
The VC-Dimension of SQL Queries and

Selectivity Estimation through Sampling�

Matteo Riondato��, Mert Akdere, Uǧur Çetintemel, Stanley B. Zdonik,
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Abstract. We develop a novel method, based on the statistical concept
of VC-dimension, for evaluating the selectivity (output cardinality) of
SQL queries – a crucial step in optimizing the execution of large scale
database and data-mining operations. The major theoretical contribu-
tion of this work, which is of independent interest, is an explicit bound
on the VC-dimension of a range space defined by all possible outcomes
of a collection (class) of queries. We prove that the VC-dimension is a
function of the maximum number of Boolean operations in the selection
predicate, and of the maximum number of select and join operations
in any individual query in the collection, but it is neither a function of
the number of queries in the collection nor of the size of the database.
We develop a method based on this result: given a class of queries, it
constructs a concise random sample of a database, such that with high
probability the execution of any query in the class on the sample pro-
vides an accurate estimate for the selectivity of the query on the original
large database. The error probability holds simultaneously for the selec-
tivity estimates of all queries in the collection, thus the same sample can
be used to evaluate the selectivity of multiple queries, and the sample
needs to be refreshed only following major changes in the database. The
sample representation computed by our method is typically sufficiently
small to be stored in main memory. We present extensive experimental
results, validating our theoretical analysis and demonstrating the advan-
tage of our technique when compared to complex selectivity estimation
techniques used in PostgreSQL and the Microsoft SQL Server.

1 Introduction

As advances in technology allow for the collection and storage of vast databases,
there is a growing need for advanced machine learning techniques for speeding up
the execution of queries on such large datasets. In this work we focus on the fun-
damental task of estimating the selectivity, or output size, of a database query,
which is a crucial step in a number of query processing tasks such as execution
plan optimization and resource allocation in parallel and distributed databases.
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The task of efficiently obtaining such accurate estimates has been extensively
studied with solutions ranging from storage of pre-computed statistics on the
tables’ distribution, to on-line sampling of the databases, and to combinations
of the two approaches [39, 40, 24, 30, 25, 15, 16, 20, 31, 37, 49]. Histograms, simple
yet powerful statistics of the tables’ data, are the most commonly used solution
in practice, due to their computational and space efficiency. However, there is an
inherent limitation to the accuracy of this approach when estimating the selec-
tivity of queries that involve either multiple tables/columns or correlated data.
Running the query on freshly sampled data gives more accurate estimates at the
cost of delaying the execution of the query while collecting random samples from
a disk or other large storage medium and performing the analysis itself, which
is usually more expensive than a histogram lookup. Our goal in this work is to
leverage the computational efficiency of using pre-collected data with the prov-
able accuracy of estimates obtained by running a query on a properly selected
sample database.

We apply the statistical concept of VC-dimension [53] to develop and analyze
a novel technique for generating accurate estimates of query selectivity. Roughly
speaking, the VC-dimension of a collection of indicator functions (hypotheses) is
a measure of its complexity or expressiveness (see Sect. 3 for formal definitions).
A major theoretical contribution of this work, which is of independent interest, is
an explicit bound to the VC-dimension of a class of queries, viewed as indicator
functions on the Cartesian product of the database tables. In particular, we show
that the VC-dimension of a class of queries is a function of the maximum number
of Boolean, select and join operations in any query in the class, but it is not a
function of the number of different queries in the class. By adapting a funda-
mental result from the VC-dimension theory to the database setting, we develop
a method that for any class of queries, defined by its VC-dimension, constructs
a concise sample of a database, such that with high probability, the execution of
any query in the class on the sample provides an accurate estimate for the se-
lectivity of the query on the original large database. The error probability holds
simultaneously for the selectivity estimate of all queries in the collection, thus
the same sample can be used to evaluate the selectivity of multiple queries, and
the sample needs to be refreshed only following major changes in the database.
The size of the sample does not depend on the size (number of tuples) in the
database, just on the complexity of the class of queries we plan to run, measured
by its VC-dimension. Both the analysis and the experimental results show that
accurate selectivity estimates are obtained using a surprising small sample size
(see Table 1 for concrete values), which allows the entire sample to reside in main
memory, significantly speeding up the execution of the query on the sample.

