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Abstract

We consider the revenue-maximization problem for a seller with an
unlimited supply of identical goods, interacting sequentially with a popu-
lation of n buyers through an on-line posted-price auction mechanism, a
paradigm which is frequently available to vendors selling goods over the
Internet. For each buyer, the seller names a price between 0 and 1; the
buyer decides whether or not to buy the item at the specified price, based
on her privately-held valuation. The price offered is allowed to vary as the
auction proceeds, as the seller gains information from interactions with
the earlier buyers.

The additive regret of a pricing strategy is defined to be the difference
between the strategy’s expected revenue and the revenue derived from
the optimal fixed-price strategy. In the case where buyers’ valuations
are independent samples from a fixed probability distribution (usually
specified by a demand curve), one can interpret the regret as specifying
how much the seller should be willing to pay for knowledge of the demand
curve from which buyers’ valuations are sampled.

The answer to the problem depends on what assumptions one makes
about the buyers’ valuations. We consider three such assumptions: that
the valuations are all equal to some unknown number p, that they are
independent samples from an unknown probabilility distribution, or that
they are chosen by an oblivious adversary. In each case, we derive upper
and lower bounds on regret which match within a factor of log n; the
bounds match up to a constant factor in the case of identical valuations.
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1 Introduction

The rising popularity of Internet commerce has spurred much recent research on
market mechanisms which were either unavailable or impractical in traditional
markets, because of the amount of communication or computation required.
We consider one such mechanism, the on-line posted-price auction, in which a
seller with an unlimited supply of identical goods interacts sequentially with a
population of n buyers. For each buyer, the seller names a price between 0 and
1; the buyer then decides whether or not to buy the item at the specified price,
based on her privately-held valuation for the good. This transaction model is
dictated by the following considerations:

• Following earlier authors [5], [7], [8], [13], we are interested in auction
mechanisms which are strategyproof, meaning that buyers weakly max-
imize their utility by truthfully revealing their preferences. As shown
in [5], this requirement in the on-line auction setting is equivalent to re-
quiring that the seller charge buyer i a price which depends only on the
valuations of previous buyers.

• Given that the price offered to buyer i does not depend on any input from
that buyer, it is natural for the seller to announce this price before the
buyer reveals any preference information. In fact, for reasons of trust, the
buyers may not want to reveal their preferences before an offer price is
quoted [6].

• For privacy reasons, the buyers generally do not wish to reveal any prefer-
ence information after the price is quoted either, apart from their decision
whether or not to purchase the good. Also, buyers are thus spared the
effort of precisely determining their valuation, since the mechanism only
requires them to determine whether it is greater or less than the quoted
price.

The seller’s pricing strategy will tend to converge to optimality over time,
as she gains information about how the buyers’ valuations are distributed. A
natural question which arises is: what is the cost of not knowing the distribu-
tion of the buyers’ valuations in advance? In other words, assume our seller
pursues a pricing strategy S which maximizes her expected revenue ρ(S). As is
customary in competitive analysis of auctions, we compare ρ(S) with the rev-
enue ρ(Sopt) obtained by a seller who knows the buyers’ valuations in advance
but is constrained to charge the same price to all buyers ([5],[6],[7],[8]). While
previous authors have analyzed auctions in terms of their competitive ratio (the
ratio between ρ(S) and ρ(Sopt)), we instead analyze the additive regret, i.e. the
difference ρ(S) − ρ(Sopt). This is a natural parameter to study for two rea-
sons. First, it roughly corresponds to the amount the seller should be willing
to pay to gain knowledge of the buyers’ valuations, e.g. by doing market re-
search. Second, it was shown by Blum et al in [6] that there are randomized
pricing strategies achieving competitive ratio 1 + ε for any ε > 0; thus it is



natural to start investigating the lower-order terms, i.e. the o(1) term in the
ratio ρ(S)/ρ(Sopt) for the optimal pricing strategy S.

One can envision several variants of this problem, depending on what as-
sumptions are made about the buyers’ valuations. We will study three valuation
models.

Identical: All buyers’ valuations are equal to a single price p ∈ [0, 1]. This
price is unknown to the seller.

Random: Buyers’ valuations are independent random samples from a fixed
probability distribution on [0, 1]. The probability distribution is not known
to the seller.

Worst-case: The model makes no assumptions about the buyers’ valuations.
They are chosen by an adversary who is oblivious to the algorithm’s ran-
dom choices.

Our results are summarized in the following three theorems. In all of them,
the term “pricing strategy” refers to a randomized on-line algorithm for choosing
offer prices, unless noted otherwise.

Theorem 1.1. Assuming identical valuations, there is a deterministic pricing
strategy achieving regret O(log log n). No pricing strategy can achieve regret
o(log log n).

Theorem 1.2. Assuming random valuations, there is a pricing strategy achiev-
ing regret O(

√
n log n), under the hypothesis that the function

f(x) = x · Pr(buyer’s valuation is ≥ x)

has a unique global maximum x∗ in the interior of [0, 1], and that f ′′(x∗) < 0.
No pricing strategy can achieve regret o(

√
n), even under the same hypothesis

on the distribution of valuations.

Theorem 1.3. Assuming worst-case valuations, there is a pricing strategy
achieving regret O((n2/3(log n)1/3). No pricing strategy can achieve regret o(n2/3).

The lower bound in the random-valuation model is the most difficult of the
results stated above, and we believe it is this paper’s main contribution. No
such bound was known previously, and our proof introduces novel techniques
which we believe may be applicable elsewhere. Moreover, our lower bound does
not rely on constructing a contrived demand curve to defeat a given pricing
strategy. Rather, we will show that for any family D of demand curves satisfying
some reasonably generic axioms, and for any randomized pricing strategy, the
probability of achieving expected regret o(

√
n) when the demand curve is chosen

randomly from D is zero. Note the order of quantification here, which differs
from

√
n lower bounds which have appeared in the literature on the closely-

related multi-armed bandit problem. In those theorems it was shown that, given
foreknowledge of n, one could construct a random sequence of payoffs forcing



any strategy to have expected regret Ω(
√
n). In our theorem, the demand curve

is chosen randomly without foreknowledge of n or of the pricing strategy, and
it is still the case that the probability of the strategy achieving regret o(

√
n) is

zero.

1.1 Related work

There has been much recent activity applying notions from the theory of algo-
rithms to the analysis of auction mechanisms. While much of this work focuses
on combinatorial auctions — a subject not touched on here — there has also
been a considerable amount of work on auction mechanisms for selling identical
individual items, the setting considered in this paper. In [7], [8], the authors
consider mechanisms for off-line auctions, i.e. those in which all buyers reveal
their valuations before any goods are sold. The authors characterize mecha-
nisms which are truthful (a term synonymous with “strategyproof”, defined
above), and show that no such mechanism can be constant-competitive with
respect to the optimal single-price auction, assuming worst-case valuations. In
contrast, they present several randomized off-line auction mechanisms which are
truthful and constant-competitive with respect to the optimal auction which is
constrained to set a single price and to sell at least two copies of the good.

On-line auctions were considered in [5], [6], in the posted-price setting con-
sidered here as well as the setting where buyers reveal their valuations but are
charged a price which depends only on the information revealed by prior buyers.
In the latter paper, techniques from machine learning theory are applied to yield
a (1 + ε)-competitive on-line mechanism (for any ε > 0) under the hypothesis
that the optimal single-price auction achieves revenue Ω(h log h log log h), where
[1, h] is the interval to which the buyers’ valuations belong. In Section 4.1, we use
their algorithm (with a very minor technical modification) to achieve expected
regret O(n2/3(log n)1/3) assuming worst-case valuations.

An interesting hybrid of the off-line and on-line settings is considered by
Hartline in [9]. In that paper, the mechanism interacts with the set of buyers
in two rounds, with prices in the second round influenced by the preferences
revealed by buyers in the first round. Assuming the set of buyers participating
in the first round is a uniform random subset of the pool of n buyers, the paper
exhibits a posted-price mechanism which is 4-competitive against the optimal
single-price auction.

On-line multi-unit auctions (in which buyers may bid for multiple copies of
the item) are considered in [4], which presents a randomized algorithm achieving
competitive ratio O(logB) where B is the ratio between the highest and lowest
per-unit prices offered. This result is sharpened in [10], where the optimal
competitive ratio (as a function of B) is determined exactly.

The preceding papers have all adopted the worst-case model for buyers’ val-
uations, as is customary in the computer science literature. The traditional ap-
proach in the economics literature (e.g. [12]) is to assume that buyers’ valuations
are i.i.d. samples from a known probability distribution. Our random-valuations
model occupies a middle ground between these two sets of assumptions, in that



the i.i.d. hypothesis is preserved but the probability distribution (i.e. the de-
mand curve) is unknown to the seller. The same set of hypotheses is made by Ilya
Segal in [13], a paper which considers strategyproof off-line multi-unit auction
mechanisms. (A multi-unit auction is one in which buyers may purchase more
than one copy of the good.) Segal compares the expected regret of the optimal
strategyproof off-line mechanism with that of the optimal on-line posted-price
mechanism (which he calls the “optimal experimentation mechanism”) under
three assumptions on the space D of possible demand curves:

• D is a finite set (“Hypothesis testing”);

• D is parametrized by a finite-dimensional Euclidean space (“Parametric
estimation”);

• D is arbitrary (“Non-parametric estimation”).

In this terminology, our paper is concerned with bounding the expected regret
of the optimal experimentation mechanism in the non-parametric case. Segal
explicitly refrains from addressing this case, writing, “The optimal experimen-
tation mechanism would be very difficult to characterize in [the non-parametric]
setting. Intuitively, it appears that its convergence rate may be slower [than
that of the optimal off-line mechanism] because the early purchases at prices
that are far from p∗ will prove useless for fine-tuning the price around p∗.” This
intuition is confirmed by the lower bound we prove in Section 3.2.

