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The vehicle routing problem with time windows:
minimizing route duration

M.W.P. Savelsbergh
Eindhoven University of Technology
P.O. Box 513.5600 MB Eindhoven

The Netherlands

We investigate the implementation of edge-exchange improvement methods for the vehicle rout
ing problem with time windows with minimization of route duration as the objective. The presence
of time windows as well as the chosen objective cause verification of the feasibility and profitability
of a single edge-exchange to require an amount of computing time that is linear in the number of
vertices. We show howthis effort can, on the average, be reduced to aconstant.

I. Introduction
Over the past ten years, operations researchers interested in vehicle routing and scheduling have
emphasized the development of algorithms for real-life problems. The size of the problems solved
has increased and practical side constraints are no longer ignored. One such constraint is the
specification of time windows at customers, i.e., time intervals during which they must be served.
These lead to mixed routing and scheduling problems.

Obviously, the introduction of time windows at customers makes it harder to construct and main
tain a feasible set of routes. Savelsbergh [1986] shows that in the special case of a single vehicle, Le.,
the traveling salesman problem with time windows, constructing a feasible route is already NP-hard.
As a result, most of the research in this area has been directed towards controling the feasibility of a
set of routes.

However, the introduction oftime windows at customers also allows the specification ofmore real
istic objective functions, compared to minimizing distance, such as minimizing waiting time, minim
izing completion time. and minimizing route duration.

Edge-exchange improvement methods form an important and popular class of algorithms in the
context of vehicle routing problems. Recently a number of papers have been published that study
efficient implementations of edge-exchange improvement methods for the vehicle routing problem
with time windows, such as Savelsbergh [1986, 1990] and Solomon e.a. [1988]. However, they con
centrate solely on the feasibility aspect, neglecting the fact that identifying profitable exchanges for
realistic objective functions can be as difficult as identifying feasible exchanges.

This paper studies efficient implementations of edge-exchange improvement methods when the
objective is to minimize route duration and the departure time of a vehicle at the depot is not fixed,
but has to fall within a time window, as is the case in many real-life situations.

We will generalize and extend the techniques presented in Savelsbergh [1990], that enable incor
poration of time window constraints in edge-exchange improvement methods without increasing
their complexity. and show that minimizing route duration, with variable departure times at the
depot, can also be handled without increasing the complexity. As in Savelsbergh [1990], the key to
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achieve this is the use of the lexicographic search strategy and the choice of an appropriate set of glo
bal variables to maintain the necessary information. Note that the techniques presented in Solomon
e.a. [1988] are futile when minimizing route duration is the objective.

2. Edge-exchanges for the traveling salesman problem
In the TSP [Lawler, Lenstra, Rinnooy Kan, Shmoys 1985], we are given a complete graph on a set V
ofvertices and a travel time tij for each edge {i,j} e VxV. A solution to the TSP is a route, i.e., a cycle
which visits each vertex exactly once. The objective is to find a route minimizing the sum of the
travel times of the edges contained in it Let n = IV I indicate the number ofvertices. We assume that
a given vertex, say vertex 0, will serve as the first and last vertex of any route (the depot in vehicle
routing and scheduling problems) and that the matrix (tij) is symmetric and satisfies the triangle ine
quality.

A 2-exchange involves the substitution of two edges, say {i, i +I} and {j,j+I}, with two other
edges {i,j} and {i+l,j+l} (see Figure 1).

Figure 1. A 2-exchange.

Note that the orientation of the path (i+l, ... ,j) is reversed in the new route. Such an exchange results
in a local improvement if and only if

ti,j + ti+l,j+l < ti,i+l + tj,j+l'

Therefore, testing improvement involves only local information and can be done in constant time.
In contrast with a 2-exchange, where the two edges {i,i+I} and {j,j+I} that will be deleted,

uniquely identify the two edges {i,j} and {i +1,j+I} that will replace them, in a 3-exchange, where
three edges are deleted, there are several ways to construct a new route from the remaining segments.
Figure 2 shows two possible 3-exchanges that can be performed by deleting the edges {i,i+l},
{j,j+1} and {k,k+l} of a route. For all possibilities, conditions for improvement are easily derived
and again only involve local information and can thus be verified in constant time. There is one
important difference between the two 3-exchanges shown above: in the latter the orientation of the
paths (i+ 1, ... ,j) and (j+l, ... ,k) is preserved whereas in the former this orientation is reversed.

