
ar
X

iv
:1

01
1.

57
71

v1
  [

he
p-

ph
] 

 2
6 

N
ov

 2
01

0

BARI−TH/635−10
FTUV/10−1126

IFIC/10−49

The vector form factor at the next-to-leading order

in 1/NC: chiral couplings L9(µ) and C88(µ)−C90(µ)

A. Pich1 , I. Rosell1,2 and J.J. Sanz-Cillero3
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Abstract

Using the Resonance Chiral Theory Lagrangian, we perform a calculation of the vector
form factor of the pion at the next-to-leading order (NLO) in the 1/NC expansion.
Imposing the correct QCD short-distance constraints, one fixes the amplitude in terms
of the pion decay constant F and resonance masses. Its low momentum expansion
determines then the corresponding O(p4) and O(p6) low-energy chiral couplings at
NLO, keeping control of their renormalization scale dependence. At µ0 = 0.77 GeV, we
obtain L9(µ0) = (7.9± 0.4) · 10−3 and C88(µ0)−C90(µ0) = (−4.6 ± 0.4) · 10−5.
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1 Introduction

Effective field theories (EFT) are nowadays the standard tool to investigate the low-energy
dynamics of Quantum Chromodynamics (QCD). In particular, the chiral symmetry is a cru-
cial ingredient for the understanding of the light quark interactions. The dynamics of the
pseudo-Goldstone bosons from the spontaneous symmetry breaking is provided by the corre-
sponding EFT, Chiral Perturbation Theory (χPT), with a perturbative expansion in powers
of light quark masses and external momenta [1, 2]. This allows a systematic description of the
long-distance regime of QCD, at energies below the lightest resonance mass. The precision
required in present phenomenological applications makes necessary to include corrections of
O(p6). While many two-loop χPT calculations have been already carried out [3], the large
number of unknown low-energy constants (LECs) appearing at this order puts a clear limit to
the achievable accuracy. The determination of these χPT couplings is compulsory to achieve
further progress in our understanding of strong interactions at low energies.

In the resonance region, E ∼ MR, the chiral counting breaks down and the new heavier
degrees of freedom –the resonances– have to be explicitly incorporated into the theory. A
suitable alternative is then provided by the 1/NC expansion in the limit of a large number of
colours, NC → ∞ [4, 5, 6]. Assuming confinement, the strong dynamics is given at large NC

by tree-level diagrams with an infinite number of possible hadronic exchanges. This corre-
sponds to the tree approximation of some local Lagrangian, being meson loops suppressed by
higher powers of 1/NC [4]. Resonance Chiral Theory (RχT) provides an appropriate frame-
work to incorporate these massive mesonic states within a chiral invariant phenomenological
Lagrangian [7, 8, 9]. The operators of the RχT action are constructed such that they re-
main unchanged under flavour transformations U(3)L ⊗ U(3)R. After integrating out the
heavy fields, the χPT Lagrangian is recovered at low energies with explicit values of the
chiral LECs in terms of resonance parameters. The short-distance properties of QCD impose
stringent constraints on the RχT couplings and provide important information for the ex-
traction of the low-energy χPT parameters. The amplitudes are thus enforced to follow the
known high-energy QCD behaviour, introducing in the long-distance description important
information from the underlying theory [5, 6].

Clearly, we cannot determine at present the infinite number of meson couplings which
characterize the large–NC Lagrangian. However, one can perform useful approximations in
terms of a finite number of meson fields. Truncating the infinite tower of mesons to the low-
est resonances with 0−+, 0++, 1−− and 1++ quantum numbers, one gets a very successful
prediction for the O(p4) χPT couplings at large NC [6]. Already at this level the comparison
with experimental determinations of the O(p4) chiral couplings shows a remarkable agree-
ment. Some O(p6) LECs have been also estimated in this way, by studying appropriate sets
of Green functions (see Ref. [9] and references therein). All the required terms in the RχT
Lagrangian that may contribute to the O(p6) LECs at LO in 1/NC were classified in Ref. [9].

Since chiral loop corrections are of next-to-leading order (NLO) in the 1/NC expansion,
the large–NC determination of the LECs is unable to control their renormalization-scale
dependence. First analyses of resonance loop contributions to the running of L10(µ) and L9(µ)
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were attempted in Refs. [10] and [11], respectively. In spite of all the complexity associated
with the still not so well understood renormalization of RχT [11, 12, 13, 14, 15, 16], these
pioneering calculations showed the potential predictability at the NLO in 1/NC .

Using dispersion relations we can avoid the technicalities associated with the renormaliza-
tion procedure [15, 17, 18]. This allows one to understand the underlying physics in a much
more transparent way. Still, a fully equivalent diagrammatic calculation is possible, although
the derivation and presentation is slightly more cumbersome [10, 11, 19]. In particular, the
subtle cancellations among many unknown renormalized couplings found in Ref. [11] and
the relative simplicity of the final result can be better understood in terms of the imposed
short-distance constraints within the dispersive approach. Following these ideas we deter-
mined, up to NLO in 1/NC, the couplings L8(µ) and C38(µ) in Ref. [17] and L10(µ) and
C87(µ) in Ref. [18]. In this article we present the study of the vector form factor (VFF) of
the pion, which allows us to estimate the χPT coupling L9(µ) and the O(p6) combination
C88(µ)− C90(µ) up to NLO in 1/NC .

In order to establish the notation, the RχT Lagrangian is introduced in the next section.
The analysis of the VFF in the resonance region is performed in Section 3, while Section 4
contains the determination of L9(µ) and C88(µ)−C90(µ). A summary of our results is finally
given in Section 5. In order to ease the reading of the text, we have shifted the technical details
on the calculation of the spectral function, the full VFF and the chiral coupling expressions
to the Appendices.

2 The Lagrangian

We will adopt the Single Resonance Approximation (SRA), where just the lightest resonances
with non-exotic quantum numbers are considered.1 On account of the large-NC limit, the
mesons are put together into U(3) multiplets. Hence, our degrees of freedom are the pseudo-
Goldstone bosons (the lightest pseudoscalar mesons) along with massive multiplets of the
type V (1−−), A(1++), S(0++) and P (0−+). With them, we construct the most general action
that preserves chiral symmetry. Since we are interested in determining the χPT low-energy
constants and the study of the short-distance behaviour, the chiral limit will be taken all
along the paper. No information is lost as the chiral LECs are independent of the light quark
masses.

