DOÞ ¼ 380:

Given this uncertainty and the objective to catch as many fish as
possible, the optimal decision would be to fish in the estuary
because that option has the highest expected utility.

What would be the value of a device that could tell us, without
error, whether most of the fish population is located offshore or
in the estuary, i.e. what would be the maximum price for such a
device? The device can be seen as a source of new information pro-
viding messages about the resource. Each alternative message poten-
tially has a different value, which could also be zero if the message
does not result in changed behaviour. The overall value of the infor-
mation source is the expected value of the message that would be
received. The first step will be to determine the optimal decision
in the absence of new information, which in this case is to choose
decision DE. The value of each message can then be calculated. In
this case, there are two possible messages to be received.

(i) mO, the fish are offshore. Because the device is assumed to
work without error, this information changes the knowledge
of the location of the fish, so that P(FEjmO) ¼ 0, and
P(FOjmO) ¼ 1. Consequently, the expected utilities of the
decisions will change to E(CjDE, mO) ¼ 200 and E(CjDO,
mO) ¼ 800, which means that the optimal decision changes
to DO. The value of the message is the difference between
the expected utilities of optimal decisions based on new infor-
mation and current information, respectively, i.e. L(mO) ¼
E(CjDO, mO) 2 E(CjDE, mO) ¼ 800 – 200 ¼ 600.

(ii) mE, the fish are in the estuary. Given this message, the prob-
abilities for the location of the majority of the fish population
change to P(FEjmE) ¼ 1 and P(FOjmE) ¼ 0, and the conse-
quent expected utilities are E(CjDE, mE) ¼ 800 and E(CjDO,
mE) ¼ 200. Therefore, the optimal decision does not
change, and the value of this message is zero, i.e. L(mE) ¼
E(CjDE, mE) 2 E(CjDE, mE) ¼ 800 – 800 ¼ 0.

Because we managed to identify a case in which ignoring the
message of the device would lead to a loss of expected utility,
the device will certainly have a non-zero value. The final step in
determining the VoI would be to assess the probabilities of the
alternative messages and to use them to calculate the expected
value of the next message from the device. In this case, the
device is assumed to indicate the location of the fish population
correctly. For example, when 80% of the population is offshore,
the device will give message mO with probability of 1. Therefore,
P(mO) ¼ P(FO) ¼ 0.3 and P(mE) ¼ P(FE) ¼ 0.7. The VoI for the

device can then be calculated as: VoI ¼ P(mO)L(mO) þ
P(mE)L(mE) ¼ 0.3 � 600 þ 0.7 � 0 ¼ 180.

As can be seen, the VoI depends on the current uncertainty.
This can be examined further by assessing the VoI as a function
of P(FE), the probability assigned to the state of nature in which
most of the fish are in the estuary. When P(FE) . 0.5, it is
optimal to fish in the estuary; otherwise, the optimal choice
would be to fish offshore. In this case, the VoI is highest (300)
for a person with most uncertainty, i.e. P(FE) ¼ 0.5, and zero for
a person who is already 100% sure of the state of nature
(Figure 1). Although any new information will obviously be
worthless for a person possessing perfect knowledge, it is not
necessarily the case that the VoI would peak at 0.5, because the
shape of the utility function, along with the uncertainty, also
plays a role in decision-making. For a theoretical example about
this, see the example about harvesting decisions in Quirk (1976).

