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Abstract

We create a mathematical framework for modeling trucks traveling in road net-

works, and we define a routing problem called the platooning problem. We

prove that this problem is NP-hard, even when the graph used to represent the

road network is planar. We present integer linear programming formulations for

instances of the platooning problem where deadlines are discarded, which we

call the unlimited platooning problem. These allow us to calculate fuel-optimal

solutions to the platooning problem for large-scale, real-world examples. The

problems solved are orders of magnitude larger than problems previously solved

exactly in the literature. We present several heuristics and compare their per-

formance with the optimal solutions on the German Autobahn road network.

The proposed heuristics find optimal or near-optimal solutions in most of the

problem instances considered, especially when a final local search is applied.

Assuming a fuel reduction factor of 10% from platooning, we find fuel savings

from platooning of 1-2% for as few as 10 trucks in the road network; the per-

centage of savings increases with the number of trucks. If all trucks start at the

same point, savings of up to 9% are obtained for only 200 trucks.
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1. Introduction1

Companies have significant economic and environmental incentives for re-2

ducing the fuel consumption of heavy-duty vehicles (HDVs). Since fuel costs3

represent a third of the total operational costs of an HDV (Schittler, 2003),4

even small advances in fuel efficiency will noticeably increase profits for many5

organizations. Because vehicles account for a large percentage of total carbon6

emissions—20% according to Schroten et al. (2012), a quarter of which comes7

from HDVs—reductions in HDV fuel usage can yield substantial progress to-8

ward achieving carbon reduction goals. For example, the European Commission9

(2011) has stated goals of decreasing carbon emissions by 60% by 2050; such10

ambitious goals can be achieved only by a multifaceted approach.11

In addition to ongoing research into engine efficiency and aerodynamic ve-12

hicle design, a supplementary method for reducing fuel use is to form vehicle13

platoons. By driving vehicles in a single lane in close proximity, as can be seen14

in Figure 1, fuel reductions of up to 20% are possible for the nonleading vehicles;15

(Robinson et al., 2010; Bonnet and Fritz, 2000).16

Such platooning is profitable, however, only under certain circumstances.17

The reduction in fuel use depends on the distance between the trucks in a pla-18

toon and on the speed of the platoon. Bonnet and Fritz (2000) show trailing19

HDVs traveling at 80 km/h experience a 21% fuel reduction when the distance20

between the vehicles is 10 m, while the fuel reduction is 16% for an intervehi-21

cle distance of 16 m. The fuel reductions for the same vehicles and distances22

traveling at 60 km/h are approximately 16% and 10%, respectively. Naturally,23

safety considerations must be addressed when driving HDVs at such close dis-24

tances; see Tatchikou et al. (2005) and Taleb et al. (2010). Demonstrating that25

platoons can operate safely in a variety of settings must be shown before they26

can be adopted on public roadways.27

Some platooning paradigms, such as PATH (Browand et al., 2004) or Dolphin28

(Tsugawa et al., 2000), assume the existence of roadside systems to facilitate29

2
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intervehicle communications. We assume the vehicles themselves are equipped30

with the necessary technologies (e.g., LIDAR, WiFi) for platoon formation and31

maintenance. Such technologies are increasing found on new HDVs; see, for32

example, Shladover (2007).33

In addition to safety and technological concerns, excessive traffic can greatly34

reduce platooning benefits, since low-speed platooning would provide almost35

no reduction in aerodynamic drag. Since vehicles will likely not be platooning36

through large urban centers, we assume throughout that the time required to37

travel a road is fixed independent of time, as is the case for large portions of the38

U.S. Interstate Highway System. We consider this case since these long stretches39

of low-traffic road are likely where platooning will provide the most fuel-saving40

benefits. Routing individual vehicles (and platoons) through a time-varying41

network is an active area of research; see Lecluyse et al. (2009).42

Most research in the vehicle platooning literature concerns the maintenance43

and safe maneuvering of an existing platoon of vehicles; see Kavathekar and44

Chen (2011). Little attention has been paid to optimally coordinating the for-45

mation and dissolution of platoons to minimize total fuel use as many vehicles46

move throughout a road network. The few articles that propose methods for47

increasing platooning opportunities acknowledge the difficulty of finding the ex-48

act routing that minimizes fuel use (Baskar et al., 2013; Larson et al., 2013),49

but none formally address the problem’s computational complexity.50

Figure 1: Three heavy-duty vehicles platooning to collectively reduce fuel consumption.

3
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In this paper we attempt to maximize the amount of fuel saved by vehi-51

cles capable of platooning on a road network. If platooning opportunities are52

present, the routes may differ slightly from the obvious shortest path routes,53

in order to maximize fuel savings. We formally define the platooning problem,54

a vehicle routing problem concerned with minimizing the fuel consumption by55

platooning trucks given a collection of starting points, destinations, and dead-56

lines. We do not consider the effects of traffic on the fuel consumption. The57

motivation behind this approach is our desire to isolate the problem and re-58

gard the computational complexity of a pure deterministic problem. For vehicle59

routings that also address the effects of traffic congestion but do not consider60

platooning, see Franceschetti et al. (2013).61

We show that this platooning problem is NP-hard, even for simple cases62

when all trucks start at the same point and time, and it is therefore infea-63

sible to solve anything but small instances exactly, unless P = NP. To find64

solutions for small instances of the platooning problem, we formulate it as an65

integer linear program (ILP), which can be solved by using existing ILP solvers.66

We present and compare two heuristics and a local improvement algorithm for67

solving common instances of the platooning problem. We show that the heuris-68

tics by themselves often produce decent, but not excellent, solutions. These69

solutions can be greatly improved by using the local improvement algorithm,70

resulting in solutions close to the optimum in many cases.71

In addition to the general case of the platooning problem, we specifically72

address the case where every HDV starts at the same node. We solve very large73

instances of the same-start platooning problem on actual road networks, often74

yielding significant savings over every truck taking its shortest path to its des-75

tination. Instances of such a problem arise in a variety of real-world situations,76

for example, a distribution center where many HDVs leave simultaneously for77

various destinations, or at major junctions throughout a road network. Fuel78

optimal routes utilizing platoons can be calculated for trucks approaching an79

intersection in the road network, as in the paradigm presented in Larson et al.80

(2013, 2015), or for trucks stopping at common locations such as weigh stations,81

4
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fuel stations, or customs checkpoints. One can view HDVs approaching a com-82

mon destination as the inverse of the same-start platooning problem and can83

therefore solve this case by similar measures. For these reasons, the same-start84

platooning problem receives special attention throughout this paper. We note85

that our methods can solve the same-start platooning problem more efficiently86

than the general problem.87

We emphasize that we can find solutions to large-scale, real-world instances88

of the platooning problem. We consistently produce fuel-optimal solutions for89

instances of the platooning problem on the German Autobahn road system with90

hundreds of HDVs. We are unaware of any other platooning formulation that91

can find optimal solutions for any nontrivial instance of the vehicle platooning92

problem for more than 5 vehicles.93

The structure of the paper is as follows. In Section 2, we create a mathe-94

matical framework for the platooning problem and use this framework to prove95

a number of theorems regarding optimal platoon routings. Readers that are not96

interested in the proofs of the following sections can skim through or skip large97

parts of this section. In Section 3 the computational complexities of different98

versions of the problem are considered. After establishing that the problem is99

NP-complete, a conversion of the platooning problem into an ILP is consid-100

ered in Section 4. Because of the established computational complexity, we101

attempt to solve the problem heuristically in Section 5. In Section 6 we provide102

comparisons of the performance of the different solvers presented in the article.103

Section 7 concludes the paper.104

2. Background105

This section contains a number of definitions that create a framework for106

the modeling of trucks traveling between different locations in a road network.107

We want to minimize the total fuel consumption, using the fact that a truck108

traveling behind another truck in a platoon uses only a fraction η of its normal109

rate.110

5
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We model an arbitrary road network using a finite, connected, directed graph111

