
THE VEC-PERMUTATION MATRIX, THE VEC OPERATOR AND 
KRONECKER PRODUCTS: A REV JEW 

by 

Harold V. Henderson* 

Biometrics Section, Ruakura Agricultural Research Centre, 
Hamilton, New Zealand 

and 

S. R. Searle 

Biometrics Unit, Cornell University, Ithaca, New York 

ABSTRACT 

The vee-permutation matrix I is defined by the equation 
_m,n 

vecAmX =I vecA', where vee is the vee operator such that vecA 
,.. n _m, n ,.. 

is the vector of columns of A stacked one under the other. The 

variety of definitions, names and notations for I are discussed, 
,..m, n 

and its properties are developed by simple proofs in contrast to 

certain lengthy proofs in the literature that are based on descrip-

tive definitions. For example, the role of I in reversing the 
,..m,n 

order of Kronecker products is succinctly derived using the vee 

operator. The matrix M is introduced as M = I M; it is the 
,..m, n ,..m, n ,..m, n,.. 

matrix having for rows, every n'th row of M, of order mn X c, 

starting with the first, then every n'th row starting with the 

second, and so on. Special cases of M are discussed. 
...m,n 
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1. NOTATION 

Let A and B be matrices of' order m X n and p X q, respective-

ly. Rows of' a matrix will be denoted by Greek letters transposed 

and columns by Roman letters: 

A= {a .. ) =[a • • • a ] = 
... lJ ... 1 ... n 

a' 
... 1 

a' 
... m 

and B = { b ) = [b • • • b ] = _ rs ... 1 ... q 

(3' 
... p 

I is the identity matrix of' order n, with e. denoting its i'th 
... n ... 2 

column and then 

n 

I = 2: e.e! • 
... n i=l-l...l 

2. THE VEC OPERATOR AND KRONECKER PRODUCTS 

2.1. The vee operator and its many names and notations 

The vee operator stacks the columns of' a matrix one under-

neath the other to f'orm a single vector. Thus f'or A of' (1) 

vecA = 

a 
... n 

' 

with vecA (f'or "vector of' columns of' A") being the notation cur-
... -

(1) 

(2) 

rently in vogue. The equivalent notations vecA and vec(A) are used 

interchangeably, the parentheses being employed only when deemed 

necessary f'or clarity. 
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An early reference to this idea of stacking elements of a 

matrix in a vector is Sylvester [1884a,b,c] who used it in connec­

tion with linear equations. Roth [1934], using the notation Ac, 

develops results for using the operation on a product matrix, 

Aitken [1949] mentions the idea in connection with Jacobians, and 

Koopmans et al. [1950] introduce the notation vee. More recently, 

the concept has been exploited in a variety of ways, for example, 

in solving linear matrix equations and in matrix differentiation, 

from which it is seen to be useful in deriving Jacobians of matrix 

transformations. The paper by Henderson and Searle [1979] out-

lines these applications and highlights several uses in statistics; 

e.g., in rewriting multivariate linear models in a univariate form, 

in developing the dispersion matrix of elements of a matrix such as 

a Wishart matrix and, from this, in deriving fourth moments in a 

general linear model. 

As a result of these applications, the concept has, in recent 

years, been used by numerous writers. There is vecA or vec(A) used 

by Neudecker [1968, 1969a,b], Browne [1974] (who also uses a), -
Swain [1975] (who also uses ~), Conlisk [1976], Balestra [1976], 

Anderson et al. [1977], Anderson [1978], Searle [1978, 1979], Brewer 

[1978], Magnus and Neudecker [1979] and Henderson and Searle [1979]. 

Equivalent notations are S(A), for ~tacking columns of A, used by 

Nissen [1968] who also uses a; and L(A) used by Conlisk [1969]; 

also, ~ for the column-rolled-out form of ~' as it is described by 

Cole [1969]; and csA as the column string of A used by Vetter 
~ - - ~ 

[1970, 1973, 1975], Kucera [1974] and Mitra [1977]. There is also 
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A of Tracy and Dwyer [1969], Singh [1972] and Tracy and Singh 
.... c 

[l972a,b], col(A) of Hartwig [1972, 1975] and Hartwig and Morris -
[1975], @(A) for the pack of A, in MacRae [1974] and in Rogers and - -
Young [1978]; and vcA as the ~ector of ~olumns of A by Legault-- -
Giguere [1974] and Giguere and Styan [1974] and a by Nel [1978] . 

.... c 

Variations on what we have defined as vecA are also available: 

for example, having it be the column vector derived from writing 

each transposed row of A one under the other. This stacks the 

elements of A in lexicon order and is, in our notation, equivalent 

to vecA', where A' is the transpose of A. Notations for this in-

elude a used by Lancaster [1969, 1970], A by Tracy and Dwyer 
.... r 

[1969], Singh [1972] and Tracy and Singh [1972a,b], v(A) by Barnett .... 