Resonance Chiral Theory must satisfy the high-energy behaviour dictated by QCD. To
comply with this requirement we will only consider operators constructed with chiral tensors
of O(p2); interactions with higher-order chiral tensors tend to violate the asymptotic short-
distance behaviour prescribed by QCD [6, 14]. Likewise, it has been shown in some cases
that resonance operators with higher number of derivatives can be simplified into terms with

1 In Ref. [20], it has been argued that large discrepancies may occur between the values of the masses and
couplings of the full large–NC theory and those from descriptions with a finite number of resonances. Even
in this case, it is found that one can obtain safe determinations of the LECs as far as one is able to construct
a good interpolator that reproduces the right asymptotic behaviour at low and high energies. Further issues
related to the truncation of the spectrum to a finite number of resonances are discussed in Ref. [21].
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less derivatives, terms without resonances and operators that contribute to other hadronic
amplitudes, by means of the equations of motion and convenient meson field redefinitions [7,
9, 11, 12, 13, 19].

The different terms in the Lagrangian can be classified by their number of resonance
fields:

LRχT = LG +
∑

R1

LR1
+

∑

R1,R2

LR1R2
+ ... , (1)

where the dots denote operators with three or more resonance fields, and the indices Ri run
over all different resonance multiplets, V , A, S and P . The term with only pseudo-Goldstone
bosons is given by [2]

LG =
F 2

4
〈 uµu

µ + χ+ 〉 . (2)

The second term in Eq. (1) corresponds to the operators with one massive resonance [7],

LV =
FV

2
√
2
〈 Vµνf

µν
+ 〉 +

i GV

2
√
2
〈 Vµν[u

µ, uν] 〉 ,

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 ,

LS = cd〈Suµu
µ 〉 + cm〈Sχ+ 〉 ,

LP = i dm〈Pχ− 〉 . (3)

The Lagrangian LR1R2
contains the kinetic resonance terms and the remaining operators

with two resonance fields [7, 9, 11]. We show only the terms that contribute to the vector
form factor of the pion, taking into account that here we just consider the lowest-mass two-
particle absorptive channels, with two pseudo-Goldstone bosons or one pseudo-Goldstone and
one resonance. In the energy range we are interested in, exchanges of two heavy resonances
are kinematically suppressed. Hence, the relevant operators are

∆LSA = λSA
1 〈 {∇µS,A

µν}uν 〉 ,

∆LPV = iλPV
1 〈 [∇µP, Vµν ]u

ν 〉 ,

∆LV A = iλV A
2 〈 [V µν , Aνα]h

α
µ 〉 + iλV A

3 〈 [∇µVµν , A
να]uα 〉

+ iλV A
4 〈 [∇αVµν , A

αν ]uµ 〉 + iλV A
5 〈 [∇αVµν , A

µν ]uα 〉 . (4)

All coupling constants are real, the brackets 〈...〉 denote a trace of the corresponding flavour
matrices, and the standard definitions for the uµ, χ±, f

µν
± and hµν chiral tensors of pseudo-

Goldstones are provided in Refs. [7, 9].
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Our Lagrangian LRχT satisfies the NC counting rules for a theory with U(3) multiplets.
Therefore, only operators that have one trace in the flavour space are considered. Note that
local terms with two traces in flavour space, which are of NLO in 1/NC, cannot contribute
at tree-level to the VFF because the final two-pion state has isospin I = 1. The different
fields, masses and momenta are of O(N0

C) in the 1/NC expansion. Taking into account the
interaction terms, one can check that F, FV , GV , FA, cd, cm and dm are O(

√
NC) and the

λR1R2

i are O(N0
C). The mass dimension of these parameters is [F ] = [FV ] = [GV ] = [FA] =

[cd] = [cm] = [dm] = E and [λR1R2

i ] = E0.
Note that the U(3) equations of motion have been used in order to reduce the num-

ber of operators. For instance, terms like 〈P ∇µu
µ〉 are not present in Eq. (3), since they

can be transformed into operators that, either have been already considered, or contain a
higher number of mesons by means of the equations of motion and convenient meson field
redefinitions [7].

The RχT Lagrangian (1) contains a large number of unknown coupling constants. How-
ever, as we will see in the next section, the short-distance QCD constraints allow us to
determine many of them. In the observable at hand and with our assumptions, we initially
have nine couplings or combinations of them (F , FV , GV , FA, cd, λ

SA
1 , λPV

1 , −2λVA
2 + λVA

3

and 2λVA
2 − 2λVA

3 + λVA
4 + 2λVA

5 ) and four resonance masses (MV , MA, MS and MP ). As we
will see in Section 3, after imposing a good short-distance behaviour of this observable, the
number of parameters reduces to three couplings (F , GV and FA) and three masses (MV ,
MA and MS). The Weinberg sum-rules associated with the left–right correlator [22] allow
us to further reduce the number of inputs; the amplitude is finally determined in terms of
just F and the three masses MV , MA and MS . The role of the information coming from the
underlying theory is thus fundamental.

3 The vector form factor of the pion

Our observable is defined through the two pseudo-Goldstone matrix element of the vector
current:

〈 π+(p1) π
−(p2) |

1

2

(
ūγµu− d̄γµd

)
|0 〉 = F(s) (p1 − p2)

µ , (5)

where s ≡ (p1+p2)
2. At very low energies, F(s) has been studied within the χPT framework

up to O(p6) [2, 23]. RχT and the 1/NC expansion have also been used to determine F(s)
at the ρ meson peak, including appropriate resummations of subleading logarithms from two
pseudo-Goldstone channels [24, 25]. A first systematic study of the VFF at NLO in 1/NC

was performed in Ref. [11]. Although the general structure was well established there, the
present article answers and solves three important questions raised in that previous paper:

• In Ref. [11] only operators with at most one resonance field were included (except
for the kinetic resonance terms) [7]. However, as suggested in the Appendix C of that
article, this assumption is not really justified and leads to problems with the asymptotic
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Figure 1: Tree-level contributions to the vector form factor of the pion. A single line stands
for a pseudo-Goldstone boson while a double line indicates a resonance.

short distance behaviour. In the present paper, we have considered all the operators
needed to describe the absorptive cuts with two chiral pseudo-Goldstones and those with
one pseudo-Goldstone and one resonance, being higher thresholds with two resonances
highly suppressed in the energy region that we consider [18].