A more realistic example: the stock–recruitment
dynamics of North Sea herring
The purpose of this example is to demonstrate the process of asses-
sing the VoI, or perfect knowledge, on the stock–recruitment
dynamics of a fish population. The example population is North
Sea herring, as defined by ICES, and we use the same datasets as
the ICES Herring Assessment Working Group South of 628N
(HAWG). In our example, though, the goal of the decision-maker
is to maximize the expected profit of the herring fishery over a
20-year period by decreasing or increasing fishing pressure relative
to the final year in the assessment time-series. Among other things,
uncertainty is thought to exist about the type of SRR, for which
two alternatives are considered: compensatory and over-
compensatory density-dependence in the survival of spawned
eggs (see also Nash et al., 2009). These alternatives are represented
with Beverton–Holt and Ricker stock–recruitment models,
respectively. The idea is to use existing knowledge and data to
derive the probabilities for these two alternative states of nature,
then to calculate the VoI for a research programme to remove
entirely any uncertainty about the true state of nature. In the

Figure 1. VoI for perfect knowledge of the location of a fish
population as a function of an initial degree of belief of the
hypothesis that the population is located in an estuary.
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spirit of the previous example, the research programme can be
seen as a device that can send two messages: mB – H, SRR is
Beverton–Holt; and mR, SRR is Ricker. The evaluation of the
VoI was implemented in the following steps.

1. A Bayesian probability model was constructed to describe the
population dynamics of North Sea herring. This model
included both stock–recruitment functions, with prior prob-
ability 0.5, respectively. The model was conditioned on catch
and survey datasets covering the period 1960–2003. As a
result, posterior probabilities for both stock–recruitment func-
tions were obtained as P(SRR is Beverton–Holt) ¼ 0.43, and
P(SRR is Ricker) ¼ 0.57. The results of this model run rep-
resent the current state of knowledge. See the Supplementary
material for details of the model.

2. The same model was fitted a second time to the same dataset, but
this time assuming that the stock–recruitment function was
known to be either Ricker or Beverton–Holt. The two model
runs represent the two hypothetical cases of having perfect infor-
mation about the form of the stock–recruitment function.

3. The population was projected forward for 20 years under each
of three knowledge scenarios: existing knowledge and the two
stock–recruitment functions. The joint posterior distribution
of the state of the population and population dynamics par-
ameters was used as a starting point for the forward projection.
Fishing mortality F was assumed to be changed by a multiplier
from the last year (2003) of the time-series, then held constant
for 20 years. For each knowledge scenario, F-multipliers X ¼
0.25, 0.5, . . ., 5 were used.

4. For each combination of knowledge scenario and X, the expected
value of the total profit was calculated by discounting future
profits annually by 5%. The fishing costs, the price of herring,
and the discount rate were taken from a paper by author MR,
currently submitted for consideration. As a result, the expected
utility could be presented as a function of change in F for each
knowledge scenario, and the optimal change could be deter-
mined for each case (Figure 2). Based on current knowledge,
the optimal choice is X ¼ 1.5; if Beverton–Holt and Ricker
were known to be true, the optimal choice would be X¼ 1.25
and X ¼ 1.75, respectively. The difference between the optimal
choices stems from the different shapes of the two functions,
which, in turn, will lead to different population projections.

5. The expected gain in knowing that the Beverton–Holt function
would be an appropriate description of the system dynamics was
calculated using the utility function of the corresponding scen-
ario and assessing the difference between the expected utility of
the optimal decision with and without the uncertainty:

LðmB�HÞ ¼ EðUjX ¼ 1:25;mB�HÞ � EðUjX ¼ 1:5;mB�HÞ:

ð1Þ

The same was done for the case of knowing that the Ricker
model would be “true”:

LðmRÞ ¼ EðUjX ¼ 1:75;mRÞ � EðUjX ¼ 1:5;mRÞ: ð2Þ

6. The VoI (in Norwegian currency, million NOK) was calculated
by averaging the expected gains of both knowledge scenarios,

using the posterior probabilities of them as weights.

