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Abstract
Let (�A, σ ) be a subshift of finite type and let M(x) be a continuous function on
�A taking values in the set of non-negative matrices. We set up the variational
principle between the pressure function, entropy and Lyapunov exponent for
M on �A. We also present some properties of equilibrium states.

Mathematics Subject Classification: 37D35, 34D20

1. Introduction

Let σ be the shift map on � = {1, 2, . . . , m}N, m � 2. As usual, � is endowed with the metric
d(x, y) = m−n, where x = (xk), y = (yk) and n is the smallest of the k such that xk �= yk .
Given an m × m matrix A with entries 0 or 1, we consider the subshift of finite type (�A, σ )

(see [1]). We shall always assume that A is primitive.
Suppose M is a continuous function on �A taking values in the set of all non-negative

d × d matrices. Here, a matrix A = (Ai,j )1�i,j�d is said to be non-negative if Ai,j � 0 for
all 1 � i, j � d . Similarly, we say A is strictly positive if Ai,j > 0 for all 1 � i, j � d. For
q ∈ R, the pressure function, P(q), of M is defined by

P(q) := P(M, q) = lim
n→∞

1

n
log

∑
J∈�A,n

sup
x∈[J ]

‖M(x)M(σx) · · · M(σn−1x)‖q, (1.1)

where �A,n denotes the set of all admissible indices of length n over {1, . . . , m}; for
J = j1 · · · jn ∈ �A,n, [J ] denotes the cylinder set {x = (xi) ∈ �A : xi = ji, 1 � i � n}
and ‖ · ‖ denotes the matrix norm defined by ‖B‖ := 1tB1, 1t = (1, 1, . . . , 1). By using a
subadditive argument, it is easy to show that for q > 0, the limit in the above definition exists.
With some additional conditions on the matrices (e.g. M is strictly positive), the limit exists
for q ∈ R.
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The pressure function of a matrix-valued function is a natural generalization of that of
the scalar case (i.e. M(x) = eφ(x), where φ(x) is a real-valued function called the potential of
the subshift). The reader is referred to [1, 8, 13, 14] for the pressure and variational principle
in the classical scalar case. In [5], Feng and Lau considered the pressure functions and
Gibbs measures for the products of matrices, where the matrix function was assumed to
be either strictly positive and Hölder continuous, or local non-negative constant, satisfying
an irreducibility assumption. For instance, in the former setting, they proved the following
theorem.

Theorem A. Suppose that M is a Hölder continuous function on �A taking values in the set
of strictly positive d × d matrices. Then for any q ∈ R, there is a unique σ -invariant, ergodic
probability measure µq on �A for which one can find constants C1 > 0, C2 > 0 such that

C1 � µq([J ])

exp(−nP (q)) · ‖M(x)M(σx) · · · M(σn−1x)‖q
� C2 (1.2)

for any n > 0, J ∈ �A,n and x ∈ [J ].

In [3], the author used the pressure function to analyse the multifractal structure of the
Lyapunov exponents for the products of matrices and proved the following theorem.

Theorem B. Suppose M is a continuous function on �A taking values in the set of strictly
positive d × d matrices. For any α ∈ R, if the set {x ∈ �A : λM(x) = α} is not empty, then

dimH{x ∈ �A : λM(x) = α} = 1

log m
inf
q∈R

{−αq + P(q)}

= 1

log m
sup{h(µ) : µ ∈ M(�A, σ ), M∗(µ) = α},

where dimH denotes the Hausdorff dimension, λM(x) is the upper Lyapunov exponent of M at
x defined by

λM(x) = lim
n→∞

1

n
log ‖M(x)M(σx) · · · M(σn−1x)‖ (1.3)

when the limit exists, M(�A, σ ) denotes the collection of all σ -invariant Borel probability
measures on �A and

M∗(µ) = lim
n→∞

1

n

∫
log ‖M(y)M(σy) · · · M(σn−1y)‖ dµ(y). (1.4)

Theorem B was also proved in [5] under an additional condition that M is Hölder
continuous. For µ ∈ M(�A, σ ), M∗(µ) is often called the upper Lyapunov exponent of
µ associated with M . It was first proved by Furstenberg and Kesten [7] that λM(x) exists for
almost all x with respect to µ and

∫
λM(x) dµ(x) = M∗(µ).