A technical difficulty in applying the VC-dimension approach to the database
setting is that the VC-dimension analysis assumes a uniform sample of the
Cartesian products of all the tables, while in practice, it is more efficient to
run the queries on the Cartesian product of random samples of the individual
tables (which has a different distribution). We develop an efficient procedure for
constructing a sample that circumvents this problem (see Sect. 5).
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We present extensive experimental results, validating our theoretical analysis
and demonstrating the advantage of our technique when compared to complex
selectivity estimation techniques used in PostgreSQL and the Microsoft SQL
Server. The main advantage of our methods is that it gives provably accurate
prediction for all queries with up to a given complexity (VC-dimension), while
techniques like multidimensional histograms or join synopses are accurate only
for the queries for which they are built.

Note that we are only concerned with estimating the selectivity of a query,
not with approximating the query answer using a sample of the database (see
the work by Das [12] for a survey of that area).

Due to space limitation we focus here on the main novel concepts of our
method. Full proofs and additional experimental results are included in the full
paper [51].

2 Related Work

Methods for estimating the selectivity (or cardinality) of queries have been ex-
tensively studied in the database literature. A variety of approaches have been
explored, ranging from the use of sampling, both online and offline, to pre-
computation of different statistics such as histograms, to building on methods
from machine learning [11, 28], data mining [21], optimization [7, 42], and prob-
abilistic modeling [19, 50].

The use of sampling for selectivity estimation has been studied mainly in the
context of online sampling [40, 39], where the sample is obtained after a query
has arrived and only used for the evaluation of the selectivity of that one query.
Sampling at random from a large database residing on disk is an expensive oper-
ation [47,4,18], and in some cases sampling for an accurate cardinality estimate
is not significantly faster than full execution of the query [22, 23]. A variety of
sampling and statistical analysis techniques has been tested for improving the
efficiency of the sampling procedures and in particular identifying early stopping
conditions [30,24,25,15,56,3,14,7,35] but online sampling is still considered too
expensive for most applications. An offline sampling approach was explored by
Ngu et al. [46] who used systematic sampling (requiring the tuples in a table to
be sorted according to one of the attributes) with a sample size dependent on the
number of tuples in the table. The paper does not give any explicit guarantee on
the accuracy of their predictions. Chaudhuri et al. [7] present an approach which
uses optimization techniques to identify suitable strata before sampling. The ob-
tained sample is such that the mean square error in estimating the selectivity
of queries belonging to a given workload is minimized, but there is no quality
guarantee on the error for each of the queries. Haas [27] developed Hoeffding in-
equalities to bound the probability that the selectivity of a query estimated from
a sample deviates more than a given amount from its expectation. However, to
estimate the selectivity for multiple queries and obtain a given level accuracy for
all of them, simultaneous statistical inference techniques like the union bound
should be used, which are known to be overly conservative when the number of
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queries is large [45]. On the contrary, our result will hold simultaneously for all
queries within a given complexity (VC dimension).

A technical problem arises when combining join operations and sampling, as
pointed out by Chaudhuri et al. [9]: the Cartesian product of the samples of two
tables is not a uniform sample of the Cartesianproduct of the tables. What is more,
given a size s, it is impossible a priori to determine two sample sizes s1 and s2 such
that samples of these sizes from the two tables will give, when joined together along
a common column, a sample of the join table of size s. In Sect. 5 we explain why
only the first issue is of concern for us and how we circumvent it.