VoI ¼ PðmB�HÞLðmB�HÞ þ PðmRÞLðmRÞ

¼ 0:43� 235þ 0:57� 243 � 240 million NOK: ð3Þ

The results from Step 4 indicate that, regardless of the form of
the stock–recruitment dynamics, it would be optimal to increase
fishing pressure from the 2003 level. Further, based on the utility
functions estimated in Step 4, it is possible to calculate the price of
ignoring the uncertainty about the stock–recruitment dynamics,
i.e. to evaluate the expected loss if one assumes that the form of
the stock–recruitment dynamics was known, when actually it is
not. The price is likely to be different for the adoption of different
stock–recruitment functions, so this approach could be used to
select which stock–recruitment function to use in management
advice if it is technically impossible to take account of the
actual uncertainty about the form of the stock–recruitment func-
tion. Such a price of “overconfidence” can be calculated as follows
for both stock–recruitment functions. If the Beverton–Holt
stock–recruitment function is assumed to be “true”, the
optimal change in F would be 1.25, but when uncertainty is
taken into account, the optimal change would be 1.5. The
expected loss of assuming the Beverton–Holt stock–recruitment
function to be correct can now be evaluated by comparing the uti-
lities of these two actions under actual uncertainty (the red line in
Figure 2):

EðUjX ¼ 1:25Þ � EðUjX ¼ 1:5Þ ¼ �159 million NOK: ð4Þ

If the Ricker function were adopted, the optimal change in F
would be 1.75, a value which should again be compared with

Figure 2. The expected utility of different changes in fishing
mortality F compared with that for 2003. The value of perfect
information about the SRR can be calculated by examining the
difference (blue lines) between the maximal expected utility under
current uncertainty and under both alternative states of nature. The
VoI is the weighted average of these differences, where the posterior
probabilities of the two states of nature are used as weights.
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the optimal choice under uncertainty:

EðUjX ¼ 1:75Þ � EðUjX ¼ 1:5Þ ¼ �260 million NOK: ð5Þ

The expected loss through ignoring the uncertainty and assum-
ing the Beverton–Holt function to be the “true” dynamics is
smaller than the loss expected if the Ricker function were
adopted, so advice based on the Beverton–Holt stock–recruit-
ment function would be the better choice if uncertainty cannot
be taken into account.

To conclude in terms of the VoI analysis in this example, it is
possible to state that:

1. After quantifying the current uncertainty, it is optimal to
behave accordingly.

2. If the current uncertainty cannot be taken into account for
some reason, the next best option would be to assume that
the Beverton–Holt dynamics are correct. One would then
expect to lose 159 million NOK compared with the case
where uncertainty is taken into account.

3. Better knowledge of the form of the stock–recruitment
dynamics would lead to changes in optimal behaviour, so the
information has a non-zero value. The value of perfect infor-
mation is 240 million NOK, the maximum price to pay for
such information. It is also certain that information leading
to better, but imperfect, knowledge is valuable, but the value
is less than the value of perfect information.

Discussion
We have demonstrated that a VoI analysis can be performed in a
fishery decision-making context when using a complex population
model including structural uncertainty. The VoI analysis can be
performed on any uncertain quantity that is included explicitly
in a probability model which describes the current knowledge of
the current state and dynamics of a fishery system. Therefore,
the concept should be useful in decision-making at all levels,
from an individual fisher to international communities who
make decisions and plan and fund research activities. The VoI
analysis provides a clear comparison between the consequences
of management actions and decisions to obtain more information,
because the VoI is expressed on the same scale as the objectives the
manager is trying to achieve. Systematic analysis of VoI would
provide a way of finding the most critical uncertainties from a
decision-making perspective. As we demonstrated here, the steps
needed to obtain the VoI also produce results that can be used
to calculate the price of overconfidence, the expected loss of ignor-
ing the uncertainty that admittedly exists. Such an approach might
be helpful when trying to simplify a complex model structure so
that it can be used in practice. As intentional simplification of a
model for a system known to be more complex typically leads to
overconfidence about the state of the system and model par-
ameters, the process of simplification could be guided by the
goal of trying to minimize the price of overconfidence. The simpli-
fied model with artificial certainty would still work similarly to the
more realistic model. A similar procedure has also been suggested
by Morgan and Henrion (1990), who calculated the expected value
of ignoring uncertainty.