Our work is also closely tied to the literature on the so-called “multi-armed
bandit problem,” in which a gambler in a casino with K slot machines must
decide which machine to play in a sequence of n trials, basing his decisions on
the payoffs observed in prior trials. As in our auction problem, the regret is
defined as the difference between the gambler’s expected net payoff and the net
payoff obtained from the best single action (slot machine) over the sequence of
n trials.

In their pioneering work on the multi-armed bandit problem, Lai and Rob-
bins [11] assumed that for each action, the payoffs on each of the n trials are i.i.d.
random variables, but the distribution of the payoff variable varies from one ac-
tion to another. Under this hypothesis, they exhibited an algorithm achieving
expected regret O(log n) as n→∞, and proved that this is the optimal regret,
up to constant factors. Auer et al [2] sharpened this analysis to obtain explicit
regret bounds which hold for finite n.

If we view each potential offer price in [0, 1] as a slot machine with random
payoff, then our on-line posted-price auction problem (in the random-valuations
model) becomes a special case of the “continuum-armed bandit problem”, i.e.
the variant of the multi-armed bandit problem in which there is an uncountable
set of slot machines indexed by a real parameter t, with the expected reward
depending continuously on t. This problem is considered by Agrawal in [1], who
describes an algorithm achieving regret O(n3/4+ε) in the case that the expected
reward is a differentiable function of t. (The paper also gives a regret bound
under a weaker continuity hypothesis on the expected reward, but it is more



difficult to state.) Our upper bound of O(
√
n log n) in the random-valuations

model is better than the one obtained by applying Agrawal’s algorithm, as might
be expected because our auction problem is a highly-specific special case of the
continuum-armed bandit problem. However, our lower bound of O(

√
n) for the

random-valuations model directly implies the same lower bound for Agrawal’s
continuum-armed bandit problem. This answers a question left open at the end
of [1], when Agrawal writes, “We do not have any tighter bounds on the learning
loss other than those available for the finite case,” referring to the Ω(log n) lower
bound proved by Lai and Robbins. Our paper is thus the first demonstration of
an exponential separation between the expected regret when the set of possible
actions is finite and when it is infinite.

In [3], the multi-armed bandit problem is studied from an adversarial per-
spective, parallel to our worst-case valuation model. The authors present an al-
gorithm achieving expected regret O(

√
nK logK) and a nearly-matching lower

bound of Ω(
√
nK) for this problem. Their algorithm forms the basis for the on-

line posted-price auction algorithms in [6] and in Section 4.1 of this paper, and
our lower-bound proof in the worst-case model (Theorem 4.3) is an adaptation
of their lower-bound proof.

We would like to elucidate the difference between the lower bound for regret
appearing in [3] and the lower bound presented here in the random-valuations
model (Theorem 3.9). In both constructions, the rewards are i.i.d. random
variables whose distribution is also random, and the theorem establishes that
for any strategy the expected regret is Ω(

√
n), where the expectation is over the

random choices of both the distribution and of the rewards themselves. How-
ever, in our random-valuations lower bound we define regret as the difference in
expected payoff between the on-line pricing strategy and the optimal strategy
which has foreknowledge of the demand curve but not of the individual buyers’
valuations. This definition of regret accords with the definition adopted in pa-
pers studying the multi-armed bandit problem with i.i.d. random rewards (e.g.
[1], [11]) and differs from the definition of regret adopted in [3], namely the
difference in expected payoff between the on-line strategy and the ex post opti-
mal single action. Because we choose to measure regret relative to the ex ante
rather than the ex post optimal strategy, a subtler analysis is required. In [3],
the lower bound comes from constructing a counterexample in which the reward
distribution is so close to uniform that it is information-theoretically impossible,
in n trials, to learn which of the possible reward distributions is generating the
payoffs. More precisely, there is no sequence of n experiments such that an ob-
server, after seeing the outcomes of the n experiments and being asked to guess
which reward distribution is generating the payoffs, could outperform a random
guesser by more than a constant factor. In our random-valuations model, it may
be possible in some cases to gain rather precise information on which reward
distribution is generating the payoffs in the course of n trials, but the process
of gaining such knowledge will generally require offering prices which are too
far from the optimal price, thereby incurring a cost of Ω(

√
n) in the process of

learning this information. (This is a nice illustration of the trade-off between
exploration and exploitation.) The difference between the two lower bounds is



most clearly illustrated by considering the case in which the algorithm is allowed
to engage in an initial n trials using “play money,” and is then judged in terms
of the expected regret incurred in the course of the subsequent n trials. The ex-
ample which furnishes the lower bound in [3] has the property that no strategy
could take advantage of the n free trials to achieve o(

√
n) expected regret on

the following n trials. In contrast, the example furnishing our
√
n lower bound

in Section 3.2 has the property that there exist pricing strategies which can take
advantage of the n free trials and achieve O(1) expected regret on the following
n trials, yet it is impossible to achieve o(

√
n) regret on the first n trials.

2 Identical valuations

2.1 Upper bound

When all buyers have the same valuation p ∈ [0, 1], the situation is completely
different from the scenarios considered above, because there is no randomness in
the buyer’s response. Every response gives the seller perfect information about
a lower or upper bound on p, depending on whether the buyer’s response was
to accept or to reject the price offered.

A pricing strategy S which achieves regret O(log log n) may be described as
follows. The strategy keeps track of a feasible interval [a, b], initialized to [0, 1],
and a precision parameter ε, initialized to 1/2. In a given phase of the algorithm,
the seller offers the prices a, a + ε, a + 2ε, . . . until one of them is rejected. If
a+kε was the last offer accepted in this phase, then [a+kε, a+(k+1)ε] becomes
the new feasible interval, and the new precision parameter is ε2. This process
continues until the length of the feasible interval is less than 1/n; then the seller
offers a price of a to all remaining buyers.

Theorem 2.1. Strategy S achieves regret O(log log n).

Proof. The number of phases is equal to the number of iterations of repeated
squaring necessary to get from 1/2 to 1/n, i.e. O(log log n). Let p denote the
valuation shared by all buyers. The seller accrues regret for two reasons:

• Items are sold at a price q < p, accruing regret p− q.

• Buyers decline items, accruing regret p.

At most one item is declined per phase, incurring p < 1 units of regret, so the
declined offers contribute O(log log n) to the total regret.

In each phase except the first and the last, the length b − a of the feasible
interval is

√
ε (i.e. it is the value of ε from the previous phase), and the set of

offer prices carves up the feasible interval into subintervals of length ε. There
are 1/

√
ε such subintervals, so there are at most 1/

√
ε offers made during this

phase. Each time one of them is accepted, this contributes at most b− a =
√
ε

to the total regret. Thus, the total regret contribution from accepted offers
in this phase is less than or equal to (1/

√
ε) ·
√
ε = 1. There are O(log log n)



phases, so the total regret contribution from accepted offers in these phases is
also O(log log n).

In the final phase, the length of the feasible interval is less than 1/n, and
each offer is accepted. There are at most n such offers, so they contribute at
most 1 to the total regret.

2.2 Lower bound

Theorem 2.2. If S is any randomized pricing strategy, and p is randomly
sampled from the uniform distribution on [0, 1], the expected regret of S when
the buyers’ valuations are p is Ω(log log n).

Proof. It suffices to prove the lower bound for a deterministic pricing strategy
S, since any randomized pricing strategy is a probability distribution over de-
terministic ones. At any stage of the game, let a denote the highest price that
has yet been accepted, and b the lowest price that has yet been declined; thus
p ∈ [a, b]. As before, we will refer to this interval as the feasible interval. It is
counterproductive to offer a price less than a or greater than b, so we may as-
sume that the pricing strategy works as follows: it offers an ascending sequence
of prices until one of them is declined; it then limits its search to the new fea-
sible interval, offering an ascending sequence of prices in this interval until one
of them is declined, and so forth.

Divide the pool of buyers into phases (starting with phase 0) as follows:
phase k begins immediately after the end of phase k − 1, and ends after an
addtional 22k − 1 buyers, or after the first rejected offer following phase k − 1,
whichever comes earlier. The number of phases is Ω(log log n), so it suffices to
prove that the expected regret in each phase is Ω(1).

Claim 2.3. Let Ik denote the set of possible feasible intervals at the start of
phase k. The cardinality of Ik is at most 22k

.

Proof. The proof is by induction on k. The base case k = 0 is trivial. Now
assume the claim is true for a particular value of k, and let Let Ik = [ak, bk]
be the feasible interval at the start of phase k. Let x1 ≤ x2 ≤ · · · ≤ xj denote
the ascending sequence of prices that S will offer during phase k if all offers are
accepted. (Here j = 22k−1.) Then the feasible interval at the start of phase k+
1 will be one of the subintervals [ak, x1], [x1, x2], [x2, x3], . . . , [xj−1, xj ], [xj , bk].
There are at most j = 22k

such subintervals, and at most 22k

possible choices
for Ik (by the induction hypothesis), hence there are at most 22k+1

elements of
Ik+1.

Claim 2.4. Let |I| denote the length of an interval I. With probability at least
3/4, |Ik| ≥ 1

4 · 2
−2k

.

Proof. The expectation of 1/|Ik| may be computed as follows:

E(1/|Ik|) =
∑
I∈Ik

Pr(p ∈ I)(1/|I|) =
∑
I∈Ik

|I|/|I| =
∑
I∈Ik

1 ≤ 22k

,



where the last inequality follows from Claim 2.3. Now use Markov’s Inequality:

Pr(|Ik| <
1
4
· 2−2k

) = Pr(1/|Ik| > 4 · 22k

) < 1/4.