[1973], vrA as the vector of transposed rows of A by Legault-Giguere - - - -
[1974] and a by Nel [1978]; and even vecA by McDonald and 

.... r .... 

Swaminathan [1973], Bentler and Lee [1975], McDonald [1976] and 

Pukelsheim [1977]. other variations include the row vector of rows 

of A, (vecA')' in our notation, which Roth [1934] denotes by AR and 

Vetter [1970, 1973, 1975] by rsA, as the ~ow ~tring of A. A final 

form, the row vector of transposed columns of A, (vecA)' has not 

yet been seen in the literature! 

2.2. Origins of the Kronecker product 

The Kronecker product of two matrices is defined for A and B 

of (1) as the mp X nq matrix 

A® B = {a .. B} , 
lJ .... 

(3) 
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which is a particular case of the tensor product for transfor-

mations as discussed, for example, by Halmos [l958, p. 97]. In its 

original setting it seems to have been first studied by Zehfuss 

[l858], and although he dealt only with its determinant, Rutherford 

[l933] appropriately calls A ® B the Zehfuss matrix of A and B. - - -
Loewy [l9l0, pp. l49-l50] refers to Zehfuss's determinantal result 

as Kronecker's theorem which, according to Hensel [l89l, p. 3l9], 

Kronecker (l823-9l) had for sometime given in his algebra lectures 

in Berlin, which Bell [l937, p. 478] notes, he presented regularly 

from l86l "principally on his personal researches, after the neces-

sary introductions". Thus, although the name of Kronecker is now 

generally associated with the A ® B operation, with an early use as - -
pointed out by Dr. George Styan being Murnaghan [l938, p. 68], the 

exact origin of this association is hard to find. 
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Basic properties of Kronecker products are collected, with 

references to sources after 1889, by Loewy [1910, pp. 148-151] and by 

MacDuffee [1933, p. 82] using the names !!product transformation 11 

and "direct product", respectively. More recent summaries are Searle 

[1966], Neudecker [1968, l969a,b] and Graybill [1969] in the context of 

statistical applications, and Barnett [1979] with engineering applications. 

2.3. The vee and Kronecker product operators are connected 

The definitions of vee and of Kronecker product show that 

vec(ab') = 2@ a, so that vec[(Aa)(b'C)] = (C'@ A)vec(ab'). This, 

together with B = [biJ.} = L:I:b .. e.e'., leads to 
ij lJ ... L...J 

vec(ABC) = (C' @ A)vecB, 
..._ ... 

a result derived by Roth [1934], and hence called Roth's column 

(4) 

lemma by Hartwig [1975], and rediscovered by Aitken [1949], Koopmans 

et al. [1950], Nissen [1968] and Neudecker [l969b]. 

3. VEC-PERMUTATION MATRICES 

The vectors vecA and vecA' contain the same elements, in 

different sequences. We define I as the permutation matrix such 
...m,n 

that, for A of order m by n, 

vecA = I vecA' , 
... m,n 

and give it the name vee-permutation matrix. 

(5) 

There has been increasing interest over the last decade in vee-

permutation matrices in matrix algebra, mathematics, statistics, 

econometrics and psychometrics. This wide interest in what we call 
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I of (5) is partly responsible for the diversity of its liter-
... m,n 

ature, for duplication of published results, for varying defin-

itions and for a wide range of notation and nomenclature. For 

example, (5) defines what I does, in contrast to definitions 
... m,n 

discussed later that describe what I looks like. This is an 
... m,n 

important distinction because operational definitions of I , like 
... m,n 

(5), lead to succinct derivations of its properties, in contrast to 

some recent and rather tedious proofs based on descriptive defi-

nitions. An example of this is the important role of I in re-
... m,n 

versing the order of Kronecker products; e.g., for A and B 
... mxn .... pxq 

B ®A = I (A ® B)I 
... m,p.... .... ... q,n 

(6) 

In these circumstances, and because of the topical nature of 

the subject, a cohesive account and succinct development of proper-

ties of vee-permutation matrices is needed. This is attempted in 

Section 4. But first we discuss the variety of definitions, names 

and notations to be found in the literature and summarized in Table 

1, for a vee-permutation matrix, using our notation I . 
... m,n 

(Show Table 1 here) 

3.1. Definitions from reversing the order of Kronecker products of 

matrices and vectors 

Ledermann [1936], in material from his Ph.D. thesis supervised 

by A. C. Aitken, gives an elegant proof of (6), although without 

explicit development of the vee-permutation matrices. Using column 

vectors r, x, s and y of order m, n, p and q, respectively, with 

r = Ax and s = By, he proceeds as follows. -
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"The two products A ® B and B ® A are related to each other 

by an identity 

Q(A ® B)P-l = (B ®A) , - .... 

where P and Q are permutation matrices which depend only - -
on the types of A and B and not on their elements. 