Because the computational requirement to verify 3-optimality may become prohibitive as the
number of vertices increases, proposals have been made to take only a subset of all possible 3
exchanges into account Or [1976] proposes to restrict attention to those 3-exchanges in which a
string of one, two or three consecutive vertices (a path) is relocated between two others. An Or-
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Figure 2. Two ways to perfonn a 3-exchange.

exchange is depicted in Figure 3. The path (i 1, ... ,;2) is relocated between j and j+l. Note that no
paths are reversed in this case and that there are only 0 (n 2 ) exchanges of this kind.

Figure 3. An Or-exchange.

There are two possibilities for relocating the path (i 1, ... ,;2); we can relocate it earlier (backward
relocation) or later (forward relocation) in the current route. The cases ofbackward relocation (j < i 1)
and forward relocation (j > i2) will be handled separately below.
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3. Edge-exchanges for constrained traveling salesman problems
The main problem with the use of edge-exchange procedures in the TSP with side constraints is test
ing the feasibility of an exchange. A 2-exchange. for instance, will reverse the path (i +I, ...,j), which
means that one has to check the feasibility of all the vertices on the new path with respect to those
constraints. In a straightforward implementation this requires 0 (n) time for each 2-exchange, which
results in a time complexity of0 (n 3) for the verification of2-optimality.

The basic idea ofour proposed approach is the use of a specific search strategy in combination with
a set of global variables such that testing the feasibility of a single exchange and maintaining the set
global variables requires no more than constant time. Because the search strategy is of crucial impor
tance, we present it first.

In the sequel, we will assume that the current route is given by a sequence (O, ...,i, ...,n), where i
represents the ith vertex of the route and where we have split the vertex that serves as first and last
vertex of any route (vertex 0) in an 'origin' (vertex 0) and a 'destination' (vertex n). We also assume
that we are always examining the exchange that involves the substitution of edges {i,i+l} and
{j,j+l} with {i,j} and {i+l,j+l} in case of a 2-exchange, and the substitution of {il-l,id,
{i2,i2+1} and {j,j+l} with {il-l,i2+1}, {j,id and {i2.j+l} in case ofan Or-exchange.

Lexicographic search for 2-exchanges. We choose the edges {i,i+l} in the order in which they
appear in the current route starting with {O, I }; this will be referred to as the outer loop. After fixing
an edge {i,i+l}, we choose the edge {j,j+l} to be {i+2,i+3}, {i+3,i+4}, ... , {n-I,n} in that order
(see Figure 4); this will be referred to as the inner loop.

Figure 4. The lexicographic search strategy for 2-exchanges.

Now consider all possible exchanges for a fixed edge {i,i +I}. The ordering of the 2-exchanges given
above implies that in the inner loop in each newly examined 2-exchange the path (i+I, ...,j-l) of the
previously considered 2-exchange, i.e., the substitution of {i,i+l} and {j-I,j} with {i,j-I} and
{i+l,j}, is expanded by the edge {j-I,j}.

Lexicographic searchfor backward Or-exchanges. We choose the path (i it ...,i2) in the order of the
current route starting with i I equal to 2. After the path (i 1, ..., i 2) has been fixed. we choose the edge
{j,j+l} to be {i 1-2.i I-I}. {i 1-3,i 1-2}, .... {O.I} in that order. That is, the edge {j.j+I} 'walks
backward' through the route. Note that in the inner loop in each newly examined exchange the path
(j+2..... i I-I) ofthe previously considered exchange is expanded with the edge {j+I,j+2}.

Lexicographic search for forward Or-exchanges. We choose the path (i 1, ...,i2) in the order of the
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current route starting with i I equal to 1. After the path (i I , ... , i 2) has been fixed, we choose the edge
{j,j+l} to be U2+1,i2+2}, U2+2,i2+3J, ... , {n-l,n} in that order. That is, the edge {j,j+l}
'walks forward' through the route. Note that in each newly examined exchange the path
(i2+l, ...,j-l) of the previously considered exchange is expanded with the edge {j-l,j}.