In practice most database systems use pre-computed statistics to predict
query selectivity [31, 20, 16, 34, 37], with histograms being the most commonly
used representation. The construction, maintenance, and use of histograms were
thoroughly examined in the literature [33, 32, 43, 48], with both theoretical and
experimental results. In particular Chaudhuri et al. [8] rigorously evaluated the
size of the sample needed for building a histogram providing good estimates for
the selectivities of a large group of (select only, in their case) queries. Kaushik
et al. [36] extensively compared histograms and sampling from a space com-
plexity point of view, although their sample-based estimator did not offer a
uniform probabilistic guarantee over a set of queries and they only consider the
case of foreign-key equijoins. We address both these points in our work. Al-
though very efficient in terms of storage needs and query time, the quality of
estimates through histograms is inherently limited for complex queries by two
major drawbacks: intra-bucket uniformity assumption (i.e., assuming a uniform
distribution for the frequencies of values in the same bucket) and inter-column
independence assumption (i.e., assuming no correlation between the values in
different columns of the same or of different tables). Different authors suggested
solutions to improve the estimation of selectivity without making the above as-
sumptions [5, 13, 49, 55, 54]. Among these solutions, the use of multidimensional
histograms [6,49,52,54] seems the most practical. Nevertheless, these techniques
are not widespread due to the extra memory and computational costs in their
implementation.

To the best of our knowledge, our work is the first to provide explicit bounds
on the VC-dimension of queries and to apply the results to query selectivity
estimation.

3 Preliminaries

We consider a database D of k tables T1, . . . , Tk. We denote a column C of a
table T as T .C and, for a tuple t ∈ T , the value of t in the column C as t.C. The
values in T .C belong to the numerical or categorical domain D(T .C). Our focus
is on queries that combine select and join operations, defined as follows. We do
not take projection operations into consideration because their selectivities have
no impact on query optimization.

Definition 1. Given a table T with columns T .C1, . . . , T .C�, a selection query
q on T is an operation which returns a subset S of the tuples of T such that a
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tuple t of T belongs to S if and only if the values in t satisfy a condition C (the
selection predicate) expressed by q.

Definition 2. Given two tables T1 and T2, a join query q on a common column
C (i.e. a column present both in T1 and T2) is an operation which returns a
subset of the Cartesian product of the tuples in T1 and T2. The returned subset
is defined as the set {(t1, t2) : t1 ∈ T1, t2 ∈ T2, s.t. t1.C op t2.C} where “op” is
one of {<, >,≥,≤, =, �=}.

Definition 3. Given a set of � tables T1, . . . , T�, a combination of select and
join operations is a query returning a subset of the Cartesian product of the
tuples in the sets S1, . . . , S�, where Si is the output of a selection query on Ti.
The returned set is defined by the selection queries and by a set of join queries
on S1, . . . , S�.

Definition 4. Given a query q, a query execution plan for q is a directed binary
tree Tq whose nodes are the elementary operations (i.e. select or join queries)
into which q can be decomposed. There is an edge from node A to node B if the
output of A is used as an input to B.

It follows from the definition of a combination of select and join operations that
a query may have multiple execution plans. Nevertheless, for all the queries we
defined there is (at least) one execution plan such that all select operations are
in the leaves and internal nodes are join nodes [17]. To derive our results, we use
these specific plans.

Two crucial definitions that we use throughout the work are the cardinality
of the output of a query and the equivalent concept of selectivity of a query.

Definition 5. Given a query q and a database D, the cardinality of its output
is the number of elements (tuples if q is a selection queries, pairs of tuples if
q is a join query, and �-uples of tuples for combinations of join and select) in
its output, when run on D. The selectivity σ(q) of q is the ratio between its
cardinality and the product of the sizes of its input tables.

VC-Dimension. The Vapnik-Chernovenkis (VC) Dimension of a space is a
measure of complexity or expressiveness of a set of functions on that space [53].
A finite bound on the VC-dimension of a structure implies a bound on the size of
random samples required for approximately learning that structure. We outline
some basic definitions and results and their adaptation to the specific setting of
queries. We refer the reader to the works of Alon and Spencer [2, Sect.14.4], and
Chazelle [10, Chap. 4] for an in-depth discussion of the VC-dimension theory.
VC-dimension is defined on range spaces:

Definition 6. A range space is a pair (X, R) where X is a (finite or infinite)
set and R is a (finite or infinite) family of subsets of X. The members of X are
called points and those of R are called ranges.