Proof: Apart from the order, the vectors x ® y and y ® x 

contain the same elements···. We can therefore find a 

permutation matrix P of degree nq such that -
(y ® x) = P(x ® y) 
.... .... -

and similarly 

(s®r) =Q(r®s), 
.... .... -

where Q is a permutation matrix of degree mp. Evidently -
P and Q do not depend on the elements of x, y, r, s but 
~ ~ ~ ~ -
only on the numbers m, n, p. q. By [(A® B)(x ® y) = 

Ax® By] we have 
........ 

(r®s) = (A®B)(x®y), 

( s ® r) = (B ® A) (y ® x). 

On premultiplying the first equation by Q and substi-

tuting ·•· we get 

(s ® r) = Q(A ® B)(x ® y) = (B ® A)P(x ® y) 

Since there is obviously no linear relation between the 

elements of x ® y, we obtain 

Q(A ® B) = (B ® A)P 
N- - ,_. 

or 

~(~ ® B)P-l = (~®A) , 

as was to be proved. 11 
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[For consistent notation we have replaced X in the original 

form of this quotation by ®, and changed subscripts to conform with 

(l); and we do this in all quotations, without further comment.] 

Ledermann [1936] then, in our notation, defines I as the 
-m,n 

permutation matrix such that 

I (a® b) = b ® a , 
.... m, n .... ... ,.. ,.. 

(7) 

for any column vectors a and b of order m and n, respectively. 

Conlisk [1976] has a similar idea in mind for I , using the nota­
_n,n 

tion M. [Actually, he writes (p. 760) (a® b)M = b ® a, which is 

clearly incorrect, from dimension considerations alone. However, 

he correctly claims (p. 763) that ~(! ® ~nXn) = ~ ® !·] Defining 

I , as in (7), in terms of reversing the order of Kronecker pro­
-m,n 

ducts of vectors, was also suggested by a referee of' Henderson and 

Searle [1979]. The suggestion has merit, but it emphasizes a 

feature of T that is second to the more fundamental and more 
.;m,n 

general definition given in (5) in terms of the vee operator. In 

fact, (7) is the special case of (5) with A being ba', of rank l. -
Murnaghan [1938] was also interested in reversing the order of 

Kronecker products and, in this connection, gives an explicit formu-

lation of what we call a vee-permutation matrix. He denotes the 

position of a .. b in A® B by the row index-pair (i,r) and column 
lJ rs - -

index-pair (j,s), and notes (p. 68-69) that for A and B square of 

order m and n, respectively, 
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"B 181 A is obtainable from A 181 B by applying the ~ 

- - -
permutation to the rows and columns of the latter. Let 

us denote by (i,r)* the position of (r,i) when the 

ordering is dictionary-like, the label with the range n 

coming first; e.g., if m = 2, n = 3 the dictionary order 

where the label with the range 2 comes first is (1,1), 

(1,2), (1,3), (2,1), (2,2), (2,3) whilst the dictionary 

order when the label with the range 3 comes first is 

(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2). Hence (1, 1)* 

= (1,1), (1,2)' 1 ~ = (1,3), (1,3)* = (2,2), (2,1)* = (1,2), 

(2,2)~• = (2,1), (2,3)* = (2,3). Then if the (j,s) column 

of A 181 B is transferred to the (j, s )~~ position and the 

(i,r) row to the (i,r)* position we obtain B 181 A. In 

other words 

(B 181 A) = P(A 181 B)P-l - -
(8) 

where p is the permutation matrix associated with { g; ~ r). 
Notice that P is quite independent of the elements of 

-
A and B being completely determined by their dimensions. " 

A clearer statement of Murnaghan's [1938] development of P, 

which is our I , is that 
_m,n 
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row (i,j) of I is row (j,i) of I , 
.... m,n ... mn 

( 9) 

fori= 1, ···, nand j = 1, ···, m. Note that I is the identity 
....mn 

matrix of order mn, to be distinguished from I , a vee-permutation 
... m,n 

matrix of the same order. Searle (1966, p. 216] makes a more ex-

plicit statement of this situation: 

"It is apparent from ( 3) that for AmX = { a .. } and B .v 
... n lJ ... p"q 

= [b } the elements of both A 181 B and B 181 A consist of rs _ _ _ _ 

all possible products a .. b 
lJ rs 

In fact, B 181 A is simply 

A 181 B with the rows and columns each in a different order. 

Thus (in general] 

B 181 A = P(A 181 B )Q 

where P and Q are each a product of E-type elementary 
.... .... 

operators (permutation matrices]. 

For any values of i, j, r and s the element a .. b 
lJ rs 

is located in A 181 Bin the r'th row and s'th column of 

the i,j'th sub-matrix [a .. B] •••· It is therefore in 
lJ ... 

row [p(i- l) + r] and column (q(j- l) + s] of A® B. 

