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Abstract

This paper addresses a general class of capacity planning problems under uncer-

tainty, which arises, for example, in semiconductor tool purchase planning. Using a

scenario tree to model the evolution of the uncertainties, we develop a multi-stage

stochastic integer programming formulation for the problem. In contrast to earlier

two-stage approaches, the multi-stage model allows for revision of the capacity ex-

pansion plan as more information regarding the uncertainties is revealed. We provide

analytical bounds for the value of multi-stage stochastic programming (VMS) afforded

over the two-stage approach. By exploiting a special lot-sizing substructure inherent in

the problem, we develop an efficient approximation scheme for the difficult multi-stage

stochastic integer program and prove that the proposed scheme is asymptotically op-

timal. Computational experiments with realistic-scale problem instances suggest that

the VMS for this class of problems is quite high. Moreover the quality and perfor-

mance of the approximation scheme is very satisfactory. Fortunately, this is more so

for instances for which the VMS is high.
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1 Introduction

Capacity planning, i.e., deciding the optimal timing and level of capacity acquisition and

allocation, plays a crucial role in strategic level planning in a wide array of applications. This

activity involves substantial commitment of capital resources and is marred by uncertainties

in the long range forecasts, thereby making the associated decision problems very complex.

For example, the initial investment in building a semiconductor wafer fab is close to two bil-

lion dollars, and every year the procurement of new tools to accommodate the high volatility

in demand, product mix and technology could cost several million dollars (cf. Barahona et al.

(2005), Hood et al. (2003), Swaminathan (2000)).

Owing to the inherent complexities, quantitative models for economic capacity planning

under uncertainty have been the subject of intense research since the early 1960s (cf. Luss

(1982)). Early approaches for solving stochastic capacity expansion problems are restricted

to a single resource and based on simplifying assumptions on the underlying stochastic

processes to render analytical tractability (cf. Bean et al. (1992), David et al. (1987), Frei-

denfelds (1980), Manne (1961)). More general stochastic programming based approaches

that use scenarios to model the uncertain parameters within large-scale mathematical pro-

grams for multi-resource multi-item capacity planning have since been proposed (cf. Berman

et al. (1994), Eppen et al. (1989), Fine and Freund (1990)). Most of these stochastic pro-

gramming approaches are based on the two-stage paradigm, wherein the capacity acquisition

schedule for the entire (multi-period) planning horizon is decided “here-and-now,” and ca-

pacity allocations are made on a period-by-period basis based on realized uncertainties and

acquired capacities. In the context of semiconductor tool planning, such two-stage models

are investigated in Barahona et al. (2005), Hood et al. (2003), Karabuk and Wu (2003)

and Swaminathan (2000). Multi-stage stochastic programming models extend the two-stage

paradigm by allowing revised decisions in each time stage based upon the uncertainty realized

so far (cf. Birge (1985)). A multi-stage stochastic capacity planning model involving contin-

uous capacity allocation decisions and fixed charge expansion costs is considered in Ahmed

and Sahinidis (2003). The authors develop a LP-relaxation based heuristic for this problem

and proved, via a probabilistic analysis, that the heuristic is asymptotically optimal in the
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number of planning stages.

Motivated by applications in semiconductor tool planning, we address a general multi-

stage stochastic capacity planning model involving discrete capacity acquisition decisions.

Our model generalizes earlier two-stage approaches considered in Barahona et al. (2005),

Hood et al. (2003), Swaminathan (2000), by allowing for revision of the capacity expan-

sion plan as more information regarding the uncertainties is revealed. We provide analyti-

cal bounds for the value of multi-stage stochastic programming afforded over two-stage ap-

proaches. By exploiting a special lot-sizing substructure inherent in the problem, we develop

an efficient approximation scheme for the multi-stage problem and prove that the proposed

scheme is asymptotically optimal. Our asymptotic analysis is significantly different from that

of Ahmed and Sahinidis (2003), since we consider discrete capacity acquisition levels and do

not make any assumptions regarding the distributions of the underlying stochastic parame-

ters. Finally, we present numerical results for a realistic-scale semiconductor tool planning

problem to demonstrate the advantage of the proposed model and solution method.

2 Model development

In this section we present a mathematical formulation for the stochastic capacity planning

under consideration. We first describe a specific deterministic capacity planning formula-

tion related to semiconductor tool planning, and then discuss deterministic and stochastic

generalizations of this model.

2.1 A deterministic model for semiconductor tool planning

Consider a wafer fab consisting of M tool types, that can process N types of wafers. Each

product (wafer type) goes through a subset of K processing steps, each of which can be

performed on one or more tool types. The products are measured in units of “wafer start.”

Let hijk denote the time (in hours per wafer start) required by processing step k (1, . . . , K)

on wafer type j (1, . . . , N) on tool type i (1, . . . ,M). We set hijk = 0 if step k is not needed

for wafer type j, and hijk = ∞ if step k is required for wafer type j but cannot be performed

on tool type i. Consider now a planning horizon of T periods. Let us use variables xit, ujt,
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vijkt, and wjt, to denote the number of tools of type i purchased in period t (1, . . . , T ), the

shortage (in wafer starts) of wafer type j in period t, the number of wafer starts of type j

whose k-th processing step is allotted to tool type i in period t, and the production of wafer

type j (in wafer starts) in period t, respectively. In addition to hijk, let us also consider the

problem parameters ait, bjt, ci, and djt corresponding to the (discounted) cost of tool type

i in period t, the penalty cost of unit shortage in wafer type j in period t, the per-period

capacity (in hours) of one tool of type i, and the per-period demand (in wafer starts) of

wafer type j in period t, respectively.