In our setting, for a class of select queries Q on a table T , X is the set of all tuples
in the input table, and R the family of the outputs of the queries in Q when run
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on X , i.e. on T . For a class Q of queries combining select and join operations, X
is the Cartesian product of the associated tables and R is the family of outcomes
of queries in Q, seen as �-uples of tuples, if � tables are involved in the queries
of Q. When the context is clear we identify the family R with a class of queries.

Definition 7. Let (X, R) be a range space and A ⊂ X. The projection of R on
A is defined as PR(A) = {r ∩ A : r ∈ R}.

Definition 8. Let (X, R) be a range space and A ⊂ X. If |PR(A)| = 2A, then
A is said to be shattered by R.

Definition 9. Let S = (X, R) be a range space. The Vapnik-Chervonenkis di-
mension (or VC-dimension) of S, denoted as V C(S) is the maximum cardinality
of a shattered subset of X. If there are arbitrary large shattered subsets, then
V C(S) = ∞.

When the range space represents all the possible outputs of queries in Q applied
to database tables D, the VC-dimension of the range space is the maximum
number of tuples such that any subset of them is defined by a query in Q.

The main application of VC-dimension in statistics and learning theory is
its relation to the minimum sample size needed for approximate learning of a
function on the point space using a range.

Definition 10. Let (X, R) be a range space and let A be a finite subset of X.

1. For 0 < ε < 1, a subset B ⊂ A is an ε-approximation for A if for any range
r ∈ R, we have

∣
∣
∣
|A∩r|
|A| − |B∩r|

|B|

∣
∣
∣ ≤ ε.

2. For 0 < p, ε < 1, a subset B ⊂ A is a relative (p, ε)-approximation for A if
for any range r ∈ R such that |A∩r|

|A| ≥ p we have
∣
∣
∣
|A∩r|
|A| − |B∩r|

|B|

∣
∣
∣ ≤ ε |A∩r|

|A|

and for any range r ∈ R such that |A∩r|
|A| < p we have |B∩r|

|B| ≤ (1 + ε)p.

It is possible to probabilistically build an ε-approximation (resp. a relative (p, ε)-
approximation) by sampling the point space [53, 38, 29].

Theorem 1. There is a positive constant c (resp. c′) such that if (X, R) is a
range-space of VC-dimension at most d, A ⊂ X is a finite subset and 0 < ε, δ < 1
(resp. and 0 < p < 1), then a random subset B ⊂ A of cardinality m, where

m ≥ min
{

|A|, c

ε2

(

d + log
1
δ

)}

, (1)

(resp. m ≥ min
{

|A|, c′
ε2p

(

d log 1
p + log 1

δ

)}

) is an ε-approximation (resp. a rel-
ative (p, ε)-approximation) for A with probability at least 1 − δ.

Löffler and Phillips [41] showed experimentally that the constant c is approxi-
mately 0.5. It is also interesting to note that an ε-approximation of size O( d

ε2 log d
ε )

can be built deterministically in time O(d3d( 1
ε2 log d

ε )d|X |) [10].
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4 The VC-Dimension of Classes of Queries

In this section we develop a general bound on the VC-dimension of classes of
queries. We start by computing the VC-dimension of simple select queries and
move to queries with complex selection predicates and to join queries. We then
extend our bounds to general queries that are combinations of multiple select
and join operations. The proofs for our results can be found in the full version
of this paper [51].

Select Queries. Let T be a table with m columns T .C1, . . . , T .Cm. For a fixed
column T .Ci, consider the family Σ∗

Ci
of all possible outputs of queries in the

form
SELECT ∗ FROM T WHERE T .Ci opa (2)

where op is an inequality operator (i.e., either “≥” or “≤”)1 and a ∈ D(T .Ci).

Lemma 1. Let T be a table with m columns Ci, 1 ≤ i ≤ m, and consider the set
of queries Σ∗

T =
⋃m

i=1 Σ∗
Ci

, where Σ∗
Ci

is defined as in the previous paragraph.
Then, the range space S = (T , Σ∗

T ) has VC-dimension at most m + 1.