• Due to this first issue, in Ref. [11] the logarithmic part of F(s) was badly behaved at
high energies. It was not possible to enforce a vanishing form factor at s → ∞ without
the inclusion of new hadronic operators in the leading Lagrangian. The inclusion of
those terms in the present article will allow us to recover the expected high-energy
dependence for the VFF in QCD [26].

• The final result of Ref. [11] contained the unknown RχT couplings L̃9 and C̃88 − C̃90,
which are the analogous ones to the χPT LECs L9 and C88 −C90. In the present work,
they are fully determined by means of the high-energy matching with QCD [14].

Within Resonance Chiral Theory the diagrams contributing to the VFF at leading order
in 1/NC are shown in Figure 1. They generate the result

FRχT (s) = 1 +
FV GV

F 2

s

M2
V − s

. (6)

Considering that the form factor is constrained to be zero at infinite momentum transfer [26],
the vector couplings should satisfy

FVGV = F 2 , (7)

which implies

FRχT (s) =
M2

V

M2
V − s

. (8)

The subleading corrections can be calculated by means of dispersive relations. Once the
one-loop absorptive parts of FRχT (s) are known, one can reconstruct the full form factor up
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Figure 2: One-loop contributions to the vector form factor of the pion with absorptive cut.
A single line stands for a pseudo-Goldstone boson while a double line indicates a resonance.

to appropriate subtraction terms. We can separate then the leading and subleading parts of
the amplitude in the form

FRχT (s) =
M2

V

M2
V − s

+ F(s)
NLO

, (9)

with F(s)
NLO

containing the one-loop contribution and the subleading part δ
NLO

of the reso-
nance coupling combination FVGV /F

2 = 1 + δ
NLO

(for details see Appendix A):

F(s)
NLO

= δ
NLO

s

M2
V − s

+ F1ℓ(s) . (10)

The explicit form for the subtracted one-loop amplitude F1ℓ(s) can be found in Appendices A
and C, being fully determined by the spectral function ImF(s) through a once-subtracted
dispersion relation. It vanishes at s = 0 and has no contribution to the real part of the pole
at s = M2

V . The subleading correction to the couplings, δ
NLO

, is fixed by means of the high-
energy matching after demanding that it cancels the bad behaviour of F1ℓ(s) = δ

NLO
+O(s−1)

when s → ∞. Furthermore, the NLO term F(s)
NLO

can be neatly separated into its different
contributions from the various two-meson absorptive channels F(s)

NLO
|m1,m2

, given by the
corresponding F1ℓ(s)|m1,m2

and the consequent δ
NLO

|m1,m2
. These details are relegated to

Appendices B and C.
Although in this article we follow the procedure of Refs. [17, 18], our results can be

also derived in an utterly equivalent way through a Feynman diagram computation and the
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standard renormalization procedure. This derivation is slightly more complex and its detailed
explaination is relegated to Appendix E.

We will consider only the effects of absorptive loops with two pseudo-Goldstones (ππ) or
with one pseudo-Goldstone and a resonance (Rπ). Two-resonance channels RR′ have their
thresholds at (MR +M ′

R)
2 >

∼ 2 GeV2 and their impact on the LEC determination is expected
to be negligible [18]. Taking this into account, we extract our RχT form factor through the
following short-distance matching procedure:

1. Determine the spectral function of the considered absorptive cuts (ππ and Rπ). The
full expressions are shown in Eqs. (B.1), (B.2) and (B.3) of Appendix B.

2. We demand ImF(s) to be well-behaved at high energies, i.e., it must vanish when
s → ∞. In the present work, we will actually impose this constraint channel by channel,
i.e., we will demand that each separate two-meson cut ImF(s)|m1,m2

vanishes at s → ∞.
For spin–0 mesons this must be so as its one-loop contribution to the spectral function is
essentially its VFF at LO (which vanishes at infinite momentum) times the partial-wave
scattering amplitude at LO (which is upper bounded). For higher spin resonances the
derivation is more cumbersome as the Lorentz structure allows for the proliferation of
form factors and the unitarity relations are not that simple. Still, in many situations it
has been already found that amplitudes with massive spin–1 mesons as final states must
go to zero at high energies even faster, due to the presence of extra powers of momenta
in the unitarity relations coming from intermediate longitudinal polarizations [18]. In
summary, we will assume ImF(s)|m1,m2

→ 0 when s → ∞ for every absorptive two-
meson cut under consideration, regardless of the spin of the intermediate mesons.

In the case of the ππ cut we have found two constraints, which are consistent with the
literature,

FVGV = F 2 , 3G2
V + 2 c2d = F 2 , (11)

where the first one coincides with Eq. (7), that is, with the constraint obtained with
the vector form factor at leading-order [8]. The second one was derived in Ref. [27] from
the LO ππ scattering amplitude. It is interesting to remark that the cd = 0 limit of this
second relation, GV = F/

√
3, has been obtained recently from a study of τ− → P− γ ντ

decays (P = π,K) [28]. We have used these constraints to fix FV and c2d.

For the Pπ cut, the only possible solution is to kill the whole contribution by means of

λPV
1 = 0 , (12)

which is consistent with the large-NC constraint from the vector form factor into Pπ,
studied in Ref. [18].

The analysis of the Aπ cut leads to more than one real solution. We have chosen the
solutions consistent with previous works [15, 18], where the NLO contributions in 1/NC

to the ΠV V (s) correlator coming from tree-level form factors to resonance fields were
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studied:

−2λVA
2 + λVA

3 = 0 , − λVA
3 + λVA

4 + 2λVA
5 =

FA

FV

,

λSA
1 = −FA GV (M2

A − 4M2
V )

3
√
2M2

Acd FV

. (13)

The first two constraints, in the first line, come from the analysis of the Aπ vector
form-factor. The last relation with λSA

1 is then needed to make ImF(s)|Aπ → 0 for
s → ∞.