With the above notation, an optimization model for multi-period (deterministic) schedul-

ing of tool purchases and the allocation of tool capacity to production so as to minimize total

tool purchase costs and shortage penalties can be stated as follows:

min
∑T

t=1

( ∑M
i=1 aitxit +

∑N
j=1 bjtujt

)

s.t.
∑N

j=1

∑K
k=1 hijkvijkt ≤ ci

( ∑t
τ=1 xiτ

)
∀ i, t

∑M
i=1 vijkt ≥ wjt ∀ j, k, t

wjt + ujt ≥ djt ∀ j, t

ujt, vijkt, wjt ∈ R+ ∀ i, j, k, t

xit ∈ Z+ ∀ i, t.

(1)

For any period t, the first constraint in model (1) assures that the total processing require-

ment (in hours) allocated to tool i cannot exceed the installed capacity; the second constraint

enforces that the actual production of wafer type j is equal to the number of wafer starts

that has completed all of the required K processing steps; the third constraint enforces that

the production and shortage together should exceed the demand; the fourth constraint en-

forces non-negativity of the production-allocation-shortage variables; and the fifth constraint

enforces the integrality of the tool purchase decisions. Model (1) is a multi-period extension

of the tool planning model described by Swaminathan (2000).

4



2.2 A generic capacity planning model

The semiconductor tool planning model (1) is a special case of the following generic capacity

acquisition and allocation model:

min
∑T

t=1

(
αtxt + βtyt

)

s.t. Atyt ≤
∑t

τ=1 xτ ∀ t

Btyt ≥ δt ∀ t

yt ∈ RJ
+, xt ∈ ZI

+ ∀ t.

(2)

In (2), the I × 1 vector of variables xt represent the capacity acquisition decisions for a set

of I resources and the J × 1 vector yt represents the operational level allocation of capacity

to a set of J tasks, in period t. The parameters αt, βt and δt represent acquisition costs,

allocation costs, and demands, respectively. The matrices At and Bt represent resource-task

utilization coefficients.

To see the connection between models (1) and (2), note that xt and yt correspond to the

tool purchase and production-allocation-shortage decision vectors for period t, respectively;

αt, βt, and δt correspond to the tool cost, shortage penalty, and demand vectors for period t,

respectively; the matrix At corresponds to the coefficients of the first set of constraint in (1),

and the matrix Bt corresponds to the coefficients of the second and third set of constraint

in (1).

2.3 Stochastic programming extensions

Let us now extend the deterministic capacity planning model (2) to a stochastic setting.

We assume that the uncertain problem parameters (αt, βt, δt, At, Bt) evolve as discrete time

stochastic processes with a finite support. This information structure can be interpreted as

a scenario tree where the nodes in stage (or level) t of the tree constitute the states of the

world that can be distinguished by information available up to time stage t. There are in

total T stages in the tree. Each node n of the scenario tree, except the root (n = 1), has

a unique parent a(n), and each non-terminal node n is the root of a sub-tree T (n). The

probability associated with the state of the world in node n is pn. The set St denotes the

nodes corresponding to time stage t, and tn is the time stage corresponding to node n. The
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path from the root node to a node n will be denoted by P(n). If n is a terminal (leaf)

node, i.e., n ∈ ST , then P(n) corresponds to a scenario, and represents a joint realization

of the problem parameters over all periods. There are S leaf nodes corresponding to S

scenarios, i.e., S = |ST |. We denote the whole tree T (1) by T and let NT be the number

of nodes in this tree. The stochastic problem parameters are then given by the sequence

{αn, βn, δn, An, Bn}n∈T .

Let us first consider a two-stage model where the first-stage involves deciding the capacity

acquisition plan for all periods, regardless of the state of the world, and the second-stage

consists of deciding on the capacity allocation plan subject to available capacity and the

realized state. Thus the capacity acquisition variables are only indexed by time periods

(since these do not change with the realized state) while the allocation decisions are indexed

by the nodes of the scenario tree. With an objective of minimizing the expected total costs,

a two-stage stochastic programming extension of (2) is as follows:

min
∑T

t=1 αtxt +
∑

n∈T pnβnyn

s.t. Anyn ≤
∑tn

τ=1 xτ ∀ n ∈ T
Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T
xt ∈ ZI

+ ∀ t,

(3)

where αt =
∑

n∈St
pnαn, i.e., the average capacity acquisition cost in period t. The stochastic

programming model considered in Swaminathan (2000) is a special case of the model (3)

when the number of periods T = 2. The models presented in Barahona et al. (2005) and

Hood et al. (2003) are similar to (3), however, there, the uncertain parameters are defined

over scenarios (paths in the scenario tree) rather than nodes of the scenario tree.

As mentioned earlier, the two-stage model (3) does not allow any flexibility in the capacity

acquisition plan with respect to the realized state of the world. To formulate a multi-stage

stochastic programming model, we need to have the capacity acquisition decisions to be
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dependent on the realized state, and hence the resulting model is as follows:

min
∑

n∈T pn

(
αnxn + βnyn

)

s.t. Anyn ≤
∑

m∈P(n) xm ∀ n ∈ T
Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T
xn ∈ ZI

+ ∀ n ∈ T .

(4)

2.4 Stochastic lot-sizing substructure

The multi-stage capacity planning problem (4) can be restated as follows:

min
∑

n∈T pnβnyn +
∑I

i=1 Qi(y)

s.t. Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T ,

(5)

where

Qi(y) = min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ [Anyn]i ∀ n ∈ T
xin ∈ Z+ ∀ n ∈ T .

(6)

The above reformulation decomposes the problem into two separate problems, one (5) in-

volving the capacity allocation decisions, and the other (6) involving the capacity acquisition

decisions. Note that we have used y to collectively denote the capacity allocation sequence

{yn}n∈T , and [Anyn]i to denote the i-th component of the I dimensional vector Anyn.

Observe that for a fixed sequence of capacity allocation decisions, the optimal capac-

ity acquisition decisions can be obtained via solving (6) independently for each resource i.

Problem (6) is equivalent to the following single-item, uncapacitated, stochastic lot-sizing

problem with linear costs:

min
∑

n∈T pn

[
cnxn + hnsn

]

s.t. sa(n) + xn = d′n + sn ∀ n ∈ T
xn ∈ Z+, sn ∈ R+ ∀ n ∈ T .