This lemma follows easily from a well known result on the VC-dimension of
half-spaces in R

m [44, Lemma 10.3.1].
We now extend the bound to general selection queries with complex predicates.

Given a table T with m columns, consider the set Σb∗
T of queries whose selection

predicate can be expressed as the set of selection queries whose predicate is a
Boolean combination of at most b clauses, i.e. the query is in the form

SELECT ∗ FROM T WHERE T .Ci1 op1 a1 bool1 · · · boolb−1 T .Cib
opb ab

where opi is one of “≥”, “≤”, “bool�” is either AND or OR, ij ∈ [1, m], and aj ∈
D(T .Cij ), 1 ≤ j ≤ b. It should be noted that the clauses in the selection predicate
may be parenthesized in many different ways, each resulting (potentially) in
a different query. All the possible parenthesizations are members of the range
space Σb∗

T . It is also important to realize that we can and we do see a selection
clause involving the “=”operator or the “ �=”operator as the “AND”of two clauses
involving the > and < operators.

Lemma 2. Let T be a table with m columns, let b > 0 and let Σb∗
T be the set

of selection queries on T whose selection predicate is a Boolean combination of
up to b clauses. Then, the VC-dimension of the range space Sb = (T , Σb∗

T ) is at
most 3((m + 1)b) log((m + 1)b).

Note that not all queries in Σb∗
T are equivalent to axis-aligned boxes, thus we can

not apply the bound used in the proof of Lemma 1. Instead, we use the following
extension of [2, Corol. 14.4.3] to arbitrary combinations of set operations.

1 The operators “>” and “<” can be reduced to “≥” and “≤” respectively.



668 M. Riondato et al.

Lemma 3. Let (X, R) be a range space of VC-dimension d ≥ 2 and let (X, Rh)
be the range space on X in which Rh include all possible combinations of union
and intersections of h members of R. Then V C(X, Rh) ≤ 3dh log(dh).

To prove Lemma 2 using Lemma 3, we observe that the outcome of an AND
(resp. OR) operator connecting two selection clauses is equal to the intersection
(resp. union) of the two selection clauses outputs.

Join Queries. Let T1 and T2 be two distinct tables, and let R1 and R2 be
families of (outputs of) queries on the tuples of T1 and T2 respectively. Let
S1 = (T1, R1), S2 = (T2, R2) and let V C(S1), V C(S2) ≥ 2. Let C be a column
along which T1 and T2 are joined, and let TJ = T1×T2 be the Cartesian product
of the two tables. For a pair of queries r1 ∈ R1, r2 ∈ R2, let

Jop
r1,r2

= {(t1, t2) : t1 ∈ r1, t2 ∈ r2, t1.C op t2.C},

where op ∈ {>, <,≥,≤, =, �=}. We have Jop
r1,r2

⊆ r1 × r2 and Jop
r1,r2

⊆ TJ . Let
JC = {Jop

r1,r2
| r1 ∈ R1, r2, R2, op ∈ {>, <,≥,≤, =, �=}}. We have V C((TJ , JC)) ≤

3(V C(S1) + V C(S2)) log((V C(S1) + V C(S2))). This result can be extended to
queries with multiple joins operations:

Lemma 4. Consider the class Q of queries that can be seen as combinations
of select and join operations on u > 2 tables T1, . . . , Tu. Let Si = (Ti, Ri), i =
1, . . . , u be the range space associated with the select queries on the u tables.
Let vi = V C(Si). Let m be the maximum number of columns in a table Ti. We
assume m ≤

∑

i vi.2 Let SQ = (T1 × · · · × Tu, RQ) be the range space associated
with the class Q. The range set RQ is defined as follows. Let ρ = (r1, . . . , ru),
ri ∈ Ri, and let ω be a sequence of u − 1 join conditions representing a possible
way to join the u tables Ti, using the operators {>, <,≥,≤, =, �=}. We define the
range

Jω
ρ = {(t1, . . . , tu) : ti ∈ ri, s.t. (t1, . . . , tu) satisfies ω}.

