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Abstract

In this paper, we discuss the values of k-th order of the entire functions
which with its linear differential polynomial share 1 CM. We prove that if
k(≥ 3) is an integer, for the given non-negative real number λ (may be
infinity), then there exists an entire function f(z) which with its linear
differential polynomial share 1 CM, such that the k-th order of f(z) is λ.

Keywords: Entire functions, Share CM, k-th order, Nevanlinna theory,
Differential equational
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1 Introduction and main results

In 1925, R. Nevanlinna developed a systematic study of the value distribution
theory by means of his First and Second Fundamental Theorems. In this paper,
we assume that the reader is familiar with fundamental results and standard
notations of value distribution theory [8, 22]. The order and hyper-order of an
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entire function f(z) are respectively defined by

ρ(f) = lim sup
r→+∞

log T (r, f)

log r
= lim sup

r→+∞

log logM(r, f)

log r
,

ρ2(f) = lim sup
r→+∞

log log T (r, f)

log r
= lim sup

r→+∞

log log logM(r, f)

log r
,

where, and in the sequel, M(r, f) denotes the maximum modulus of f(z) on
the circle ‖z‖ = r.

Suppose that f(z) and g(z) are two non-constant meromorphic functions
in the complex plane C, and a is a finite complex number. We say that f(z)
and g(z) share a CM, provided that f(z) − a and g(z) − a have the same
zeros with the same multiplicities. Similarly, we say that f(z) and g(z) share
a IM, provided that f(z) − a and g(z) − a have the same zeros, where the
multiplicities are not taken into account. We denote by S(r, f) any quantity
satisfying S(r, f) = o(T (r, f)) as r → +∞, possibly outside a set of r with
finite linear measure. A meromorphic function a(z) is called a small function
with respect to f(z) provided that T (r, a) = S(r, f).

In 1977, L. A. Rubel and C. C. Yang proved the following result.

Theorem A [17]. Let f(z) be a non-constant entire function. If f(z) and f ′(z)
share two distinct finite values a, b CM, then f(z) ≡ f ′(z).

This result has been generalized to sharing values IM by E. Mues and N.
Steinmetz.

Theorem B [14]. Let f(z) be a non-constant entire function. If f(z) and f ′(z)
share two distinct values a, b ∈ C\{0} IM, then f(z) ≡ f ′(z).

For examples (see [1]) are given by the solutions of the following differential
equations

f ′(z)− 1

f(z)− 1
= ez

n

and
g′(z)− 1

g(z)− 1
= ee

z

.

In this case we note respectively that ρ2(f) = n (n ∈ N) and ρ2(g) = +∞.
What can be said when a non-constant entire function f(z) share one finite

value CM with its derivative f ′(z)? In 1996, R. Brück [1] proposed the following
conjecture.

Brück Conjecture [1] Let f(z) be a non-constant entire function of finite hyper-
order ρ2(f) that is not a positive integer. If f(z) and f ′(z) share a finite value a CM,
then

f ′(z)− a

f(z)− a
= c, (1.1)

for some constant c ∈ C\{0}.
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Let F (z) = f(z)− a, then we can easily deduce

F ′(z) = (f(z)− a)′ = f ′(z). (1.2)

Substituting (1.2) into (1.1), we have

F ′(z)− a

F (z)
= c.

For simplicity of notation, we still denote f(z)−a as f(z), and let a = 1. Then
Brück conjecture can be briefly described in the following form.

Brück Conjecture Let f(z) be a non-constant entire function of finite hyper-order
ρ2(f) that is not a positive integer. If

f ′(z)− 1

f(z)
= e

α(z)
,

where α(z) is an entire function, then α(z) = c with c is some constant.

In full generality, this conjecture remains open. However, Brück himself
proved the claim provided that either a = 0 or N(r, 1

f ′
) = S(r, f), see [1].

In the same paper, he also gave counterexamples to show that the conjecture
fails when f(z) and f ′(z) share a IM and that the restriction on the growth of
f(z) is necessary. In 1998, G. G. Gundersen and L. Z. Yang proved that the
conjecture is true if f(z) is of finite order, see [7]. In 2004, Z. X. Chen and K. H.
Shon proved that the conjecture is also true for f(z) of hyper-order ρ2(f) <

1
2 ,

see [4]. In 2016, T. B. Cao affirmed the conjecture for the case where f(z) is
of hyper-order ρ2(f) =

1
2 , see [2]. Recently, M. F. Chen, Z. S. Gao and J. L.