G = (V,E); each road in the network is denoted by an edge e ∈ E, and inter-112

sections of the network are represented by vertices u ∈ V . Each edge e has a113

non-negative integer length w(e) associated with it. Similar to the claims of114

Ahuja et al. (1993), we consider only integer lengths for edges in E. Further-115

more, we assume that for each edge (i, j) ∈ E the edge (j, i) ∈ E. In the graph116

G, trucks are allowed to travel at a set of different speeds, H, which are repre-117

sented as positive integers. The cost of traversing an edge e alone, or leading118

a platoon, with a certain speed v is given by c(e, v) = w(e) · f(v) > 0, where119

f(v) > 0 is the fuel cost per unit distance. The calculation of f(v) should take120

into consideration known properties of a section of road, for example, its grade121

(slope). Note that a single road does not necessarily correspond to a single edge;122

long edges can be (and are) subdivided by adding vertices.123

2.1. Definitions124

We now define many of the terms and variables used throughout the paper.125

For ease of reference, Table A.1 and Table A.2 in Appendix A contain the most126

important definitions and notations.127

Definition 1. An edge traversal T is an ordered tuple

T = (e, t, v) ∈ E × Z×H

describing the traversal of an edge e beginning at time t, traveling at a speed v.128

Note 1. For an edge traversal T = (e, t, v) and the fuel cost function c, it is129

sometimes convenient to write c(T ) instead of c(e, v) since the fuel cost of an130

edge traversal is time independent, as explained earlier.131

Definition 2. A truck path P starting at u ∈ V and ending at u′ ∈ V is a

sequence of edge traversals

P = {(ei, ti, vi)}ki=1 ,

6
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where {ei}ki=1 ⊂ E is a path in the graph G starting at u and ending at u′,

{vi}ki=1 ⊂ H is a sequence of speeds, and {ti}ki=1 ⊂ Z is an increasing sequence

of times satisfying t1 ≥ 0 and

ti+1 ≥ ti +
w(ei)

vi
.

The start time is defined as t1, and the finish time is defined as tk + w(ek)
vk

.132

Note 2. If for some i in the truck path P ,

∆ti = ti+1 − ti +
w(ei)

vi
> 0,

this corresponds to a truck waiting at a certain node during a waiting time of133

∆ti.134

Definition 3. A truck mission is an ordered tuple

M = (s, d, τ) ∈ V × V × Z+,

where s 6= d, representing the starting point s, the destination d, and the135

deadline τ of a truck.136

Definition 4. Given a list of truck missions

[(s1, d1, τ1), ..., (sN , dN , τN )] , sn ∈ V, dn ∈ V, τn ∈ Z+,

and a set of allowed speeds H, a platoon routing S is a list of truck paths

S = [P1, ..., PN ] ,

where path Pn starts at sn, ends at dn, and has a finish time earlier than τn.137

For a platoon routing S, we define NS(T ) as the number of different truck138

paths in S containing the edge traversal T . NS(T ) is called the platoon size of139

T or the number of trucks in a platoon on T .140

Definition 5. The fuel cost of a platoon routing S is

C(S) =
∑

T :NS(T )>0

c(T ) · (1 + η(NS(T )− 1)) ,

7
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where η is a platooning cost factor 0 < η < 1.141

For a fixed input, a platoon routing S is said to be optimal if no other142

platoon routing yields a smaller fuel cost.143

Note 3. The fuel cost for any nontrivial platoon in S (i.e., including an edge144

traversal T with platoon size greater than 1) will be less than the sum of the costs145

for the individual trucks within the platoon. A truck traveling behind another146

truck in a platoon has a fuel cost of only c(T ) · η, owing to a reduction in air147

resistance. Therefore NS(T ) − 1 trucks receive the reduced fuel cost while the148

leading truck consumes the full amount.149

Definition 6. The platooning problem consists of finding the optimal platoon150

routing for a finite list of truck missions on a graph G. If G is a planar graph,151

the problem is called the planar platooning problem.152

The unlimited platooning problem is a special case of the platooning problem153

where the deadlines τn =∞ for n = 1, ..., N , and H = {v}.154

The decision version of the platooning problem consists of deciding whether,155

given a list of truck missions on a graph G and an integer K, it is possible to156

find a platoon routing with cost less than or equal to K.157

Note 4. Given a platoon routing S for an instance of the platooning problem,158

the fuel cost calculation can be performed in polynomial time. Consequently,159

the decision version of the platooning problem is NP-complete if and only if the160

platooning problem is NP-hard.161

From here on, this article will be concerned mainly with the unlimited pla-162

tooning problem. Even though τn = ∞, ∀n, each valid platoon routing must163

end in the respective destination point dn. This prevents HDVs from stalling164

indefinitely at a node to avoid consuming fuel.165

2.2. Basic Results166

We can now use these definitions to prove properties about solutions to the167

platooning problem.168

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Definition 7. A cycle in a truck path P is a nonempty contiguous subpath of169

P , namely, a subsequence of P , where the first and last vertex are the same.170

Theorem 2.1. In an optimal platoon routing for the platooning problem, no171

truck path will contain a cycle; in other words, no HDV will return to a node172

that it already visited.173

Proof. Suppose there is an optimal platoon routing S in which a truck path P

contains a cycle O starting and ending at u ∈ V . We create a new platoon

routing S′ by letting the HDV in question wait at u instead of traversing the

cycle, thereby removing O from P . Since edge traversals are removed in S′,

NS′(T ) < NS(T ).

for each T ∈ O.174

In a platoon routing S,

C(S) =
∑

T :NS(T )>0

c(T ) · η ·NS(T ) + c(T )(1− η)

>
∑

T :NS′ (T )>0

c(T ) · η ·N ′S(T ) + c(T )(1− η) = C(S′),

since c(T ) · η > 0. C(S′) < C(S) contradicts the optimality of S and therefore175

no truck returns to an earlier visited node in an optimal platoon routing.176

Definition 8. The fuel cost of a truck path P = {Ti}, is defined as

c(P ) =
∑
Ti∈P

c(Ti).

Theorem 2.2. There exists an optimal platoon routing for the unlimited pla-177

tooning problem in which no two trucks split and then merge again. More rigor-178

ously, there exists an optimal platoon routing such that for any pair of its truck179

paths P1 and P2 the following holds: If two subpaths Q1 ⊂ P1 and Q2 ⊂ P2 start180

in u ∈ V and end in v ∈ V and have intersecting waiting times at both u and181

v, then Q1 = Q2.182

9
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Proof. Let S be an optimal platoon routing with fuel cost C(S) in which there183

are two paths P1 and P2 containing subpaths Q1 ⊂ P1 and Q2 ⊂ P2 both184

starting at a node u ∈ V and ending at v ∈ V . Without loss of generality we185

may assume that C(Q1) ≤ C(Q2). Let S′ be the platoon routing S where P2186

has Q2 replaced by Q1. Note that this is still a valid platoon routing since Q1187

and Q2 have intersecting waiting times.188

If an edge traversal in Q2 has platoon size greater than one, then the reduc-

tion in total fuel cost for removing that edge traversal is c(T ) · η. Consequently,

by removing Q2 from P2, the total fuel cost is reduced by at least C(Q2) · η. By

inserting Q1 into P2 \Q2, we introduce an extra fuel cost of C(Q1) · η since Q1

is already a subpath of P1. Hence, the fuel cost of S′ is

C(S′) = C(S)− η · C(Q2) + η · C(Q1) = C(S) + η(C(Q1)− C(Q2)) ≤ C(S),

since C(Q1) ≤ C(Q2). Since C(S) was an optimal platoon routing, C(S) ≤189

C(S′), and hence C(S) = C(S′). This implies that for every optimal platoon190

routing, where a pair of trucks splits at a node u and then merges again at a191

node v, there is an optimal platoon routing where they share the same truck192

path from u to v.193

3. NP-Completeness194

Theorem 3.1 states the computational difficulty of the general platooning195

problem. The proof is a reduction from set covering, which Karp (1972) shows196

is NP-complete, to the unlimited platooning problem. This reduction shows197

that the platooning problem on general graphs is hard even when deadlines198

are ignored. However, one can reasonably assume that most road networks199

correspond to planar graphs. It is hence useful to obtain results on the difficulty200