RQ is the set of all possible Jω
ρ . Then,

V C(SQ) ≤ 4u(
∑

i

V C(Si)) log(u
∑

i

V C(Si)).

We could not reduce the claim of this lemma to any know result in the VC-
dimension theory. Our proof constructs a bound on the maximum size of a
shattered set, by considering the effect of the different operators on the output.
See the full version of the paper [51] for more details.

General Queries. Combining the above results we prove:

Theorem 2. Consider the class Qu,m,b of all queries with up to u − 1 join
and u select operations, where each select operation involves no more than m
columns and b Boolean operations, then V C(Qu,m,b) ≤ 12u2(m + 1)b log((m +
1)b) log(3u2(m + 1)b log((m + 1)b)).
2 The assumption m ≤ ∑

i vi is reasonable for any practical case.
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5 Implementation

Consider a database D and a class of queries Qu,m,b. Theorem 2 gives a bound
to the VC-dimension of the range space (D, Qu,m,b), where D is the Cartesian
product of all the tables in D. Theorem 1 gives the required size of a uniform
random sample S of D, such that the execution of any query q ∈ Qu,m,b on S
gives an ε-approximation (or a relative (p, ε)-approximation) of the selectivity
of q when executed on D (see Table 1 for concrete values). Note that for any
execution plan of a query q ∈ Qu,m,b, all the queries that correspond to subtrees
rooted at internal nodes of the plan are queries in Qu,m,b. Thus, by running
query q on the sample we obtain accurate estimates for the selectivity of all the
subqueries defined by its execution plan.

In practice, it is more efficient to maintain the table structure of the original
database in the sample. It is easier to sample each table independently, and to
run the query on a sample that consists of subsets of the original tables rather
than re-writing the query to run on a Cartesian product of tuples. However, the
Cartesian product of independent uniform samples of tables is not a uniform
sample of the Cartesian product of the tables [9]. We developed a procedure to
circumvent this problem. Due to space constraints, we present here an informal
description of the procedure and refer the interested reader to the full version
of the paper [51]. Assume that we need a uniform sample of size t from D,
which is the Cartesian product of � tables T1, . . . , T�. We then sample t tuples
uniformly at random from each table Ti, to form a sample table Si. We add an
attribute sampleindex to each Si and we set the value in the added attribute
for each tuple in Si to a unique value in [1, t]. Now, each sample table will
contain t tuples, each tuple with a different index value in [1, t]. Given an index
value i ∈ [1, t], consider the set of tuples Xi = {x1, . . . , x�}, xj ∈ Si such that
x1.sampleindex = x2.sampleindex = · · · = x�.sampleindex = i. Xi can be seen
as a tuple sampled from D, and the set of all Xi, i ∈ [1, t] is a uniform random
sample of size t from D. We run queries on the sample tables, but in order to
estimate the selectivity of a join operation we count a tuple Y in the result only
if the set of tuples composing Y is a subset of Xi for some i ∈ [1, t]. This is
easily done by scanning the results and checking the values in the sampleindex
columns.

Note that our method circumvent the major difficulty pointed out in [9].
They proved that, in general, it is impossible to predict sample sizes for given
two tables such that the join of the samples of two tables will result in a sample
of a required size out of the join of the two tables. Our method does not require
a sample of a given size from the result of a join. The VC-dimension sampling
technique requires only a sample of a given size from the Cartesian product of
the tables, which is guaranteed by the above procedure.

6 Experiments

The first goal of the experiments is to evaluate the practical usefulness of our
theoretical results. To assess this, we run queries on a large database and on
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Table 1. Sample Sizes (tuples)

Select Join

m b VC-dim Sample size VC-dim Sample size

1

1 2 1000 4 1400
2 4 1400 16 3800
3 6 2800 36 7800
5 10 2600 100 20600
8 16 3800 256 51800

2

2 31 6800
3 57 12000
5 117 24000
8 220 44600

5 5 294 59400

sample representations generated by our method.3 We used the selectivity of the
each query in the random samples as an estimator for the selectivity in the large
database (with the appropriate adjustments for join operations, as described in
the previous section). We computed the error between the estimate and the ac-
tual selectivity to validate the analysis in Thm. 1 in practical settings. The use
of a large number of queries and a variety of parameters allowed us to evalu-
ate the error a function of the sample size. Our second goal is comparing our
results, which give probabilistic guarantees on the error of the predicted selectiv-
ity, with the standard selectivity estimation done using precomputed statistics as
implemented in PostgreSQL and Microsoft SQL Server. Additional experimental
results can be found in the full version of the paper [51].