Zhang affirmed the conjecture when f(z) is of hyper-order ρ2(f) < 1, see [3].
There are many results closely related to Brück conjecture, mainly in three

directions. One replaces the shared value by a non-constant function, such as
polynomial, small function with respect to f(z), or entire functions with lower
order than f(z), see [6, 13, 18]. The second direction is to consider arbitrary
k-th derivatives f (k)(z) instead of f ′(z), see [5, 11, 21]. The other direction is
to extend f ′(z) to a linear differential polynomial, see [3, 15, 19].

By studying the growth of entire functions satisfying a certain functional
equation, we have a new understanding of Brück conjecture. For further study-
ing the growth of entire functions, we introduce the following concept. Let f(z)
be an entire function and

τ1 = log+ r (r ≥ 0), τk+1 = log+ τk (r ≥ 0, k = 1, 2, · · · ).

We denote by ρk(f) the k-th order of f(z) (see [9, 10]), i.e.,

ρk(f) = lim
r→+∞

τk(T (r, f))

τ1(r)
= lim

r→+∞

τk+1(M(r, f))

τ1(r)
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= lim
r→+∞

τk(ν(r, f))

τ1(r)
(k = 1, 2, · · · ),

where, and in the sequel, ν(r, f) denotes the central index of f(z). In particular,
ρ1(f) denotes the order of f(z), and ρ2(f) denotes the hyper-order of f(z).

For convenience, we denote by E the ring of entire functions and by E1 the
subring of E consisting of f(z) and f ′(z)− 1 share 0 CM, that is,

E1:={f(z) : f(z) and f ′(z)− 1 share 0 CM, and f(z) ∈ E}.
Let Lj(f(z)) = f (j)(z) + aj−1f

(j−1)(z) + · · · + a1f
′(z) + a0f(z), where j is a

positive integer and a0, a1, · · · , ak−1 are complex numbers. And we denote by
Ej the subring of E consisting of f(z) and Lj(f(z))− 1 share 0 CM, that is,

Ej :={f(z) : f(z) ∈ E , f(z) and Lj(f(z))− 1 share 0 CM, j = 1, 2, 3, · · · }.
Obviously, for the positive integer k, we have

ρk(E) = {ρk(f) : f(z) ∈ E} = [0,+∞) ∪ {+∞}.

If Brück conjecture is valid if and only if

ρ2(E1) = {ρ2(f) : f(z) ∈ E1} = {0} ∪ N ∪ {+∞}.

It is easy to get that ρ2(E1) is a discrete point set. For the value of the order
of f(z) ∈ Ej (j = 1, 2, 3, · · · ), we can get the following result.

Theorem 1 For any entire function f(z) ∈ Ej (j = 1, 2, 3, · · · ), we can get that the
value of ρ1(f) is 0, 1 or +∞.

Corollary 1 For any entire function f(z) ∈ E1, we can get that the value of ρ1(f)
is 0, 1 or +∞.

It is natural to ask the following question: If k(≥ 3) is an integer, for
the given non-negative real number λ (may be +∞), is there an entire func-
tion f(z) ∈ Ej (j = 1, 2, 3, · · · ) such that ρk(f) = λ? In this paper, we give
an affirmative answer to this question. In fact, we shall prove the following
theorem.

Theorem 2 If the positive integer k ≥ 3, we have

ρk(Ej) = [0,+∞) ∪ {+∞},

where j is a positive integer.

Corollary 2 If the positive integer k ≥ 3, we have

ρk(E1) = [0,+∞) ∪ {+∞}.
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Let k be a positive integer, we define the following functional

ρk :
E1 −→ [0,+∞) ∪ {+∞}

f 7−→ ρk(f)
.

From our Theorem 1, 2 and Corrolary 1, 2, we can get to know the following
facts. If Brück conjecture is valid, then we can get that only the values of
functional ρ1 and ρ2 are discontinuous. However, we can get that the value of
functional ρk(k ≥ 3) is continuous. In fact, we can obtain that the value of
functional ρ1 is {0, 1,+∞} and the value of functional ρk(k ≥ 3) is [0,+∞) ∪
{+∞}. Under the premise that Brück conjecture is true, it is easy to get
that the value of functional is {0, 1, 2, 3, · · · ,+∞}. If we can get the value of
functional ρ2, then we can further investigate Brück conjecture. For example,
if we can find an entire function f(z) ∈ E1, such that ρ2 6∈ {0}∪N∪{+∞}, then
we can get Brück conjecture is not true. For any f(z) ∈ Ej (j = 1, 2, 3, · · · ), if
we can get ρ2(f) ∈ {0} ∪N∪ {+∞}, then we can get Brück conjecture is true
in the case of f(z) is replaced by a linear differential polynomial.