of the planar platooning problem as well. Theorem 3.2 shows that the planar201

platooning problem is NP-complete as well.202

3.1. Reduction to the Unlimited Platooning Problem203

Theorem 3.1. The decision version of the platooning problem is NP-complete.204

10
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Proof. Given a finite set A = {1, 2, ..., N}, a collection of subsets B ⊂ P(A),205

and an integer K, an instance (A,B,K) of the set covering problem consists of206

determining whether it is possible to find a subcollection M ⊂ B, |M | ≤ K,207

such that each element of A is an element in at least one of the sets of M .208

(A,B,K) can be reduced to an instance of the platooning problem by creat-209

ing a graph G′ = (V,E) in the following way. First, create a starting node s, the210

nodes m1,m2, ...,m|B| and the nodes r1, r2, ..., rN . The node mi here represents211

a subset ti ∈ M , and the node rn represents the element n ∈ A. Create edges212

from s to each of the nodes m1,m2, ...,m|B|, with weight 1. Call these edges213

left edges. Finally create an edge from mi to rn, with weight 1 + 1
η , if and214

only if subset ti contains the element n. Call these edges right edges. Figure 2215

illustrates the setup.216

s

m1

m2

m|B|

r1

r2

r3

rN

1

1

1

1 + 1
η

1 + 1
η

1 + 1
η

1 + 1
η

1 + 1
η

1 + 1
η

Figure 2: Graph G′ created from an instance of the set covering problem. Each node mi

represents a subset in B, and each node rn represents an element in A. The white node

represents a starting node and dark gray nodes represents destination nodes.

To create a platooning problem, we let H = {v} such that f(v) = 1, and we

introduce truck missions

Mi = (s, ri,∞)

for i = 1, . . . , N .217

A truck can save at most 1−η in fuel cost by platooning on a left edge. Since218 (
1 + 1

η

)
· η > 1 > 1 − η, it follows that the cost of a right-edge traversal, even219

11
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when platooning, is greater than the maximal platooning savings on a left-edge220

traversal. Thus, in an optimal platoon routing all truck paths will contain as221

few right-edge traversals as possible. Hence, every truck path will contain only222

one left-edge traversal and only one right-edge traversal.223

We now show that there is a solution to the set covering problem, using at

most K subsets if and only if there is a platoon routing on the graph G′, with

a total cost of at most K + (N − K)(1 − η) + N(1 + 1
η ). Suppose A can be

covered with a subset M ⊂ T , where |M | = k ≤ K. Then there is a platoon

routing containing k different left-edge traversals, each reaching from s to one

of the mi ∈M . The cost of the platooning routing is

(cost for left-edge leaders)+(cost for left-edge followers) + (cost for right-edges traversals)

= k + (N − k)η +N(1 +
1

η
)

≤ K + (N −K)η +N(1 +
1

η
),

since there are k platoons traveling a distance of 1 each (k platoon leaders with224

N − k platoon followers) and since each truck path also contains a right-edge225

traversal with platoon size equal to one.226

It remains to show that if there is an optimal solution to the platoon routing227

problem on G′ with cost less than or equal to K+(N−K)η+N(1+ 1
η ), then there228

is a set covering of size less than or equal to K. We show the contrapositive.229

Assume that the smallest set covering of (A,B,K) is a subset M ⊂ B, where230

|M | = k > K. In an optimal platoon routing on G′ the truck paths must contain231

at least k left edges in order for every truck mission to be completed. This is232

true since each HDV must reach its destination and in order to do that the233

platoon routing must contain enough middle nodes such that every destination234

node is “covered.” This results in a cost of at least235

k + (N − k)η +N(1 +
1

η
) > K + (N −K)η +N(1 +

1

η
),

since N ≥ k > K and 0 < η < 1.236

We conclude that there is a platoon routing on G′ with cost less than or equal237

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

to K+(N−K)(1−η)+N(1+ 1
η ) if and only if there is a set covering M ⊂ B of238

P with |M | ≤ K. Consequently, the decision version of the platooning problem239

with a single starting node is NP-complete.240

Note 5. As a direct consequence of the NP-completeness of the decision version241

of the unlimited platooning problem, the platooning problem and its unlimited242

version are both NP-hard.243

3.2. Reduction to the Planar Platooning Problem244

Having shown that the platooning problem on general graphs is NP-complete,245

we now show that the decision version of the platooning problem on planar246

graphs is also NP-complete.247

Theorem 3.2. The decision version of the planar platooning problem is NP-248

complete.249

Proof. The theorem follows from a reduction from the decision version of the250

rectilinear Steiner arborescence problem (RSAP), which is NP-complete. A251

rectilinear Steiner arborescence (RSA) is a directed tree with nodes on integer252

coordinates and with arcs from (i, j) to (i+ 1, j) and (i, j+ 1) for all (i, j) ∈ Z2.253

RSAP consists of finding an RSA (1) with total edge length less than or equal254

to a given integer, (2) rooted at the origin, and (3) having nodes in a given255

set of points in Z2
+, the first quadrant of Z2. For more information about the256

RSAP, see Rao et al. (1992).257

Let (R,K) be an instance of RSAP, where R is a set of points {p1, ..., pN}

in Z2
+ and an integer K. (R,K) can be reduced to an instance of the decision

version of the planar platooning problem by creating a graph GR = (VR, ER)

with the vertex set

VR =
{

(x, y) ∈ Z2 | (x, ·) ∈ R ∧ (·, y) ∈ R
}
∪ {(0, 0)}

and the edge set

ER = {(i, j) ∈ VR × VR | (xi = xj ∨ yi = yj) ∧ ( i and j are neighbors)}

13
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where two nodes i and j are neighbors if there is no other node on the line258

segment connecting i and j. This means that for each pair of nodes an edge will259

be drawn between them if they share the same x- or y-coordinate and there is260

no other node between them.261

The edge weight will equal the Euclidean distance between the nodes. The262

graph GR is called a Hanan grid; and the search for an RSA may, according263

to Hanan, without loss of generality be restricted to this grid (Hanan, 1966,264

Theorem 4). An example of a Hanan grid can be seen in Figure 3. Introduce265

N truck missions. For each truck n let the starting point be s = (0, 0) and the266

destination dn = pn. The set of allowed speeds will be H = {1}. Without loss267

of generality, we may assume that the fuel cost per unit distance f(1) = 1. For268

each truck n, a deadline τn = xn + yn is introduced. These deadlines imply269

that in every platoon routing, each truck path from s to dn must be a shortest270

path from s to dn with length ‖dn‖1 in the graph GR. By construction of the271

platooning problem instance, all edge traversals must go from left to right or272

from the bottom up.273

p0

p2

p3

p4

p1

Figure 3: Hanan grid created during reduction from RSA. White indicates starting node, and

black indicates destinations.

We will now show that there exists a rectilinear Steiner tree with edge length

less than or equal to K if and only if there is a platoon routing for the created

platooning problem instance on GR with total fuel cost less than or equal to

14
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ηD + (1− η) ·K, where

D =

N∑
n=1

‖dn‖1.

Note that the total edge length of the RSA is the sum of the lengths of the274

edges in the RSA, while D is the sum of the distances from the start to every275

destination.276

First, assume there is an RSA with total edge length equal to k ≤ K. For a

given RSA there is a corresponding platoon routing S; since the RSA defines a

tree, there is only one possible route for each HDV starting at the origin to reach

its destination. The total path length (the length of the union of all paths) in

the platoon routing S corresponding to this RSA will then be k, and on each

of the edge traversals in the platoon routing only one platoon (consisting of one

or more HDVs) will drive. Since the total length of all edge traversals still will

be D, the total fuel cost will equal

C(S) = (cost for trucks driving first) + (cost for trucks driving behind)

= k + η · (D − k)

= ηD + (1− η) · k

≤ ηD + (1− η) ·K.