The main purpose of this paper is to set up the variational principle for the non-negative
matrix-valued functions. We prove the following general theorem, which does not need any
additional smoothness condition or the strict positivity of M .

Theorem 1.1. Suppose that M is a continuous function on �A taking values in the set of
non-negative d × d matrices. Then for any q > 0, we have

P(q) = sup{hµ(σ ) + qM∗(µ) : µ ∈ M(�A, σ )} (1.5)

and this supremum is attained.
If furthermore M is strictly positive, then (1.5) holds for any q ∈ R, and the corresponding

supremum is attained.
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When d = 1, M(x) = eφ(x) becomes a scalar function; and in this case (1.5) is just the
classical variational principal formula for the potential qφ(x) (see, e.g. [8, theorem 4.4.11],
where φ may take the value −∞).

A member µ of M(�A, σ ) is called an equilibrium state for M with respect to q if

P(q) = hµ(σ ) + qM∗(µ).

Let I(M, q) denotes the collection of all equilibrium states of M with respect to q. It is
interesting to consider under what condition I(M, q) contains only one element (in this case
we say that M has a unique equilibrium state with respect to q). The following theorem
establishes the derivative formula of the pressure function which is an extension of the classical
Ruelle formula to matrix-valued functions (for the classical Ruelle formula, see [13, exercise 5,
p 99], [11, lemma 4] and [8, theorem 4.3.5]).

Theorem 1.2. Suppose that M is a continuous function on �A taking values in the set of
non-negative d × d matrices with P(q) �= −∞ for all q > 0. Then

P ′(q+) := lim
ε↓0

P(q + ε) − P(q)

ε
= sup{M∗(µ) : µ ∈ I(M, q)}, (1.6)

P ′(q−) := lim
ε↓0

P(q − ε) − P(q)

−ε
= inf{M∗(µ) : µ ∈ I(M, q)} (1.7)

for any q > 0.
If furthermore M is strictly positive, then (1.6) and (1.7) hold for any q ∈ R.

We remark that there are examples of M �≡ 0 satisfying P(M, q) ≡ −∞. For instance,
take � = {1, 2}N and define f ∈ C(�) by

f (x) =
{

0 if x1x2 = 00 or 11,

2−n if x1 · · · x2n+1 = (01)n1 or (10)n0,

where x = (xi)
∞
i=1 ∈ �. Take M(x) = f (x)Id , where Id denotes the d × d identity matrix.

Then P(M, q) ≡ −∞. We point out that the condition P(q) �= −∞ for all q > 0 is equivalent
to P(q) �= −∞ for some q > 0. A sufficient condition insuring P(q) �= −∞ is that there
exists x ∈ �A such that

λ̄M(x) := lim sup
n→∞

1

n
log ‖M(x)M(σx) · · · M(σn−1x)‖ �= −∞.

We also remark that for any fixed M and q, the pressure, P(eφ(x)M, q), is a convex
function of φ ∈ C(�A). It can be derived directly by theorem 1.1 and the fact that
(eφ(x)M)∗(µ) = ∫

φ dµ + M∗(µ). In any case, we do not know whether there is any kind of
convexity of P(M, q) on M .

As a direct corollary of theorem 1.2, we have the following.

Corollary 1.3. Let M be a continuous function on �A taking values in the set of non-negative
(strictly positive, resp.) d × d matrices. A necessary condition for M having a unique
equilibrium state with respect to some q > 0 (q ∈ R, resp.) is that P(q) is differentiable at q.

Under some additional assumptions, we can show the existence of a unique equilibrium
state for M (see theorem 3.1, corollary 3.2).