2 Some lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 1 [14, 22] Suppose f(z) is a non-constant meromorphic function in the
complex plane C and k a positive integer, and let

ψ(z) =
k
∑

i=0

ai(z)f
(i)(z),

where a1(z), a2(z), · · · , ak(z) are small functions of f(z). Then

m(r,
ψ

f
) = S(r, f)

and
T (r, ψ) ≤ T (r, f) + kN(r, f) + S(r, f) ≤ (k + 1)T (r, f) + S(r, f).

Lemma 2 [20] Suppose f(z) is a non-constant entire function. Then for 0 ≤ r <

R < +∞, we have

T (r, f) ≤ log+M(r, f) ≤
R+ r

R− r
T (R, f).

Lemma 3 [10] Let f(z) be a transcendental entire function and a set E ⊂ (1,+∞)
have finite logarithmic measure. Then there exists {zk = rke

iθk} such that ‖f(zk)‖ =
M(rk, f), θk ∈ [0, 2π), lim

k→∞
θk = θ0 ∈ [0, 2π), rk 6∈ E, rk → ∞,

(i) if 0 < ρ(f) < ∞, then for any given ε > 0 and sufficiently large rk, r
ρ(f)−ε

k
<

v(rk, f) < r
ρ(f)+ε

k
.

(ii) if ρ(f) = ∞, then for any given M > 0, and sufficiently large rk, v(rk, f) > rMk .
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Lemma 4 Let Q(z) ba a non-constant polynomial, Ak(z)( 6≡ 0), Ak−1(z), · · · , A0(z)
be polynomials, and k be a positive integer. If f(z) is a solution of the equation

Ak(z)f
(k)(z) + · · ·+A1(z)f

′(z)− (eQ(z) −A0(z))f(z) = B(z) (2.1)

such that ρ(f) > 1 + max
0≤j≤k−1

{

degAj−degAk

k−j , 0
}

, where B(z) is an entire function

that is small with respect to f(z), then ρ(f) = ∞ and ρ2(f) = degQ(z).

Proof Suppose that f(z) is an entire solution of (2.1) with ρ(f) > 1 +

max
0≤j≤k−1

{
degAj−degAk

k−j , 0}, by using the same reasoning as in the proof lemma 2.4

(see [15]), we obtain ρ(f) = ∞. Next, we only need to prove ρ2(f) = degQ(z), where
Q(z) is a non-constant polynomial.

It follows from that

Ak(z)
f (k)(z)

f(z)
+ · · ·+A1(z)

f ′(z)

f(z)
+A0(z)−

B(z)

f(z)
= e

Q(z)
. (2.2)

By the Wiman-Valiron theory, there exists a subset E1 ⊂ (1,+∞) with finite
logarithmic measure (that is

∫

E1

t−1dt < +∞) such that for all z satisfying ‖z‖ =

r 6∈ [0, 1] ∪ E1 and ‖f(z)‖ =M(r, f), we get

f (j)(z)

f(z)
=

(

v(r, f)

z

)j

(1 + o(1)), j = 1, 2, · · · , k, k ∈ N (2.3)

as r → ∞.
By lemma 3, there exists {zm = rme

iθm} with

‖f(zm)‖ =M(rm, f), θm ∈ [0, 2π], lim
m→∞

θm = θ0 ∈ [0, 2π], rm 6∈ [0, 1] ∪ E1,

such that for any given large M > 0 and sufficiently large rm, we have

v(rm, f) > r
M
m (2.4)

Since B(z) is an entire function that is small with respect to f(z) and ‖f(zm)‖ =
M(rm, f), we get

∥

∥

∥

∥

B(zm)

f(zm)

∥

∥

∥

∥

= o(1) (2.5)

for sufficiently large rm 6∈ E1. (We remark that B(z) is identically to zero, the proof
will still be valid.)