In B 181 A, however, b a .. is in row i and column j of 
rs lJ 

the r,s'th sub-matrix [b A]···· It is therefore in 
rs .... 

row [m(r - l) + i] and column [n(s - l) + j] of B 181 A. ... .... 

Consequently the interchanging of rows and columns im-

plied in (10), to obtain B 181 A from A 181 B, can be speci-

fied as follows. The [i + (j - l)m]'th row of Pis the 

[(i- l)p + j]'th row of I , fori= 1, 2, ···, m and 
... mp 

j = 1, 2, ···, p, and the [i + (j- l)n]'th column of Q 

(10) 
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l)q + j] 'th column of I , for i l, 2, 
... nq 

, n and j = l, 2, • •• , q. " 

Comparison of (6) with (lO) shows that P = I and Q = I ; so 
... ....m,p .... ...q,n 

that Searle's [l966J expression for P may be restated, in our no-

tation, as 

row (i - l)m + j of I is row (j - l)n + i of I , (ll) 
.... m,n .... mn 

fori= l, ···, nand j = l, ···, m. This is, of course, equiva-

lent to (9) because row (i,j) of I is its [(i - l)m + j]'th row . 
.... m,n 

Expressions (9) and (ll) show consecutive rows of I to be every 
.... m,n 

n'th row of I starting with the first, and so on; a fact which 
.... mn 

Tracy and Dwyer [l969] rediscovered and used as its definition, as 

is now discussed. 
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3.2. Defining the row permutations 

Tracy and Dwyer [1969, p. 1579] introduce 

!(n) as the matrix obtained by rearranging 

the rows of I by taking _r 

every n'th row starting with the first, then 

every n'th row starting with the second, and so on. 

(12) 

Tracy and Singh [l972a,b] and Singh [1972], restricting :(n) to be 

of order mn, establish (5) and (6) and call !(n) a permuted identity 

matrix, a name which actually applies to any permutation matrix. We 

call !(n) of (12) a generalized vee-permutation matrix because it is 

defined for any order, not necessarily a multiple of n, whereas 

!m,n = !Cn) of order mn • 

For example, the rows of 

I = 
-2,3 

l 
I 
I • 
I 

:1 
I ---------r--------

1 : . 
I 

: . l 
I ---------r--------

1 : . 
I 
I 
I • 
I 

l 

(13) 

(14) 

(where dots represent zeros), are every third row, namely rows 1, 4, 

2, 5, 3 and 6, respectively, of ;s. -
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3. 3. Descriptive definitions of I 
...m n 

In contrast to operational definitions like (5) and (7) 

through (13), there is a number of what can be called descriptive 

definitions based on describing what I looks like. They amount 
... m,n 

to defining 

I as a square matrix of order mn, partitioned 
... m,n 

into an n by m array of submatrices each of order 

m by n, such that the (i, j) 'th submatrix S •. , say, 
.,.lJ 

has unity in its (j,i)'th position and zeros elsewhere. 

(15) 

For example, I2 3 of (14) is shown partitioned in accord with (15). 
... ' 

Variations of (15) include Vetter's [1970] <uji .. ) , 
... lJ 

Hartwig's [1972, p. 540] P (which should be P-1) for his use in 
... ... 

P-1 (AmX 181 B )P = B 181 A; Vetter's [1973, 1975] gnxn. the "per-
... ... m ... nXn ... ... ... ...nXm' 

muted identity matrix" I( ) of MacRae [1974], who notes (p. 338) 
... m,n 

that it "is identical to the matrix ;(n) [of order mn] defined by 

Tracy and Dwyer [1969]" and the universal flip matrix P of 
... m,n 

Hartwig and Morris [1975]. Balestra [1976, p. 21], using P , 
... m,n 

clarifies the partitioning in MacRae's [1974] definition. He also 

gives a symbolic version of (15): 

I = P = [ S . .} i = 1, 
... m, n ... m, n ... lJ 

, n; j = 1, ' m, 

where (16) 

S =ee'=e.181e!=e!181e . 
... ij ... j ... i ... J ... l ... l -J ' 

which is a generalization of I( ) in Anderson et al. [1977], with 
... n,n --

S .. = e.e! presented in Anderson [1978, p. 53] . 
... lJ ... J-l 
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A further formulation of (15) and of (16), where H~. is S .. , 
... l.J ... l.J 

is 

n m 
I 
... m,n 

= K = Z Z (H. . ® H ~ . ) 
... nm i=l j=l ... l.J .... J.J 

where H. . is the n X m matrix with a 1 
.... l.J 

in position (i,j) and zeros elsewhere. 