Claim 2.5. The expected regret in phase k is at least 1
64 .

Proof. Let Ek denote the event that p ≥ 1/4 and |Ik| ≥ 1
4 · 2

−2k

. This is the
intersection of two events, each having probability ≥ 3/4, so Pr(Ek) ≥ 1/2. It
suffices to show that the expected regret in phase k, conditional on Ek, is at
least 1/32. So from now on, assume that p ≥ 1/4 and |Ik| ≥ 1

4 · 2
−2k

.
Let m denote the midpoint of Ik. As before, let j = 22k − 1 and let x1 ≤

x2 ≤ · · · ≤ xj denote the ascending sequence of prices which S would offer in
phase k if no offers were rejected. We distinguish two cases:

Case 1: xj ≥ m. With probability at least 1/2, p < m and the phase ends in
a rejected offer, incurring a regret of p, which is at least 1/4. Thus the
expected regret in this case is at least 1/8.

Case 2: xj < m. The event {p > m} occurs with probability 1/2, and con-
ditional on this event the expectation of p − m is |Ik|/4 ≥ 2−2k

/16.
Thus with probability at least 1/2, there will be 22k − 1 accepted of-
fers, each contributing 2−2k

/16 to the expected regret, for a total of
(22k − 1)(2−2k

)/16 ≥ 1/32.

Thus there are Ω(log log n) phases, each contributing Ω(1) to the expected
regret of S, which establishes the theorem.

3 Random valuations

3.1 Preliminaries

In this section we will consider the case each buyer’s valuation v is an indepen-
dent random sample from a fixed but unknown probability distribution on [0, 1].
It is customary to describe this probability distribution in terms of its demand
curve

D(x) = Pr(v ≥ x).

Given foreknowledge of the demand curve, but not of the individual buyers’
valuations, it is easy to see what the optimal pricing strategy would be. The
expected revenue obtained from setting price x is xD(x). Since buyers’ valua-
tions are independent and the demand curve is known, the individual buyers’



responses provide no useful information about future buyers’ valuations. The
best strategy is thus to compute

x∗ = arg max
x∈[0,1]

xD(x)

and to offer this price to every buyer. We denote this strategy by S∗, and its
expected revenue by ρ(S∗). Clearly, for any on-line pricing strategy S, we have

ρ(S) ≤ ρ(S∗) ≤ ρ(Sopt),

and it may be argued that in the context of random valuations it makes the most
sense to compare ρ(S) with ρ(S∗) rather than ρ(Sopt). We address this issue by
proving a lower bound on ρ(S∗)− ρ(S) and an upper bound on ρ(Sopt)− ρ(S).

A deterministic pricing strategy can be specified by a sequence of rooted
planar binary trees T1, T2, . . ., where the n-th tree specifies the decision tree
to be applied by the seller when interacting with a population of n buyers.
(Thus Tn is a complete binary tree of depth n.) We will use a to denote a
generic internal node of such a decision tree, and ` to denote a generic leaf. The
relation a ≺ b will denote that b is a descendant of a; here b may be a leaf or
another internal node. If e is an edge of T , we will also use a ≺ e (resp. e ≺ a)
to denote that e is below (resp. above) a in T , i.e. at least one endpoint of e is
a descendant (resp. ancestor) of a. The left subtree rooted at a will be denoted
by Tl(a), the right subtree by Tr(a). Note that Tl(a) (resp. Tr(a)) includes the
edge leading from a to its left (resp. right) child.

The internal nodes of the tree are labeled with numbers xa ∈ [0, 1] denoting
the price offered by the seller at node a, and random variables va ∈ [0, 1] denot-
ing the valuation of the buyer with whom the seller interacts at that node. The
buyer’s choice is represented by a random variable

χa =
{

1 if va ≥ xa
0 if va < xa

.

In other words, χa is 1 if the buyer accepts the price offered, 0 otherwise.
The tree Tn specifies a pricing strategy as follows. The seller starts at the

root r of the tree and offers the first buyer price xr. The seller moves from
this node to its left or right child depending on whether the buyer declines or
accepts the offer, and repeats this process until reaching a leaf which represents
the outcome of the auction.

A strategy as defined above is called a non-uniform deterministic pricing
strategy. A uniform deterministic pricing strategy is one in which there is a single
infinite tree T whose first n levels comprise Tn for each n. (This corresponds
to a pricing strategy which is not informed of the value of n at the outset of
the auction.) A randomized pricing strategy is a probability distribution over
deterministic pricing strategies.

As mentioned above, the outcome of the auction may be represented by a leaf
` ∈ Tn, i.e. the unique leaf such that for all ancestors a ≺ `, ` ∈ Tr(a)⇔ χa = 1.
A probability distribution on the buyers’ valuations va induces a probability



distribution on outcomes `. We will use pD(`) to denote the probability assigned
to ` under the valuation distribution represented by demand curve D. For
an internal node a, pD(a) denotes the probability that the outcome leaf is a
descendant of a. We define pD(e) similarly for edges e ∈ T .

3.2 Lower bound

3.2.1 A family of random demand curves

The demand curves D appearing in our lower bound will be random samples
from a space D of possible demand curves. In this section we single out a partic-
ular random demand-curve model, and we enumerate the properties which will
be relevant in establishing the lower bound. The choice of a particular random
demand-curve model is done here for ease of exposition, and not because of a
lack of generality in the lower bound itself. In Section 3.2.6 we will indicate that
Theorem 3.9 applies to much broader classes D of demand curves. In particular
we believe that it encompasses random demand-curve models which are realistic
enough to be of interest in actual economics and e-commerce applications.

For now, however, D denotes the one-parameter family of demand curves
{Dt : 0.3 ≤ t ≤ 0.4} defined as follows. Let

D̃t(x) = max
{

1− 2x,
2t− x

7t2
,

1− x
2

}
.

In other words, the graph of D̃t consists of three line segments: the middle
segment is tangent to the curve xy = 1/7 at the point (t, 1/7t), while the left and
right segments belong to lines which lie below that curve and are independent
of t. Now we obtain Dt by smoothing D̃t. Specifically, let b(x) be a non-
negative, even C∞ function supported on the interval [−0.01, 0.01] and satisfying∫ 0.01

−0.01
b(x) dx = 1. Define Dt by convolving D̃t with b, i.e.

Dt(x) =
∫ ∞
−∞

D̃t(y)b(x− y)dy.

We will equip D = {Dt : 0.3 ≤ t ≤ 0.4} with a probability measure by specifying
that t is uniformly distributed in [0.3, 0.4].

Let x∗t = arg maxx∈[0,1] xDt(x). It is an exercise to compute that x∗t = t.
(With D̃t in place of Dt this would be trivial. Now Dt(x) = D̃t(x) unless x is
within 0.01 of one of the two points where D̃′t is discontinuous, and these two
points are far from maximizing xD̃t(x), so xDt(x) is also maximized at x = t.)

The specifics of the construction of D are not important, except insofar as
they enable us to prove the properties specified in the following lemma.

Lemma 3.1. There exist constants α, β > 0 and γ < ∞ such that for all
D = Dt0 ∈ D and x ∈ [0, 1]:

1. d
dt (x

∗
t )|t=t0 > α;



2. x∗D(x∗)− xD(x) > β(x∗ − x)2;

3. |Ḋ(x)/D(x)| < γ|x∗ − x| and |Ḋ(x)/(1−D(x))| < γ|x∗ − x|;

4. |D(k)(x)/D(x)| < γ and |D(k)(x)/(1−D(x))| < γ, for k = 2, 3, 4.

Here x∗ denotes x∗t0 , D(k)(x) denotes the k-th t-derivative of Dt(x) at t = t0,
and Ḋ(x) denotes D(1)(x).

The proof of the lemma is elementary but tedious, so it is deferred to Ap-
pendix A.

3.2.2 High-level description of the proof

The proof of the lower bound on regret is based on the following intuition. If
there is uncertainty about the demand curve, then no single price can achieve
a low expected regret for all demand curves. The family of demand curves
exhibited above is parametrized by a single parameter t, and we will see that
if the uncertainty about t is on the order of ε then the regret per buyer is
Ω(ε2). (This statement will be made precise in Lemma 3.7 below.) So to avoid
accumulating Ω(

√
n) regret on the last Ω(n) buyers, the pricing strategy must

ensure that it reduces the uncertainty to O(n−1/4) during its interactions with
the initial O(n) buyers. However — and this is the crux of the proof — we will
show that offering prices far from x∗ is much more informative than offering
prices near x∗, so there is a quantifiable cost to reducing the uncertainty in t.
In particular, reducing the uncertainty to O(n−1/4) costs Ω(

√
n) in terms of

expected regret.
To make these ideas precise, we will introduce a notion of “knowledge” which

quantifies the seller’s ability to distinguish the actual demand curve from nearby
ones based on the information obtained from past transactions, and a notion of
“conditional regret” whose expectation is a lower bound on the pricing strategy’s
expected regret. We will show that the ratio of conditional regret to knowledge
is bounded below, so that the strategy cannot accumulate Ω(

√
n) knowledge

without accumulating Ω(
√
n) regret. Finally, we will show that when the ex-

pected knowledge is less than a small constant multiple of
√
n, there is so much

uncertainty about the true demand curve that the expected regret is Ω(
√
n)

with high probability (taken over the probability measure on demand curves).