Now that we have presented the search strategy, let us return to the feasibility question. In order to
test the feasibility ofa single 2-exchange, we have to check all the vertices on the path (i +1, ...,j), and
in order to test the feasibility ofa single forward (or backward) Or-exchange, we have to check all the
vertices on the path (i2+1, ...,j) (or (j+1, ...,i1-1), respectively). In a straightforward implementation
this takes 0 (n) time for each single exchange. We will present an implementation that requires only
constant time perexchange.

The idea is to define an appropriate set of global variables, which will of course depend on the con
strained variant of the TSP we are considering, in such a way that:

first, the set ofglobal variables makes it possible to test the feasibility ofan exchange, i.e.• to check
the feasibility ofall the vertices on the path in question. in constant time. and

second. the lexicographic search strategy makes it possible to maintain the correct values for the
set of global variables. i.e.• update them when we go from one exchange to the next one. in constant
time.

To see how these ideas work. out in actual implementations. we show the pseudo-code of a general
framework. for a 2-exchange procedure.

procedure TwoExchange
(* input: a route given as (O.I ....,n) *)
(* output: a route that is 2-optimal *)
begin

START:
for i:=O to n-3 do
begin

InitGlobal( i.G )
for j:=i+2ton-l do

if ti,j + ti+l,j+1 < ti,i+1 + tj,j+1 and FeasibleExchange(i,j,G )then
begin

PerfonnExchange( i.j)
gotoSTART

end
UpdateGlobal( i.j.G )

end
end

end

Although the above pseudo-code looks rather simple. defining a set ofglobal variables in such a way
that. in combination with the (lexicographic) search strategy. the functions InitGlobalO, FeasibleEx
changeO, and UpdateGlobalO do what they are supposed to do and take only constant time, is often
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not so obvious.

4. The traveling salesman problem with time windows
In the TSP with time windows, we are given in addition to the travel times between vertices, for each
vertex i a time window on the departure time, denoted by [ei,/il, where ei specifies the earliest service
time and Ii the latest service time. Arriving earlier than ei does not lead to infeasibility but introduces
waiting time at vertex i. We will use the following notation: Ai will denote the arrival time at vertex i,
D i will denote the departure time at vertex i, and Wi will denote the waiting time at vertex i. It is con
venient to assumeAo=Do and DII=AII .

The standard objective is to minimize the total travel time, Le, !.osk<lItk,k+l' However, this objec
tive totally ignores possible waiting time at vertices. In this paper, we consider the problem of
minimizing route duration, Le., the difference DII-Do between the arrival time at the depot and the
departure time at the depot In case the departure time at the depot is fixed, this corresponds to
minimizing the completion time. The basic assumption underlying the current work is that the depar
ture time of a vehicle at the depot is not fixed but has to fall within a given time window, which is the
case in many real-life situations. Therefore, the departure time ofa vehicle at the depot can be chosen
in such a way that route duration is minimal. Actually, for a given route this corresponds to choosing
the departure in such a way that the total wai ting time ofa route is minimal.

Given a route, choosing the departure time that minimizes route duration is rather easy. However,
manipulating a route, for instance relocating a vertex or applying iterative improvement methods to
it, becomes more complicated since we have to take into account that some vertices may now be shift
backward in time as well as forward in time.

5. Forward time slack
Under the assumption that a vehicle always departs at a vertex as early as possible, which is the best
choice from a feasibility point of view, a route can be completely specified by giving the sequence in
which the vertices are visited and the departure time at the depot.

Taking the departure time at the depot as early as possible, Le., Do =eo, we define for each vertex i
aforward time slack F i indicating how far the departure time of this vertex can be shifted forward in
time without causing the route to become infeasible as follows:

F i :=miniSk~ (/k-(Di+LiSp<ktp,p+l)}'

More general, we define F~i.....j) to be the forward slack time at vertex i relative to the path (i, ...,j) and
the departure times Di , •• • ,Dj' which can be formally expressed as:

F (i•...• j) '-mm' {I -(D +~ t )}
I .- iSk~j k i ~i~p<k p,p+L •

The main tool in controling feasibility in edge-exchange methods is this forward time slack. How
ever, it turns out that it is also ofcrucial importance in identifying profitable, with respect to minimiz
ing route duration, edge-exchanges. It is not hard to see that postponing the departure at the depot by
the minimum of the forward time slack at the depot and the total waiting time on the route, Le.,
D 0~ eo+min{F0, Io<p <IIWp }, results in a feasible route without unnecessary waiting time. An
example is given in Table 1. Consequently, the route duration can be expressed as follows:

