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Abstract

GWAS summary statistics are fundamental for a variety of research applications yet
no common storage format has been widely adopted. Existing tabular formats
ambiguously or incompletely store information about genetic variants and
associations, lack essential metadata and are typically not indexed yielding poor
query performance and increasing the possibility of errors in data interpretation and
post-GWAS analyses. To address these issues, we adapted the variant call format to
store GWAS summary statistics (GWAS-VCF) and developed open-source tools to use
this format in downstream analyses. We provide open access to over 10,000 complete
GWAS summary datasets converted to this format (https://gwas.mrcieu.ac.uk).
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Background
The GWAS is a powerful tool for identifying genetic loci associated with any trait, in-

cluding diseases and clinical biomarkers, as well as non-clinical and molecular pheno-

types such as height and gene expression [1] (eQTLs). Sharing of GWAS results as

summary statistics (i.e. variant, effect size, standard error, P value) has enabled a range

of important secondary research applications including causal gene and functional vari-

ant prioritisation [2], causal cell/tissue type nomination [3], pathway analysis [1], causal

inference (Mendelian randomisation (MR)) [4], risk prediction [1], genetic correlation

[5] and heritability estimation [6]. However, the utility of GWAS summary statistics is

hampered by the absence of a universally adopted storage format and associated tools.

Historic lack of a common standard has resulted in GWAS analysis tools outputting

summary statistics in different tabular formats (e.g. plink [7], GCTA [8], BOLT-LMM

[9], GEMMA [10], Matrix eQTL [11] and meta-analysis tools, e.g. METAL [12]). As a

consequence, various processing issues are typically encountered during secondary

analysis. First, there is often inconsistency and ambiguity of which allele relates to the

effect size estimate (the “effect” allele). Confusion over the effect allele can have
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disastrous consequences on the interpretation of GWAS findings and the validity of

post-GWAS analyses. For example, MR studies may provide causal estimates with in-

correct effect directionality [13]. Likewise, prediction models based on polygenic risk

scores might predict disease wrongly or suffer reduced power if some of the effect di-

rectionalities are incorrect. Second, the schema (i.e. which columns/fields are included

and how they are named) of these tabular formats varies greatly. Absent fields can limit

analyses, and although approaches exist to estimate the values of some of these missing

columns (e.g. standard error from P value), imprecision is introduced reducing subse-

quent test power. Varying field names are easily addressed in principle, but the process

can be cumbersome and error-prone. Third, data are frequently distributed with no or

insufficient metadata describing the study, traits and variants (e.g. trait measurement

units, variant ID/annotation sources) which can lead to errors, impede the integration

of results from different studies and hamper reproducibility. Fourth, querying un-

indexed text files is slow and memory inefficient, making some potential applications

computationally infeasible (e.g. systematic hypothesis-free analyses).

Some proposals for a standard tabular format have been made. The NHGRI-EBI

GWAS Catalog (www.ebi.ac.uk/gwas) developed a tab-separated values (TSV) text for-

mat with a minimal set of required (and optional) columns along with standardised

headings [14]. The SMR tool [15] introduced a binary format for rapid querying of

quantitative trait loci. These approaches are adequate for storing variant level summary

statistics but do not enforce allele consistency or support embedding of essential meta-

data. Learning from these examples and our experiences performing high-throughput

analyses across two research centres, we developed a set of requirements for a suitable

universal format. We determined that adapting the variant call format (VCF) [16] was a

convenient and constructive solution to address these issues. We provide evidence

demonstrating how the VCF meets our requirements, showcase the capabilities of this

medium and introduce tools and resources for working with this format.

Results
Requirements

Our requirements for a universal GWAS summary statistics format specification were

developed through the experience of collecting and harmonising GWAS summary data

across two research centres at scale (Table 1). These features place emphasis on

consistency and robustness, capacity for metadata to provide a full audit trail, efficient

querying and file storage, ensuring data integrity, interoperability with existing open-

source tools and across multiple datasets to support data sharing and integration.