As we have seen from theorems A and B, the pressure function, P(q), is an important term
in studying the Gibbs measures ofM(x) and the Hausdorff dimension of level sets ofλM(x). We
should point out that P(q) has also appeared naturally in the study of multifractal phenomena
about measures. In [4] the author studied the multifractal structure of a class of self-similar
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measures with overlaps (namely, self-similar measures satisfying the finite type condition).
He proved that these measures can locally be expressed as the product of a finite family of
non-negative matrices, and their Lq-spectra, τ(q) (one of the basic ingredients in the study
of multifractal phenomena, see [2, 12]), differ from P(q) only by a factor (see [4, lemma 4.1
and theorem 5.2]). The readers are referred to [4, 6, 9, 10] and the references therein for the
multifractal theory for self-similar measures with overlaps.

A first thought of proving theorem 1.1 is to re-express the pressure function, P(q), of M

as the classical pressure, Pf , for some scalar function f . However, this thought seems only
possible for the case where q = 1 and M is strictly positive. In this case, we may enlarge the
symbolic set {1, 2, . . . , m} to S = {(i, j) : i = 1, . . . , d, j = 1, . . . , m} and define the 0–1
matrix Â = ÂS×S by

Â(i,j),(i ′,j ′) =
{

1, if Aj,j ′ = 1,

0, otherwise.

One may check that by definition P(1) equals Pf for a scalar function f on the subshift space
SN

Â
defined by

f (((i1, j1), (i2, j2), . . . , )) = log Mi1,i2(j1j2 · · ·).
Even in this case we still have some difficulty in pulling back the variational result from SN

Â
to �A.

Our proof of theorem 1.1 is essentially based on the existence of ‘Gibbs’ measures
(see theorem A). In fact, by theorem A and a standard argument, we prove theorem 1.1
immediately in the special case where M is Hölder continuous and takes values in the set of
strictly positive d × d matrices. The original part of our proof is the generalization of this
result to functions that are continuous and with values in d × d non-negative matrices. We
do this with two approximation steps: of continuous maps by Hölder continuous ones and of
non-negative matrices by strictly positive ones.

We organize this paper as follows. In section 2, we prove theorem 1.1 (see
propositions 2.6–2.8). In section 3, we consider the equilibrium states of M and give a proof
of theorem 1.2.

2. The proof of theorem 1.1

For convenience, we use �+ (�, resp.) to denote the collection of all continuous functions on
�A taking values in the set of all strictly positive (non-negative, resp.) d × d matrices. For
M ∈ �, we write πnM(x) for the product M(x)M(σx) · · · M(σn−1x).

Lemma 2.1. Let M ∈ �. We have

‖πn+
M(x)‖ � ‖πnM(x)‖‖π
M(σnx)‖, ∀ n, 
 ∈ N, x ∈ �A.

Moreover, if M ∈ �+, then there exists a constant C > 0 (depending on M) such that

‖πn+
M(x)‖ � C‖πnM(x)‖‖π
M(σnx)‖, ∀ n, 
 ∈ N, x ∈ �A.

Proof. The first inequality is trivial. The second one was proved in [5]. However for the
reader’s convenience, we include the detailed proof. Since M ∈ �+, there is a constant C > 0
such that

mini,j Mi,j (x)

maxi,j Mi,j (x)
� dC, ∀ x ∈ �A,

which implies that M(x) � CEM(x) (here and afterwards we write B(1) � B(2) for two
matrices B(1), B(1) if B

(1)
i,j � B

(2)
i,j for each index (i, j)); here, E = (Ei,j )1�i,j�d is the matrix
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whose entries are all equal to 1. Let 1 be the d-dimensional column vector, each coordinate
of which is 1. Then using M(σnx) � CEM(σnx), we have

‖πn+
M(x)‖ � ‖(πnM(x))CE(π
M(σnx))‖
= C‖(πnM(x))1t1(π
M(σnx))‖
= C‖πnM(x)‖‖π
M(σnx)‖. �

Lemma 2.2.

(i) If M ∈ �, then for q > 0 the limit

P(q) = lim
n→∞

1

n
log

∑
J∈�A,n

sup
x∈[J ]

‖πnM(x)‖q (2.1)

exists and equals infn(1/n) log
∑

J∈�A,n
supx∈[J ] ‖πnM(x)‖q .