Vetter [1973, 1975] presents (17) as does Brewer [1977, 1978], 

(17) 

who uses U for I . Magnus and Neudecker [1979] also use (17), 
... nXm .... m,n 

which they derive from (5). They call it a "commutation matrix" 

because of its role in reversing ("commuting") the order of Kronecker 

products, and denote it by K • 
.... nm 

Definition (15) and its variations impose an artificial par-

titioning on I , which disguises its inherent permutation features • 
.... m,n 

Only the partitioning into n blocks of m rows or m blocks of n 

columns, but not both, is natural. This natural partitioning is 

implicit in the operational definitions and is explicit in a further 

formulation given by Balestra [1976]: 

I = { I ® e ~} . l = { I ® e . } . l , ( 18) 
... m,n .... m .... J. J.= ••• n .... n .... J J= ···m 

the second of which is also given by SWain [1975] who uses 1 for 
n .... mn 

I • Denoting the direct sum A1[) • • • 8 A by G) A., we see that 
.... m,n - .... n . r-l. l.= 
(18) may be written as 

I 
.... m,n 

m 

= {Ge~} 
. .r-J. . l J= J.= ···n 

(19) 

where in the first partitioning in (19) the e! have order n, and in 
.... J. 

the second the e. have order m. 
-J 
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Results (18) and (19) are nicely illustrated by (14). Two further 

formulations of I developed by Magnus and Neudecker [1979] are 
... m,n 

I 
... m,n 

m 

= ~ (e ~ ® I ® e.) 
. 1 ... 1 ... n ... 1 
l= 

and I 
... m,n 

n 
= ~ (e. ® I ® e '.) . 

. l -J ... m -J 
J= 

(20) 

Although Hartwig and Morris [1975] give a block formulation 

definition of I , they give an ingenious card shuffling interpre­
... m,n 

tation which is in fact based on (5), our definition. They identify 

the permutation implicit in I with the "generalized out faro-
... m,n 

shuffle" for a one dimensional deck of mn cards. Their description, 

on p. 451, with further details in Morris and Hartwig [1976], is as follows. 

"In this shuffle a deck of mn cards, labeled from 

top to bottom, is cut into m portions of n cards, and 

each portion is given in clockwise fashion to one of m 

players seated at a circular table, starting with the 

dealer. If, starting with the dealer, in clockwise 

fashion, each player plays his top card when it is his 

turn, until all cards have been played, we obtain the 

permutation IT , labeled from the bottom cards up. 

When m = 2 this reduces to the classical out faro­

shuffle (in which an even deck of cards is cut in halves 

and then ruffled such that the first and the last cards 

remain in fixed positions) which is the basis to several 

remarkable card tricks. " 

A further application of these permutations, kindly brought to 

our attention by Dr. Stephen Barnett, is that of Whelchel and Guinn 

[1970] who are concerned with shuffling data in computer storage. 

In this context, they refer to I as the "shuffle matrix", and 
... n,n 

denote it by S 2· 
... n 
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3.4. Defining I as a matrix derivative operator 
... m n 

McDonald and Swa.m.inathan [1973, p. 39] denote I by E', and 
... m,n ... 

subsequently in McDonald [1976] by E to eliminate ambiguity, 
... n,m 

defined as the derivative operator 

I = E = 0X'/oX, where X is m. i. v. 
... m, n ... n,m ... ... ... mXn 

(21) 

[A matrix is said to be mathematically independent and variable 

(m.i.v.) if no elements are functionally dependent or constant.] 

They recognize E as a permutation matrix of I , and give (1973, 
... m,n ... mn 

p. 39) its form: 

"the general element of E[I ], egh, is 
...... n,m 

equal to unity if j = k' and k = j' with 

g = n(j - 1) + k , O<j.S:m, O<k.S:n, 

h = m(j' - 1) + k', 0 < j ' .s: n, 0 < k' :s; m , 

and is zero otherwise. " 

This is a less concise statement than each of (9), (11) and (13). 

Rather than define I as the outcome of differentiation, as 
... m,n 

in (21) and which demands the m.i.v. property, and which fails to 

highlight the permutation properties of ~ n' we prefer to derive 
... ' 

(21) from the more fundamental definition (5) using the standard 

result oAx/0x =A' for x being m.i.v.; and then for X being m.i.v. - ... 

oX' ovecX' oi vecX _ ... _ = ----'--'-- = ... n, m ... = 
oX ovecX ovecx 

(I )' =I 
... n,m ... m, n 

... -
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4. IROPERTJES OF VEC-PERMUTATION MATRICES 

Except for (6) which we consider separately, well-known 

properties of I are given without proof by Tracy and Singh 
... m,n 

[l972a,b], Singh [l972], Vetter [l973, p. 354] who suggests veri-

fication "by construction", MacRae [l974, p. 339] who comments 

they "can be verified by direct examination", Balestra [l976] and 

Swain [l975], and very recently by Brewer [l978] and Magnus and 

Neudecker [l979] whose proofs seem somewhat lengthy. Using I as 
... m,n 

defined in (5), we develop considerably shorter and simpler proofs. 