File format

The VCF is organised into three components: a flexible file header containing metadata

(lines beginning with ‘#’) and a file body containing variant-level (one locus per row

with one or more alternative alleles/variants) and sample-level (one sample per column)

information. We adapted this format to include GWAS-specific metadata and utilise

the sample column to store variant-trait association data (Additional file 1: Fig. S1;

Additional file 1: Table S1).
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Table 1 Requirements for a summary statistics storage format and solutions offered by the VCF

Requirement Solution using the variant call format

Human readable and easy to parse Read with any text viewer. Mature open-source parsing
libraries are available (HTSLIB [17] and HTSJDK [17]) and
implemented in most modern programming languages,
for example, VariantAnnotation [18] R-package is available
from Bioconductor [19–21] and Python package pysam
[17, 22]. Bcftools [23], GATK [24], bedtools [25] and others
provides user-friendly functionality from the command line.

Unambiguous interpretation of the data Data field descriptions, value types and number of values
are required and defined in the file header. File validity is
enforced during each read/write.

Unambiguous representation of bi-allelic,
multiallelic and insertion-deletion variants

Every variant substitution is represented by reference and
alternative allele haplotypes defining the exact base change
on the forward strand. The reference allele is required to
match genome sequences defined in the file header. The
alternative allele is always the effect allele allowing
consistency between studies for ease of comparison.

Genomic information can be validated The file header contains information about reference genome
assembly and contigs. Reference alleles must match the
sequence in the referenced genome build (in FASTA format).
GATK [24] ValidateVariants can be used to verify file format
validity and compare reference allele information against the
corresponding genome reference sequence.

Flexibility on which GWAS fields are recorded
and enforcement of essential fields

All fields are defined in the file header and can be set
optional or required as desired. The specification contains
essential fields and their reserved names.

Capacity to store metadata about the study
and traits

The file header contains information about the source and
date of summary statistics, study IDs (e.g. PMID/DOI of
publication describing the study, or accession number and
repository of individual-level data), description of the traits
studied (e.g. type, association test used, and measurement
unit) as well as the source and version of trait IDs (e.g. IEU
OpenGWAS database [26], Experimental Factor Ontology [27],
Human Phenotyping Ontology [28], Medical Subject Headings
[29], IDs for clinical and other traits, Ensembl Gene IDs for
eQTL datasets or any other ontology to describe the data).

Allows multiple traits to be stored together The SAMPLE column was chosen to store variant-trait
association data to allow for storage of multiple traits in a
single VCF file or as individual files if desired.

Rapid querying by variant identifier, genomic
position interval or GWAS summary statistics
value (range or exact value)

The file is sorted karyotypically and indexed by chromosome
position using tabix [30] to enable fast queries by genomic
position. Secondary indexing on dbSNP [31] identifier is also
provided using rsidx [32]. Refer to performance comparisons
of indexed VCF files and standard UNIX tools.

File compression VCF files may be compressed with block GZIP [23] or
converted to a binary call file which is a binary VCF
companion format [23].

Readable by existing open-source tools A large number of tools support VCF files including GATK
[24], Picard [33], bcftools [23], bedtools [25], vcftools [16]
and plink [7]. Bcftools [23] can also provide a tabular extract
for use with non-compatible tools.

Amenable to cloud-based streaming and
database storage

Genomic intervals may be extracted over a network using
a range request which extracts file segments without
transferring the whole file. This enables rapid streaming
of queries over the Internet. For high-throughput and
distributed storage and querying, VCF files can be easily
imported into GenomicsDB [34].