After imposing the relations (11), (12) and (13) the spectral functions can be expressed
in terms of GV , FA, F and masses, as shown in Eqs. (B.6), (B.7) and (B.8).

3. The spectral function is now ready for the once-subtracted dispersion relation provided
in the Appendix A in Eq. (A.4), which allows to reconstruct the full form factor up to
the pole position at s = M2

V and the real part of its residue.

4. Finally, we impose that the whole FRχT (s) vanishes at short distances –not only its
imaginary part–. This fixes the real part of the residue at s = M2

V and, consequently,
the NLO correction δNLO in Eq. (10). In order to ease the reading of the manuscript,
the complicated expressions for the well-behaved contributions to the different channels
are provided in Appendix C, in Eqs. (C.1), (C.2) and (C.3).

4 The chiral couplings L9(µ) and C88(µ)− C90(µ)

The low-momentum expansion of F(s) is determined by χPT [2, 23]. The corresponding
expression in the chiral limit reads

FχPT (s) = 1 +
2 s

F 2

{
L9(µ) +

Γ9

32π2

(
5

3
− log

−s

µ2

)}

− 4 s2

F 4




C88(µ)− C90(µ)−
Γ
(L)
88 − Γ

(L)
90

32π2

(
5

3
− log

−s

µ2

)
+O

(
N0

C

)



+O
(
s3
)
,

(14)

with [2, 3]

Γ9 =
1

4
, Γ

(L)
88 − Γ

(L)
90 = −2L1

3
+

L2

3
− L3

2
+

L9

4
. (15)

The couplings F 2, L9, C88/F
2 and C90/F

2 are of O(NC), while Γ9, Γ
(L)
88 /F 2 and Γ

(L)
90 /F 2 are

of O(N0
C) and represent a NLO effect.

The low-energy expansion of Eqs. (8) and (9), obtained, respectively, within Resonance
Chiral Theory at leading-order and at next-to-leading order in the 1/NC expansion, allows
to determine the chiral couplings L9 and C88 − C90 at LO and at NLO.
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4.1 The large-NC limit

At leading-order in 1/NC, Eq. (14) becomes

FχPT (s) = 1 +
2 s

F 2

{
L9 +O

(
N0

C

)}
− 4 s2

F 4
{C88 − C90 +O(NC)}+O

(
s3
)
. (16)

Within RχT in the large-NC limit, Eq. (8) can be now expanded at low energies:

FRχT (s) =
M2

V

M2
V − s

= 1 +
s

M2
V

+
s2

M4
V

+O
(
s3
)
. (17)

The matching between (16) and (17) fixes L9 and C88 − C90 at LO [8, 9],

L9 =
F 2

2M2
V

, C88 − C90 = − F 4

4M4
V

. (18)

4.2 L9(µ) and C88(µ)− C90(µ) at NLO

Following the same steps as before, let us determine the related O(p4) and O(p6) low-energy
constants by matching Eq. (14) and the low-energy expansion of Eq. (9),

FRχT (s) = 1 +
2s

F 2

{
F 2

2M2
V

+ ξ̄(2) +
Γ9

32π2

(
5

3
− log

−s

M2
V

)}
(19)

−4 s2

F 4



−

F 4

4M4
V

+ ξ̄(4) − Γ
(L)
88 − Γ

(L)
90

32π2

(
5

3
− log

−s

M2
V

)
+O

(
s3
)
,

where the ξ̄(2n) are the relevant O(sn) coefficients of the low-energy expansion of F
NLO

(s), once
the structure coming from the χPT one-loop diagram has been subtracted from the ππ chan-
nel. The separated contributions ξ̄(2n)m1,m2

from each absorptive two-meson cut F
NLO

(s)|m1,m2

are provided in Appendix D, being each of them independent of the renormalization scale µ.
By comparing the χPT expression (14) to the RχT low-energy expansion (19), it is

straightforward to estimate the chiral LECs L9(µ) and C88(µ)−C90(µ) up to NLO in 1/NC :

L9(µ) =
F 2

2M2
V

+ ξ̄(2) +
Γ9

32π2
ln

M2
V

µ2
,

C88(µ)−C90(µ) = − F 4

4M2
V

+ ξ̄(4) − Γ
(L)
88 − Γ

(L)
90

32π2
ln

M2
V

µ2 ,

(20)

where

Γ
(L)
88 − Γ

(L)
90 =

3G2
V

8M2
V

− c2d
4M2

S

+
FVGV

8M2
V

=
F 2 − 3G2

V

8M2
S

− F 2 + 3G2
V

8M2
V

(21)

matches the corresponding O(p6) running at NLO in 1/NC. Note that the large–NC relations

L2 = 2L1 =
G2

V

4M2
V

, L3 = − 3G2
V

4M2
V

+
c2
d

2M2
S

and L9 = FV GV

2M2
V

[7] have been used in Eq.(15). The

high-energy constraints FVGV = F 2 and 2c2d = F 2 − 3G2
V of Eq. (11) have been employed to

obtain the result on the r.h.s. of Eq. (21).
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4.3 Phenomenology

Using MV ≃ 0.77GeV and F ≃ 89MeV, one gets the large-NC estimates from Eq. (18):
L9 ≃ 6.7 · 10−3 and C88 − C90 ≃ −4.5 · 10−5. At µ0 = 770 MeV, the phenomenological
determinations L9(µ0) = (6.9± 0.7) · 10−3 [2, 6] and L9(µ0) = (5.93± 0.43) · 10−3, C88(µ0)−
C90(µ0) = (−5.5± 0.5) · 10−5 [23], obtained respectively from an O(p4) and an O(p6) ChPT
fit, agree approximately with the LO estimates.