Applying (5) to vecA' in (5) itself gives vecA = I I vecA 
... m,n...n,m 

so that 

I I = I 
... m, n... n, m ... mn 

(22) 

Then, because I is a permutation matrix and so is orthogonal, we 
... m,n-

have 

(I )-l = ( ) I I = I 
... m,n ... m,n ... n,m 

(23) 

Also because veca = veca' 

I =I =I . 
... m, l ... l,m ... m 

(24) 

[We use the notation (I )' and I' interchangeably.] 
... m,n ... m,n 

4.l. Reversing the order of Kronecker products of matrices 

Vee-permutation matrices are related very directly to Kronecker 

products through the identity (6): 

B ®A = I (A® B)I 
... :pXq ... mxn ... m, p ... ... ... q, n 

(25) 
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Derivation of (25) comes from using the two fundamental properties 

of the vee operator, (4) and (5), as follows: 

(B 0 A)vecX = vecAXB' = I vecBX'A' 
~ ~m,p ~ -

= I (A 0 B)vecX' 
-m,p- - -

I (A 0 B)I vecX , 
... m,p ... ... ... q, n 

for any X of order n by q. Letting vecX be in turn the columns of ... 
an identity matrix of order nq yields (25). 

This concise proof was motivated by Barnett's [1973] use of the 

vee operator to establish (25) but without explicit development of 

the permutation matrices. Similar developments are also given by 

Hartwig and Morris [1975] and more recently by Magnus and Neudecker 

[1979], even though the latter do not use vee to prove results like 

( 22) and ( 23 ) . 

Result (25) shows the exact form of the relationship between 

A 0 B and B 0 A, which simply entails a resequencing of rows and of 

columns of A 0 B to obtain B 0 A. Postmultiplying (25) by I and 
... n,q 

using (22) gives 

I (A 0 B) = (B 0 A)I . 
... m,p... ... ... ... ... n, q 

(26) 

An early reference to reversing the order of Kronecker products 

of rectangular matrices is Ledermann [1936] although without ex-

plicit development of permutation matrices. But Murnaghan [1938, 

pp. 68-69] deals with square matrices, noting for square ~ and ~' 

the validity of B 0 A = P(A 0 B)P-l as in (8). Vartak [1955] gener-... ... 
alizes this to (9), namely B 0 A = P(A 0 B)Q, for rectangular A and 

B, indicating that a generalization of Murnaghan's proof can be con-
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Searle [1966, p. 216] shows that a .. b is in row 
lJ rs 

i + (r - l)m of B ® A and row (i - l)p + r of A ® B, with a similar -
analysis for columns, and is thus able to give the explicit form of 

p and Q, as detailed after equation ( 10). Hartwig [1972, p. 540] -
gives MUrnaghan's result but misprints the form for P-l as being -
that for P. Singh [1972, p. 22] identifies columns in (26) and 

thence establishes (25). Tracy and Singh [l972b], MacRae [1974] 

and Swain [1975] give (25) without proof; so does Vetter [1973, 

p. 354] who comments that it is "well-known··· though the explicit 

transposition relationship is not usually given". In similar vein 

is the remark that "the proof [not given] ··• is detailed and rather 

tedious" by Bentler and Lee [1975, p. 148], to whom McDonald [1976, 

p. 90] attributes (25). Balestra [1976, p. 23] uses (18), and 

Brewer [1978] suggests substituting (~). These developments are 

tedious in comparison to our proof using the vee operator. 

4.2. Trace and determinant of I 
-m n 

The case of m = n is easy. Because I is real, orthogonal 
_n,n 

and symmetric, it has eigenvalues :I: l with multiplicities tn(n:l: l), 

respectively. The determinant and trace, being the product and sum 

of the eigenvalues, respectively, are 

I I I = (-l)in(n-l) and tr(I ) = n • 
-~n -~n 

For the more general situation, when m and n are not necessarily 

equal, the recurrence relation ji I = (-l)im(m-l)(n-l)II _1 1 
-m,n -m, n 
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yields 

(-l)~m(m-l)n(n-l) . 

This derivation is given by Hartwig and Morris [l975, p. 450] and 

Magnus and Neudecker [l979, p. 383] with an inductive proof pre-

sented by Swain [l975, Appendix A]. 

An expression for the trace is more difficult. Magnus and 

Neudecker [l979] prove that 

tr(I )=l + gcd(m- l, n- l), 
.... m,n 

where gcd(m,n) is the greatest common divisor of m and n. A less 

compact form of this result is available in Hartwig and Morris 

[l975] who additionally derive expressions for the characteristic 

and minimal polynomials. 