Substituting (2.3)-(2.5) into (2.2) yield

Ak(zm)

(

v(rm, f)

zm

)k

(1 + o(1)) = e
Q(zm)

. (2.6)

By (2.6), we get

log ‖eQ(zm)‖ = log

∥

∥

∥

∥

Ak(zm)(
v(rm, f)

zm
)k(1 + o(1))

∥

∥

∥

∥

= log ‖Ak(zm)‖+ k log v(rm, f)− k log rm +O(1),

that is,

log ‖Ak(zm)‖+ k log v(rm, f) = log ‖eQ(zm)‖+ k log rm +O(1). (2.7)
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SetQ(z) = bnz
n+bn−1z

n−1+· · ·+b1z+b0 is a polynomial with degree degQ(z) =
n and bn 6= 0. Then, there exists R(> 0) such that for all ‖zm‖ = rm > R, we get

(1− o(1))‖bn‖r
n
m ≤ ‖Q(zm)‖ ≤ (1 + o(1))‖bn‖r

n
m (2.8)

By combining log ‖A(zm)‖ > 0 for sufficiently large ‖zm‖ = rm 6∈ [0, 1] ∪ E1,
with (2.7) and (2.8) we obtain

k log v(rm, f) ≤ log ‖eQ(zm)‖+ k log rm +O(1)

≤ ‖Q(zm)‖+ k log rm +O(1)

≤ (1 + o(1))‖bn‖r
n
m + k log rm +O(1)

and thus
log log v(rm, f) ≤ n log rm + log log rm +O(1)

for sufficiently large ‖zm‖ = rm 6∈ [0, 1] ∪ E1. Then we have ρ2(f) ≤ n = degQ(z).
Taking the principal branch of logarithm, (2.6) gives

Q(zm) = log

(

Ak(zm)

(

v(rm, f)

zm

)k

(1 + o(1))

)

= log

∥

∥

∥

∥

A(zm)(
v(rm, f)

zm
)k(1 + o(1))

∥

∥

∥

∥

+ i arg

(

Ak(zm)

(

v(rm, f)

zm

)k

(1 + o(1))

)

.

(2.9)

It follows from (2.8) and (2.9) that

(1− o(1))‖bn‖r
n
m ≤ ‖Q(zm)‖ ≤

∥

∥

∥

∥

∥

log

∥

∥

∥

∥

∥

Ak(zm)

(

v(rm, f)

zm

)k

(1 + o(1))

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

+O(1)

≤ degAk · log rm + k log v(rm, f) +O(1)

≤ (k + 1) log v(rm, f)

for sufficiently large ‖zm‖ = rm 6∈ [0, 1] ∪ E1. Thus we have degQ(z) = n ≤ ρ2(f).
In light of the above discussion, we can get ρ2(f) = degQ(z). �

Lemma 5 [12] Let f(z) be a non-constant entire function such that ρ(f) < +∞
and a(z)( 6≡ 0) be an entire function such that ρ(a) < ρ(f). Further suppose that

L(f(z)) = f (k)(z) + ak−1f
(k−1)(z) + · · · + a1f

′(z) + a0f(z), where k is a positive
integer and a0, a1, · · · , ak−1 are complex numbers. If f(z) and L(f(z)) share the
function a(z), then ρ(f) = 1 and one of the following two cases occurs:

(i)L(f(z))− a(z) = c(f(z)− a(z)) for some c ∈ C\{0},
(ii)f(z) is a solution of the equation L(f(z)) − a(z) = (f(z) − a(z))eαz+α such

that ρ(f) = µ(f) = 1, where a0, a1, · · · , ak−1 are not all zero and α( 6= 0), α are
complex numbers.

3 Proofs of theorems

Proof of Theorem 1 For any positive integer j, let f(z) ∈ Ej . Since f(z) and
Lj(f(z))− 1 share 0 CM, we can get

Lj(f(z))− 1

f(z)
= e

α(z)
, (3.1)



Springer Nature 2021 LATEX template

8 The Values of k-th Order of Entire Functions

where α(z) is an entire function.
From (3.1), we have

Lj(f(z))− e
α(z)

f(z) = 1, (3.2)

where α(z) is an entire function.
If f(z) is a constant function, then ρ1(f) = 0.
If f(z) is a non-constant entire function, we distinguish the following three cases

for discussion.
Case 1. Suppose that α(z) is a complex constant, that is, eα(z) ≡ c, where c is

a non-zero complex constant.
By (3.2), we get

f
(j)(z) + aj−1f

(j−1)(z) + · · ·+ a1f
′(z) + (a0 − c)f(z) = 1.

It is easy to get that f(z) is a non-constant exponential polynomials with constant
coefficients.

Hence, we get ρ1(f) = 1.
Case 2. Suppose that α(z) is a non-constant polynomial.
If ρ(f) > 1, then by Lemma 4, we can get ρ1(f) = +∞.
If ρ(f) ≤ 1, then by Lemma 5, we can get ρ1(f) = 1.
Thus, we have ρ1(f) = +∞.