3.2.3 Definition of knowledge

In the following definitions, log denotes the natural logarithm function. T de-
notes a finite planar binary tree, labeled with a pricing strategy as explained
in Section 3.1. When f is a function defined on leaves of T , we will use the
notation EDf to denote the expectation of f with respect to the probability
distribution pD on leaves, i.e.

EDf =
∑
`∈T

pD(`)f(`).



For a given demand curve D = Dt0 , we define the infinitesimal relative
entropy of a leaf ` ∈ T by

IRED(`) =
d

dt
(− log pDt(`))|t=t0 ,

and we define the knowledge of ` as the square of the infinitesimal relative
entropy:

KD(`) = IRED(`)2.

Those familiar with information theory may recognize IRED(`) as the t-derivative
of `’s contribution to the weighted sum defining the relative entropy RE(D‖Dt),
and KD(`) as a random variable whose expected value is a generalization of the
notion of Fisher information.

An important feature of IRED(`) is that it may be expressed as a sum of
terms coming from the edges of T leading from the root to `. For an edge
e = (a, b) ∈ T , let

ireD(e) =
{

d
dt (logD(xa)) if e ∈ Tr(a)
d
dt (log(1−D(xa))) if e ∈ Tl(a)

=
{
Ḋ(xa)/D(xa) if e ∈ Tr(a)
−Ḋ(xa)/(1−D(xa)) if e ∈ Tl(a)

Then

IRED(`) =
∑
e≺`

ireD(e).

3.2.4 Definition of conditional regret

For a given D, the conditional regret RD(`) may be informally defined as follows.
At the end of the auction, if the demand curve D were revealed to the seller
and then she were required to repeat the same sequence of offered prices {xa :
a ≺ `} to a new, independent random population of buyers whose valuations are
distributed according to D, then RD(`) is the expected regret incurred by the
seller during this second round of selling. Formally, RD(`) is defined as follows.
Let

rD(x) = x∗D(x∗)− xD(x),

where x∗ = arg maxx∈[0,1]{xD(x)} as always. Note that if two different sellers
offer prices x∗, x, respectively, to a buyer whose valuation is distributed accord-
ing to D, then rD(x) is the difference in their expected revenues. Now let

RD(`) =
∑
a≺`

rD(xa).

Although RD(`) is not equal to the seller’s actual regret conditional on outcome
`, it is a useful invariant because EDRD(`) is equal to the actual expected regret
of S relative to S∗. (It is also therefore a lower bound on the expected regret



of S relative to Sopt.) This fact is far from obvious, because the distribution of
the actual buyers’ valuations, conditioned on their responses to the prices they
were offered, is very different from the distribution of n new independent buyers.
In general the expected revenue of S or S∗ on the hypothetical independent
population of n buyers will not equal the expected revenue obtained from the
actual population of n buyers, conditioned on those buyers’ responses. Yet
the expected difference between the two random variables, i.e. the regret, is
the same for both populations of buyers. This fact is proved in the following
lemma.

Lemma 3.2. Let S be a strategy with decision tree T , and let S∗ be the fixed-
price strategy which offers x∗ to each buyer. If the buyers’ valuations are inde-
pendent random samples from the distribution specified by D, then the expected
revenue of S∗ exceeds that of S by exactly EDRD(`).

Proof. Let

χ∗a =
{

1 if va ≥ x∗
0 if va < x∗

.

At a given point of the sample space, let ` denote the outcome leaf, and let
a1, a2, . . . , an be the ancestors of `. Then the revenue of S∗ is

∑n
i=1 χ

∗
ai
x∗, and

the revenue of S is
∑n
i=1 χai

xai
. It follows that the expected difference between

the two is∑
a∈T

pD(a)[ED(χ∗ax
∗)−ED(χaxa)] =

∑
a∈T

pD(a)[x∗D(x∗)− xaD(xa)]

=
∑
a∈T

∑
`�a

pD(`)rD(xa)

=
∑
`∈T

pD(`)

(∑
a≺`

rD(xa)

)
= EDRD(`).

3.2.5 Proof of the lower bound

In stating the upcoming lemmas, we will introduce constants c1, c2, . . .. When
we introduce such a constant we are implicitly asserting that there exists a
constant 0 < ci < ∞ depending only on the demand curve family D, and
satisfying the property specified in the statement of the corresponding lemma.

We begin with a series of lemmas which establish that EDKD is bounded
above by a constant multiple of EDRD. Assume for now that D is fixed, so x∗

is also fixed, and put
ha = xa − x∗.

Lemma 3.3. EDRD(`) ≥ c1
∑
a∈T pD(a)h2

a.



Proof. Recall from Lemma 3.1 that

(x∗ + h)D(x∗ + h) < x∗D(x∗)− βh2,

hence
rD(xa) = x∗D(x∗)− xaD(xa) > βh2

a.

Now we see that

EDRD(`) =
∑
`∈T

pD(`)

(∑
a≺`

rD(xa)

)

=
∑
a∈T

(∑
`�a

pD(`)

)
rD(xa)

=
∑
a∈T

pD(a)rD(xa)

> β
∑
a∈T

pD(a)h2
a.

so the lemma holds with c1 = β.

Lemma 3.4. EDKD(`) ≤ c2
∑
a∈T pD(a)h2

a.

Proof. As in the preceding lemma, the idea is to rewrite the sum over leaves
as a sum over internal nodes and then bound the sum term-by-term. (In this
case, actually it is a sum over internal edges of T .) A complication arises from
the fact that the natural expression for EDKD(`) involves summing over pairs
of ancestors of a leaf; however, we will see that all of the cross-terms cancel,
leaving us with a manageable expression.

EDKD(`) =
∑
`

pD(`)IRED(`)2

=
∑
`

pD(`)

(∑
e≺`

ireD(e)

)2

=
∑
`

pD(`)

[∑
e≺`

ireD(e)2 + 2
∑

e≺e′≺`

ireD(e)ireD(e′)

]

=

[∑
e

∑
`�e

pD(`)ireD(e)2
]

+ 2

[∑
e

∑
e′�e

ireD(e)

(∑
`�e′

pD(`)ireD(e′)

)]

=

[∑
e

pD(e)ireD(e)2
]

+ 2

[∑
e

ireD(e)

(∑
e′�e

pD(e′)ireD(e′)

)]
. (1)

For any e ∈ T , the sum
∑
e′�e pD(e′)ireD(e′) vanishes because the terms may

be grouped into pairs pD(e′)ireD(e′)+pD(e′′)ireD(e′′) where e′, e′′ are the edges



joining a node a ∈ T to its right and left children, respectively, and we have

pD(e′)ireD(e′) + pD(e′′)ireD(e′′)

= pD(a)

[
D(xa)

(
Ḋ(xa)
D(xa)

)
+ (1−D(xa))

(
− Ḋ(xa)

1−D(xa)

)]
= 0.

Thus

EDKD(`) =
∑
e∈T

pD(e)ireD(e)2

=
∑
a

pD(a)

D(xa)

(
Ḋ(xa)
D(xa)

)2

+ (1−D(xa))

(
− Ḋ(xa)

1−D(xa)

)2


≤
∑
a

pD(a)

(Ḋ(xa)
D(xa)

)2

+

(
− Ḋ(xa)

1−D(xa)

)2


<
∑
a

pD(a)
(
γ2h2

a + γ2h2
a

)
,

so the lemma holds with c2 = 2γ2.

Corollary 3.5. EDKD(`) ≤ c3EDRD(`).

The relevance of Corollary 3.5 is that it means that when EDRD is small,
then pDt

(`) cannot shrink very rapidly as a function of t, for most leaves `. This
is made precise by the following Lemma. Here and throughout the rest of this
section, D refers to a demand curve Dt0 ∈ D.

Lemma 3.6. For all sufficiently large n, if EDRD <
√
n then there exists a set

S of leaves such that pD(S) ≥ 1/2, and pDt
(`) > c4pD(`) for all ` ∈ S and all

t ∈
[
t0, t0 + n−1/4

]
.

The proof is quite elaborate, so we have deferred it to Appendix B.
We will also need a lemma establishing the growth rate of RDt

(`) for a fixed
leaf `, as t varies.

Lemma 3.7. RD(`) + RDt(`) > c5(t − t0)2n for all leaves ` ∈ Tn and for all
Dt ∈ D.

Proof. We know that

RD(`) =
∑
a≺`

rD(xa)

RDt
(`) =

∑
a≺`

rDt
(xa)

so it suffices to prove that rD(x)+rDt
(x) > c4(t− t0)2 for all x ∈ [0, 1]. Assume

without loss of generality that t− t0 > 0. (Otherwise, we may reverse the roles



of D and Dt.) Let x∗ and x∗t denote the optimal prices for D,Dt, respectively.
(Recall that D = Dt0 .) Note that x∗t − x∗ > α(t − t0), by property 1 of
Lemma 3.1.

Let h = x− x∗, ht = x− x∗t , and note that |h|+ |ht| > α(t− t0). Now

rD(x) > c1|h|2

rDt
(x) > c1|ht|2

rD(x) + rDt
(x) > c1(|h|2 + |ht|2)

≥ 1
2
c1(|h|+ |ht|)2

>
1
2
c1α

2t2,

so the lemma holds with c5 = 1
2c1α

2.

We now exploit Lemmas 3.6 and 3.7 to prove that if EDRD is less than
some small constant multiple of

√
n when D = Dt0 , then EDt

RDt
= Ω(

√
n)

on a large fraction of the interval [t0, t0 + n−1/4]. The idea behind the proof
is that Lemma 3.6 tells us there is a large set S of leaves whose measure does
not vary by more than a constant factor as we move t across this interval, while
Lemma 3.7 tells us that the regret contribution from leaves in S is Ω(

√
n) for a

large fraction of the t-values in this interval. In the following proposition, c(M)
denotes the function min

{
1, 1

2c4c5(1 + c4)−1M−2
}

.