(7)

Above, xn and sn represent the production and ending inventory in node n, respectively;

and the parameters cn, hn and d′n represent the production cost, holding cost, and demand
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in node n, respectively. The objective is to minimize expected production and holding costs,

subject to a inventory balance constraint for each n.

To see the equivalence of (6) and (7), note that we can eliminate the inventory variables

sn by substituting sn =
∑

m∈P(n) xm − dn, and obtain the following reformulation of (7):

min
∑

n∈T pnαnxn − C

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ Z+ ∀ n ∈ T ,

(8)

where αn = cn + (1/pn)
∑

m∈T (n) pmhn, dn =
∑

m∈P(n) d′m, and C =
∑

n∈T pnhnd
′
n.

Key to the further developments in this paper is the study of (8). Note that this problem

is a stochastic version of the classical dynamic deterministic lot-sizing problem which can

be solved using a simple greedy algorithm (cf. Johnson (1957), Zipkin (2000)). The first

observation is that even though (8) is a multi-stage stochastic integer program, the following

advantageous property holds.

THEOREM 1 With integer demand parameters {dn}n∈T , the LP relaxation of (8) yields

integral solutions.

PROOF. Note that the constraint matrix of (8) is a NT × NT 0-1 matrix. Let us denote

this matrix as U = [uij], where uij = 1 if j ∈ P(i) in the scenario tree T , and uij = 0

otherwise. Let J be any subset of the columns of U , i.e., a subset of the nodes in T . Let

{t1, . . . , tK} be the indices of time stages corresponding to the nodes in J , and suppose that

t1 < t2 < · · · < tK . Let St = St ∩ J , i.e. the set of nodes in time stage t included in J . We

can then create a partitioning of the nodes (columns) in J as follows J1 = ∪K
i=1, i is oddSti

and J2 = ∪K
i=1, i is evenSti . It is immediately verified that

|
∑
j∈J1

uij −
∑
j∈J2

uij |≤ 1 ∀ i = 1, . . . , NT .

Thus for any subset of the columns in U , we can create a bi-partition such that the difference

in the sum of coefficients of each partition along every row of U is at most 1. It then follows

(cf. Nemhauser and Wolsey (1988)) that U is totally unimodular, and the claim holds. 2
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3 Value of multi-stage stochastic programming

Let the vTS and vMS denote the optimal objective function values of the two-stage (3) and

multi-stage (4) models, respectively. For a given set of problem parameters, it is easily verified

that any solution to (3) is feasible to (4), and the objective function values corresponding to

this solution are equal in both problems, thus

vTS ≥ vMS.

That is, the overall cost of the multi-stage solution is smaller than that of the two-stage so-

lution. This should come as no surprise, since, the multi-stage solution offers more flexibility

in the capacity acquisition decisions with respect to the uncertain states of the world. We

refer to the difference between the optimal objective values of the two-stage and multi-stage

formulations as the value of multi-stage stochastic programming (VMS):

VMS = vTS − vMS.

Unfortunately, the value of multi-stage stochastic programming comes at the expense

of solving a much larger and difficult optimization model. Both (3) and (4) are stochastic

integer programs, and in general, can be extremely difficult to solve. For our particular

case, both models have the property that by fixing the capacity acquisition decisions (the x

variables), we can break the problem down to independent capacity allocation problems (in

the y variables) corresponding to each node of the scenario tree. Owing to this structure,

Benders decomposition (cf. Benders (1962)) is particularly attractive for these problems. In

case of (3) and (4), this would require us to solve master problems involving the integer

variables x. While the two-stage model (3) involves I × T integer variables, the multi-stage

model (4) involves I × NT integer variables (recall that NT = |T |), and for any non-trivial

scenario tree NT >> T . Consequently the computational difficulty of (4) is significantly

more than that of (3). If the VMS is small, then this additional computational effort may

not be worthwhile. However, we need a priori estimates of VMS to analyze this tradeoff.

Next, we first describe simple bounds on VMS for the stochastic lot-sizing problem (7) and

then use these to get bounds on the VMS for the capacity planning problem (4).
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3.1 VMS for the stochastic lot-sizing problem

Consider the linear relaxation of the multi-stage stochastic lot-sizing problem (8) and let vM

denote its optimal objective function value, i.e.,

vM = min
∑

n∈T pnαnxn

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ R+ ∀ n ∈ T .

(9)

Note that we have dropped the constant term C from the objective. A two-stage model for

the stochastic lot-sizing problem would require that the production decisions for each time

period be the same irrespective of the state realized, i.e.,

vT = min
∑

n∈T pnαnxn

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ R+ ∀ n ∈ T
xm = xn ∀ m,n ∈ St, ∀ t.

(10)

THEOREM 2 Let

α∗ = maxn∈T αn

α∗ = minn∈T αn

d∗T = maxn∈ST
(maxm∈P(n) dm)

dT =
∑

n∈ST
pn(maxm∈P(n) dm),

then

α∗d∗T − α∗dT ≤ VMS = vT − vM ≤ α∗d∗T − α∗dT .

PROOF. Note that any feasible solution x for (9) has to satisfy

∑
m∈P(n) xm ≥ maxm∈P(n) dm ∀ n ∈ ST

⇒ ∑
n∈ST

pn

( ∑
m∈P(n) xm

)
≥ ∑

n∈ST
pn(maxm∈P(n) dm)

⇔ ∑T
t=1

∑
n∈St

( ∑
m∈ST∩T (n) pm

)
xn ≥ dT

⇔ ∑
n∈T pnxn ≥ dT ,

where the last step follows from the fact that

∑

m∈ST∩T (n)

pm = pn ∀ n ∈ T .
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Then if x∗ is an optimal solution for (9), we have

vM =
∑
n∈T

pnαnx∗n ≥ α∗
∑
n∈T

pnx∗n ≥ α∗dT . (11)

Next, consider a feasible solution x̂ to (9), such that x̂n = maxm∈P(n) dm −maxm∈P(a(n)) dm

for all n ∈ T , and maxm∈P(a(1)) dm = 0. Then

vM ≤ ∑
n∈T pnαnx̂n

≤ α∗
∑T

t=1

∑
n∈St

pn(maxm∈P(n) dm −maxm∈P(a(n)) dm)

= α∗
∑

n∈ST
pn(maxm∈P(n) dm)

= α∗dT ,

(12)

where the third step follows the fact that

∑

m∈St+1∩T (n)

pm = pn ∀ t, n ∈ St.