Large–NC estimates are naively expected to approximate well the couplings at scales of the
order of the relevant dynamics involved (µ ∼ MR). However, they always carry an implicit
error because of the uncertainty on µ. This theoretical uncertainty is rather important in
couplings generated through scalar meson exchange, such as L8(µ). In the present case, it
also has a moderate importance. The size of the NLO corrections in 1/NC to L9(µ) and
C88(µ)−C90(µ) can be estimated by regarding their variations with µ. These are respectively
given by

∂ L9(µ)

∂ logµ2
= − Γ9

32π2
= −0.8 ·10−3 ,

∂ (C88(µ)− C90(µ))

∂ log µ2
=

Γ
(L)
88 − Γ

(L)
90

32π2
≃ 0.9 ·10−5 . (22)

So far, we have been working within a U(3)L ⊗ U(3)R framework, but we are actually
interested on the couplings of the standard SU(3)L⊗SU(3)R chiral theory. Thus, a matching
between the two versions of χPT must be performed. Nonetheless, on the contrary to what
happens with other matrix elements (e.g. the S − P correlator [17]), the spin–1 two-point
functions do not gain contributions from the U(3)–singlet chiral pseudo-Goldstone; the η1
does neither enter at tree-level nor in the one-loop correlators. Therefore, the corresponding
LECs are identical in both theories at leading and next-to-leading order in 1/NC: L9(µ)

U(3) =

L9(µ)
SU(3), (C88(µ)− C90(µ))

U(3) = (C88(µ)− C90(µ))
SU(3).

The needed input parameters are defined in the chiral limit. We take the ranges [2,
29] MV = (770± 5)MeV, MS = (1090± 110)MeV and F = (89± 2)MeV. The resonance
couplings GV and FA can be fixed in terms of F and masses if one considers the short-distance
conditions obeyed by the left–right correlator [6]. The constraint of Eq. (7), coming from the
vector form factor of the pion, and those from the first and second Weinberg sum rules [22]
determine the vector and axial-vector couplings at LO in 1/NC [15, 18],

F 2
V = F 2 M2

A

M2
A −M2

V

, G2
V = F 2M

2
A −M2

V

M2
A

, F 2
A = F 2 M2

V

M2
A −M2

V

, (23)

with MA > MV . Due to the large width of the a1(1260) meson, the determination of the
Lagrangian parameter MA is far from trivial. From the observed rates Γ(ρ0 → e+e−) =
(7.02±0.13) keV [29] and Γ (a1 → πγ) = (650±250) keV [29], and considering (23), one finds
MA = (938±13) MeV andMA = (960±80) MeV. Another large–NC determination ofMA was
obtained in Ref. [30] from the study of the π → eνeγ decay, which yieldsMA = (998±49) MeV.
We cannot use the information coming from Γ(ρ → 2π) = (149.4± 1.0) MeV [29] in order to
determine MA, since GV is constrained by Eq. (11) to be smaller than F/

√
3, which results in

MA < 940MeV. In spite of the dispersion of values for MA, one gets a consistent description
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1st Approach 2nd Approach

103 · L9 at LO 6.68 6.68

103 · ξ̄(2)ππ 0.11 −0.04

103 · ξ̄(2)Pπ 0.00 0.00

103 · ξ̄(2)Aπ 1.12 1.00

105 · (C88 − C90) at LO −4.46 −4.46

105 · ξ̄(4)ππ 0.76 0.71

105 · ξ̄(4)Pπ 0.00 0.00

105 · ξ̄(4)Aπ −0.88 −0.73

Table 1: Different contributions to the chiral couplings within the two numerical approaches
explained in the text.

in the range MA = (920± 20)MeV, which we will take as our input. The resulting numerical
predictions for the LECs are

L9(µ0) = (7.9± 0.4) · 10−3 ,

C88(µ0)− C90(µ0) = (−4.6 ± 0.4) · 10−5 , (24)

being µ0 the usual renormalization scale, µ0 = 770MeV.
Alternatively, one could also use the phenomenological values for GV , FA and the axial-

vector mass, instead of fixing them through the Weinberg sum-rules. Thus, one may em-
ploy MA = (1200± 200)MeV [29], and FA = (120 ± 20)MeV, from the observed rate
Γ (a1 → πγ) = (650 ± 250) keV [29]. The constraint of Eq. (11) implies that GV < F/

√
3,

so that we take the range GV ∈ [40, 50]MeV. For the remaining inputs MV , MS and F , we
consider the same values used before, yielding the predictions

L9(µ0) = (7.6± 0.6) · 10−3 ,

C88(µ0)− C90(µ0) = (−4.5 ± 0.5) · 10−5 . (25)

As it can be observed, the influence of using the first or the second approach is not crucial
at the present level of accuracy. We take the values in (24), which include more theoretical
constraints, as our final next-to-leading-order estimates for the LECs.

In Table 1 we present the different contributions to the LECs within the first and second
approaches. A graphical comparison of the NLO predictions and the large–NC estimates has
been made in Figure 3 for different values of the renormalization scales µ.

5 Conclusions

In this article we have completed the analysis of the VFF at NLO in 1/NC, initiated in
Ref. [11], where the general framework was established. We have considered operators with

11



0.2 0.4 0.6 0.8 1.0 1.2 1.4
Μ HGeVL

6

7

8

9

10

11

103 L9

aL

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Μ HGeVL

-8

-7

-6

-5

-4

-3

105 HC88-C90L

bL

Figure 3: The RχT predictions (solid gray band) for the χPT O(p4) low-energy constant L9(µ)

(a) and the O(p6) combination C88(µ)−C90(µ) (b) are compared to their large–NC estimates (red

dashed) for different values of the renormalization scale µ. The error of the large–NC estimate is

given by the naive saturation scale uncertainty from Eq. (22).

more than one resonance and have studied contributions from intermediate channels with
resonances. We get a well-behaved VFF at high-energies, which goes to zero for q2 → ∞ [26].

Imposing that each individual absorptive cut vanishes at short distances, one gets strin-
gent constraints on the structure of the VFF, which led to a prediction of the relevant O(p4)
and O(p6) χPT couplings up to NLO in 1/NC. The required inputs are the resonance masses
MV , MA and MS, and the pion decay constant F . As expected for such a well-known ob-
servable, the large–NC prediction provides already an excellent estimate and the subleading
corrections are relatively small. At the reference scale µ0 = 770 MeV, we obtain

L9(µ0) = (7.9± 0.4) · 10−3 ,

C88(µ0)− C90(µ0) = (−4.6 ± 0.4) · 10−5 . (26)

As the matching of RχT with χPT is complete up to NLO in 1/NC, we fully control the
running of the LECs up to that order and, e.g., we are able to predict L9(µ) for any desired
value of µ.