Proposition 3.8. For all M and all sufficiently large n, if EDRD < c(M)
√
n,

then EDtRDt > c(M)
√
n for all t ∈

[
t0 + (1/M)n−1/4, t0 + n−1/4

]
.

Proof. If EDRD < c(M)
√
n, we may apply Lemma 3.6 to produce a set S

of leaves such that pD(S) ≥ 1/2 and pDt
(`) > c4pD(`) for all ` ∈ S and all

t ∈ [t0, t0 + n−1/4]. Now,

EDRD ≥
∑
`∈S

pD(`)RD(`)

and, for all t ∈ [t0 + (1/M)n−1/4, t0 + n−1/4],

EDt
RDt

≥
∑
`∈S

pDt
(`)RDt

(`)

≥ c4
∑
`∈S

pD(`)RDt(`)

> c4
∑
`∈S

pD(`)(c5(t− t0)2n−RD(`))

> c4pD(S)c5
√
n/M2 − c4EDRD

> (c4c5/2M2)
√
n− c4c(M)

√
n

≥ c(M)
√
n

where the fourth line is derived from the third by applying the inequality
RDt

(`) > c4(t− t0)2n−RD(`) coming from Lemma 3.7.



Theorem 3.9. Let S be any randomized non-uniform strategy, and let RD(S, n)
denote the expected ex ante regret of S on a population of n buyers whose valua-
tions are independent random samples from the probability distribution specified
by the demand curve D. Then

Pr
D←D

(
lim sup
n→∞

RD(S, n)√
n

> 0
)

= 1.

In other words, if D is drawn at random from D, then almost surely RD(S, n)
is not o(

√
n).

Proof. It suffices to prove the theorem for a deterministic strategy S, since any
randomized strategy is a probability distribution over such strategies. Now
assume, to the contrary, that

Pr
D←D

(
lim sup
n→∞

RD(S, n)√
n

= 0
)
> 0. (2)

and choose M large enough that the left side of (2) is greater than 1/M . Recall
from Lemma 3.3 that EDRD = RD(S, n). We know that for every D = Dt0 ∈ D
such that EDRD < c(M)

√
n,

EDtRDt > c(M)
√
n ∀t ∈ [t0 + (1/M)n−1/4, t0 + n−1/4]. (3)

Now choose N large enough that the set

XN =
{
D ∈ D : sup

n>N

RD(S, n)√
n

< c(M)
}

has measure greater than 1/M . Replacing XN if necessary with a proper subset
still having measure greater than 1/M , we may assume that {t : Dt ∈ XN} is
disjoint from [0.4− ε, 0.4] for some ε > 0. Choosing n large enough that n > N
and n−1/4 < ε, equation (3) ensures that the sets

Xk
N = {Ds : s = t+ (k/M)n−1/4, Dt ∈ XN}

are disjoint for k = 0, 1, . . . ,M − 1. But each of the sets Xk
N , being a translate

of XN , has measure greater than 1/M . Thus their total measure is greater than
1, contradicting the fact that D has measure 1.

3.2.6 General demand-curve models

The methods of the preceding section extend to much more general families of
demand curves. Here we will merely sketch the ideas underlying the extension.
Suppose that D is a compact subset of the space C4([0, 1]) of functions on [0, 1]
with continuous fourth derivative, and that the demand curves D ∈ D satisfy
the following two additional hypotheses:

• (Unique global max) The function f(x) = xD(x) has a unique global
maximum x∗ ∈ [0, 1], and it lies in the interior of the interval.



• (Non-degeneracy) The second derivative of f is strictly negative at x∗.

Suppose D is also endowed with a probability measure, denoted µ. The proof
of the lower bound relied heavily on the notion of being able to make a “one-
parameter family of perturbations” to a demand curve. This notion may be
encapsulated using a flow φ(D, t) mapping an open set U ⊆ D×R into D, such
that (D × {0}) ∩ U has measure 1, and φ(D, 0) = D when defined. We will use
the shorthand Dt for φ(D, t). The flow must satisfy the following properties:

• (Additivity) φ(D, s+ t) = φ(φ(D, s), t).

• (Measure-preservation) If X ⊆ D and φ(D, t) is defined for all D ∈ X,
then µ(φ(X, t)) = µ(X).

• (Smoothness) The function g(t, x) = Dt(x) is a C4 function of t and x.

• (Profit-preservation) If x∗t denotes the point at which the function
xDt(x) achieves its global maximum, then x∗tDt(x∗t ) = x∗0D0(x∗0) for all t
such that Dt is defined.

• (Non-degeneracy) d
dt (x

∗
t ) 6= 0.

• (Rate dampening at 0 and 1) For k = 1, 2, 3, 4, the functions
∣∣∣D(k)

D

∣∣∣ and ∣∣∣D(k)

1−D

∣∣∣
are uniformly bounded above, where D(k) denotes the k-th derivative of
D with respect to t.

Provided that these axioms are satisfied, it is possible to establish all of
the properties specified in Lemma 3.1. Property 1 follows from compactness
of D and non-degeneracy of φ, property 2 follows from the compactness of D
together with the non-degeneracy and “unique global max” axioms for D, and
property 4 is the rate-dampening axiom. Property 3 is the subtlest: it follows
from the smoothness, profit-preservation, and rate-dampening properties of φ.
The key observation is that profit-preservation implies that

x∗Dt(x∗) ≤ x∗tDt(x∗t ) = x∗D(x∗),

so that x∗Dt(x∗), as a function of t, is maximized at t = 0. This, coupled with
smoothness of φ, proves that Ḋ(x∗) = 0. Another application of smoothness
yields the desired bounds.

The final steps of Theorem 1 used the translation-invariance of Lebesgue
measure on the interval [0.3, 0.4] to produce M sets whose disjointness yielded
the desired contradiction. This argument generalizes, with the flow φ playing
the role of the group of translations. It is for this reason that we require φ to
satisfy the additivity and measure-preservation axioms.

3.3 Upper bound

The upper bound on regret in the random-valuation model is based on apply-
ing techniques from the literature on the multi-armed bandit problem, specifi-
cally [2]. To do so, we discretize the set of possible actions by limiting the seller



to strategies which only offer prices belonging to the set {1/K, 2/K, . . . , 1 −
1/K, 1}, for suitably-chosen K. (It will turn out that K = θ((n/ log n)1/4) is
the best choice.)

We are now in a setting where the seller must choose one of K possible
actions on each of n trials, where each action yields a reward which is a random
variable taking values in [0, 1], whose distribution depends on the action chosen,
but the rewards for a given action are i.i.d. across the n trials. This is the
scenario studied in [2]. They define µi to be the expected reward of action i,
µ∗ = max{µ1, . . . , µK}, and

∆i = µ∗ − µi. (4)

Having made these definitions, the following theorem is proven.

Theorem 3.10 ([2], Theorem 1.). There exists a strategy ucb1 such that, for all
K > 1, if ucb1 is run on a set of K actions having arbitrary reward distributions
P1, . . . , PK with support in [0, 1], then its expected regret after any number n of
plays is at most 8

∑
i:µi<µ∗

(
log n
∆i

)+
(

1 +
π2

3

) K∑
j=1

∆j

 .

To be precise, the model in [2] assumes that the reward variables for different
actions are independent, an assumption which does not hold in our scenario.
However, this assumption is not used in their proof of Theorem 3.10, so we may
still apply the theorem.

To apply this theorem, we need to know something about the values of
∆1, . . . ,∆K in the special case of interest to us. When the buyer’s valuation is
v, the payoff of action i/K is

Xi =
{
i/K if v ≥ i/K
0 otherwise. (5)

Hence
µi = E(Xi) = (i/K)D(i/K). (6)

Recall that we are making the following hypothesis on the demand curve D: the
function f(x) = xD(x) has a unique global maximum at x∗ ∈ (0, 1), and f ′′(x∗)
is defined and strictly negative. This hypothesis is useful because it enables us
to establish the following lemma, which translates directly into bounds on ∆i.

Lemma 3.11. There exist constants C1, C2 such that C1(x∗ − x)2 < f(x∗) −
f(x) < C2(x∗ − x)2 for all x ∈ [0, 1].

Proof. The existence and strict negativity of f ′′(x∗) guarantee that there are
constants A1, A2, ε > 0 such that A1(x∗−x)2 < f(x∗)−f(x) < A2(x∗−x)2 for all
x ∈ (x∗−ε, x∗+ε). The compactness of X = {x ∈ [0, 1] : |x∗−x| ≥ ε}, together
with the fact that f(x∗)−f(x) is strictly positive for all x ∈ X, guarantees that



there are constants B1, B2 such that B1(x∗−x)2 < f(x∗)− f(x) < B2(x∗−x)2

for all x ∈ X. Now put C1 = min{A1, B1} and C2 = max{A2, B2} to obtain
the lemma.

Corollary 3.12. ∆i ≥ C1(x∗ − i/K)2 for all i. If ∆̃0 ≤ ∆̃1 ≤ . . . ≤ ∆̃K−1

are the elements of the set {∆1, . . . ,∆k} sorted in ascending order, then ∆̃j ≥
C1(j/2K)2.

Proof. The inequality ∆i ≥ C1(x∗− i/K)2 is a restatement of the lemma using
the formulae for ∆i, µi given above in (4),(6). The lower bound on ∆̃j follows
upon observing that at most j elements of the set {1/K, 2/K, . . . , 1} lie within
a distance j/2K of x∗.

Corollary 3.13. µ∗ > x∗D(x∗)− C2/K
2.