In the two-stage model (10), since the production decision is identical for all nodes in

any stage, it has to satisfy the largest possible cumulative demand in that stage, i.e., dn can

be replaced with d̃n = maxm∈Stn
dm in (10). Then, by applying the same analysis used for

problem (9) to problem (10) with d̃n replacing dn, it can be shown that

α∗d∗T ≤ vT ≤ α∗d∗T . (13)

Combining (11), (12), and (13), the claim follows. 2

Suppose that the cost parameters αn are nearly constant, i.e., α∗ ≈ α∗ ≈ α, then Theorem 2

implies

VMS ≈ α(d∗T − dT ).

Thus, VMS is directly related to the variability of the demand. If demand variability is high

then VMS is high, and the two-stage approach is likely to produce poor quality solutions.

On the other hand, if there is little variability in the demand data, then the multi-stage

approach has little value.

3.2 VMS for the capacity planning problem

We shall now describe a lower bound on the VMS for the multi-stage capacity planning

model (4) based on the analysis in the previous section and an optimal solution to the LP
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relaxation of the two-stage model (3). Since this LP relaxation can be solved fairly quickly,

we can use this lower bound estimate to justify additional computational effort required to

solve the difficult multi-stage model (4).

THEOREM 3 Let {yTLP
n }n∈T be the capacity allocation decisions in an optimal solution

to the linear relaxation of the two-stage model (3). Then for each resource i = 1, . . . , I,

let din = [Any
TLP
n ]i, d∗iT = maxn∈ST

(maxm∈P(n) dim), diT =
∑

n∈ST
pn(maxm∈P(n) dim), α∗i =

maxn∈T αin, and αi∗ = minn∈T αin, we have

VMS ≥
I∑

i=1

(
αi∗d∗iT − α∗i diT

)
−

I∑
i=1

αi1.

PROOF. Note that

vTS ≥
∑
n∈T

pnβnyTLP
n +

I∑
i=1

vT
i

where

vT
i = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ din ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T
xim = xin ∀ m,n ∈ St, ∀ t.

Since {yTLP
n }n∈T is a feasible capacity allocation for the multi-stage problem (4), we have

vMS ≤
∑
n∈T

pnβnyTLP
n +

I∑
i=1

oM
i

where

oM
i = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ din ∀ n ∈ T
xin ∈ Z+ ∀ n ∈ T

= min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ ddine ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= max
∑

n∈T [din + (ddine − din)]πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T ,
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in which the second equality comes from Theorem 1 and the third equality comes from linear

program duality. We can further define:

vM
i = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ din ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= max
∑

n∈T dinπin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T ,

Therefore,

oM
i ≤ vM

i + max
∑

n∈T (ddine − din)πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

≤ vM
i + max

∑
n∈T πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

= vM
i + min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ 1 ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= vM
i + αi1,

where the second inequality comes from ddine − din ≤ 1, the third equality comes from

duality, the fourth equality comes from the fact that p1 = 1 and an optimal solution to a

stochastic lot-sizing problem with a cumulative demand of 1 unit in every node is to produce

1 unit in the root node. Therefore, we have:

VMS ≥
I∑

i=1

(
vT

i − vM
i − αi1

)
,

and the result follows from the bounds (12) and (13) derived in the proof of Theorem 2. 2
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4 An approximation algorithm

In this section we develop an approximation algorithm for the multi-stage capacity planning

problem (4).

It can be easily shown that any instance of the NP-hard integer knapsack problem

(cf. Garey and Johnson (1979)) with I items can be polynomially transformed to a sin-

gle period instance of the deterministic capacity planning problem (2). Since (2) is just a

single scenario instance of the stochastic models (3) and (4), we have the following result.

The detailed proof is omitted in the interest of brevity.

THEOREM 4 The deterministic capacity planning problem (2) and its stochastic counter-

parts (3) and (4) are NP-hard.

Motivated by this intractability, we propose the approximation scheme outlined in Fig-

ure 1. The algorithm exploits the decomposable structure revealed by the reformulation

(5)-(6) of the problem.

Step 1 of Algorithm 1 requires the solution of the LP relaxation of (4). This problem

is a multi-stage stochastic linear program which can, in general, be solved by the Nested

L-Shaped Decomposition algorithm (cf. Birge (1985)). Step 2 requires the solution of I

stochastic lot-sizing problems (7) which are multi-stage stochastic integer programs. In fol-

lowing section (Section 4.1), we show that these problems can be solved extremely efficiently

using a specialized scheme. Finally, Step 3 requires the solution of independent simple linear

capacity allocation problems for each node in the tree.

4.1 An efficient algorithm for the stochastic lot-sizing problem

By virtue of Theorem 1 and the fact that the right-hand-sides of the stochastic lot-sizing

problems solved in Step 2 of Algorithm 1 are integral, we only need to find an efficient scheme

for the linear program

min
∑

n∈T cnxn

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ R+ ∀ n ∈ T ,

(14)
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Figure 1: An approximation scheme for the multi-stage capacity planning problem (4)

Algorithm 1

1: Solve the LP relaxation of (4). Let {(xLP
n , yLP

n )}n∈T be an optimal solution and vLP
MS be

the optimal value. If xLP
n is integral for all n, stop and return {(xLP

n , yLP
n )}n∈T .