Setup. The tables in our large database were randomly generated and contain
20 million tuples. The distributions of values in the columns fell in two different
categories: 1. uniform and independent : the values in the columns were chosen
uniformly and independently at random from a fixed domain. Each column was
treated independently from the others. Tables involved in join queries belonged
to this category only. 2. correlated : two columns of the tables contained values
from a multivariate normal distribution with mean M = μI2,2 and a non-identity
covariance matrix Σ. We sampled tuples from the large tables uniformly, inde-
pendently, and with replacement, to build the sample tables. For the samples
of the tables used to run join queries, we added a column sampleindex to each
tuple as described in Sect. 5. For each table in the original database we created
many sample tables of different sizes, either fixed arbitrarily to 1000, 2000, or
5000 tuples or computed using (1). To compute the VC-dimension-dependent
sample size, we fixed ε = 0.05, δ = 0.05, and c = 0.5, as suggested by Löffler and
Phillips [41]. The parameter d was set to the best bound to the VC-dimension of
the range space of the queries we were running, as obtained from our theoretical
results. We used m = 1, 2 (only m = 1 for joins) and b = 1, 2, 3, 5, 8, with the
3 We focused on building ε-approximations, but relative (p, e)-approximations would

give similar results.
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addition of the combination m = 5, b = 5. Table 1 shows the sample sizes as
number of tuples. We stress again the fact that the sample sizes are independent
from the sizes of the original tables, so the larger the original table, the smaller
will be the ratio between the sample size and the original size and the higher
the gains in terms of space. We built PostgreSQL histograms with a different
number of buckets, ranging from 100 to 10000. For SQL Server, we built the stan-
dard single-column histograms and computed the multi-column statistics which
should help obtaining better estimations when the values along the columns are
correlated. For each combination of the parameters m and b and each large table
(or pair of large tables, in the case of join) we created 100 queries, with selection
predicates chosen independently and uniformly at random, involving m columns
and b Boolean clauses.

Results. A major result of our experiments is that for all the queries we run and
all the sample tables the estimate of the selectivity computed using the selectivity
in the sample was within ε (0.05) from the real selectivity. The same was not
true for the selectivity computed by the histograms. As an example, in the case
of m = 2, b = 5 and uniform independent columns, the default PostgreSQL
histograms predicted a selectivity more than ε off from the real selectivity for 30
out of 100 queries. Nevertheless, from time to time the histograms predicted a
selectivity closer to the actual one than the prediction from the sample. This is
especially true when the histogram assumption are verified (e.g., for m = 1, b = 1
the default PostgreSQL histograms gave a better prediction than the sample in
28 out of 100 cases). This “inversion of precision” becomes less and less frequent
as the sample size grows and as the complexity of the queries grows. Since the
selectivity estimated by the sample was always within ε from the actual, we
focused on the percent error, i.e. on the quantity e% = 100|p(σq)−σD(q)|

σD(q) where
p(σq) is the predicted selectivity. We can see from Fig. 1 and 2 that both
the average and the standard deviation of the percentage error of the sample
prediction decrease as the sample size grows. Much more interesting than this is
the comparison between the performance of the histograms and the performance
of the sample in predicting selectivities. When the assumptions of the histograms
hold, as is the case for the data plotted in Fig. 1, the predictions obtained from
the histograms can be of good quality. As said though, for a majority of queries,
the prediction from the sample is better than the one from the histograms.