Proof. At least one of the numbers {1/K, 2/K, . . . , 1} lies within 1/K of x∗;
now apply the upper bound on f(x∗)− f(x) stated in the lemma.

Putting all of this together, we have derived the following upper bound.

Theorem 3.14. Assuming that the function f(x) = xD(x) has a unique global
maximum x∗ ∈ (0, 1), and that f ′′(x∗) is defined and strictly negative, the strat-
egy ucb1 with K = d(n/ log n)1/4e achieves expected regret O(

√
n log n).

Proof. Consider the following four strategies:

• ucb1, the strategy defined in [2].

• Sopt, the optimal fixed-price strategy.

• S∗, the fixed-price strategy which offers x∗ to every buyer.

• S∗K , the fixed-price strategy which offers i∗/K to every buyer, where i∗/K
is the element of {1/K, 2/K, . . . , 1} closest to x∗.

As usual, we will use ρ(·) to denote the expected revenue obtained by a strategy.
We will prove a O(

√
n log n) upper bound on each of ρ(S∗K)− ρ(ucb1), ρ(S∗)−

ρ(S∗K), and ρ(Sopt)− ρ(S∗), from which the theorem follows immediately.
We first show, using 3.10, that ρ(S∗K)− ρ(ucb1) = O(

√
n log n). By Corol-

lary 3.12,

∑
i:µi<µ∗

(
1

∆i

)
<

K∑
i=1

C−1
1 (i/2K)−2

<
4K2

C1

∞∑
i=1

i−2

=
(

2π2

3C1

)
K2

= O((n/ log n)1/2)



K∑
j=1

∆j < K

= O((n/ log n)1/4).

Plugging these estimates into the regret bound in Theorem 3.10, we see that
the regret of ucb1 relative to S∗K is O((n log n)1/2), as claimed.

Next we bound the difference ρ(S∗)− ρ(S∗K). The expected revenues of S∗
and S∗K are nx∗D(x∗) and nµ∗, respectively. Applying Corollary 3.13, the regret
of S∗K relative to S∗ is bounded above by

C2n

K2
≤ C2n

(n/ log n)1/2
= O((n log n)1/2).

Finally, we must bound ρ(Sopt)− ρ(S∗). For any x ∈ [0, 1], let ρ(x) denote
the revenue obtained by the fixed-price strategy which offers price x, and let
xopt = arg maxx∈[0,1] ρ(x). We begin by observing that for all x < xopt,

ρ(x) ≥ ρ(xopt)− n(xopt − x).

This is simply because every buyer that accepts price xopt would also accept x,
and the amount of revenue lost by setting the lower price is xopt − x per buyer.
Now∫ 1

0

Pr(ρ(x)− ρ(x∗) > λ)dx ≥
∫ 1

0

Pr(ρ(xopt)− ρ(x∗) > 2λ and xopt − x < λ/n)dx

= λ/nPr(ρ(xopt)− ρ(x∗) > 2λ),

so a bound on Pr(ρ(x) − ρ(x∗) > λ) for fixed x translates into a bound on
Pr(ρ(xopt) − ρ(x∗) > λ). But for fixed x, the probability in question is the
probability that a sum of n i.i.d. random variables, each supported in [−1, 1]
and with negative expectation, exceeds λ. The Chernoff-Hoeffding bound tells
us that

Pr(ρ(x)− ρ(x∗) > λ) < e−λ
2/2n,

so
Pr(ρ(xopt)− ρ(x∗) > 2λ) < min{1, n

λ
e−λ

2/2n}.

Finally,

E(ρ(xopt)− ρ(x∗)) <

∫ ∞
0

Pr(ρ(xopt)− ρ(x∗) > y)dy

<

∫ ∞
0

min{1, 2n
y
e−y

2/2n}dy

<

∫ √4n logn

0

dy +
2n√

4n log n

∫ ∞
√

4n logn

e−y
2/2ndy

= O(
√
n log n).



Remark 3.15. If the seller does not have foreknowledge of n, it is still possible
to achieve regret O(

√
n log n) by maintaining an estimate nest of n, initialized to

1. When 2k buyers have been seen, the seller sets nest to 2k+1 and reinitializes
ucb1 using this new value of nest.

4 Worst-case valuations

In the worst-case valuation model, we assume that the buyers’ valuations are
chosen by an adversary who has knowledge of n and of the pricing strategy, but
is oblivious to the algorithm’s random choices. A similar adversarial model for
the multi-armed bandit problem was considered by Auer et al in [3]. In that
paper the authors present an algorithm Exp3 achieving regret O(

√
nK logK),

where K is the number of possible actions, and they exhibit a lower bound of
Ω(
√
nK) on regret. The algorithm, which is based on the weighted-majority

learning algorithm of Littlestone and Warmuth, was applied in the setting of
on-line auctions by Blum et al [6], who normalize the buyers’ valuations to lie
in an interval [1, h] and then prove the following theorem:

Theorem 4.1 ([6], Theorem 5.). There exists a pricing strategy Exp3 and a
constant c(ε) such that for all valuation sequences, if the optimal fixed-price
revenue ρ(Sopt) satisfies ρ(Sopt) > c(ε)h log h log log h, then Exp3 is (1 + ε)-
competitive relative to ρ(Sopt).

Our upper and lower bounds for regret in the worst-case valuation model
are based on the techniques employed in these two papers. The upper bound
(Theorem 4.2) is virtually a restatement of Blum et al’s theorem, though the
change in emphasis from competitive ratio to additive regret necessitates a mi-
nor change in technical details. Our worst-case lower bound (Theorem 4.3) is
influenced by Auer et al’s proof of the corresponding lower bound for the ad-
versarial multi-armed bandit problem in [3]. While it is possible to prove our
result entirely using the techniques from their paper, we will instead present
a proof using the techniques developed in Section 3.2, partly in the interest of
making the paper more self-contained and partly to illustrate the power of those
techniques.

4.1 Upper bound

Following [6], as well as the technique used in Section 3.3 above, we specify a
finite set of offer prices X = {1/K, 2/K, . . . , 1} and constrain the seller to select
prices from this set only. This reduces the posted-price auction problem to an
instance of the multi-armed bandit problem, to which the algorithm Exp3 of [3]
may be applied. Denote this pricing strategy by S. The relevant theorem about
Exp3 is the following.

Theorem 4.2 ([3], Corollary 4.2.). If one runs the algorithm Exp3 with a set of
K actions, over n steps, with the rewards for each action in each step belonging



to [0, 1], then the expected regret of Exp3 relative to the best fixed action is at
most 2

√
e− 1

√
nK logK.

Thus, if Sopt
X denotes the fixed-price strategy which chooses the best offer

price i∗/K from X, and Sopt denotes the fixed-price strategy which chooses the
best offer price x∗ from [0, 1], we have the following inequalities:

ρ(Sopt
K )− ρ(S) < 2

√
e− 1

√
nK logK

ρ(S∗)− ρ(Sopt
K ) < n(1/K) = n/K

where the second inequality follows from the fact that Sopt
K is no worse than the

strategy which offers 1
K bKx

∗c to each buyer.
If we pickK = dn/ log ne1/3, then both

√
nK logK) and n/K areO(n2/3(log n)1/3).

We have thus expressed the regret of Exp3 as a sum of two terms, each of which
is O(n2/3(log n)1/3), establishing the upper bound asserted in Theorem 1.3.

Readers familiar with [6] will recognize that the only difference between this
argument and their Theorem 5 is that they choose the prices in X to form a
geometric progress (so as to optimize the competitive ratio) while we choose
them to form an arithmetic progression (so as to optimize the additive regret).

4.2 Lower bound

In [3], the authors present a lower bound of
√
nK for the multi-armed bandit

problem with payoffs selected by an oblivious adversary. Ironically, the power
of the adversary in this lower bound comes not from adapting to the on-line
algorithm A, but from adapting to the number of trials n. In fact, the authors
define a model of random payoffs (depending on n but not the algorithm) such
that the expected regret of any algorithm on a random sample from this distri-
bution is Ω(

√
nK). The idea is select one of the K actions uniformly at random

and designate it as the “good” action. For all other actions, the payoff in each
round is a uniform random sample from {0, 1}, but for the good action the
payoff is a biased sample from {0, 1}, which is 1 with probability 1/2 + ε, where
ε = θ(

√
K/n). A strategy which knows the good action will achieve expected

payoff (1/2 + ε)n = 1/2 + θ(
√
nK). It can be shown, for information-theoretic

reasons, that no strategy can learn the good action rapidly and reliably enough
to play it more than n/K + θ(ε

√
n3/K) times in expectation, from which the

lower bound on regret follows.
A similar counterexample can be constructed in the context of our on-line

posted-price auction problem, i.e. a random distribution of buyers’ valuations
(depending on n but not the algorithm) such that the expected regret of any
algorithm on a random sample from this distribution is Ω(n2/3). The idea is
roughly the same as above: one randomly chooses a subinterval of [0, 1] of length
1/K to be the interval of “good prices”, and chooses the distribution of buyers’
valuations so that the expected revenue per buyer is a constant independent
of the offer price outside the interval of good prices, and is ε higher than this
constant inside the interval of good prices. As above, there is a trade-off between



choosing ε too large (which makes it too easy for strategies to learn which
prices belong to the good interval) or too small (which leads to a negligible
difference in revenue between the best strategy and all others), and the optimal
trade-off is achieved when ε = θ(

√
K/n). However, in our setting there is

an additional constraint that ε ≤ 1/K, since the expected payoff can grow
by no more than 1/K on an interval of length 1/K. This leads to the values
K = θ(n1/3), ε = θ(n−1/3) and yields the stated lower bound of Ω(n2/3).