2: For each resource i = 1, 2, ..., I, solve independent capacity acquisition (or stochastic

lot-sizing) problems:

min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥
⌈
[AnyLP

n ]i

⌉
∀ n ∈ T

xin ∈ Z+ ∀ n ∈ T ,

and let xH
in denote the corresponding solutions. Note that the integrality of the decision

variables allows for the rounding up of [Any
LP
n ]i.

3: For each n ∈ T , solve independent capacity allocation problems:

min βnyn

s.t. Anyn ≤
∑

m∈P(n) xH
m

Bnyn ≥ δn, yn ∈ RJ
+,

and let yH
n denote the corresponding optimal solution.

4: Return {(xH
n , yH

n )}n∈T .

where dn ∈ Z and we have used cn to succinctly denote pnαn. The dual of (14) is

max
∑

n∈T dnπn

s.t.
∑

m∈T (n) πm ≤ cn ∀ n ∈ T
πn ∈ R+ ∀ n ∈ T ,

(15)

Our proposed algorithm scheme is based on a greedy approach for solving the dual prob-

lem (15). The scheme takes advantage of complementary slackness conditions to recover

primal optimal solutions. Figure 3 summarizes the proposed strategy. Here, we assume

that the parameters cn and dn are strictly positive for all n. The scheme uses two different

indexing schemes for the nodes in the tree T :
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Figure 2: The Indexing schemes. The numbers in parenthesis indicate (dn, cn)
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Indexing scheme 1. The nodes in T are indexed 1, 2, . . . , NT in increasing order of their time

stage, i.e., t1 ≤ t2 ≤ · · · ≤ tNT
. No particular ordering is imposed on the indices of the nodes

in the same time stage. Thus the root node has an index of 1.

Indexing scheme 2. The nodes in T are indexed 1, 2, . . . , NT in decreasing order of the cor-

responding cumulative demand, i.e., d1 ≥ d2 ≥ · · · ≥ dNT
. If dm = dn, then m < n if tm < tn.

The two indexing schemes corresponding to an exemplary scenario tree are illustrated in

Figure 2.

As mentioned earlier, the greedy dual step first assigns the largest dual value (as permit-

ted by the constraints) to the node with the largest demand, and then considers the node

with the next largest demand, and so on. The marker mk is assigned the index of the node

(closest on the path P(k)) to k whose corresponding dual constraint becomes tight when

the dual value for node k is set. Note that once k has a positive dual value, no other nodes

in T (mk) will be further considered (any other node in T (mk) will satisfy the condition in

line 4 of the dual step). Thus all nodes in l ∈ T (mk) except for the ones with ml > 0, will

have π∗l = 0. The marker mk is used in the primal step to set the primal variables such that

complementary slackness conditions are satisfied. Note that according to the algorithm, only

a node k with mk > 0 could have a positive dual value, and a node n could have a positive

primal value only if n = ml for some node l ∈ T (n).

The following results establish the validity of Algorithm 2. For the remainder of this
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Figure 3: An algorithm for the stochastic lot-sizing primal and dual problems (14) and (15).

Algorithm 2

The dual step:

1: label the nodes in T according to indexing scheme 2

2: initialize π∗n = 0, c0
n = cn and mn = 0 for all n ∈ T

3: for k = 1, . . . , NT do

4: if there exists n ∈ P(k) such that n = ml for some l ∈ T (n) then

5: break

6: else

7: set π∗k = minn∈P(k){ck−1
n }

8: set mk = argminn∈P(k){ck−1
n } such that ck−1

l > ck−1
mk

for all l ∈ P(k) \ P(mk)

9: set ck
n = ck−1

n − π∗k if n ∈ P(k) and ck
n = ck−1

n otherwise

10: end if

11: end for

The primal step:

1: transform the node indices as well as mn to indexing scheme 1

2: initialize x∗n = 0 for all n ∈ T
3: for n = 1, . . . , NT do

4: if there exists l ∈ T (n) such that n = ml then

5: set x∗n = dl −
∑

k∈P(n)\{n} x∗k

6: end if

7: end for
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section we use indexing scheme 2 for the node labels.

LEMMA 1 In each iteration k ∈ {1, . . . , NT} of the dual step of Algorithm 2, the dual

solution π∗ satisfies

∑

m∈T k(n)

π∗m ≤ cn for all n ∈ T , (16)

where T k(n) = T (n) ∩ {1, 2, . . . , k}.

PROOF. By induction on k, it can be seen that ck
n = cn−

∑
m∈T k(n) π∗m. Also, n ∈ P(k) if

and only if k ∈ T (n) and π∗k ≤ ck−1
n for all n ∈ P(k). Therefore, we always have ck

n ≥ 0 for

any n ∈ T . 2

Lemma 1 guarantees the feasibility of the dual solution π∗ (let k = NT in (16)). Furthermore,

we also have
∑

l∈T k(n) π∗l = cn for all n ∈ argminm∈P(k){ck−1
m }. Since dual feasibility of π∗

implies
∑

l∈T (n) π∗l ≤ cn and π∗n ≥ 0, we also have:

∑

l∈T k(n)

π∗l =
∑

l∈T (n)

π∗l = cn ∀ n ∈ argminm∈P(k){ck−1
m }. (17)

That is, for any l ∈ T (n) such that l /∈ {1, . . . , k}, π∗l =0.

LEMMA 2 The primal solution x∗ = (x∗1, x
∗
2, . . . , x

∗
NT

) produced by the primal step of Al-

gorithm 2 is feasible.

PROOF. By construction, if a node n is such that mn > 0, then the following equalities

hold:

∑

m∈P(n)

x∗m =
∑

m∈P(mn)

x∗m = dn. (18)

Now consider a node n such that mn = 0. Let l ∈ P(n) be such that l = mk for some node

k ∈ T (mk). Note that such a node l must always exists, since the root node is one such node.

Suppose l be the closest (on the path P(n)) such node to n. Note that n, k ∈ T (l) while

mn = 0 and mk > 0, thus in the dual step node k must have been considered before node n,

i.e., dk ≥ dn. According to (18),
∑

m∈P(n) x∗m =
∑

m∈P(mk) x∗m =
∑

m∈P(k) x∗m = dk ≥ dn (the

first equality holds since x∗m = 0 for m ∈ P(n)\P(mk)). 2

18



THEOREM 5 The solutions x∗ and π∗ returned by Algorithm 2 are optimal solutions of

(14) and (15), respectively.