GWAS genome-wide association study, dbSNP database of single-nucleotide polymorphisms, HTSLIB high-throughput
sequencing data library, HTSJDK high-throughput sequencing data Java development kit, GATK genome-analysis toolkit,
dbSNP single nucleotide polymorphism database, eQTL expression quantitative trait loci
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According to the VCF specification, the file header consists of metadata lines contain-

ing (1) the specification version number, (2) information about the reference genome

assembly and contigs and (3) information (ID, number, type, description, source and

version) about the fields used to describe variants and samples (or variant-trait associa-

tions in the case of GWAS-VCF) in the file body. We take advantage of the VCF file

header to store additional information about the GWAS including (1) source and date

of summary statistics, (2) study IDs (e.g. PMID/DOI of the publication describing the

study, or accession number and repository of individual-level data) and (3) description

of the traits studied (e.g. type, association test used, sample size, ancestry and measure-

ment unit) as well as the source and version of trait IDs (e.g. Experimental Factor

Ontology [27], Human Phenotyping Ontology [28], Medical Subject Headings [29] IDs

for clinical and other traits, Ensembl gene IDs for eQTL datasets or any other ontology

or identifier).

Unlike VCF where a row can contain information about multiple alternative alleles

observed at the same site/locus (and thus may store more than one variant), the

GWAS-VCF specification requires that each variant is stored in a separate row of the

file body. Each row contains eight mandatory fields: chromosome name (CHROM),

base-pair position (POS), unique variant identifier (ID), reference/non-effect allele

(REF), alternative/effect allele (ALT), quality (QUAL), filter (FILTER) and variant infor-

mation (INFO). The ID, QUAL and FILTER fields can contain a null value represented

by a dot. Importantly, the ID value (unless null) should not be present in more than

one row. The FILTER field may be used to flag poor-quality variants for exclusion in

downstream analyses. The INFO column is a flexible data store for additional variant-

level key-value pairs (fields) and may be used to store for example population frequency

(AF), genomic annotations and variant functional effects. We also use the INFO field to

store the dbSNP [31] locus identifier (rsid) for the site at which the variant resides. This

is because (despite their common usage as variant identifiers) rsids uniquely identify

loci (not variants!) and thus cannot be used in the ID field, as we will discuss further at

the end of this manuscript. Following the INFO column is a format field (FORMAT)

and one or more sample columns which we use to store variant-trait association data,

with values for the fields listed in the FORMAT column, for example, effect size (ES),

standard error (SE) and -log10 P value (LP).

Query performance

Simulations of query performance demonstrate compressed GWAS-VCF is substan-

tially quicker than unindexed and uncompressed TSV format for querying by genomic

position when the GWAS is densely imputed (Fig. 1). The greatest improvements were

seen when the GWAS-VCF contained a single trait with 10 million variants where on

average GWAS-VCF was 15× faster to extract a single variant using chromosome pos-

ition (mean query duration in GWAS-VCF 0.09 s [95% CI 0.08, 0.09] vs mean query

duration in TSV 1.35 s [95% CI 1.34, 1.37]) and 8x quicker using the rsid (0.1 s [95% CI

0.1, 0.1] vs 0.76 s [95% 0.75, 0.78]). Using a 1-Mb window of variants, GWAS-VCF was

44× quicker (0.1 s [95% CI 0.1, 0.11] vs 4.43 s [95% CI 4.36, 4.5]). Although querying on

association P value was faster using TSV (mean query duration in TSV 6.48 s [95% CI

6.38, 6.57] vs mean query duration in GWAS-VCF 35.11 s [95% CI 34.35, 35.86]).
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However, when the number of variants stored in the GWAS-VCF was 0.5 million, un-

compressed text was faster for single position and rsid lookups but not interval queries

(Fig. 1). Additionally, storing multiple traits in a single GWAS-VCF reduced the P value

query performance but had little impact on the positional queries (Fig. 1).