This result is in agreement with previous calculations [2, 23, 25, 31], see Table 2, and
shows once more the efficacy of RχT to describe low-energy QCD matrix elements, specially
if they are dominated by resonances. It is important to remark not only that the amplitude is
dominated by tree-level exchanges but also the fact that the one-loop corrections are small.
In future works, we plan to study the pion scalar form-factor and the LECs L4(µ) and L5(µ),
where the situation is much less clear since, in that case, one has contributions from broad
resonance states like the f0(600).

12



103 · L9(µ0) 105 · (C88(µ0)− C90(µ0))

This work 1st 7.9± 0.4 −4.6 ± 0.4
This work 2nd 7.6± 0.6 −4.5 ± 0.5

Ref. [2] 6.9± 0.7
Ref. [23] 5.93± 0.43 −5.5 ± 0.5
Ref. [25] 7.04± 0.23

Ref. [31] at O(p4) 6.54± 0.15
Ref. [31] at O(p6) 5.50± 0.40

Table 2: Comparison of our result with other determinations, being µ0 = 770MeV.
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A Dispersion relations and loop contribution

One may use a once–subtracted dispersion relation, derived from the identity

F(s)

s
=

1

2πi

∮
dt

F(t)

t (t− s)
, (A.1)

where the integration is performed in the usual complex circuit [18]. The form-factor in the
integrand can be written as

F(t)

t
=

D(t)
(
M2

V − t
)2 , (A.2)

where D(t) is an analytical function except for the unitarity logarithmic branch cut and the

single pole of F(t)
t

at t = 0. One gets then

1

s
F(s) =

1

s
+

1

s
F1ℓ(s)− ReD′(M2

V )

M2
V − s

+
ReD(M2

V )(
M2

V − s
)2 , (A.3)
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where the 1
s
term on the r.h.s. is given by the integration 1

2πi

∫ θ=0+

θ=2π−

dt
t

F(t)
(t−s)

, with t = ǫ eiθ,

around t = 0 of the function F(t)
t

≈ 1
t
+ O(t0), and the different contributions of each two-

meson absorptive cut are given by the dispersive integral,

F1ℓ(s)|m1,m2
= lim

ǫ→0

[
s

π

∫ M2
V
−ǫ

0
dt

ImF(t)|m1,m2

t (t − s)
+

s

π

∫
∞

M2
V
+ǫ
dt

ImF(t)|m1,m2

t (t − s)

− 2s

πǫ
lim

t→M2
V

{
(M2

V − t)2
ImF(t)|m1,m2

t (t − s)

} ]
. (A.4)

Notice that if the threshold of the channel is above the resonance mass MV , then this ex-
pression gets simplified into the form

F1ℓ(s)|m1,m2
= lim

ǫ→0

s

π

∫
∞

(M1+M2)2
dt

ImF(t)|m1,m2

t (t − s)
, (A.5)

with M1 (M2) the mass of the m1 (m2) meson.
If we choose the on-shell mass scheme, without double poles in the perturbative expansion,

we have then

F(t) = 1 +
∑

m1,m2

F1ℓ(t)|m1,m2
− sReD′(M2

V )

M2
V − t

, (A.6)

where ReD′(M2
V ) can be identified with −F r

V
Gr

V

F 2 for a convenient renormalization scheme of
this combination of vector couplings [17, 18, 19] (see Appendix E for further details).

B The spectral functions ImF(s)|m1,m2

In this appendix we show the explicit form of the the spectral functions of the different two-
particle absorptive cuts. First we present the functions obtained directly from the Feynman
diagrams before imposing any short-distance constraint, i.e., they are badly behaved at high
energies.

ImF(s)|ππ =
F 2 (M2

V − s) + sFVGV

64πF 6s2 (s−M2
V )

{
2c2d

(
M4

S log
(
1 +

s

M2
S

) (
−12M2

S − 6s
)
+ s3

+12sM4
S

)
+G2

V

(
s3−6M2

V

(
M2

V +2s
)(

log
(
1+

s

M2
V

) (
2M2

V +s
)
−2s

))}

+
s2GV (F 2 (FV + 2GV ) (M

2
V − s) + 2sFVG

2
V )

64πF 6 (s−M2
V )

2 +
s

64πF 2
, (B.1)

ImF(s)|Pπ =

√
2cdFV λ

SP
1 λPV

1

32πF 4s (s−M2
V )

{
3M4

P

(
4M2

S + s
)
− 3M2

P

(
2M2

S + s
)2 −M6

P

−6M2
S

(
M2

S −M2
P

)(
−M2

P + 2M2
S + s

)
log
(
1+

s−M2
P

M2
S

)
+ 12sM4

S + s3
}

14



− FVGV λ
PV
1

2

32πF 4s (s−M2
V )

{
3M2

P

(
12sM2

V +4M4
V +s2

)
+ 6M2

V

(
−3M2

P

(
M2

V +s
)

+M4
P + 5sM2

V + 2M4
V + 2s2

)
log
(
1+

s−M2
P

M2
V

)
− 3M4

P

(
4M2

V + s
)

+M6
P − s

(
24sM2

V + 12M4
V + s2

)
− 2s (s−M2

P )
3

s−M2
V

}
, (B.2)

ImF(s)|Aπ =
−GV (s−M2

A)
2

32F 4πM2
As (s−M2

V )
2

{
FA

(
(2κ+σ)M4

A+4s(κ+σ)M2
A+s2σ

)(
s−M2

V

)

−FV

(
s−M2

A

) (
(2κ+ σ)2M4

A + 2s
(
κ2 + 4σκ+ 2σ2

)
M2

A + s2σ2
)}

− GV

32F 4πM2
As (s−M2

V )

{
6 log

(
1 +

s−M2
A

M2
V

) (
FA

(
s−M2

V

) (
M2

A −M2
V

)