There are two complications that come up along the way. One is that the
seller’s algorithm has a continuum of alternatives at every step, rather than a
finite set of K alternatives as in the example from [3]. This can be dealt with
by restricting the buyers’ valuations to lie in a finite set V = {v1, v2, . . . , vK}.
Then there is no incentive for the seller to offer a price which lies outside of V ,
so we may assume the seller is constrained to offer prices in V and prove lower
bounds for this restricted class of strategies.

The second complication that arises is that the adversary in [3] was more
powerful: he could specify the reward for each action independently, whereas our
adversary can only set a valuation v, and this v determines the rewards for all
actions simultaneously. While this entails choosing a more complicated reward
distribution, the complication only makes the computations messier without
introducing any new ideas into the proof.

Theorem 4.3. For any given n, there exists a finite family P = {pnj }Kj=1 of
probability distributions on [0, 1], such that if pnj is chosen uniformly at ran-
dom from P and then buyers’ valuations are sampled independently at random
according to pnj , no pricing strategy can achieve expected regret o(n2/3), where
the expectation is over both the random choice of D and the randomly-sampled
valuations.

Proof sketch. For simplicity, assume n = 8K3, and put ε = 1/2K. The valu-
ations will be independent random samples from the set V = { 1

2 , 12 + ε, 12 +
2ε, . . . , 1 − ε, 1}. A “baseline probability distribution” pbase on V is defined so
that

pbase({v ≥ 1− iε}) =
1
2

(1− iε)−1.

A random sample from pnj ∈ P is generated by sampling v ∈ V at random from
the distribution pbase, and then adding ε to it with probability 1/10 if and only
if v = 1− jε.

For any random variable X depending on a sequence of samples from V ,
we’ll write Ebase(X), Ej(X) to denote the expectation of X with respect to
the distributions pbase, p

n
j , respectively. We let rt denote the Boolean random

variable which is 1 if and only if the t-th buyer accepted the price offered. As
in [3], let rt denote the vector (r1, . . . , rt), and let r = rT . Assume that the
seller’s pricing strategy S only offers prices in V — since it is counterproductive
to offer a price outside V when the buyers’ valuations always belong to V — and
let Ni denote the random variable specifying the number of times price 1 − iε
is offered.



Lemma 4.4. Let f : {0, 1}T → [0,M ] be any function defined on sequences r.
Then for any action i,

Ei[f(r)] ≤ Ebase[f(r)] +
1
3
εM
√

Ebase[Ni].

The proof is exactly the same as the proof of Lemma B.1 in [3], except for
the estimate of the relative entropy KL

(
pbase{rt|rt−1}‖pni {rt|rt−1}

)
. The term

KL
(

1
2‖

1
2 + ε

)
must be replaced by

KL
(

1
2v
‖ 9

10

(
1
2v

)
+

1
10

(
1

2(v − ε)

))
for some v ∈ {3/4, 3/4 + ε, . . . , 1}. A tedious computation verifies that this is
bounded above by 0.36ε2, and one finishes up as in their proof of Lemma B.1.

For a deterministic on-line pricing strategy S, the random variable Ni is a
function of r, so we may apply the above lemma to conclude that

Ei[Ni] ≤ Ebase[Ni] +
1
3
εn
√

Ebase[Ni],

hence

1
K

K∑
i=1

Ei[Ni] =
1
K

{
K∑
i=1

Ebase[Ni] +
1
3
εn

K∑
i=1

√
Ebase[Ni]

}
≤ n/K+

1
3
εn
√
n/K

(7)
In other words, the expected number of times S chooses the “good” offer price is
at most (1/3)εn

√
n/K. Recalling that K = 1

2n
1/3 and ε = 2n−1/3, we see that

S makes the right choice at most (2
√

2/3)n times in expectation, so it makes
the wrong choice Ω(n) times in expectation. Each time it does so, it incurs
an expected regret of ε/10 = Ω(n−1/3). Thus the total expected regret of S is
Ω(n2/3), as claimed.

5 Acknowledgements

We would like to thank Jason Hartline, Jon Kleinberg, and Leah Brooks for
helpful discussions relating to this work. We would also like to thank Denny
Denker and Sean Moriarity for helpful discussions that led us to investigate
these issues.

References

[1] R. Agrawal. The continuum-armed bandit problem. SIAM J. Control
and Optimization, 33:1926-1951, 1995.



[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of
the multi-armed bandit problem. Machine Learning, 47:235-256, 2002.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling
in a rigged casino: The adversarial multi-armed bandit problem. In Pro-
ceedings of the 36th Annual IEEE Symposium on Foundations of Computer
Science, 1995.

[4] A. Bagchi, A. Chaudhary, R. Garg, M. Goodrich, and V. Kumar.
Seller-focused algorithms for online auctioning. In Proc. 7th Internation
Workshop on Algorithms and Data Structures (WADS 2001), vol. 2125.
Springer Verlag LNCS, 2001.

[5] Z. Bar-Yossef, K. Hildrum, and F. Wu. Incentive-compatible online
auctions for digital goods. In Proc. 13th Symp. on Discrete Alg. 964-970,
2002.

[6] A. Blum, V. Kumar, A. Rudra, and F. Wu Online learning in online
auctions. In Proc. 14th Symp. on Discrete Alg. 202-204, 2003.

[7] A. Fiat, A. Goldberg, J. Hartline, and A. Wright. Competitive
generalized auctions. In Proc. 34th ACM Symposium on the Theory of Com-
puting. ACM Press, New York, 2002.

[8] A. Goldberg, J. Hartline, and A. Wright. Competitive auctions and
digital goods. In Proc. 12th Symp. on Discrete Alg., 735-744, 2001.

[9] J. Hartline. Dynamic posted price mechanisms. Manuscript, 2001.

[10] R. Lavi and N. Nisan. Competitive analysis of incentive compatible on-
line auctions. In Proceedings of the 2nd ACM Conference on Electronic
Commerce (EC-00). 233-241, 2000.

[11] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocations
rules. Adv. in Appl. Math., 6:4-22, 1985.

[12] R. Myerson. Optimal auction design. Mathematics of Operations Re-
search, 6:58-73, 1981.

[13] I. Segal. Optimal pricing mechanisms with unknown demand.
Manuscript, 2002.

A Proof of Lemma 3.1

In this section we restate and prove Lemma 3.1.

Lemma A.1. There exist constants α, β > 0 and γ < ∞ such that for all
D = Dt0 ∈ D and x ∈ [0, 1]:

1. d
dt (x

∗
t )|t=t0 > α;



2. x∗D(x∗)− xD(x) > β(x∗ − x)2;

3. |Ḋ(x)/D(x)| < γ|x∗ − x| and |Ḋ(x)/(1−D(x))| < γ|x∗ − x|;

4. |D(k)(x)/D(x)| < γ and |D(k)(x)/(1−D(x))| < γ, for k = 2, 3, 4.

Here x∗ denotes x∗t0 , D(k)(x) denotes the k-th t-derivative of Dt(x) at t = t0,
and Ḋ(x) denotes D(1)(x).

Proof. We begin with some useful observations about the relation between D̃t

and Dt. The function D̃t is piecewise-linear, and linear functions are preserved
under convolution with an even function whose integral is 1. Recall that the
bump function b is an even function supported in [−0.01, 0.01] and satisfying∫ 0.01

−0.01
b(x)dx = 1; hence Dt(x) = D̃t(x) unless x is within 0.01 of one of the two

points where the derivative of D̃t is discontinuous. The x-coordinates of these
two points are given by

x0 =
7t2 − 2t
14t2 − 1

x1 =
7t2 − 4t
7t2 − 2

.

For t in the range [0.3, 0.4] this means that x0 ∈ (0.115, 0.259), x1 ∈ (0.416, 0.546).
Recalling that b is a C∞ function, we find that t 7→ D̃t is a continuous mapping
from [0.3, 0.4] to C∞([0, 1]). Hence {D̃t : 0.3 ≤ t ≤ 0.4} is a compact subset
of C∞([0, 1]), and consequently for 1 ≤ k < ∞, the k-th derivative of D̃t is
bounded uniformly in t.

We now proceed to prove each of the properties stated in the Lemma.

1. First we verify that x∗t = t, as stated in Section 3.2. If x lies in the
interval It = [x0 + 0.01, x1 − 0.01] where Dt(x) = 2/7t − x/7t2, then
xDt(x) = 2x/7t−x2/7t2 = 1

7 [1− (1−x/t)2], which is uniquely maximized
when x = t and xDt(x) = 1/7. Note that the estimates given above for
x0 and x1 ensure that [x0 + 0.01, x1 − 0.01] always contains [0.3, 0.4], so t
always lies in this interval. If x lies in the interval where Dt(x) = 1− 2x
or Dt(x) = (1 − x)/2, then xDt(x) is equal to 2(1/16 − (x − 1/4)2) or
(1/2)(1/4− (x− 1/2)2), and in either case xDt(x) can not exceed 1/8. It
is straightforward but tedious to verify that xDt(x) is bounded away from
1/7 when |x − x0| ≤ 0.01 or |x − x1| ≤ 0.01; this confirms that x∗t = t is
the unique global maximum of the function xDt(x). Having verified this
fact, it follows immediately that d/dt(x∗t )|t=t0 = 1.