To prove the equivalence, we need to show that if there is an optimal platoon

routing to the created platooning problem instance with cost less than or equal

to ηD + (1 − η) ·K, then there is an RSA with total edge length less than or

equal to K. To this end, we show the contrapositive by supposing that there

is no RSA with total edge length less than or equal to K. We further assume

that the minimal edge length is k > K. Consider an optimal platoon routing

S. According to Theorem 2.2, we may assume S to be a platoon routing where

no HDVs meet again after having split up. Hence, the union of paths in S will

be a tree, and it will in fact be an RSA since every truck path in S must be

a shortest path from the origin to a destination. The length of this RSA must

hence be at least k, and the total fuel cost of this platoon routing is given by

C(S) = k + η · (D − k) = ηD + (1− η) · k,

15
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which decreases with k. Hence, there cannot be a platoon routing with cost less

than or equal to

ηD + (1− η) ·K.

This implies that the decision version of the planar platooning problem is NP-277

complete.278

Note 6. Since the decision version of the planar platooning problem is NP-279

complete, it follows directly that the planar platooning problem is NP-hard.280

4. Integer Linear Programming Formulation281

In this section, we convert the unlimited platooning problem into an ILP. The282

need for integer variables in our formulation arises because fractional vehicles283

cannot traverse an edge and because the fuel consumption of a platoon is a284

piecewise linear function of the number of trucks forming the platoon. We first285

describe an integer linear programming formulation for the unlimited platooning286

problem where all truck missions share the same starting node, a scenario that287

occurs throughout the real world. We then form an ILP for the general unlimited288

platooning problem. In both formulations the fuel cost per unit distance is289

assumed to be 1. This does not limit the validity of the solution since one can290

scale the final result by f(v) to obtain the correct fuel cost. We also propose an291

extension of the ILP formulation to the most general platooning problem where292

finite deadlines and a nontrivial set of speeds are allowed.293

Let G = (V,E) be a graph, and let [(s1, d1, τ1), ..., (sN , dN , τN )] be a fixed294

list of truck missions. The different versions of the platooning problem are295

equivalent to the following ILP problems; by solving them, an optimal platoon296

routing is easily obtained.297

4.1. Unlimited Platooning Problem - Shared Starting Node298

We formulate the unlimited platooning problem where s1 = · · · = sN = s299

for some node s ∈ V and τ1 = · · · = τN = ∞. The variables used in this ILP300

formulation are contained in Table A.3 in Appendix A.301
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Definition 9. We define the same-start unlimited ILP problem as follows

minimize h =
∑

(i,j)∈E

w(i, j) · gij (1)

subject to
∑
j

xijn −
∑
j

xjin =


1 if i = s

−1 if i = dn

0 otherwise

∀i ∈ V, 1 ≤ n ≤ N (2)

bij = xij1 ∨ · · · ∨ xijN ∀(i, j) ∈ E (3)

gij = bij + η

([
N∑
n=1

xijn

]
− bij

)
∀(i, j) ∈ E (4)

xijn ∈ {0, 1} ∀(i, j) ∈ E, 1 ≤ n ≤ N

bij ∈ {0, 1} ∀(i, j) ∈ E

gij ∈ R ∀(i, j) ∈ E

Note 7. The logical constraints in (3) are convertible into linear inequalities.302

This procedure is explained in Appendix B.1. It is hence justified to call this303

problem defined an integer linear programming problem.304

We seek to minimize the sum of the joint fuel consumption over each edge305

(which may be zero if no truck traverses the edge). Constraint (2) ensures that306

each truck follows a path from the start to its destination. Constraint (3) implies307

that bij is set if and only if a truck traverses the edge (i, j). Constraint (4)308

corresponds to a calculation of the fuel consumption over this edge.309

Theorem 4.1. A cost c is the value of the optimal solution to the same-start310

ILP problem if and only if c is the cost of an optimal platoon routing for the311

corresponding same-start unlimited platooning problem. Moreover, using the312

values of xijn from the solution, a platoon routing with fuel cost c is retrievable313

in polynomial time.314

Proof. A platoon routing for the unlimited platooning problem is feasible if for315

all n, truck path n is a path from s to dn. As a consequence of Theorem 2.2 and316

the fact that all HDVs start on the same node, in an optimal platoon routing,317

17
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all edge traversals over a certain edge have the same time. Consequently, in the318

same-start ILP formulation we may ignore the times of the edge traversals.319

The variable xijn will be true if truck path n in the platoon routing contains320

an edge traversal over the edge (i, j) ∈ E, and false otherwise. According to321

Ahuja et al. (1993, p. 6), the constraint in (2) ensures that for a given HDV n,322

the edges corresponding to the set variables xijn will construct a path from s to323

dn. The variable bij is a binary variable for each edge (i, j) ∈ E and is subject324

to the constraints in (3).325

The constraints in (3) for bij are set so that bij is true if xijn is true for326

some n, that is, if some HDV traverses (i, j), and false otherwise. Note that the327

constraints in (3) do not restrict the possible values for the xij variables. All328

combinations of paths from start to finish are allowed; hence, for every possible329

platoon routing for the same-start unlimited platoon problem, there is a corre-330

sponding solution to the same-start ILP problem. For the same reason, every331

solution to the same-start ILP problem has a corresponding platoon routing.332

The variable gij corresponds to the fuel cost per unit distance for the set333

of trucks that traverses (i, j) in the platoon routing. One can easily see that334

if no truck traverses (i, j), then gij is 0; otherwise, gij is equal to the cost for335

a platoon leader plus the cost for the trucks following. The objective function336

is calculated by summing over all edges and equals the total fuel cost of the337

corresponding platoon routing.338

When the objective function h has been optimized, one can easily obtain339

the truck paths to create a valid platoon routing. For each truck n, construct a340

truck path by starting at s and traversing G by following edges corresponding341

to variables xijn set to true. While doing so, one must keep track of the time342

taken tin to reach a certain node i. In each step, one appends to the truck path343

the edge traversal ((i, j), tin, v). From each node there will only be one possible344

edge to traverse, which is guaranteed by Theorem 2.1. Traversing is stopped345

when dn is reached.346

Note 8. With minor modifications (reversing the path retrieval and selecting347
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different starting nodes and a shared destination node) the same-start unlim-348

ited ILP is applicable to unlimited platooning problem instances where all truck349

missions share not the same starting node but. rather, the same destination.350

4.2. Unlimited Platooning Problem - Different Starting Nodes351

In the next ILP formulation we assume that τ1 = · · · = τN = ∞ but allow352

different starting nodes for the truck missions. When converting this problem353

without constraints on the starting nodes, the calculation of the total fuel cost is354

more delicate. An optimal platoon routing may now contain edge traversals that355

differ only in time, which means that several HDVs can traverse the same edge356

without platooning. The variables used in the ILP formulation of the unlimited357

platooning problem are also summarized in Table A.4 in Appendix A.358

Definition 10. The unlimited ILP problem is as follows359
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minimize h =
∑

(i,j)∈E

w(i, j) · gij (5)

subject to
∑
j

xijn −
∑
j

xjin =


1 if i = sn

−1 if i = dn

0 otherwise

∀i ∈ V, 1 ≤ n ≤ N (6)

(tijn ≥ tkin + w(k, i)) ∨ ¬ (xijn ∧ xkin) ∀i, j, k ∈ V s.t (i, j) ∈ E ∧ (k, i) ∈ E, 1 ≤ n ≤ N

(7)

pijnm = xijn ∧ xijm ∧ (tijn = tijm) ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N

(8)

αijn = xijn ∧ ¬
(
pijn1 ∨ · · · ∨ pijn(n−1)