But as soon as the data are correlated (Fig. 2), the sample gives better predic-
tions than the histograms even at the smallest sample sizes and keeps improving
as the sample grows larger. In Fig. 2 we do not show multiple curves for the
different PostgreSQL histograms because increasing the number of buckets had
very marginal impact on the quality of the estimates, sometime even in the neg-
ative sense (i.e., an histogram with more buckets gave worse predictions than
an histogram with less buckets), a fact that can be explained with the vari-
ance introduced by the sampling process used to create the histograms. For the
same reason we do not plot multiple lines for the prediction obtained from the
multi-columns and single-column statistics of SQL Server. The strengths of our
method compared to histograms become more evident when we run join queries.
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Fig. 1. Select – Uniform Independent Columns – m = 2, b = 5
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Fig. 2. Select – Correlated Columns – m = 2, b = 8

In our experiments, the predictions obtained from the sample were always within
ε from the real values, even at the smallest sample sizes, but the same was not
true for histograms. Figure 3 shows the comparison between the average and the
standard deviation of the percentage error for the histograms and the sample.
The numbers include predictions for the selection operations at the leaves of the
query tree. The extremely bad performances of PostgreSQL is due to the fact
that for some join queries, the histograms may predict an output size on the
order of the hundreds of thousands tuples but the actual output size was zero or
a very small number of tuples. Such errors drive the average and the standard
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Fig. 3. Join – Uniform Independent Columns – m = 1, b = 1

deviation to very high values, but the comparison with the sample is fair and the
prediction from the histograms are just not of good quality in such cases. The
performance of SQL Server can be explained by the fact that this DBMS does
not only use histograms to predict the selectivity of the query but also analyzes
the query predicates and its query optimizer is very good in understanding when
a query would return an empty output, therefore avoiding major errors in the
estimation. This is something that vanilla histograms could not do, so the com-
parison with the sample is actually a bit unfair against the sample. Figure 3 also
shows a comparison between the percentage error of predictions obtained from
the sample in two different ways: the “theoretically correct”way that makes use
of the number of pairs of tuples with the same value in the sampleindex column
to predict the selectivity and the “practitioner” way which uses the size of the
output of the join operation in the sample, ignoring the sampleindex column,
i.e., without filtering out the tuples not belonging to the sample of the Cartesian
product of the original tables.

From the experiments we ran we can conclude that our method for estimating
the selectivity is a viable option in practice. The theoretical guarantees were
always satisfied, with a consistency and an accuracy even higher than guaranteed.
This fact can be explained by the potential looseness of the bounds to the VC-
dimension of queries, and therefore to the sample size. From a practical point
of view, it is also interesting that a sample of the Cartesian product is not
necessary, and a certain level of non-uniformity in the sampling process may
be accommodated. It may even well be that it is not necessary to use uniform
independent sampling in order to obtain a ε-approximation.
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7 Conclusions

We develop a novel method for estimating the selectivity of queries by executing
it on a concise, properly selected, sample of the database. We present a rigorous
analysis of our method and extensive experimental results demonstrating its
efficiency and the accuracy of its predictions.

Most commercial databases use histograms built on a single column, for se-
lectivity estimation. There has also been significant research on improving the
estimate using multidimensional histograms [6, 49, 52, 54] and join synopses [1].
The main advantage of our method is that it gives uniformly accurate estimate
for the selectivity of any query within a predefined VC-dimension range. Method
that collect and store pre-computed statistics gives accurate estimates only for
the queries captured by the collected statistics, while estimates of any other
query relies on an independence assumption.

To match the accuracy of our new method with histograms and join synopses
one would need to create, for each table, a multidimensional histogram where
the number of dimensions is equal to the number of columns in the tables. The
space needed for a multidimensional histogram is exponential in the number of
dimensions, while the size of our sample representation is almost linear in that
parameter. Furthermore, to estimate the selectivity for join operations one would
need to create join synopses for all pairs of columns in the database, again in
space that grows exponential in the number of columns.

It is interesting to note that the highly theoretical concept of VC-dimension
leads in this work to an efficient and practical tool for an important data analysis
problem.
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