4. 3. A generalization: M( ) and M 
.... n .... m,n 

Tracy and Dwyer [l969] introduce 

~(n) as the r X c matrix formed by rearranging 

the rows of M, of order r X c, by taking -
every n'th row starting with the first, then 

every n'th row starting with the second, and so on, 

(27) 

so that 2(n) of (l2) performs the row permutations on M to obtain 

~(n) as 

M( ) = I( )M • _ n ,.. n _ (28) 

For example, with dots denoting zeros, for 



- 21 -

a' r a' 

1 a' 

M = b' 
' ~(2) =j: = 1 b' = !(2)~ . -

C I . 1 . C I 

Papers subsequent to Tracy and Dwyer [1969] have focused on 

!(n)' rather than on the more general notion of ~(n) that has wider 

applicability. In this context, we now define M for M with mn 
_m,n 

rows as 

M =I M 
... m,n ... m,n... 

(29) 

= M( ) when M has mn rows • 
- n -

(30) 

Our symbol I for the vee-permutation matrix conforms with 
_m,n 

M of (29) because it is M with M = I; i.e., 
,..m,n _m,n 

I = I I , 
_m, n ,..m,n.... 

(31) 

so motivating use of the letter I for the matrix I in preference 
... m,n 

to any other letter. In the special case of m = n there might 

sometimes be convenience in alternative symbols; e.g., P = I or 
-n _n,n 

K as introduced by Magnus and Neudecker [1979]. 
_n 

Within the framework of the definition (29) of M it can be 
,..m,n 

noted that the defining property, (5), and results (25) and (26) 

can be rewritten: 

vecA = (vecA') 
' 

(32) _ m,n 

B®A = [(A® B)' ]' = [(A I ®B')' ] ' (33) 
- _ m,p n, q _ n, q m,p 

and 

(A® B) = (B' ®A')' • (34) 
- - m,p - q,n 
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4.4. Equalities from reversing the order of Kronecker products 

Alternative forms of (26) are now developed. In (34), 

(A ® B) is by definition a reordering of the rows of A ® B by 
~ - m,p - -

taking every p 1th row starting with the first, and so on. Since B 

hasp rows, the i 1 th block of rows of (A® B) is A®~~' for~: 
,.. ro# m,p _ -l _l 

of (l) so that 

I (A® B) = (A® B) = [A® ~ 1 } 
... m,p... ... ... ... m,p ... ...i i=l· · •p (35) 

= =fa.® A:}. l = fa.A~}. l (36) 
t ... J ;::1 1= • • •p l ... J;::l 1= • • ·P 

A® ~I 
_.... ...p 

j=l· • • n j=l· · · n . 

[ ~ ~ !}]_] 
Notice that (A ® B) affords a compact notation for : . 

... ... m,p A®~~ 

- -p 

Applying (35) and (36) to the right-hand side of (34) yields the 

further equalities: 

I (A® B) = (B ® A)I 
... m,p... ... ... ... ... n,q 

= (BI ®A I) I 
... q,n 

= [B 1 ® a~}~ l = [B ®a.}. l 
... J J= ···n ... ...J J= ···n (37) 

= [B ® a • · • B ® a ] = { f3: ® a.} . = [a.~~}. (38) 
... ...l ... ...n ... 1 ... J 1=l• • • p ... J ... l 1=l· • • p 

j=l•••n j=l···n. 

These equalities lead to the equivalent descriptive formulations of 

I , (l5), (l6), (l7) and (l8), on substituting A= I and B = I 
... m,n ... ...m ... ...n 

in (35)- (38) to give I = (I ® I ) . 
... m, n ... m ... n m, n 
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4.5. Reversing the order of Kronecker products of vectors 

The special cases of A and/or B being vectors are worthy of 

note. For column vectors a and b of order m and p, respectively, 

putting n = 1, then q = l and then n = q = 1, in (26) gives 

(a® B) = I (a®B) = B ®a (39) ,.. ,.. m,p .... m,p,.. ,.. ' 

(A® b) = I (A ® b) =b®A (40) 
- ,.. m,p .... m,p,.. .... ' 

and 

(a® b) = I (a ® b) =b®a (41) 
.... .... m,p ,..m,p.... -

Transposing (39)- (41), or putting p = l and m = l in (26), gives 

the corresponding results for row vectors. Using n = l and p = l 

in (26), (36) and (38) reveals the familiar commutativity property 

of Kronecker products of vectors: 

a ® b 1 = ab 1 = b 1 ® a • -
4.6. The vee-permutation matrix and Kronecker products of 3 or 

more matrices 

Extending the vee-permutation matrix to cyclically permute 

order in Kronecker products of three or more matrices is straight-

forward, as indicated by Magnus and Neudecker [1979]. Balestra 

[ 1976, p. 24] introduced I , for use in this connection but per-
.... mp,s 

haps surprisingly did not explicitly give its use to cyclically 

permute a Kronecker product of three matrices. We present this 

result by immediate application of (25) to (A® B) ® C =A® (B ®C) 

for A, B and C of order m X n, p X q and s X t, respectively: 
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(42) 