(ii) If M ∈ �, then for any µ ∈ M(�A, σ ),

M∗(µ) = lim
n→∞

1

n

∫
log ‖πnM(x)‖ dµ(x) = inf

n

1

n

∫
log ‖πnM(x)‖ dµ(x).

(iii) If M ∈ �+, then for any q ∈ R the limit (2.1) exists. Moreover, let C be the constant as
in lemma 2.1; then

P(q) =




infn

1

n
log

∑
J∈�A,n

sup
x∈[J ]

‖πnM(x)‖q, if q � 0,

infn

1

n
log

∑
J∈�A,n

Cq sup
x∈[J ]

‖πnM(x)‖q, if q < 0.

Proof. Suppose I ∈ �A,n, J ∈ �A,
 with IJ ∈ �A,n+
. By lemma 2.1, we have for M ∈ �

and q � 0,

sup
x∈[IJ ]

‖πn+
M(x)‖q � sup
x∈[IJ ]

(‖πnM(x)‖q‖π
M(σnx)‖q)

� sup
x∈[I ]

‖πnM(x)‖q · sup
y∈[J ]

‖π
M(y)‖q,

while for M ∈ �+ and q < 0,

Cq sup
x∈[IJ ]

‖πn+
M(x)‖q �
(
Cq sup

x∈[I ]
‖πnM(x)‖q

)(
Cq sup

y∈[J ]
‖π
M(y)‖q

)
.

Using a subadditive argument, we obtain (i) and (iii). Statement (ii) is obtained similarly by
using the fact ‖πn+
M(x)‖ � ‖πnM(x)‖‖π
M(σnx)‖. �

Lemma 2.3. Let M ∈ �+. For any µ ∈ M(�A, σ ) and n ∈ N, we have∫
log ‖πnM(x)‖

n
dµ(x) +

log C

n
� M∗(µ) �

∫
log ‖πnM(x)‖

n
dµ(x),

where C is the constant in lemma 2.1.

Proof. Take any µ ∈ M(�A, σ ). By lemma 2.1 and the invariance of µ, we have for
any n, 
 ∈ N,∫

log ‖πn+
M(x)‖ dµ(x) �
∫

log ‖πnM(x)‖ dµ(x) +
∫

log ‖π
M(σnx)‖ dµ(x)

=
∫

log ‖πnM(x)‖ dµ(x) +
∫

log ‖π
M(x)‖ dµ(x).
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A subadditive argument yields the second desired inequality. Similarly, we have∫
log(C‖πn+
M(x)‖) dµ(x) �

∫
log(C‖πnM(x)‖) dµ(x) +

∫
log(C‖π
M(x)‖) dµ(x),

which proves the first inequality by a super-additive argument. �

As a corollary, we have the following.

Corollary 2.4. Suppose µk ∈ M(�A, σ ) converges to µ in the weak-star topology. Then for
any M ∈ �+,

lim
k→∞

M∗(µk) = M∗(µ). (2.2)

Proof. By lemma 2.3, for any n ∈ N we have∣∣∣∣M∗(µ) − 1

n

∫
log ‖πnM(x)‖ dµ(x)

∣∣∣∣ � | log C|
n

and ∣∣∣∣M∗(µk) − 1

n

∫
log ‖πnM(x)‖ dµk(x)

∣∣∣∣ � | log C|
n

.

Since limk→∞
∫

log ‖πnM(x)‖ dµk(x) = ∫
log ‖πnM(x)‖ dµ(x), we have

lim sup
k→∞

|M∗(µ) − M∗(µk)| � 2| log C|
n

.

Letting n → ∞, we obtain the desired result. �

Lemma 2.5 (cf [14, lemma 9.9]). Let a1, . . . , ak be given real numbers. If pi � 0 and∑k
i=1 pi = 1, then

k∑
i=1

pi(ai − log pi) � log

(
k∑

i=1

eai

)
.

Proposition 2.6. For any M ∈ �+ and q ∈ R (resp., for any M ∈ � and q > 0),

P(q) � sup{hµ(σ ) + qM∗(µ) : µ ∈ M(�A, σ )}.