2. On the interval It where Dt(x) = 2/7t− x/7t2, we have

xDt(x) = 1/7− 1
7t2

(t− x)2 = x∗tDt(x∗t )−
1

7t2
(x∗t − x)2

x∗tDt(x∗t )− xDt(x) =
1

7t2
(x∗t − x)2. (8)



We have seen that for t ∈ [0.3, 0, 4], xDt(x) attains its maximum value of
1/7 at a point x∗t ∈ It and is strictly less than 1/7 at all other points of
[0, 1]. By compactness it follows that there exist ε, δ > 0 such that

|x− x∗t | > δ =⇒ x∗tDt(x∗t )− xDt(x) > ε, (9)

for all x ∈ [0, 1], t ∈ [0.3, 0.4]. Combining (8), which holds when x ∈ It,
with (9), which holds when x 6∈ (x∗t − δ, x∗t + δ), we obtain

x∗tDt(x∗t )− xDt(x) ≥ min{1/7t2, ε/δ2}(x− x∗t )2

for all x ∈ [0, 1].

3. If x < 0.1 or x > 0.6, then Dt(x) is independent of t, so Ḋ(x) = 0,
which establishes the desired inequality. If x ∈ [0.1, 0.6], then D(x) and
1 − D(x) are both bounded below by 0.2, so it remains to verify that
sup{|Ḋt(x)/(x∗t −x)|} <∞. The function |Ḋt(x)| is a continuous function
of t and x, so by compactness it is bounded above by a constant. It follows
that for any constant ε > 0, sup{|Ḋt(x)/(x∗t − x)| : ε < |x∗t − x|} < ∞.
Choose ε small enough that [x∗t − ε, x∗t + ε] is contained in the interval It
where Dt(x) = 2/7t− x/7t2 for all t ∈ [0.3, 0.4]. Then for |x∗t − x| ≤ ε,

Ḋt(x) = −2/7t2 + 2x/7t3 = 2(x− t)/7t3 = − 2
7t3

(x∗t − x),

so sup{|Ḋt(x)/(x∗t − x)|} <∞ as claimed.

4. As before, if x 6∈ [0.1, 0.6] then D(k)(x) = 0 so there is nothing to prove.
If x ∈ [0.1, 0.6] then D(x) and 1 −D(x) are both bounded below by 0.2,
and |D(k)(x)| is uniformly bounded above, by compactness.

B Proof of Lemma 3.6

In this section we restate and prove Lemma 3.6.

Lemma B.1. For all sufficiently large n, if EDRD <
√
n then there exists a

set S of leaves such that pD(S) ≥ 1/2, and pDt(`) > c4pD(`) for all ` ∈ S and
all t ∈

[
t0, t0 + n−1/4

]
.

Proof. It suffices to prove that there exists a set S of leaves such that pD(S) ≥
1/2 and | log(pDt(`)/pD(`))| is bounded above by a constant for ` ∈ S. Let
F (t, `) = log(pDt

(`)). By Taylor’s Theorem, we have

F (t, `)− F (t0, `) = F ′(t0, `)(t− t0) +
1
2
F ′′(t0, `)(t− t0)2 +

1
6
F ′′′(t0, `)(t− t0)3 +

1
24
F ′′′′(t1, `)(t− t0)4,



for some t1 ∈ [t0, t]. (Here F ′, F ′′, F ′′′, F ′′′′ refer to the t-derivatives of F .
Throughout this section, we will adopt the same notational convention when
referring to the t-derivatives of other functions, in contrast to the “dot” notation
used in other sections of this paper.) This means that∣∣∣∣log

(
pDt

(`)
pD(`)

)∣∣∣∣ ≤ |F ′(t0, `)|n−1/4 +
1
2
|F ′′(t0, `)|n−1/2 +

1
6
|F ′′′(t0, `)|n−3/4 +

1
24
|F ′′′′(t1, `)|n−1. (10)

We will prove that, when ` is randomly sampled according to pD, the expected
value of each term on the right side of (10) is bounded above by a constant.
By Markov’s Inequality, it will follow that right side is bounded above by a
constant for a set S of leaves satisfying pD(S) ≥ 1/2, thus finishing the proof of
the Lemma.

Unfortunately, bounding the expected value of the right side of (10) requires
a separate computation for each of the four terms. For the first term, we observe
that |F ′(t0, `)|2 is precisely KD(`), so ED

(
|F ′(t0, `)|2

)
≤ c3
√
n by Corollary 3.5.

It follow, using the Cauchy-Schwarz Inequality, that ED

(
|F ′(t0, `)|n−1/4

)
≤√

c3.
To bound the remaining three terms, let a0, a1, . . . , an = ` be the nodes on

the path in T from the root a0 down to the leaf `. Let

q(ai) =
{
D(xai) if χ(ai) = 1
1−D(xai

) if χ(ai) = 0.

We have

pD(`) =
n−1∏
i=0

q(ai),

so

F (t0, `) =
n−1∑
i=0

log q(ai) (11)

F ′(t0, `) =
n−1∑
i=0

q′(ai)
q(ai)

(12)

F ′′(t0, `) =
n−1∑
i=0

q′′(ai)
q(ai)

−
(
q′(ai)
q(ai)

)2

(13)

F ′′′(t0, `) =
n−1∑
i=0

q′′′(ai)
q(ai)

− 3
(
q′(ai)q′′(ai)
q(ai)2

)
+ 2

(
q′(ai)
q(ai)

)3

. (14)

To prove that ED(|F ′′(t0, `)|) = O(
√
n), we use the fact that the random vari-

able F ′′(t0, `) is a sum of two random variables
∑n−1
i=0

q′′(ai)
q(ai)

and−
∑n−1
i=0

(
q′(ai)
q(ai)

)2

.
We bound the expected absolute value of each of these two terms separately.



For the second term, we use the fact that |q′(ai)/q(ai)| = O(hai), which is
property 3 from Lemma 3.1. Thus

E

(∣∣∣∣∣
n−1∑
i=0

(
q′(ai)
q(ai)

)2
∣∣∣∣∣
)

= O

(∑
a∈T

pD(a)h2
a

)
,

and the right side is O(
√
n) using Lemma 3.3 and our hypothesis that EDRD ≤√

n. To bound the first term,
∑n−1
i=0

q′′(ai)
q(ai)

, we start by observing that, condi-

tional on the value of ai, the random variable q′′(ai)
q(ai)

has mean zero and vari-
ance O(1). The bound on the conditional variance follows from property 4 in
Lemma 3.1. The mean-zero assertion follows from the computation

ED

(
q′′(ai)
q(ai)

∥∥∥∥ ai) = D(xai
)
(
D′′(xai)
D(xai

)

)
+ (1−D(xai

))
(
−D′′(xai)
1−D(xai

)

)
= 0.

This means that the random variables q′′(ai)/q(ai) form a martingale difference
sequence, hence

ED

(n−1∑
i=0

q′′(ai)
q(ai)

)2
 =

n−1∑
i=0

ED

[(
q′′(ai)
q(ai)

)2
]

= O(n).

The bound ED

(∣∣∣∑n−1
i=0

q′′(ai)
q(ai)

∣∣∣) = O(
√
n) follows using the Cauchy-Schwarz

Inequality, as before.
We turn now to proving that ED(|F ′′′(t0, `)|) = O(n3/4). As before, the first

step is to use (14) to express F ′′′(t0, `) as a sum of three terms

X =
n−1∑
t=0

q′′′(ai)
q(ai)

Y = −3
n−1∑
t=0

q′(ai)q′′(ai)
q(ai)

Z = 2
n−1∑
t=0

(
q′(ai)
q(ai)

)2

,

and then to bound the expected absolute value of each of these terms separately.
Exactly as above, one proves that the random variables q′′′(ai)/q(ai) form a
martingale difference sequence and have bounded variance, and consequently
ED(|X|) = O(

√
n). Recalling that |q′(ai)/q(ai)| = O(hai

) and |q′′(ai)/q(ai)| =
O(1) (properties 3 and 4 from Lemma 3.1, respectively) we find that

1
3
ED (|Y |) ≤ ED

(
n−1∑
i=0

∣∣∣∣q′(ai)q′′(ai)q(ai)

∣∣∣∣
)

≤ ED

(
n−1∑
i=0

(
q′(ai)
q(ai)

)2
)1/2

ED

(
n−1∑
i=0

(
q′′(ai)
q(ai)

)2
)1/2



= ED

(
n−1∑
i=0

O(h2
ai

)

)1/2

ED

(
n−1∑
i=0

O(1)

)1/2

= ED

(∑
a∈T

pD(a)h2
a

)1/2

·O(
√
n)

= O(n3/4),

where the last line follows from Lemma 3.3. Finally, we have

1
2
ED(|Z|) ≤ ED

(
n−1∑
i=0

∣∣∣∣q′(ai)q(ai)

∣∣∣∣3
)

= ED

(
n−1∑
i=0

O(h3
ai

)

)

= ED

(∑
a∈T

pD(a)h3
a

)

≤ ED

(∑
a∈T

pD(a)h2
a

)
= O(

√
n).

Combining the estimates for ED(|X|),ED(|Y |),ED(|Z|), we obtain the bound
ED(|F ′′′(t0, `)|) = O(n3/4) as desired.

Finally, to prove |F ′′′′(t1, `)| = O(n), we use the formula

F ′′′′(t1, `) =
n−1∑
i=0

q′′′′(ai)
q(ai)

− 4
(
q′(ai)
q(ai)

)(
q′′′(ai)
q(ai)

)
− 3

(
q′′(ai)
q(ai)

)2

+

12
(
q′(ai)
q(ai)

)2(
q′′(ai)
q(ai)

)
− 6

(
q′(ai)
q(ai)

)4

. (15)

Each of the random variables q(k)(ai)/q(ai) for k = 1, 2, 3, 4 is O(1), hence each
summand on the right side of (15) is O(1). Summing all n terms, we obtain
|F ′′′′(t1, `)| = O(n) as desired.