Software

To automate the conversion of existing summary statistics files to the GWAS-VCF for-

mat, we developed the open-source Python3 software (Gwas2VCF; Additional file 1:

Table S2). The application reads in metadata and variant-trait association data using a

user-defined schema requiring the chromosome base-position to start at one. During

processing, variants are harmonised using a supplied reference genome file to ensure

the non-effect allele matches the reference sequence enabling consistent directionality

of allelic effects across studies. Insertion-deletion variants are left-aligned and trimmed

for consistent representation using the vgraph library [36]. Finally, the GWAS-VCF is

indexed using tabix [30] and rsidx [32] which enable rapid queries by genomic position

and rsid, respectively. We have developed a freely available web application providing a

user-friendly interface for this implementation (http://vcf.mrcieu.ac.uk/) and encourage

other centres to deploy their own instance (Additional file 1: Table S2).

Once stored in a GWAS-VCF file, summary statistics can be read and queried using

R or Python programming languages with our open-source libraries (Additional file 1:

Table S2) or from the command line using, for example, bcftools [23], GATK [24] or

Fig. 1 Performance comparison for querying summary statistics in plain text and GWAS-VCF. Mean query
time (seconds, lower is quicker; repetitions n = 100) to extract either a single variant using the chromosome
position or dbSNP [31] identifier or multiple variants using a 1-Mb interval or association P value. AWK, grep,
bcftools [23] and rsidx [32] were evaluated using uncompressed/GZIP compressed TSV and BGZIP [23]
compressed VCF. The summary statistics files contained one (single) or five (multiple) GWAS studies which
were prepared by subsampling variants (n = 0.5 M, 2.5 M, 10 M) obtain from Neale et al. [35]. Error bars
represent the 95% confidence interval
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bedtools [25]. These tools also enable variant annotation and filtering (e.g. allele fre-

quency, functional effect, gene and pathway), mapping between reference genome as-

semblies, file validation and converting to any other tabular format including the

NHGRI-EBI GWAS Catalog format [14] (code examples available from https://github.

com/mrcieu/gwas2vcf). Further, the gwasglue R package provides convenient program-

ming functions to automate the preparation of genetic association data for a range of

downstream analyses (Additional file 1: Table S2). Currently, methods exist for stream-

lining variant fine-mapping [37–41], colocalization [42], MR [43] and data visualisation

[44]; example analytical workflows are available from https://mrcieu.github.io/

gwasglue/articles. New methods are being actively added, and users may request new

features via the repository issues page.

Data resource

To encourage adoption, we made openly available over 10,000 complete GWAS sum-

mary statistics in GWAS-VCF format as part of the IEU OpenGWAS database de-

scribed in a companion paper [26]. These studies include a broad range of traits,

diseases and molecular phenotypes building on the initial collection for the MR Base

platform [43].

Discussion
The GWAS-VCF format has a number of advantages over existing solutions. First, the

VCF provides consistent and robust approaches to storing genetic variants, annotations

and metadata enabling interoperability and reusability consistent with the FAIR princi-

ples [45]. Furthermore, variable type and number requirements reduce parsing errors

and missing data preventing unexpected programme operation. Second, the VCF is well

established and scalable to support GWAS of whole-genome sequencing studies. Many

mature tools have been developed providing a range of functions for querying, annotat-

ing, transforming and analysing genetic data in VCF. Third, the GWAS-VCF file header

stores comprehensive metadata about the GWAS including necessary information to

understand the analysis and interpret the data. Fourth, a GWAS-VCF file can store in-

dividual or multiple traits (in one or more sample columns) in a single file which is

beneficial for the distribution of GWAS datasets where genotypes of each sample/indi-

vidual have been tested for association with multiple traits (e.g. QTL datasets).

Our simulation studies demonstrated the GWAS-VCF was substantially quicker when

the GWAS was densely imputed (8–44×) than TSV using standard UNIX tools for

extracting records by genomic position. Although the GWAS-VCF was slower for

extracting records by association P value, this could be improved by using variant flags

(i.e. in the INFO field) to highlight records below prespecified thresholds if the exact

value is unimportant. For example, all variants below genome-wide significance (P < 5e

−8) or a more relaxed threshold (e.g. P < 5e−5).