Proof. The following argument is classical. Let µ ∈ M(�A, σ ). By lemma 2.5, for
any n ∈ N,

log
∑

I∈�A,n

sup
x∈[I ]

‖πnM(x)‖q �
∑

I∈�A,n

[ − µ([I ]) log µ([I ]) + µ([I ]) log sup
x∈[I ]

‖πnM(x)‖q
]

�
∑

I∈�A,n

(−µ([I ]) log µ([I ])) +
∫

log ‖πnM(x)‖q dµ(x)

=
∑

I∈�A,n

(−µ([I ]) log µ([I ])) + q

∫
log ‖πnM(x)‖ dµ(x).

Dividing both sides by n and letting n → ∞, we have

P(q) � hµ(σ ) + qM∗(µ). �
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Proposition 2.7. For any M ∈ �+ and q ∈ R, there exists µ ∈ M(�A, σ ) such that

P(q) = hµ(σ ) + qM∗(µ).

Proof. Fix q ∈ R, we divide the proof into two steps.

Step 1. Assume M is Hölder continuous. In this case, let µ = µq be the Gibbs measure in
theorem A. Then for each n ∈ N, I ∈ �A,n and x ∈ [I ],

log C1 � nP (q) + log µ([I ]) − q log ‖πnM(x)‖ � log C2.

Integrating by µ and dividing both sides by n, we have
log C1

n
� P(q) +

1

n

∑
I∈�A,n

µ([I ]) log µ([I ]) − q

∫
log ‖πnM(x)‖

n
dµ(x) � log C2

n
.

Letting n → ∞, we have P(q) = hµ(σ ) + M∗(µ).

Step 2. Now let us consider M without the Hölder continuity assumption. For each k ∈ N,
define a matrix-valued function M(k) on �A by

M
(k)
i,j (x) = sup

y∈Ik(x)

Mi,j (y), 1 � i, j � d,

where Ik(x) = [x1x2 · · · xk] for x = (xi).
By definition M(k) depends only on the first k coordinates of x, and thus it is Hölder

continuous. As we proved in step 1, there exists µk ∈ M(�A, σ ) such that

P(M(k), q) = hµk
(σ ) + q(M(k))∗(µk).

Since M is strictly positive and continuous, there exists a sequence of positive numbers εk such
that limk εk = 0 and

M(x) � M(k)(x) � (1 + εk)M(x), ∀x ∈ �A,

from which we deduce that

|P(q) − P(M(k), q)| � |q| log(1 + εk)

and ∣∣∣∣ log ‖πnM(x)‖
n

− log ‖πnM
(k)(x)‖

n

∣∣∣∣ � log(1 + εk), ∀x ∈ �A.

By the above two inequalities, we have

P(q) = lim
k→∞

P(M(k), q) = lim
k→∞

[hµk
(σ ) + q(M(k))∗(µk)]

= lim
k→∞

[hµk
(σ ) + qM∗(µk)]. (2.3)

Since M(�A, σ ) is compact in the weak-star topology, there exists a subsequence {µki
}

of {µk} such that µki
converges to some µ ∈ M(�A, σ ).

By the upper semi-continuity of the measure-theoretic entropy on M(�A, σ)

(cf [14, theorem 8.2]), we have

lim sup
i→∞

hµki
(σ ) � hµ(σ ). (2.4)

On the other hand, by corollary 2.4, we have

lim
i→∞

M∗(µki
) = M∗(µ). (2.5)

Combining (2.3)–(2.5) yields

P(q) � hµ(σ ) + qM∗(µ)

and thus P(q) = hµ(σ ) + qM∗(µ) by proposition 2.6. �
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By propositions 2.6 and 2.7, to finish the proof of theorem 1.1, we only need to prove the
following.

Proposition 2.8. For any M ∈ � and q > 0, there exists µ ∈ M(�A, σ ) such that

P(q) = hµ(σ ) + qM∗(µ).

Now fix M ∈ �. For any ε > 0, define a matrix-valued function Mε on �A by

Mε(x) = M(x) + εE,

where E is the d ×d matrix, of which each entry equals 1. It is clear that Mε is continuous and
strictly positive. Note that since ‖πnMε(x)‖ is a polynomial of ε with continuous coefficients,
we have the following lemmas.