Case 3. Suppose that α(z) is a transcendental entire function.
By Lemma 1, we can deduce

T (r, eα) = T (r,
Lj(f)− 1

f
)

≤ T (r, Lj(f)) + T (r, f) + S(r, f)

≤ (j + 1)T (r, f) + T (r, f) + S(r, f)

= (j + 2)T (r, f) + S(r, f).

Therefore, ρ1(f) = +∞.

In light of the above discussion, we can get

ρ1(Ej) = {0, 1,+∞} (j = 1, 2, 3, · · · ).

�

Proof of Theorem 2 For any positive integer j, let f(z) ∈ Ej . By f(z) and f
′(z)− 1

share 0 CM, we can also get the differential equation (3.1), that is,

f (j)(z)

f(z)
+ aj−1

f (j−1)(z)

f(z)
+ · · ·+ a1

f ′(z)

f(z)
+ a0 −

1

f(z)
= e

α(z)
. (3.3)

where α(z) is an entire function.
By Lemma 1, we can deduce

T (r, eα) ≤ (j + 2)T (r, f) + S(r, f).

Hence, we get

ρk−1(α) = ρk(e
α) ≤ ρk(f) (k = 2, 3, · · · ).

Note that ρk−2(α) ≤ ρk−1(α), then we have

ρk−2(α) ≤ ρk(f) (k = 3, 4, · · · ). (3.4)
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From the Wiman-Valiron theory, there exists a subset E ⊂ (1,+∞) with finite
logarithmic measure, such that for all zr = reiθ (θ ∈ [0, 2π)) satisfying ‖z‖ = r 6∈ E

and M(r, f) = ‖f(z)‖, we have

f (j)(z)

f(z)
=

(

ν(r, f)

z

)j

(1 + o(1)) (r → +∞). (3.5)

From Lemma 3, there exists {zm = rme
iθm} with ‖f(zm)‖ = M(rm, f), θ ∈

[0, 2π), lim
m→∞

θm = θ0 ∈ [0, 2π), rm 6∈ [0, 1]∪E1, such that for any given large M and

sufficiently lager rm, we have
v(rm, f) > r

M
m . (3.6)

Since f(z) is transcendental entire function and ‖f(zm)‖ =M(rm, f), we get
∥

∥

∥

∥

1

f(zm)

∥

∥

∥

∥

= o(1) (rm → +∞, rm 6∈ [0, 1] ∪ E). (3.7)

Substituting (3.5)-(3.7) into (3.3), we get
(

v(rm, f)

zm

)j

(1 + o(1)) = e
α(zm) (rm → +∞, rm 6∈ [0, 1] ∪ E). (3.8)

From (3.8), we have
(

ν(rm, f)

rm

)j

(1 + o(1)) ≤M(rm, e
α) +O(1) (r → +∞, rm 6∈ [0, 1] ∪ E).

Thus, we have

j log ν(rm, f) ≤ logM(rm, e
α) + j log r +O(1)

for sufficiently large rm 6∈ [0, 1] ∪ E.
Therefore, we get

τk(ν(r, f)) ≤ τk(M(r, eα)) + τk(r) +O(1)

for sufficiently large rm 6∈ [0, 1] ∪ E.
It is obvious that

ρk(f) ≤ ρk−1(e
α) = ρk−2(α) (k = 3, 4, · · · ). (3.9)

Combing (3.4) and (3.9), we have ρk(f) = ρk−2(α) (k = 3, 4, · · · ), That is,

[0,∞) ∪ {+∞} ⊂ ρk(Ej) (j = 1, 2, · · · , k = 3, 4, · · · ).

Noting that

ρk(Ej) ⊂ [0,∞) ∪ {+∞} (j = 1, 2, · · · , k = 3, 4, · · · ).

In light of the above discussion, we can get

ρk(Ej) = [0,∞) ∪ {+∞} (j = 1, 2, · · · , k = 3, 4, · · · ).

�
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4 Conclusions

In this paper, for any positive integer j, we can obtain that the range of
ρ1(Ej) has discontinuity, that is ρ1(Ej) = {0, 1,+∞}. And if Brück conjecture
is objectively true, then we can get that the range of ρ2(E1) has discontinuity,
that is ρ2(E1) = {0} ∪ N ∪ {+∞}. However, for the positive integer j and
k ≥ 3, we can get that there is no discontinuity in the range of ρk(E1), that is
ρk(Ej) = [0,+∞)∪{+∞} (k ≥ 3). If we can get the values of the hyper-order

of an entire function f(z) satisfying f ′(z)−1
f(z) = c, where c is non-zero constant,

then we can know that Brück conjecture is correct or not.
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