Although the concept of VoI is very useful as such, its credible
quantification requires much multidisciplinary work. The first

requirement is the quantification of knowledge of the dynamics
and current state of the fishery. This includes the dynamics of
the fish population as well as fleet behaviour. To calculate the
VoI, current knowledge needs to be expressed as probability state-
ments, implying that a Bayesian approach to stock assessment
(McAllister and Kirkwood, 1998) is crucial. In this paper, we con-
sidered the potential reduction in structural uncertainty. This
uncertainty was taken into account using Bayesian model aver-
aging (BMA; e.g. Hoeting et al., 1999), a method for Bayesian
model selection. BMA aims at calculating the posterior probabil-
ities of different structures given prior knowledge and observed
data. All models are used simultaneously using the posterior prob-
abilities as weights. Posterior probabilities are related to the Bayes
factor, which states the relative weight of evidence (interpreted
from data) in favour of one model over another. If prior probabil-
ities of the two models are equal, the Bayes factor is simply the
ratio of the posterior probabilities.

Typically, fishing is an economic activity, which means that the
objectives of fishery management include, inter alia, economic
goals. A challenge is to formulate economic and other goals in a
single mathematical function, which can be used to define
optimal decisions and evaluate the VoI. It is not, at least tradition-
ally, a scientist’s responsibility to determine the goals of manage-
ment, but it is a scientific task to elicit the preferences of
decision-makers and to translate them into a mathematical
representation.

The economic part of a system’s dynamics is also likely to
include great uncertainty (future fuel price, the price elasticity of
fish, etc.), and these uncertainties have to be stated in the form
of probability statements to evaluate the VoI. One of the results
of the analysis could be that surveys to help predict the price of
fish would have greater VoI than surveys to estimate the number
of fish present.

In addition to demanding practical implementation, the
concept of VoI might be philosophically criticized from several
perspectives. For example, in our case study of North Sea
herring, we assumed uncertainty about the true form of the
stock–recruitment dynamics and provided two simple alterna-
tives. In our example, we hypothesized that we could obtain
perfect information about which functional form was correct,
but strictly speaking, this was impossible because nature is not a
mathematical model. Therefore, our analysis is only valid in a
“computer game scenario”, in which we cast our understanding
about a biological process in a mathematical framework where
each biological hypothesis is represented by a single mathematical
model and where only one is considered true. Of course, the same
criticism applies to any type of assessment, including mathemat-
ically modelling natural processes; none of the models can be
true outside the computer game scenario. It should be noted
that VoI for a data-collection programme could be evaluated
without the philosophical problem of perfect information. The
potential new survey can be included into the probability model,
and the VoI evaluated by integrating the posterior distributions
obtained after assuming perfect knowledge of the survey data.

Another problem with the concept of VoI may arise from the
fact that the value of improved knowledge can only be evaluated
based on hypotheses considered to be feasible and included in
the probability model. This means that a VoI for research pro-
grammes that may generate new hypotheses about causal relation-
ships cannot be quantified. The VoI can be evaluated only for
information sources that help in distinguishing between
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hypotheses considered possible. Of course, the same shortcoming
applies to any modelling task; one cannot model something not
considered potentially existing when the model is constructed.

Our analysis concentrated on the hypothetical situation that
perfect knowledge of the model structure could be obtained.
Analysis of imperfect knowledge would proceed with the same
logic, but instead of assuming that new knowledge would update
the probability of the correct model equalling 1, the probability
would be increased based on the assumed likelihood function
obtained from the new research (McDonald and Smith, 1997).