Lemma 2.9. For a fixed n ∈ N, there exist a > 0 and ε0 > 0 such that

‖πnMε(x)‖ � ‖πnM(x)‖ + aε, ∀x ∈ �A, ε < ε0. (2.6)

To prove proposition 2.8, we still need the following simple lemma.

Lemma 2.10. For any q > 0, P(q) = limε→0 P(Mε, q).

Proof. Fix q > 0. It is clear that P(Mε, q) � P(q) for any ε > 0. Let δ > 0. By lemma 2.2,
there exists n0 ∈ N such that

P(q) � 1

n0
log

∑
J∈�A,n0

sup
x∈[J ]

‖πn0M(x)‖q − δ.

Since

lim
ε→0

1

n0
log

∑
J∈�A,n0

sup
x∈[J ]

‖πn0Mε(x)‖q = 1

n0
log

∑
J∈�A,n0

sup
x∈[J ]

‖πn0M(x)‖q,

it follows from lemma 2.2 that

lim sup
ε→0

P(Mε, q) � lim
ε→0

1

n0
log

∑
J∈�A,n0

sup
x∈[J ]

‖πn0Mε(x)‖q � P(q) + δ,

which implies the desired result. �
Proof of proposition 2.8. Fix q > 0. For any k ∈ N, the matrix-valued function M1/k is
continuous and strictly positive. Therefore, by proposition 2.7, there exists µk ∈ M(�A, σ )

such that

P(M1/k, q) = hµk
(σ ) + q(M1/k)∗(µk). (2.7)

Let {µki
} be a weak-star convergent subsequence of {µk} and µ be the limit point. We show

below that P(q) = hµ(σ ) + qM∗(µ). To see this, we first show that

lim sup
i→∞

(M1/ki
)∗(µki

) � M∗(µ). (2.8)

Fix n ∈ N. For any integer N > 0, define gN(x) = max{−N, (1/n) log ‖πnM(x)‖}. By
lemma 2.9, for any δ > 0, there exists i0 (depending on N ) such that

1

n
log ‖πnM1/ki

(x)‖ � gN(x) + δ, ∀x ∈ �A, i � i0.

Therefore,

(M1/ki
)∗(µki

) �
∫

1

n
log ‖πnM1/ki

(x)‖ dµki
(x) �

∫
gN(x) dµki

(x) + δ, ∀i � i0.
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Letting i → ∞ and then δ → 0, we have

lim sup
i→∞

(M1/ki
)∗(µki

) �
∫

gN(x) dµ(x), ∀N ∈ N. (2.9)

Note that {gN(x)}N�1 is a sequence of continuous functions on �A having a uniform upper
bound. By the Fatou theorem,

lim sup
N→∞

∫
gN(x) dµ(x) �

∫
lim sup
N→∞

gN(x) dµ(x) =
∫

1

n
log ‖πnM(x)‖ dµ(x).

Combining this with (2.9) yields

lim sup
i→∞

(M1/ki
)∗(µki

) �
∫

1

n
log ‖πnM(x)‖ dµ(x), ∀n ∈ N.

Letting n → ∞, we obtain (2.8). By the upper semi-continuity of the measure-theoretic
entropy on M(�A, σ), we have

lim sup
i→∞

hµki
(σ ) � hµ(σ ). (2.10)

Combining (2.10), (2.8) and (2.7) yields

P(q) = lim
k→∞

P(M1/k, q) � hµ(σ ) + qM∗(µ)

and thus P(q) = hµ(σ ) + qM∗(µ) by proposition 2.6. �

3. The proof of theorem 1.2

In this section, we first give a proof of theorem 1.2, and then we give the existence result for
the unique equilibrium state in some cases.

Proof of theorem 1.2. First assume that M is a continuous function on �A satisfying
P(q) �= −∞ for all q > 0. Then P(q) is a convex continuous function. Therefore, P ′(q+)

and P ′(q−) exist for any q > 0.
Fix q > 0. By theorem 1.1, I(M, q) �= ∅. For any µ ∈ I(M, q) and ε > 0, we have

P(q + ε) � hµ(σ ) + (q + ε)M∗(µ), P (q) = hµ(σ ) + qM∗(µ).