)
∀(i, j) ∈ E, 1 ≤ n ≤ N

(9)

gij =

N∑
n=1

(αijn + η · (xijn − αijn)) ∀(i, j) ∈ E (10)

tijn ≤ N ·
∑
e∈E

w(e) ∀e ∈ E, 1 ≤ n ≤ N (11)

xijn ∈ {0, 1} ∀(i, j) ∈ E, 1 ≤ n ≤ N

tijn ∈ Z+ ∀(i, j) ∈ E, 1 ≤ n ≤ N

pijnm ∈ {0, 1} ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N

αijn ∈ {0, 1} ∀(i, j) ∈ E, 1 ≤ n ≤ N

gij ∈ R ∀(i, j) ∈ E

Note 9. Once again, we note that it is possible to convert the logical constraints360

in the above ILP into linear inequalities as explained in Appendix B.2. Hence,361

the problem is an integer linear programming problem, only formulated more362

conveniently.363

In this model, we seek to minimize the same objective as in Definition 9.364

Constraint (6) corresponds to (2) except that it allows for different starting365

points. Constraint (7) ensures the traversal times for consecutive edges in a366
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truck path increases with at least the edge weight. Constraint (8) calculates367

a binary variable pijnm deciding if trucks n and m traverses edge (i, j) at the368

same time, implying that they are in a platoon. The decision variable αijn in369

(9) determines if truck n is a platoon leader of (i, j), using the convention that370

the truck with the lowest index in a platoon is always the leader. Constraint371

(10) calculates gij , the joint fuel consumption over an edge (i, j), taking into372

account the possibility of multiple platoons at different times. Constraint (11)373

limits the finish times to make the search space bounded.374

Theorem 4.2. A cost c is the optimal solution to the unlimited ILP problem375

if and only if c is the cost of an optimal platoon routing to the corresponding376

unlimited platooning problem. Moreover, using the values of xijn and tijn from377

the solution, a platoon routing with fuel cost c is retrievable in polynomial time.378

Proof. As was the case in the formulation with a shared starting node, the379

variable xijn is set if HDV n traverses edge (i, j) in the platoon routing. The380

constraints in (6) will ensure that, for each HDV n, the edges corresponding381

to the set xijn builds a path from sn to dn. The variable tijn corresponds to382

the time when HDV n started traversing edge (i, j). First we note that there383

will always be an optimal routing such that all times satisfy the constraints in384

(11). Choosing a time equal to the value on the right-hand side in (11) would385

correspond to, for example, an HDV waiting at a node while all other HDVs386

traverse the whole graph one at a time. This is obviously a generous upper limit387

for the finish times of any actual platoon routing. The constraints in (7) force388

tijn to be greater than or equal to tkin + w(k, i) if there are edges both into389

node i, (k, i), and out from node i, (i, j), that are traversed by HDV n. This390

implies that the traversal times increase appropriately during a truck path. The391

xijn and tijn variables are thus constrained to produce valid platoon routings.392

The remaining variables are only required to provide the proper total fuel cost393

in the objective function.394

Constraint (8) ensures that pijnm is true if and only if trucks n and m395

platoon over edge (i, j), that is, both trucks traverse the edge at the same time.396
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In (9), αijn is set if xijn is set to true and no truck with lower index traverses397

edge (i, j) at time tijn. This may be interpreted as truck n leading a platoon398

over (i, j).399

The definition of gij in (10), corresponding to the fuel cost per unit distance

for the set of trucks that traverses (i, j), is appropriate because

αijn + η · (xijn − αijn) =


0 if truck n does not traverse (i, j)

1 if truck n leads a platoon over (i, j)

η if truck n is in the tail of a platoon over (i, j),

which is exactly the cost per unit distance of the traversal for truck n. The400

variable gij hence evaluates to the sum of the costs per unit distance of all edge401

traversals over (i, j). The objective function sums over all edge traversals in402

the solution, and this equals the total fuel cost of the corresponding platoon403

routing.404

The retrieval of the truck paths forming an optimal platoon routing for the405

unlimited platooning problem is similar to the procedure explained in the proof406

of Theorem 4.1. For each truck n, we construct a truck path by starting at sn407

and traversing G by following edges corresponding to set variables xijn. In each408

step we append to the truck path the edge traversal ((i, j), tijn, v). Once again,409

guaranteed by Theorem 2.1, from each node there will only be one possible edge410

to traverse. We stop when dn is reached.411

4.3. Extension412

Having presented the ILP formulation for the unlimited platooning prob-413

lem, it is straightforward, though tedious, to extend the formulation to include414

problem instances of the most general platooning problem where truck missions415

have finite deadlines and the set H contains more than one single speed. As416

we will show in the Section 6, however, the limit for solving an unlimited ILP417

problem within a couple of minutes on a reasonable fast computer lies around418

10 trucks. A more complex formulation, such as a potential ILP for the general419

platooning problem, will likely result in even slower resolution times. However,420
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one should note that this is highly dependent on the values of the deadlines;421

with strict deadlines few platooning opportunities occur and should result in a422

near trivial and quick solution.423

For the interested reader, we here outline such an extension. The formulation424

is similar to the unlimited ILP formulation. To keep the formulation linear425

when introducing multiple allowed speeds, however, we introduce a set of binary426

variables for each truck, each speed, and each edge. A natural addition is to427

include the variable mijnv, which is true if truck n traverses edge (i, j) with428

speed v, and false otherwise. The constraint for deciding whether two trucks429

platoon, like the one in (8), now needs to include a check to see that both trucks430

also use the same speed. Other than these extensions, the ILP formulation for431

the general platooning problem does not differ excessively from the unlimited432

ILP.433

5. Heuristics434

While the formulations in the previous section are useful for solving small435

problems exactly, large-scale problems result in computationally intractable436

ILPs. For example, an ILP generated by 10 trucks at different starting nodes437

on a graph of the German Autobahn takes over 20 minutes to solve, using the438

default Gurobi branch-and-bound ILP algorithm, on a desktop computer with439

8 2.6 GHz processors. Since we have shown the platooning problem to be NP-440

complete, one is forced to settle with heuristic solvers in order to obtain platoon441

routings for large instances of the problem. In this section two different con-442

structive heuristics and one improvement heuristic—a local search algorithm—443

are described. The constructive heuristics are derived from a heuristic developed444

by Larson et al. (2013). Note that in their most simple form described below,445

these heuristics are solvers for the unlimited platooning problem. For conve-446

nience, in this section, we use the word platoon for describing both a single447

HDV and a group of HDVs.448
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5.1. Best Pair Heuristic449

We have developed an algorithm, henceforth the Best Pair heuristic, for the450

unlimited platooning problem, based on the heuristic by Larson et al. (2013).451

Our algorithm iteratively chooses the current best pair of platoons to merge452

into, reducing the number of truck mission by one. At each step, the goal is to453

find the optimal combination of both merging and splitting point for a pair of454

platoons and replacing their earlier missions with one single mission with the455

merging point as start and the splitting point as destination. Pseudocode for456

the algorithm is presented in Algorithm 1.457

The “best pair of platoons to merge” is defined as the pair of platoons that458

save the most fuel by merging. The fuel savings are calculated as the difference459

between letting the two platoons take their shortest paths by themselves (i.e.,460

no platooning between the two platoons even if their shortest paths overlap)461

and making them merge into a single platoon between a pair of nodes in the462

graph. Notice that if the Best Pair heuristic is presented with a same-start463

platooning problem instance, it will produce the same result as the heuristic by464

Larson et al. (2013).465

The best merging and splitting node for a pair of HDVs is computed by

iterating over all pairs of nodes in the graph and finding the combination that

produces the greatest fuel savings. A naive implementation of the Best Pair

heuristic will have the time complexity

O(N3 · |V |2),

since the search for best pair of platoons and their merging and splitting points

takes O(N2 · |V |2). This operation of merging two HDVs can ultimately be

performed O(N) times. When N merges have been accomplished, the result is

the entire fleet of HDVs gathered in one platoon. After minor code optimizations

a time complexity of

O(N2 logN · |V |2)

can be reached. This is achieved by storing (in a tree structure) the savings of466

all pairs of platoons found so far so that the greatest savings can be found in467
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Algorithm 1: Pseudocode for Best Pair Heuristic

input : A graph G, a list of starting nodes S and a list of destination

nodes D

output: A platoon routing in G

1 define Platoon : (start, destination,set of trucks)

2 P ← {}

3 foreach s, d in S,D and the corresponding truck t do

4 P.add(Platoon(s, d, {t}))

5 end

6 while Savings can be made by merging platoons do

7 p1, p2 ← the two platoons that save the most by merging.