It should be noted that VoI does not have one universally true
value to be found by science. Instead, it is, by definition, a subjec-
tive quantity that measures the VoI perceived by a particular
person or group. This is because VoI depends on three subjective
elements: (i) knowledge of the current state and dynamics of the
system, (ii) the utility function which states the objectives of the
decision making, and (iii) the selection of potential management
actions considered. Elements (ii) and (iii) typically depend on pol-
itical decisions, and Element (i) is the result of scientific reasoning.
It can be argued that one objectively true value exists for the state
of nature at any given point in time, but it is the uncertainty about
that true state which inevitably remains subjective. The Bayesian
approach for dealing with this uncertainty is to describe the uncer-
tainty with probability statements, where the probability is under-
stood as a personal degree of belief (Ramsey, 1926; Savage, 1954;
de Finetti, 1975). Therefore, there are no universally true values
for the Bayesian probabilities (Nau, 2001; O’Hagan et al., 2006).
There are three kinds of probability statement necessary within
the Bayesian stock assessment: the degree of belief about (i) the
model parameters and initial state of the system (the prior), (ii)
the state of the system, given the previous state (population
model), and (iii) the observable data (observation model), given
the state of the system (Buckland et al., 2007). All these marginal
and conditional probability statements are derived from current
understanding of the system. This also includes the observation
model, which defines the likelihood function together with the
population dynamics model and, thereby, serves as a predefined,
subjective logic for interpreting the observations and updating
the prior beliefs.

The Bayesian approach has been criticized because it explicitly
includes subjective elements. It is generally thought that the use of
prior knowledge of the parameters (and about the initial state)
renders the analysis subjective, which has led some authors to
suggest that the Bayesian analysis could be made objective
through using minimally informative, vague, prior distributions
(Munch et al., 2005; Berger, 2006). However, the use of a vague
distribution does not change the interpretation of the probability
as a degree of belief, it only states that “I do not know anything a
priori”, which is also a subjective statement. The observation and
population models are also subjective choices of the analyst,
based on current understanding of the system. Therefore,
interpretation of the objective facts (the data) is subjective. Of
course, this is not a privileged property of the Bayesian approach;
the same argument applies to any modelling that includes a like-
lihood function or other similar human choices (Savage, 1954;
Dennis, 1996).

The common recipe of using vague priors is problematic when
analysing VoI. If the population dynamics model is based on bio-
logical knowledge of the species, the parameters of the model
should have a clear biological interpretation. Before seeing any tra-
ditional stock assessment data, a fishery expert needs to be able to

identify parameter values more credible than other values. If such
existing knowledge is intentionally withheld by the use of vague
priors in the analysis of VoI, the value of new information is over-
estimated because current uncertainty is overestimated. The result
of analysis would then show that more funds than necessary
should be directed to new research. The opposite would happen
if variables known to be uncertain were treated as factual (e.g.
natural mortality rate M ¼ 0.2). Therefore, it would be in the
best interests of those who would pay for the new research that
existing knowledge be taken into account in the analysis of VoI
as honestly informative priors. To help the evaluation of the
extent of prior information included and ignored, we suggest
developing standardized ways of reporting the sources of
information used in Bayesian stock assessment (see the
Supplementary material for an example).

The concept of VoI is potentially most useful when analysed
jointly with the value of control (VoC). Analogous to VoI, VoC
is the increase in expected utility that would result from obtaining
control of a variable that is currently uncontrollable. Comparison
of VoI and VoC can be used to distribute limited resources
between management actions and gathering new information.
These concepts were utilized by Varis et al. (1990), who demon-
strated in a water-quality decision analysis that the most
risk-averse strategy was to invest mainly in management actions
rather than monitoring, because only management actions
improved the state of the system. Similar types of analysis have
been done in fisheries science, but without explicit consideration
of VoI and VoC (e.g. Hansen and Jones, 2008a, b).

Supplementary material
Supplementary material is available at ICESJMS online to cover
the basic stock assessment model for North Sea herring. Among
others, two references are used only in the Supplementary material
(Carlin and Chib, 1995; Gilks et al., 1996), but for the sake of com-
pleteness of referencing of the whole document here, both are
listed below.
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