PROOF. Lemmas 1 and 2 have proven the feasibility of π∗ and x∗. Here we show that π∗

and x∗ satisfies the complementary slackness conditions:

π∗n > 0 =⇒
∑

m∈P(n)

x∗m = dn (19)

∑

m∈T (n)

π∗m < cn =⇒ x∗n = 0. (20)

We prove by induction on the nodes indexed according to scheme 2.

The base case: Consider node 1. Note that π∗1 = cm1 > 0, then (19) follows from (18).

For all other nodes n ∈ T (m1), π∗n = 0. On the other hand,
∑

m∈T (m1) π∗m = cm1 , thus

{n ∈ T (m1) :
∑

m∈T (n) π∗m < cn} ⊆ T (m1)\{m1}. Then (20) holds, since x∗n = 0 for all

n ∈ T (m1)\{m1}. Note that we have verified the complementary slackness conditions for

all nodes in T (m1), and not just node 1.

The induction step: Assume that we have checked nodes 1, ..., k, and now consider node k+1.

If mk+1 = 0, then this node has already been checked since then k + 1 ∈ T (mj) for some

j < k + 1. So we assume that mk+1 > 0. Denote {1, 2, ..., k} by H(k) and {m1,m2, ..., mk}
by R(k). Also define F(k) = ∪{T (mn) : n ∈ H(k),mn > 0}. We now examine the nodes

in T (mk+1)\F(k). Notice for all nodes n in T (mk+1)\F(k)\{k + 1}, π∗n = 0 since mn = 0.

Amongst the nodes in T (mk+1)\F(k), only node k + 1 could have a positive dual value. For

node k + 1, (19) then holds from (18). On the other hand,
∑

m∈T (mk+1)
π∗m = cmk+1

from

(17), so {l ∈ T (mk+1)\F(k) :
∑

m∈T (l) π∗m < cl} ⊆ T (mk+1)\F(k)\{mk+1}. The conclusion

then holds since x∗m = 0 for all m ∈ T (mk+1)\F(k)\{mk+1}. 2

It can be shown that by adopting an appropriate data structure, Algorithm 2 can be

executed in no more than O(NT log NT log log NT ) operations. We omit details of this com-

plexity calculation here.
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5 Analysis of the approximation algorithm

This section analyzes the optimality gap of the approximate solution produced by Algorithm

1. Given capacity acquisition-allocation solutions (x, y), let us denote the corresponding

objective function value as

f(x, y) =
∑
n∈T

pn

(
αnxn + βnyn

)
.

Recall that (xLP , yLP ) denotes the capacity acquisition-allocation solutions corresponding to

the LP relaxation of (4), and (xH , yH) denotes the capacity acquisition-allocation solutions

returned by Algorithm 1. Let (x∗, y∗) denote an optimal solution to (4). Then the optimality

gap of (xH , yH) is

GAP = f(xH , yH)− f(x∗, y∗).

THEOREM 6 GAP ≤ ∑I
i=1 αi1, where 1 is the root node of the scenario tree.

PROOF. Note that

GAP ≤ f(xH , yH)− f(xLP , yLP )

= f(xH , yH)− f(xH , yLP ) + f(xH , yLP )− f(xLP , yLP )

≤ f(xH , yLP )− f(xLP , yLP ),

where last inequality follows from the fact that f(xH , yH) ≤ f(xH , yLP ) (recall that yH is

an optimal capacity allocation corresponding to xH , i.e., an optimal solution to capacity

allocation problem solved in step 3 of Algorithm 1, whereas yLP is just a feasible capacity

allocation solution). Now

f(xH , yLP )− f(xLP , yLP ) =
I∑

i=1

∑
n∈T

pnαin

(
xH

in − xLP
in

)
. (21)

Note that
∑

n∈T pnαinx
H
in = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥
⌈
[AnyLP

n ]i

⌉
∀ n ∈ T

xin ∈ R+ ∀ n ∈ T
= max

∑
n∈T

⌈
[Any

LP
n ]i

⌉
πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T ,

(22)
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and ∑
n∈T pnαinx

LP
in = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ [AnyLP
n ]i ∀ n ∈ T

xin ∈ R+ ∀ n ∈ T
= max

∑
n∈T [Any

LP
n ]iπin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T .

(23)

Thus

∑
n∈T pnαin

(
xH

in − xLP
in

)
= max

∑
n∈T

(⌈
[Any

LP
n ]i

⌉
− [Any

LP
n ]i

)
πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

≤ max
∑

n∈T πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

= min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ 1 ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= αi1,

(24)

where the first equality follows from (22) and (23), the next inequality follows from the fact

that
⌈
[Any

LP
n ]i

⌉
− [Any

LP
n ]i ≤ 1, the next equality follows from duality, and the last equality

follows from the fact that an optimal solution to a stochastic lot-sizing problem with a cu-

mulative demand of 1 unit in every node is to produce 1 unit in the root node. The result

then follows from incorporating (24) in (21). 2

Theorem 6 shows the surprising result that the optimality gap of Algorithm 1 is bounded

above by a factor that is independent of the number of time stages, number of branches in

the tree, number of tasks, or any problem data except for the sum of the capacity acquisition

costs of the resources in the first stage. If we consider instances of (4) that have the same

first-stage acquisition costs, but different topology of the scenario tree, then we have the

following asymptotic quality guarantees for Algorithm 1. Corollary 1 is immediate, and the
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proof of Corollary 2 is provided in the appendix.

COROLLARY 1 limT→∞
f(xH ,yH)−f(x∗,y∗)

T
= 0.