8 v1, v2 ← the best merging and splitting node for p1 and p2.

9 remove p1 and p2 from P

10 add to P a new platoon from v1 to v2 with the trucks of p1 and p2

11 end
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O(logN) time. When two platoons are merged, new savings, corresponding to468

the savings of the new platoon combined with each of the other platoons, are469

inserted into the tree structure. This operation has time complexity O(N logN ·470

|V |2) and is carried out at most N times.471

An example run of the Best Pair heuristic can be seen in Figure 4. White472

nodes represent starting nodes of platoons, and black nodes represent destina-473

tion nodes. Each letter in one of the figures represents a truck, and the edge474

length of all the edges in the given graph is 1. The algorithm runs as follows.475

In the initial state the savings of the pairs of trucks (A,B), (A,C) and (B,C)476

are compared. Trucks A and B are then chosen to merge at node 2 and split at477

node 7 since that produces savings of 2(1−η) fuel cost. Note that the algorithm478

could just as well have chosen pair (B,C) which also produces savings of 2(1−η)479

fuel cost by platooning from node 4 to node 7. In Figure 4(b) platoon C and AB480

can platoon over the edge (3,7), and a new platoon, ABC, seen in Figure 4(c) is481

therefore created. Since no more platoons can be formed, the algorithm is now482

done.483

5.2. Hub Heuristic484

The idea of the heuristic presented in this section, the Hub heuristic, is to485

drive platoons through certain nodes called hubs. By selecting such hubs we486

replace a general platooning problem with multiple subproblems that are easier487

to solve. The heuristic works by partitioning the trucks and selecting a hub for488

each partition. To find a platoon routing for a problem instance where each489

HDV must drive through a certain hub, we first solve the problem of driving490

the HDVs from their starting nodes to the hub and then solve the problem of491

driving the HDVs from the hub to their destinations. Both problems can be492

solved with a same-start solver such as the heuristic described by Larson et al.493

(2013). The pseudocode for the Hub heuristic can be seen in Algorithm 2.494

The partitioning of the trucks and the selection of hubs can be made in a495

multitude of ways. In our implementation of the Hub heuristic, we attempt496

to merge platoons or trucks with the largest incentive to drive together. We497
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(a) In the initial state of the Best Pair

heuristic all trucks have different start-

ing and destination nodes.
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AB

C

C

AB

(b) Trucks A and B merge at 2 and split

at 7.

1

2 3

4

5 6

7 8

9

ABC ABC

(c) Platoon AB and truck C merge at

3 and split at 7

Figure 4: Example run of the Best Pair heuristic

do so by assigning a rating to each edge in the graph for each truck. The498

rating measures how probable a truck is to drive over a given edge. We can499

then compare such edge ratings to see whether a pair of trucks should form a500

platoon. This should generate good platoon routings since two trucks that have501

a highly ranked edge in common are likely to save fuel by platooning over this502

edge. For each platoon we create a vector of edge ratings (a real number for503

each edge representing the ”incentive” for the platoon to drive over that edge).504

To calculate how compatible two platoons are, we pointwise multiply their edge505

rating vectors and take the sum over the resulting vector.506

We calculate each edge rating in constant time. Thus, finding the pair of

platoons with the greatest joint edge rating vector can be done in O(N2 · |E|)

time by finding the joint edge rating vector of each pair of platoons currently
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Algorithm 2: Pseudocode for Hub Heuristic

input : A graph G = (V,E), a list of starting nodes S and a list of

destination nodes D representing a set of trucks T

output: A platoon routing in G

1 Choose a partition P of T

2 foreach part p ∈ P do

3 Choose a hub h ∈ V

4 Solve the problem of driving trucks in p from their starting nodes to h.

5 Solve the problem of driving trucks in p from h to their destination

nodes.

6 Combine these two solutions to create a solution to the original

problem for the trucks in p.

7 end

available. Such a search is performed a maximum of N times in the Hub heuris-

tic, because after N merges we end up with one single part in the partition.

The time complexity of a naive implementation of the Hub heuristic is

O(N3 · |E|+N2 · |V |).

The second term in the time complexity stems from having to solve the same-507

start problems that the Hub heuristic produces. Solving these subproblems508

using the Best Pair heuristic has time complexity O(N2 · |V |).509

Just as in the case of the Best Pair heuristic, we can improve the time

complexity by storing the savings of each pair of parts in a tree structure so

that the largest savings can be retrieved in O(log n) time. This optimization

produces a time complexity of

O(N2 logN · |E|+N2 · |V |) = O(N2 logN · |E|).

5.3. Local Search510

In addition to the two construction heuristics, we consider the following511

improvement heuristic. The improvement heuristic is a local search algorithm512
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that tries to enhance a given platoon routing S by updating a single truck path513

in S. The goal of the local search algorithm is, given a platoon routing for514

a set of truck missions, to find the optimal truck path for one of these truck515

missions given that every other truck path in the platoon routing remains fixed,516

except possibly for the edge traversal times. The local search algorithm is a517

generalization of Dijkstra’s shortest path algorithm where a truck can not only518

move alone over edges but also platoon over them where possible. Pseudocode519

for the local search algorithm can be seen in Algorithm 3.520

If all truck paths except for the one currently being improved are immutable521

during the local search, then there might emerge platooning opportunities that522

we miss because the current truck does not reach the relevant edges in time.523

Since we are interested in maximizing our improvement heuristic for the un-524

limited platooning problem, it is advisable to let all other trucks wait extra525

time before each edge traversal. This approach will result in more platooning526

opportunities and hence a better platoon routing.527

The order in which we choose the truck paths to improve could be important528

when running the local search algorithm. In our implementation, we iterate over529

the truck paths in lexicographic order and improve the truck path of one truck530

at a time, until no single truck path can be improved anymore, that is, until a531

local optimum is reached.532

The complexity of the local search algorithm is similar to that of a standard533

Dijkstra’s algorithm. The only difference is the number of possible edge traver-534

sals; there can be N traversals in the local search algorithm for each traversal535

in the standard algorithm. Therefore the complexity of running our local search536

algorithm to update a single truck path is537

O(N · |E| log(N · |V |)).
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Algorithm 3: Pseudocode for Local Search Algorithm.