A limitation of the current summary statistics formats, including GWAS-VCF, is the

lack of a widely adopted and stable representation of sequence variants that can be

used as a universal unique identifier for the said variants. Published summary statistics

often use rsids [31] to identify variants, but this practice is inappropriate because rsids

are locus identifiers and do not distinguish between multiple alternative alleles
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observed at the same site. Moreover, rsids are not stable as they can be merged and re-

tired over time. The reason this is a problem is that in GWAS summary statistics, every

record represents the effect of a specific allele on one or more traits, and if a record

identifier is used that is not unique for each allelic substitution, it cannot technically be

considered an identifier. An alternative approach is to concatenate chromosome, base

position, reference and alternative allele field values into a single string, but this is non-

standardised, genome build-specific and unwieldy for long insertion-deletion variants.

Worst still is the common practice of mixing these types of identifiers within a single

file. In version 1.2 of the GWAS-VCF specification, we suggest querying variants by

chromosome and base position and filtering the output to retain the target substitution

(implemented in our parsers), but we acknowledge that this approach can be cumber-

some and difficult to interoperate with other software. The ideal solution would be to

populate the ID column of a GWAS-VCF file using universally accepted and unique

variant identifiers. We have reviewed several existing variant identifier formats as can-

didates for the variant identifier field, and if a consensus arises in the scientific commu-

nity, it will be implemented in a future version of the specification (Additional file 1:

Table S3). However, we refrain from making a unilateral choice at this juncture because

successful implementation will require consultation from a range of stakeholders. The

genetics community uses different approaches already to deal with the problem of se-

quence variant representation, and there is an urgent need to coalesce upon a single

format.

Another potential limitation is the use of multiple ontologies to describe the GWAS

trait which might make inter-study comparisons difficult. However, we feel enforcing a

specific trait identifier system could prevent the new ontologies and non-human data

which would provide a barrier to adoption.

Conclusion
Here, we present an adaptation of the VCF specification for GWAS summary statistics

storage that is amenable to high-throughput analyses and robust data sharing and inte-

gration. We implement open-source tools to convert existing summary statistics for-

mats to GWAS-VCF, and libraries for reading or querying this format and integrating

with existing analysis tools. Finally, we provide complete GWAS summary statistics for

over 10,000 traits in GWAS-VCF. These resources enable convenient and efficient sec-

ondary analyses of GWAS summary statistics and support future tool development.

Methods
Specification

The specification was developed through the experience of collecting and harmonising

GWAS summary data across two research centres at scale [43] and performing a range

of representative high-throughput analyses on these data (for example, LD score regres-

sion [46], MR [47], genetic colocalisation analysis [48] and polygenic risk scores [49]).

Query performance simulation

Densely imputed summary statistics (13,791,467 variants) for GWAS of body mass

index using data from the UK Biobank were obtained from Neale et al. [35]. The data
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were mapped to VCF using Gwas2VCF v1.1.1 and processed using bcftools v1.10 [23]

to remove multiallelic variants or records with missing dbSNP [31] identifiers. GWAS-

VCF files were produced containing one or five traits by combining randomly subsam-

pled summary statistics with either 0.5, 2.5 or 10 million variants. A tabular (un-

indexed) file was prepared from the GWAS-VCF to replicate a typical storage medium

currently used for distributing summary statistics. Query runtime performance was

compared between tabix v1.10.2 [30] and standard UNIX commands under the follow-

ing conditions: single variant selection using dbSNP identifier [31] or chromosome pos-

ition, multi-variant selection by association P value (thresholds: P < 5e−8, 0.2, 0.4, 0.6,

0.8) or 1-Mb genomic interval. Tests were undertaken with 100 repetitions using

BGZIP [23] GWAS-VCF or unindexed TSV with and without GZIP compression on an

Ubuntu v18.04 server with Intel Xeon(R) 2.0 GHz processor. All comparisons were per-

formed using singled thread operations, and therefore, differences in runtime perform-

ance were due to tool and/or file index usage.
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