COROLLARY 2 Assume that,

(i) there exists ε1 > 0 such that, for each n ∈ T , there exists at least one product kn ∈
{1, . . . , K} whose demand is at least ε1, i.e., [δn]kn ≥ ε1; and

(ii) there exists ε2 > 0 such that, for each n ∈ T , and any task j ∈ {1, . . . , J} and

product k ∈ {1, . . . , K} with a positive demand-task allocation ratio, i.e., [Bn]kj > 0,

the allocation cost [βn]j ≥ ε2[Bn]kj.

Then the following holds:

lim
T→∞

f(xH , yH)− f(x∗, y∗)
f(x∗, y∗)

= 0.

Note that the assumptions in Corollary 2 are not particularly restrictive. These only require

that, for every node of the scenario tree, there is always some positive demand, and that the

unit allocation cost is never smaller than some level.

6 Computational results

In this section, we report on computational experiments with the proposed multi-stage

stochastic programming approach for a realistic scale semiconductor tool planning prob-

lem. Our experiments focus on two objectives: (i) to investigate the value of multi-stage

stochastic programming; and, (ii) to investigate the performance of the proposed approxi-

mation scheme. In the following, we first describe our experimental environment and then

report on the experimental results in light of each of the above two objectives.

6.1 Experimental environment

Our test problem instances are derived from a realistic scale two-stage stochastic program-

ming model for semiconductor tool planning from Barahona et al. (2005) and Hood et al.

(2003). The formulation is very similar to (1) with an additional purchase budget constraint.
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Numerical data for instances of the model with two periods and 2, 3, and 4 scenarios are

available in Ahmed (2004) (see the SEMI test set). The instances consists of 306 machine

tools, 40 wafer types (products) and 2575 processing steps. The only uncertain parameters

are demands of 7 of the 40 products. The demand data for the uncertain products for each

scenario varies around that of a “base” scenario (having the highest probability).

We generate our test problem instances from the above data set as follows. We ignore

the budget constraint since our approach is not designed to handle such a constraint. The

original cost and demand data corresponding to the first period base scenario is used for the

root node (node 1) of our scenario tree. The demand data (for the 7 products with uncertain

demand) for each subsequent node is independently generated by multiplying the root node

data with a random number generated from a lognormal distribution λ(µ, σ), where µ is the

expectation and σ is the standard deviation. We considered four trends of the demand with

respect to the time period. These demand patters are indicated in Table 1. In Table 1, zn is

the demand of a product in node n, and z1 is the demand of the product in the root node.

Recall that tn is the stage number of node n (if n ∈ St, then tn = t). So for all nodes in the

same stage, we have the same demand distribution. The cost data is discounted at the rate

of 5% for each stage of the scenario tree.

Table 1: Demand patterns

Characteristic Distribution

1 constant mean, constant standard deviation. zn ∼ z1λ(1, 0.5)

2 constant mean, increasing standard deviation. zn ∼ z1λ(1, 0.5 + 0.1tn)

3 increasing mean, constant standard deviation. zn ∼ z1λ(1 + 0.5tn, 0.5)

4 increasing mean, increasing standard deviation. zn ∼ z1λ(1 + 0.5tn, 0.5 + 0.1tn)

We consider scenario trees with the number of stages (T ) varying from 2 to 5, and the

number of branches (B) for each non-leaf node varying from 2 to 5. Thus, there are, in

total, 7 scenario tree structures. The nodes in these trees vary from 3 to 31. For each tree

structure and demand pattern combination, we generate 5 problem instances, and report

statistics averaged over these 5 instances. A total of (7× 4× 5 =) 140 problem instances are
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considered. To get a sense of the sizes of these instances, note that the smallest multi-stage

instance with T = 2 and B = 2 consists of 8,763 constraints and 15,621 variables of which

918 are integers, and an instance with T = 5 and B = 2 consists 90,551 constraints and

161,417 variables of which 9,486 are integers.

Our experiments utilize C/C++ implementations of Algorithms 1 and 2. CPLEX 9.0 is

used to solve the linear programs in Steps 1 and 3 of Algorithm 1. All numerical experiments

are conducted on an IBM PC with 1024 MB RAM and a PENTIUM4 1.6GHz processor.

6.2 Value of multi-stage stochastic programming

To compare two-stage and multi-stage models, we define the Relative Value of Multi-stage

Stochastic Programming as:

RVMS =
vTS − vMS

vTS
,

where vTS, vMS are the optimal values of two-stage model and multi-stage model, respec-

tively. However, since it is hard to solve the two-stage and multi-stage models to optimality,

we consider the following lower bound:

RVMS ≥ vTS
LP − vMS

HR

vTS
LP

,

where vTS
LP is the optimal value of the linear relaxation of two-stage model and vMS

HR is the

objective function value of an approximate solution (obtained using Algorithm 1) for the

multi-stage model.

In Figure 4, we observe the behavior of the lower bound on RVMS (averaged over 5

instances) with respect to the number of stages T for each of the 4 demand patterns. The

number of branches B is fixed at 2. Our first observation is that for all the four demand

patterns, the RVMS lower bound increases as the number of stages increases. This implies

that the value of multi-stage stochastic programming increases with the planning horizon.

Our second observation is that, consistent with the theoretical analysis of Section 3, the value

of multi-stage stochastic programming increases with the variability of demand (the RVMS

lower bound is larger for demand patterns 2 and 4 that have increasing variability). Moreover,

the rate at which the value increases with the planning horizon length also increases with

demand variability.
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Figure 4: The value of multi-stage stochastic programming with increasing planning horizon
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Figure 5: The value of multi-stage stochastic programming with increasing number of

branches
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In Figure 5, we observe the behavior of the lower bound on RVMS (averaged over 5

instances) with respect to the number of branches B for each of the 4 demand patterns.

The number of stages T is fixed at 3. We observe that in most cases, the value of multi-

stage stochastic programming increases with the number of branches since the variability of

the demand data increases. Also, as before, the rate at which the value increases with the

number of branches also increases with demand variability.

6.3 Performance of the approximation scheme

In this section, we report on the solution quality and computational efficiency of Algorithm

1.