input : A graph G, a Platoon Routing S, a starting node s and a

destination node d

output: The cost of a Platoon Routing S′ with a cost lower than, or

equal to, the cost of S

1 Q← {}

2 Q.add(truck n at node s at time and cost 0)

3 while Q not empty do

4 cur ← element with smallest cost in Q

5 if cur.node not already visited at an earlier time and smaller cost

then

6 if cur.node = d then

7 return cur.cost

8 end

9 foreach edge e reaching from cur.node do

10 Q.add( cur after moving over e )

11 if another truck t drives over e later than cur.time then

12 Q.add(cur after platooning with t over e)

13 end

14 end

15 end

16 end
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6. Performance538

To compare our heuristics, we generated random truck missions on a graph539

(containing 647 nodes and 1,390 edges) representing Germany’s Autobahn net-540

work. To generate an instance of the same-start platooning problem, we placed541

10, 20, . . . , 200 trucks on a random node in the network and assigned each a542

random destination. This was repeated 20 times. A similar test case of problems543

was generated by allowing the starting node for each HDV to be randomly gen-544

erated. Since we want to compare our methods against the optimum and since545

the platooning problem with different starting nodes is much more difficult to546

solve exactly, we were only able to compare our heuristics on examples involv-547

ing at most 10 HDVs. All computational results were generated with η = 0.9.548

The choice of η is motivated by the conclusions drawn in earlier literature. The549

factor η is set to a more modest value of 10% rather than the possible 21%550

obtained by Bonnet and Fritz (2000).551

We note that the Gurobi optimizer is able to solve instances of the same-552

start unlimited ILP with up to 200 HDVs in only a few minutes. This capability553

greatly surpasses that of any other platooning formulation or framework. For554

example, the only previous attempt at finding the exact solution for a platooning555

problem (that we are aware of) is that of Kammer (2013). The formulation556

therein is only capable of solving instances of the same-start platooning problem557

for fewer than 5 vehicles.558

To properly calculate the possible fuel savings from platooning, we define559

a trivial routing as a platoon routing in which each truck path consists of a560

shortest path from its start to its destination with the earliest possible finish561

time. Because of the definition of the total fuel cost of a platoon routing, trucks562

may platoon unintentionally as a consequence of their sharing a simultaneous563

subpath in the trivial routing. We call this phenomenon natural platooning564

since no outside intervention is needed. It is unclear whether natural platooning565

occurring during computer simulations would translate into real-world scenarios;566

two trucks traveling on the same arc at the same time may not necessarily567
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platoon.568

6.1. Results569

We now present the results from running Gurobi on the exact ILP formu-570

lations and the heuristic solvers on problem instances with a variable amount571

of trucks on the German road network. The results are presented by using box572

plots.573

When calculating the fuel savings, we compare the total fuel cost for a pla-574

toon routing to the fuel cost of a trivial routing. Figure 5(a) and Figure 5(b)575

show the maximum possible fuel savings, in percentage of the fuel cost of the576

trivial routing, for different instances of the unlimited platooning problem. We577

here ignore natural platooning, and the trivial cost is merely calculated as the578

sum of the lengths of the shortest paths from starts to destinations.579

The percentages presented in Figure 6(a) through Figure 8(a) are computed

as follows

Percentage of maximum savings =
(cost of trivial routing)− (cost of heuristic solution)

(cost of trivial routing)− (optimal cost)
,

where the cost of the trivial routing accounts for natural platooning.580

In Figure 6(a) we present the performance of the Best Pair heuristic on581

the same-start unlimited platooning problem. Figure 6(b) presents the perfor-582

mance of the Best Pair heuristic on the same-start problem, but each solution583

is improved by the local search heuristic. Figure 7(a) and Figure 7(b) show584

the performance of the Best Pair heuristic on the different starts unlimited pla-585

tooning problem, where the latter include improvements from the local search586

heuristic. Figure 8(a) and Figure 8(b) are the equivalent results for the Hub587

heuristic.588

6.2. Discussion589

From Figure 5(a) and Figure 5(b) we conclude that significant fuel savings590

can be achieved from platooning HDVs. The same-start problem instances nat-591

urally present more platooning opportunities since more vehicles are present in592
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(a) All truck missions share the same starting

node.
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(b) Truck missions are allowed to have differ-

ent starting nodes.

Figure 5: Percentage of the total fuel cost that can be reduced by platooning in the unlimited

platooning problem instances with a variable number of trucks. Natural platooning is ignored

in the fuel cost of trivial routings.

the larger examples and the trucks’ positions are more concentrated, resulting593

in greater possible fuel savings. Nevertheless, even in platooning problem in-594

stances with as few as 10 trucks at different starting nodes, fuel savings of more595

than 1.5% can be achieved in the majority of cases. We point out that the fuel596

savings in the different start version of the problem is highly dependent on the597

starting points and destinations of the trucks; trucks may be placed in the graph598

in a pattern that provides very few platooning opportunities. Nevertheless, the599

results of our simulations justify the search for optimal platoon routings.600

In Figure 6(a) we can see how the Best Pair heuristic performs on relatively601
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(a) Best Pair heuristic without subsequent lo-

cal search
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(b) Best Pair heuristic with subsequent local

search

Figure 6: Percentage of maximum fuel savings for the same-start unlimited platooning problem

found by the Best Pair heuristic

large problem instances. The heuristic performs well for up to 200 HDVs, with602

a large amount of the test cases solved optimally. In some test cases, however,603

where the heuristic completely fails to realize fuel savings when the improvement604

heuristic is not used. This supplements the results of Larson et al. (2013) and605

shows that by including more truck missions we can prevent the Best Pair606

heuristic from finding good platoon routings. After applying the improvement607

by a local search, we obtain near-optimal results in most cases.608

As can be seen when comparing Figure 7(a) with Figure 7(b) and Figure 8(a)609

with Figure 8(b) the local search algorithm greatly improves the results of both610

the Best Pair heuristic and the Hub heuristic. Since the local search is able to611
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(a) Best Pair heuristic without subsequent lo-

cal search
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(b) Best Pair heuristic with subsequent local

search

Figure 7: Percentage of maximum fuel savings for different starts unlimited platooning prob-

lem found by the Best Pair heuristic

change only a single truck path at a time, we suspect that the improvements to612

the platoon routings are only minor adjustments. The heuristics combined with613

these minor adjustments do, however, generate the optimal platoon routings in a614

vast majority of the problem instances. As for the routes of individual vehicles,615

the optimal and heuristic solutions all prescribe that the majority of vehicles616

take their shortest path routes, though there is often (slight) adjustments to617

their speed to facilitate the formation of platoons.618

One may note the wide range in savings in Figure 6(a) and Figure 8(a).619

This is, in part, due to the Best Pair and Hub heuristics occasionally making620

irreversible decisions early in the algorithm. For example, the heuristics may621
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(a) Hub heuristic without subsequent local

search
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(b) Hub heuristic with subsequent local search

Figure 8: Percentage of maximum fuel savings for the different starts platooning problem

found by the Hub heuristic

pair two vehicles that do not platoon in the optimal solution. Once this decision622

has been made, the heuristic is often committed to a far-from-optimal solution.623

However, the local search heuristic appears to remedy many of these problems.624

The results concerning the heuristics are based on a comparison where the625

trivial fuel cost was calculated as the sum of all shortest paths between the start-626

ing and destination nodes taking natural platooning into account. We believe627

that using this as the trivial cost produces fairer benchmarks; in the real world,628

HDVs traveling on the same path will likely take advantage of forming platoons629

voluntarily. Natural platooning should hence be taken into consideration when630

evaluating platoon routings.631
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7. Conclusion632

In this paper we minimized the total fuel consumption for HDVs travel-633

ing between nodes in a road network by introducing vehicle platooning. The634

problem of achieving optimal vehicle routings in this aspect was modeled as a635

graph routing problem—the vehicle platooning problem—which we showed is636

NP-hard. The NP-hardness applies not only to the general problem but also to637

special cases such as when all truck missions have the same starting node and638

no deadlines and to problem instances on planar graphs. To take advantage639

of already existing software, we formulated different versions of the platooning640

problem as integer linear programs.641

We were able to solve problem instances of up to 200 trucks in a graph642

representing Germany, when applying the extra constraint that all trucks start643

on the same node. Removing this constraint, problem instances of size up to 10644

HDVs were solved within minutes.645

For real-world use, where problem instances of several hundreds or thou-646

sands of trucks on graphs much larger than the one studied in this article may647

occur, one must settle with heuristic or approximate solvers. We proposed three648

heuristic solvers and compared their results with the optimal solutions obtained649

by solving the integer linear programming problems. The proposed heuristics650

perform well on the instances considered. Since these were small problem in-651

stances, however, it remains to evaluate the heuristics’ performance on larger652

test cases.653

When letting all HDVs start at the same node we found that an optimal654

platoon routing generated a fuel cost reduction that quickly converged to 9-655

10%, which is as good as possible considering that platooning vehicles only use656