(
κM2

A+σ
(
M2

V +s
))
+FV

((
M2

A−s
)(
M2

A−M2
V

)(
M2

V +s
)
σ2+2κM2

A

(
M2

A−s
)(
M2

A−M2
V

)
σ+κ2M2

A

(
3M4

A−5
(
M2

V +s
)
M2

A+
(
M2

V +2s
)(
2M2

V +s
))))

M2
V +

(
M2

A−s
)(
FA

(
s−M2

V

)(
(3κ+σ)M4

A+
(
(3σ− 6κ)M2

V +s(3κ+4σ)
)
M2

A

+σ
(
s2−6M4

V −3sM2
V

))
+FV

((
M2

A−s
)(
M4

A+4sM2
A−6M4

V +s2

+3
(
M2

A − s
)
M2

V

)
σ2 + 6κM2

A

(
M2

A − s
) (

M2
A − 2M2

V + s
)
σ

+κ2M2
A

(
7M4

A − 8
(
3M2

V + s
)
M2

A + 12M4
V + s2 + 24sM2

V

)))}

+

√
2cdλ

SA
1

32F 4πs (s−M2
V )

{
6 log

(
1 +

s−M2
A

M2
S

) (
FV

(
2κM4

S + (κ− σ)M2
S

(
s−M2

A

)
+ (κ + σ)M2

A

(
s−M2

A

))
+ FA

(
M2

A −M2
S

) (
M2

V − s
))

M2
S

+
(
M2

A − s
) (

FV

(
3σ
(
s−M2

A

) (
M2

A − 2M2
S + s

)

+κ
(
4sM2

A−5M4
A+12M4

S+s2
))
+3FA

(
M2

A−2M2
S+s

)(
M2

V −s
))}

, (B.3)

where we have used the combination of couplings κ and σ,

κ = −2λVA
2 + λVA

3 , σ = 2λVA
2 − 2λVA

3 + λVA
4 + 2λVA

5 . (B.4)
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After considering the constraints explained in Section 3,

FVGV = F 2 , 3G2
V + 2 c2d = F 2 ,

λPV
1 = 0 , κ = 0 ,

κ+ σ =
FA

FV

, λSA
1 = −FA GV (M2

A − 4M2
V )

3
√
2M2

Acd FV

,

(B.5)

the imaginary part of each absorptive cut vanishes at short-distances and the following ex-
pressions are found,

ImF(s)|ππ =
M2

V

32πF 4s2 (s−M2
V )

2

{
3M4

S

(
F 2−3G2

V

)(
M2

V −s
)
log
(
1+

s

M2
S

)(
2M2

S + s
)

+G2
VM

2
V

(
log
(
1 +

s

M2
V

) (
−6s3 − 9s2M2

V + 6M6
V + 9sM4

V

)
+ 13s3

− 6s2M2
V − 6sM4

V

)
+ 6sM4

S

(
F 2 − 3G2

V

) (
s−M2

V

)}
, (B.6)

ImF(s)|Pπ = 0 , (B.7)

ImF(s)|Aπ =
F 2
AG

2
V (M2

V −M2
A)

32πF 6sM2
A (s−M2

V )
2

{
M4

A

(
2M2

S

(
M2

V − s
)(

log
(
1+

s−M2
A

M2
S

)
−1

)

+4sM2
V − 7M4

V − 3s2
)
+ 2M2

A

(
s2M2

V

(
3 log

(
1 +

s−M2
A

M2
V

)
− 2

)

+M4
S

(
s−M2

V

)
log
(
1 +

s−M2
A

M2
S

)
−M2

S

(
s−M2

V

)

(
s−4M2

V

(
log
(
1+

s−M2
A

M2
S

)
−1

))
−3M6

V

(
log
(
1+

s−M2
A

M2
V

)
− 1

))

+M2
V

(
s2M2

V

(
7−6 log

(
1+

s−M2
A

M2
V

))
+8M4

S

(
M2

V −s
)
log
(
1+

s−M2
A

M2
S

)

+6M6
V log

(
1+

s−M2
A

M2
V

)
+8sM2

S

(
s−M2

V

)
−6sM4

V

)
+2sM6

A+M8
A

}
. (B.8)

C Next-to-leading-order corrections F
NLO

(s)|m1,m2

In this appendix we show the explicit form of the NLO corrections generated by the considered
two-particle absorptive cuts, Eqs. (B.6), (B.7) and (B.8), which have been calculated by
using the dispersive method discussed in Appendix A. Below, we have summed up the δ

NLO

contribution to F1ℓ(s), as seen in Eq. (10), being the different F
NLO

(s)|m1m2
well-behaved at
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high energies:

F
NLO

(s)|ππ =
M2

V

64π2F 4s (s−M2
V )

2

{
− 12M6

S

(
F 2 − 3G2

V

) (
s−M2

V

)
f
(
s,M2

S

)

− 6M4
S

(
F 2 − 3G2

V

) (
s−M2

V

)(
sf
(
s,M2

S

)
+ 2 log

(−s

M2
S

)
− 2

)

+G2
VM

2
V

(
− 6

(
3s2M2

V − 3sM4
V − 2M6

V + 2s3
)
f
(
s,M2

V

)

+s2
(
−26 log

( −s

M2
V

)
+ 27

)
+ 12M4

V

(
log

( −s

M2
V

)
− 1

)

+ 3sM2
V

(
4 log

( −s

M2
V

)
− 5

))
+ 3sM2

S

(
F 2 − 3G2

V

) (
s−M2

V

)}
, (C.1)

F
NLO

(s)|Pπ = 0 , (C.2)

F
NLO

(s)|Aπ = − F 2
AG

2
V (M2

A −M2
V )

32π2F 6sM2
AM

4
V (s−M2

V )
2

{
M4

AM
4
V

(
2sM2

S

(
M2

V − s
)
g
(
s,M2

A,M
2
S

)

−6s2 log
(
1− M2

V

M2
A

)
+ log

(
1− s

M2
A

)(
3s2+2M2

S

(
M2

V − s
)
+7M4

V −4sM2
V

))

+ sM6
V

(
M2

V

(
−6

(
s2 −M4

V

)
g
(
s,M2

A,M
2
V

)
+ 6M2

V

(
log

(
1− s

M2
A

)
− 1

+ log
(
M2

A

M2
V

))
+ s

(
−7 log

(
1− s

M2
A

)
− 6 log

(
M2

A

M2
V

)
+ log

(
1− M2

V

M2
A

)
+ 6

))