A measure of the quality of an approximate solution to the multi-stage model is the

relative gap defined as:

RGAP =
vMS

HR − vMS

vMS
,

where vMS
HR and vMS denote the objective value of the approximate solution and that of an

optimal solution of the multi-stage model, respectively. To avoid solving the multi-stage

model to optimality, we consider an upper bound on RGAP:

RGAP ≤ vMS
HR − vMS

LP

vMS
LP

,

where vMS
LP is the optimal value of the linear programming relaxation of the multi-stage

model.

In Figure 6, we observe the behavior of the upper bound on RGAP (averaged over 5

instances) with respect to the number of stages T for each of the 4 demand patterns. The

number of branches B is fixed at 2. Our first observation is that typically the upper bound

on RGAP decreases, hence the approximate solution quality increases, with the increase in

the number of stages. This is consistent with the theoretical analysis in Corollary 2. Our

second observation is that the upper bound on RGAP decreases, hence the approximate

solution quality increases, with increase in the demand variability. Comparing Figures 4 and

6, we find that, fortunately, the instance with high VMS are precisely the ones for which the

approximation schemes provide good quality solutions.
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Figure 6: The quality of the approximate solution with increasing planning horizon
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Figure 7: The quality of the approximate solution with increasing number of branches
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In Figure 6, we observe the behavior of the upper bound on RGAP (averaged over 5

instances) with respect to the number of branches B for each of the 4 demand patterns. The

number of stages T is fixed at 2. In this case, we observe that the upper bound on RGAP

is quite independent on the number of branches. This can be explained by the fact that the

optimal value of the multi-stage model is little affected by the number of branches. On the

other hand the effect of demand variability is again clear, higher demand variability leads to

smaller upper bound on RGAP, i.e., better quality approximate solutions.

Overall, the relative optimality gap of the approximation scheme is at most 15% and

could be as small as 1%. Moreover, as mentioned earlier, it is consistently observed that, for

instances with high VMS the relative optimality gap is small.

Finally, to appreciate the computational efficiency of the proposed approximation scheme,

note that for all of the instances considered, the approximation scheme never requires more

than 2 CPU minutes. By contrast, exact optimization of a multi-stage instance, with just 3

nodes in the scenario tree (T = 2 and B = 2), using the MIP solver of CPLEX 9.0 requires

over an hour.

7 Summary of contributions

In this paper, we propose a generic multi-period capacity planning problem under uncertainty

involving multiple resources, tasks and products.

First, we compare two-stage and multi-stage stochastic integer programming approaches

for this problem. The concept of value of multi-stage stochastic programming (VMS) is

discussed and informative analytical bounds are developed.

Second, by identifying and exploiting a key lot-sizing substructure in the problem, we

propose an efficient approximation scheme for the difficult multi-stage model. We show

that the absolute optimality gap of the approximation scheme is bounded above by a factor

that is independent of the number of time stages, number of branches in the scenario tree,

number of tasks, or any problem data except for the sum of the capacity acquisition costs

of the resources in the first stage. This leads to an asymptotic optimality guarantee of the

approximation scheme with respect to the number of planning stages.
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Finally, we present numerical results using realistic-scale problem instances corresponding

to semiconductor tool planning. Our numerical results indicate that a lower bound on the

relative VMS can be as high as 70%. Recall that this lower bound is obtained by comparing

the cost of an approximate solution to the multi-stage model to that of a lower bound on

the cost of an optimal solution of the two-stage model. Therefore, this suggests that even an

approximate solution to the multi-stage model may be far superior to any optimal solution

to the two-stage model. These results confirm that the VMS for these problems is quite high.

Moreover the quality and performance of the approximation scheme is very satisfactory, more

so, for cases where the VMS is high.
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Appendix

PROOF of COROLLARY 2

We only need to show that f(x∗, y∗) → ∞ as n → ∞. Since f(x∗, y∗) ≥ f(xLP , yLP ), we

only need to show f(xLP , yLP ) → ∞ as n → ∞. For this purpose, we rewrite the linear

relaxation of (4) as follows:

min
∑

n∈T pn

[
αnxn + βnyn

]

s.t.
∑

m∈P(n) xm − Anyn ≥ 0 ∀ n ∈ T
Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T
xn ∈ RI

+ ∀ n ∈ T ,
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whose dual program is:

max
∑

n∈T ηnδn

s.t.
∑

m∈T (n) γn ≤ pnαn ∀ n ∈ T
−γnAn + ηnBn ≤ pnβn ∀ n ∈ T
γn ∈ RI

+ ∀ n ∈ T
ηn ∈ RK

+ ∀ n ∈ T ,

where αn, βn, δn, γn, ηn are 1× I, 1× J,K × 1, 1× I, 1×K vectors, respectively; and An, Bn

are I × J and K × J matrices respectively. Let the objective function of the dual program

be g(γn, ηn). We will try to find a feasible solution (γ̃n, η̃n) such that g(γ̃n, η̃n) ≥ Tε for some

ε > 0. First, we assign γ̃n = 0. From assumption (i) that [δn]kn ≥ ε1, and the constraint

Bnyn ≥ δn, it follows that there exists at least one jkn such that [Bn]kn,jkn
> 0, otherwise the

problem is not feasible (we can always make the problem feasible by adding a very expensive

artificial resource that can satisfy all demand). Now assign [η̃n]kn =
pn[βn]kn

[Bn]kn,jkn

, and [η̃n]k = 0

for all k 6= kn. The constructed solution (γ̃n, η̃n) is clearly dual feasible. Furthermore, from

assumption (ii), [η̃n]kn ≥ pnε2. Thus f(xLP , yLP ) ≥ g(γ̃n, η̃n) =
∑

n∈T η̃nδn ≥
∑

n∈T pnε1ε2 =

Tε1ε2, where the first inequality follows from weak duality and the last equality follows from

the fact that
∑

n∈St
pn = 1 for all 1 ≤ t ≤ T . This completes the proof. 2
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