=I [B ® (c ® A)] I t 
.... p, ms .... _ .... _n , q 

=I I [A ® (B ® C)] I I (4 3) 
... p, ms ... m, ps ... ... ... _qt, n...nt, q 

Properties of vee-permutation matrices with the same set of 

three indices, developed by Balestra [1976, pp. 24-25] and Magnus 

and Neudecker [1979] with lengthy algebra, are now shown to be easy 

consequences of' (42) - (44): put n = q = t = 1 in (42) - (44), so 

that A ® B ® C becomes a ® b ® c and the final vee-permutation 

matrices on the right-hand sides of' (42)- (44) reduce to I, giving 

I (a® b ®c) = I I (a® b ® c) 
.... mp, s .... ... .... ...p, ms ... m, ps .... ... ... 

= (I ® I ) (I ® I ) (a ® b ® c) . 
... m, s .... p ... m _p, s .... ... _ 

Let a ® b ® c take in turn the columns of I , and hence 
... mps 

(45) 

I = I I = (I ® I )(I ® I ) • (46) 
.... mp, s .... p, ms ... m, ps ... m, s ... p ... m ... p, s 

Since I = I , interchanging m and p in (46) yields 
... mp, s ... pm, s 

I =I =I I = (I ®I )(I ®I ) (47) 
... mp, s ... pm, s ... m, ps ... p, ms ... p, s ... m ... p ... m, s 

Postmultiplying the middle two equalities in (47) by I gives, 
s,mp 

using (22), 

I I I = I 
... m,ps ... p,s~s,mp ... mps 

(48) 
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This development, based on (45), is in contrast to the lengthy 

manipulations of Balestra [1976] who uses (18) to establish (46) -

(48), and Magnus and Neudecker [1979] who give (42) and use (20) to 

develop (48) and all of (47) except its final equality. 

A special case of (42) is 

(a® b 1 ®c) = b 1 ® c ® a . 
... ,.. ... m,s 

(49) 

Using a® b 1 = ab 1 , (49) becomes -
( ab 1 ® C) = b 1 ® C ® a 

,.. m, s 
(50) 

which, applied on 

m 

I = (I ® I ) = ( ~ e.e! ® I ) , 
... m, n ... m ... n m, n i=l,_J....l ... n m, n 

(51) 

with C = I and a = b = e., yields the Magnus and Neudecker [1979] 
... n ,..1 

formulations for I in (20). 
,..m,n 

Generalization to Kronecker products of four or more matrices 

and vee-permutation matrices with four or more indices is straight-

forward. 
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Table 1: Definitions, notations and names for what, in this paper, is called the vee-permutation matrix, I • 
-m,n 

Definition Writer 

Reversing ( (a) vectors Ledermann [1936] 

Kronecker Conlisk [1976] (incorrect) 

products (b) matrices Murnaghan [1938] 

Vartak [1955] 

Searle [1966] 

Whelchel and Guinn [1970] 

Defining row permutations Tracy and Dwyer [1969] 

Tracy and Singh [1972a,b] 

Singh [1972] 

The derivative o~'/o~ 

Description of elements 

vecA related to vecA' - ... 

McDonald and Swaminathan [1973] 

Bentler and Lee [1975] 

McDonald [1976] 

Vetter [1970] 

Hartwig [1972] (incorrect) 

Vetter [1973, 1975] 

MacRae [ 1974] 

Hartwig and Morris [1975] 

Swain [1975] 

Balestra [1976] 

Brewer [1977, 1978] 

Magnus and Neudecker [1979] 

Barnett [1973] 

Henderson and Searle [1979] 

Henderson and Searle (this paper) 

Notation Name 

P and Q Permutation matrix .... ... 
M for I Permutation matrix 
.... -n,n 

p Permutation matrix .... 
P and Q Permutation matrix 

.... -
P and Q Elementary operators ... -

S 2 for I Shuffle matrix 
.... n -n, n 

J(n) 

E -
E .... 

E 
.... n,m 

<uji. ·> 
- lJ 

p -
Emxn 
... nxm 

I 
- (m, n) 
p 
.... m,n 
L 
.... mn 
p 
-m,n 
u 
-nxm 
K 
-nm 

P and Q - -
I 
- (m, n) 
I 
-m,n 

Permuted identity matrix 

Permutation matrix 

Permutation matrix 

Permutation matrix 

Permuted identity matrix 

Universal flip matrix 

Permutation matrix 

Permuted identity matrix 

Permutation matrix 

Commutation matrix 

Permutation matrix 

vee-permutation matrix 

vee-permutation matrix 