+8M4
S

(
M2

V − s
)
g
(
s,M2

A,M
2
S

)
−8M2

S

(
s−M2

V

)(
log
(
1− s

M2
A

)
+ log

(
M2

A

M2
S

)

−1

))
+M2

AM
4
V

(
M2

V

(
6
(
s3 − sM4

V

)
g
(
s,M2

A,M
2
V

)
+ s2

(
4 log

(
1− s

M2
A

)

+2 log
(
1− M2

V

M2
A

)
− 7

)
− 6M4

V log
(
1− s

M2
A

)
+ 7sM2

V

)

+2sM4
S

(
s−M2

V

)
g
(
s,M2

A,M
2
S

)

+2M2
S

(
s−M2

V

)(
4sM2

V g
(
s,M2

A,M
2
S

)
+ s

(
log
(
1− s

M2
A

)
+ log

(
M2

A

M2
S

)
− 1

)

+4M2
V log

(
1− s

M2
A

)))
+M8

A

(
s2 log

(
1− M2

V

M2
A

)
−M4

V log
(
1− s

M2
A

))

+ sM6
AM

2
V

(
M2

V

(
−2 log

(
1− s

M2
A

)
−1

)
+ 2s log

(
1− M2

V

M2
A

)
+ s

)}
, (C.3)
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where the functions f(s,M2) and g(s,M2
1 ,M

2
2 ) have been introduced for simplicity,

f
(
s,M2

)
=

1

s

(
Li2

(
1 +

s

M2

)
− π2

6

)
,

g
(
s,M2

1 ,M
2
2

)
=

1

s

(
Li2

(
1 +

s

M2
2

− M2
1

M2
2

)
− Li2

(
1− M2

1

M2
2

))
. (C.4)

D NLO contributions to L9(µ) and C88(µ)− C90(µ)

In this appendix we give the full expressions of the NLO contributions to L9(µ) and C88(µ)−
C90(µ), following the notation of Eqs. (19) and (20), i.e., ξ̄(2)m1,m2

and ξ̄(4)m1,m2
:

ξ̄(2)ππ =
1

768π2F 2

{
F 2

(
6 log

(
M2

S

M2
V

)
− 11

)
+G2

V

(
38− 18 log

(
M2

S

M2
V

))}
, (D.1)

ξ̄
(2)
Pπ = 0 , (D.2)

ξ̄
(2)
Aπ =

F 2
AG

2
V

128π2F 4M2
AM

8
V (M2

A −M2
S)

{
2M10

A

(
M2

S −M2
A

)
log
(
1− M2

V

M2
A

)

−2M8
AM

2
V

(
M2

A −M2
S

)(
log
(
1− M2

V

M2
A

)
+ 1

)
+M6

AM
4
V

(
M2

A −M2
S

)

(
16 log

(
1−M2

V

M2
A

)
−3

)
+M4

AM
6
V

(
M2

S

(
−2 log

(
M2

A

M2
S

)
+16 log

(
1−M2

V

M2
A

)
− 11

)

+M2
A

(
11−16 log

(
1−M2

V

M2
A

)))
+M2

AM
8
V

(
M2

S

(
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, (D.3)

ξ̄(4)ππ =
1

3072π2M2
V

{
2F 2

(
11− 6 log

(
M2

S

M2
V

))
+G2

V

(
36 log

(
M2

S

M2
V

)
− 11

)}

+
(F 2 − 3G2

V )

3072π2M2
S

{
12 log

(
M2

S

M2
V

)
− 19

}
, (D.4)

ξ̄
(4)
Pπ = 0 , (D.5)
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(D.6)

E Description in terms of Feynman diagrams

The subleading corrections can be calculated by means of dispersive relations. Once the
NLO absorptive parts of FRχT (s) are known, one can reconstruct the full form factor up to
appropriate subtraction terms. Alternatively, we can compute and separate the tree-level and
one-loop amplitudes in the form

FRχT (s) = 1 +
FV GV

F 2

s

M2
V − s

+
2L̃9

F 2 s +
∑

m1,m2

F(s)|m1,m2
, (E.1)

where the one-loop diagrams F(s)|m1,m2
can be rewritten by means of a once-subtracted

dispersion relation in the form

∑

m1,m2

F(s)|m1,m2
=

∑

m1,m2

F1ℓ(s)|m1,m2
+

2δ̂2
F 2 s + δ̂0

s

M2
V − s

+ δ̂−2
s

(M2
V − s)2

. (E.2)

The finite part of the loops is contained in the once-subtracted dispersive functions
F1ℓ(s)|m1,m2

, fully determined by the imaginary part of ImF(s)|m1,m2
through Eq. (A.4).
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The real parameters δ̂−2,0,2 contain the ultraviolet divergences of the loops, being δ̂0 and δ̂−2

the real part of the pole residues. The local RχT coupling L̃9 renormalizes δ̂2, the combination
FV GV cancels the divergences in δ̂0 and a convenient shift of the mass, M

(B) 2
V = M2

V + δM2
V

removes the divergent part of δ̂−2. Indeed, we will work in the on-shell scheme and the coun-
terterm δM2

V will be chosen to completely kill δ̂−2.
In order to finish the short-distance matching we just need to take into account that the

once-subtracted loop contribution behaves at short distances like

∑

m1,m2

F1ℓ(s)|m1,m2

s→∞−→ δ0 + O(s−1) , (E.3)

with δ0 a constant number (denoted before in the text as δ
NLO

). This leads to the VFF
high-energy constraints

FVGV

F 2 + δ̂0 = 1 + δ0 ,

L̃9 + δ̂2 = 0 . (E.4)

Hence, the VFF finally takes the well-behaved structure (9) employed in the article,

F(s) = 1 + (1 + δ0)
s

M2
V − s

+
∑

m1,m2

F1ℓ(s)|m1,m2

=
M2

V

M2
V − s

+ F
NLO

(s) . (E.5)

Notice that no real double pole term δ̂−2 remains in our perturbative NLO expression as we
have chosen the on-shell mass scheme.
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