90% of the fuel used by vehicles traveling alone. Substantially smaller problem657

instances with different starting nodes were solved, though fewer vehicles imply658

fewer platooning opportunities. Nevertheless, the savings from optimal vehicle659

platoon routings reveal a significant motivation for continued studies of the660

platooning problem.661
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Appendix A. Terminology and Variables662

Table A.1: Description of important concepts used in this article

Name Description

Edge Traversal A triple consisting of an edge, the starting time of the traversal,

and the speed of the traversal

Truck Path A path from start to destination for a truck, i.e. a list of edge

traversals

Truck Mission A triple containing start, destination, and deadline for a truck

Platoon Routing A list of truck paths satisfying a set of truck missions

Platoon Size The number of trucks in a platoon

Platooning Problem Given a set of truck missions, find a platoon routing with the

lowest fuel cost

Unlimited Platooning Problem Platooning problem without deadlines

Table A.2: Important symbols used in this article

Symbol Description Symbol Description

G = (V,E) graph with vertex set V and edge set E di destination vertex for truck i

η fuel reduction factor from platooning si starting vertex for truck i

f(v) fuel cost per unit distance at speed v w(e) edge weight of edge e

c(e) fuel cost for traversing an edge e H set of allowed speeds

NS(T ) platoon size for edge traversal T S platoon routing

M truck mission M = [(si, di, τi)]i T edge traversal

C(S) fuel cost of platoon routing S P truck path

τi deadline for truck i to reach di
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Table A.3: Variables used in the ILP formulation of the unlimited platooning problem where

all trucks share the same starting node. Variables with indices ij are defined for each edge

(i, j) ∈ E, and variables with index n is defined for each truck n.

Name Description Type

xijn truck n traverses edge (i, j) binary

bij a truck traverses edge (i, j) binary

gij fuel cost for trucks traversing (i, j) real

Table A.4: Variables used in the ILP formulation of the unlimited platooning problem. Vari-

ables with indices ij are defined for each edge (i, j) ∈ E and indices n and m corresponds to

trucks n and m.

Name Description Type

xijn truck n traverses edge (i, j) binary

tijn time when truck n traverses edge (i, j) bounded integer

pijnm truck n and m traverse edge (i, j) at same time binary

αijn truck n has lowest index of all trucks traversing (i, j) at time tijn binary

gij joint fuel cost for trucks traversing (i, j) real

Appendix B. Converstion of Logical Constraints663

For completeness, we now present the conversion of the logical constraints664

in Section 4 to linear inequalities.665

Appendix B.1. Same-Start Unlimited ILP666

Recall the logical constraints in (2).

bij = xij1 ∨ · · · ∨ xijN ∀(i, j) ∈ E
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They are equivalent to a number of linear inequalities, namely, the following.

N∑
n=1

xijn −N · bij ≤ 0 ∀(i, j) ∈ E (B.1)

N∑
n=1

xijn ≥ bij ∀(i, j) ∈ E (B.2)

Suppose xijn is set for some 1 ≤ n ≤ N . Then, the constraint in (2) forces667

bij to be true, and bij must also be set in order to satisfy the constraint (B.1).668

Now suppose xijn = 0 for all i. Then, (2) enforces that bij will be false. The669

constraint in (B.2) also enforces this.670

Appendix B.2. Different Starts Unlimited ILP671

We will now perform the conversion of logical to linear constraints for the

unlimited ILP. Let

B = 2 ·N ·
∑
e∈E

w(e).

The logical constraints in (7)

(tijn ≥ tkin + w(k, i)) ∨ ¬ (xijn ∧ xkin) ∀i, j, k ∈ V s.t (i, j) ∈ E ∧ (k, i) ∈ E, 1 ≤ n ≤ N

are equivalent to the following linear inequalities.

tijn − tkin −B · (xijn + xkin) ≥ w(k, i)− 2B ∀i, j, k ∈ V s.t (i, j) ∈ E ∧ (k, i) ∈ E, 1 ≤ n ≤ N
(B.3)

If (xijn ∧ xkin) is false, then (7) does not enforce any constraints on tijn or672

tkin. The same is true for (B.3) since the −2B on the right-hand side ensures673

that the inequality is trivially satisfied, independently of the values of tijn and674

tkin. If (xijn ∧ xkin) is true, then (7) constrains tijn and tkin to satisfy tijn ≥675

tkin + w(i, j). In (B.3) xijn + xkin = 2 implying that the inequality is reduced676

to tijn ≥ tkin + w(i, j). Hence the two formulations are equivalent.677

The logical constraints in (8)

pijnm = xijn ∧ xijm ∧ (tijn = tijm) ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N
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are equivalent to the following linear inequalities,

B · (1− pijnm) + (tijn − tijm) ≥ 0 ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N

(B.4)

B · (1− pijnm) + (tijm − tijn) ≥ 0 ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N

(B.5)

2 · pijnm − (xijn + xijm) ≤ 0 ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N

(B.6)

pijnm ≥ (xijn + xijm) + (tijn − tijm)−B · yijnm − 1 ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N

(B.7)

pijnm ≥ (xijn + xijm) + (tijm − tijn)−B · (1− yijnm)− 1 ∀(i, j) ∈ E, 1 ≤ m ≤ n ≤ N,

(B.8)

where yijnm is a helper variable deciding which of (B.7) and (B.8) should matter.678

If yijnm is true, then (B.7) becomes trivially true and vice versa. Assume xijn∧679

xijm is false. Then (8) asserts that pijnm is false. However, (B.6) ensures that680

pijnm can be true only if both xijn and xijm are set, and if pijnm is false, then681

(B.4) and (B.5) are satisfied independently of tijn and tijm. Moreover, (B.7)682

and (B.8) will be satisfied—one trivially and the other because (tijn−tijm) ≤ 0)683

or (tijm − tijn) ≤ 0.684

Now let xijn ∧ xijm be true. First assume that tijn 6= tijm. (8) constrains685

pijnm to be false. In one of (B.4) and (B.5) pijnm must be false since either686

tijn − tijm < 0 or tijm − tijn < 0. Both inequalities will then be satisfied.687

Furthermore, once again (B.7) and (B.8) will be satisfied—one trivially and the688

other because (tijn − tijm) ≤ 0 or (tijm − tijn) ≤ 0.689

Assume that tijn = tijm, (8) constrains pijnm to be true. All constraints

(B.4), (B.5), and (B.6) are satisfied independently of the value of pijnm. How-

ever, since (tijn − tijm) = 0, one of the inequalities (B.7) or (B.8) (depending

on yijnm) will become

pijnm ≥ 1,

which forces pijnm to be true. The other will be trivially satisfied.690
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The logical constraints in (9)

αijn = xijn ∧ ¬
(
pijn1 ∨ · · · ∨ pijn(n−1)

)
∀(i, j) ∈ E, 1 ≤ n ≤ N

are equivalent to the following linear inequalities.

αijn +

n−1∑
k=1

pijnk ≥ xijn ∀(i, j) ∈ E, 1 ≤ n ≤ N (B.9)

αijn ≤ xijn ∀(i, j) ∈ E, 1 ≤ n ≤ N (B.10)

αijn ≤ 1− pijnk ∀(i, j) ∈ E, 1 ≤ k < n ≤ N (B.11)

Assume xijn is false. Then (9) sets αijn to false. The constraints in (B.9) will691

be trivially true. However, αijn will be false, since this is enforced by (B.10) and692

(B.11). Assume xijn is true. If pijn1∨· · ·∨pijn(n−1) is false, then (9) constrains693

αijn to be true. The same is true for (B.9) since it reduces to αijn ≥ 1. If694

pijn1 ∨ . . . pijn(n−1) is true, then (9) ensures that αijn is false. The inequality695

in (B.9) is satisfied regardless of the value of αijn.696
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