It follows that P ′(q+) � M∗(µ) and thus

P ′(q+) � sup{M∗(µ) : µ ∈ I(M, q)}. (3.1)

Similarly, we have

P ′(q−) � inf{M∗(µ) : µ ∈ I(M, q)}. (3.2)

By (3.1) and (3.2), we know

M∗(µ) = P ′(q), ∀µ ∈ I(M, q) (3.3)

if P ′(q) exists.
Since P(·) is convex, there exists a sequence of real numbers qk ↓ q such that P ′(qk) exist

and P ′(q+) = limk→∞ P ′(qk). Take µk ∈ I(M, qk). Without loss of generality, we assume
µk → µ in the weak-star topology. We claim that

µ ∈ I(M, q) and M∗(µ) = lim sup
k→∞

M∗(µk). (3.4)

To prove the claim, note that

lim sup
k→∞

M∗(µk) � lim
k→∞

∫
1

n
log ‖πnM(x)‖ dµk(x) =

∫
1

n
log ‖πnM(x)‖ dµ(x)
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for any n ∈ N. Thus, we have

lim sup
k→∞

M∗(µk) � M∗(µ). (3.5)

This, combining lim supk→∞ hµk
(σ ) � hµ(σ ), yields

P(q) = lim
k→∞

P(qk) = lim
k→∞

(hµk
(σ ) + qkM∗(µk)) � hµ(σ ) + qM∗(µ),

which implies (3.4) (here we have used the positivity of q). By (3.3) and (3.4) we have

P ′(q+) = lim
k→∞

P ′(qk) = lim
k→∞

M∗(µk) = M∗(µ),

which combined with (3.1) yields (1.6). An analogous argument proves (1.7).
Now assume M is strictly positive. The above argument (in which we use (2.2) to

replace (3.5)) can prove (1.6) and (1.7) for q � 0. �
In the following we give two cases for which M has a unique equilibrium state with respect

to q. Recall we have mentioned in theorem A the existence and uniqueness of Gibbs measures
under the assumption that M is strictly positive and Hölder continuous. In [5], Feng and Lau
also proved the existence and uniqueness of Gibbs measures when M is a function taking
values in the set of non-negative d × d matrices satisfying the following assumptions:

(H1) M(x) = Mi if x ∈ [i], i = 1, . . . , m;
(H2) M is irreducible in the following sense: there exists r > 0 such that for any i, j ∈

{1, 2, . . . , m},
r∑

k=1

∑
K∈�A,k;i,j

MK > 0, (3.6)

where �A,k;i,j denotes the set of all K ∈ �A,k such that iKj ∈ �A,k+2 and MK =
Mu1Mu2 · · · Muk

for K = u1u2 · · · uk .

More precisely, they proved the following theorem.

Theorem C. Suppose M is a function on �A taking values in the set of all d × d non-negative
matrices and satisfies (H1) and (H2). Then, for any q > 0, there is a unique Gibbs measure,
µq , on �A as in theorem A.

Now we can formulate our result about the existence of the unique equilibrium state.

Theorem 3.1.

(i) Suppose M satisfies the condition of theorem A, then I(M, q) contains only one element
for any q ∈ R;

(ii) Suppose M satisfies the condition of theorem C, then I(M, q) contains only one element
for any q > 0.

We remark that theorem 3.1 follows from the uniqueness of Gibbs measures, by a proof
very similar to that given in [1, theorem 1.22] for showing the uniqueness of the equilibrium
states in the Hölder continuous real-valued functions case. The only, slight modification is to
replace Snφ(x) therein by log ‖πnM(x)‖.

Combining corollary 1.3 and theorem 3.1, we have the following.

Corollary 3.2.

(i) Suppose M satisfies the condition of theorem A, then P ′(q) exists for any q ∈ R;
(ii) Suppose M satisfies the condition of theorem C, then P ′(q) exists for any q > 0.

We remark that corollary 3.2 (not including the existence of P ′(0) in (i)) was also proved
in [5] by a different method.
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