DII-(eo+min{Fo,~ Wp }}.
"--O<p <II
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i ei li Ai Di Wi Fi A- D· W·1 1 1

0 6.00 18.00 - 6.00 - 5.00 - 11.00 -
1 10.00 14.00 6.30 10.00 3.30 1.30 11.30 11.30 -
2 8.00 12.00 10.30 10.30 - 1.30 12.00 12.00 -
3 13.00 17.00 11.00 13.00 2.00 4.00 12.30 13.00 0.30
4 6.00 18.00 13.30 - - 4.30 13.30 - -

Table 1. A feasible route with and without unnecessary waiting time.

Therefore. to be able to tell whether or not an edge-exchange results in a feasible route. we have to
compute the forward time slack at the depot ofthe resulting route. and to be able to tell whether ornot
an edge-exchange results in a route with smaller duration. we have to compute the arrival time at the
depot and the total waiting time on the route as well.

The following concatenation theorem that shows that if two given paths. with associated forward
time slacks for the first vertices. are concatenated. the forward time slack for the first vertex of the
resulting path can easily be compute. turns out to be very useful.

Theorem. If two feasible paths (i I ..... il) and (i2 .....h), with associated forward time slacks
F~~h ....M and F~:2.....i2) for theftrst vertices, are concatenated, theforward time slackfor theftrst

vertex ofthe resulting path is given by:

F~ih.' ..i!.i2.···.i2) =min{F~ih ....M F~i2•....i2) +~ W +D· -(D· +t· . )}
II II' 12 "-'i. </cSi! /c 12 11 1112

Proof:

min{mini.SIcsi. (l/c-(Dil +LiISp<lp.p+I)}.

mini2S1cSi2 {l/c-(Dil+Li.s,,<il tp.p+l+ti.iz+L izSp</ctp.P+1 )} } =

min {F~~h'" .i.). miniz~siz {lJc-(Diz+Lizs,,</ctp.p+l) }+Di2-ti.iz-(Dil+L i.5p<il tp.p+l)} =

min{F~~h'" .il). miniz~siz {l/c-(Diz+Lizs,,</ctp.p+I)}+Diz-tiliz-(Dil-Lil<psi. Wp)} =
min{F~ih ....M F~i2 .....iz)+~ W +D· -(D· +t· . )}

II • IZ "-'i l <pSil P IZ 11 1I 1z

o
For a given route (O.l n). the above theorem gives us two ways to compute the forward time

slack at the depot, Le., FW·I II). First, through forward recursion as follows:

F CO••••• i•i+I) =min{Fco.....i ) l· -D· +~ W +W· }o 0 • 1+1 1+1 "-'O<pSi p 1+1

Secondly. through backward recursion as follows:
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F(i.i+l .....n) -min{J.-D. F(i+l •....n)+W· }
I - I" 1+1 1+1

6. Iterative improvement methods
The analysis of iterative improvement methods is split in two parts. First, we will show how to test
the feasibility of an exchange efficiently, i.e, constant time per exchange. Secondly, we will show
how to test the profitability ofan exchange with respect to minimizing route duration efficiently.

6.1. Feasibility
For both the 2-exchanges and the Or-exchanges, we split the resulting route in paths and use the con
catenation theorem to show that the forward slack time at the depot can be computed in constant
time, i.e., the feasibility can be tested in constant time.

2-exchanges. Consider the 2-exchange that involves the substitution of {i,i+1} and {j,j+1} with
{i,j} and {i+1,j+1}. The resulting route can be divided in the following three paths: (0, ...,0,
(j, ...,i+l), and (j+1, ...,n). Now observe that the forward and backward recursion schemes given
above show that in 0 (n) time it is possible to compute Fho•...•i) and F(j+)I •...•n) for all i and j +1 from°
to n. In addition, f.o<k5iWh can also be computed in advance in O(~) time. Furthermore, Fy·····i+l)

and I:j<k5i+lWk can easily be maintained, Le., initialized and updated in constant time, in the inner
loop. It is easy to see that the above quantities are precisely the ones needed to determine the forward
slack time at the depot when the three paths are concatenated. In the terminology of the the imple
mentation technique described in Section 3, all the above quantities are maintained as global vari
ables.

Or-exchanges. Consider the backward-Dr-exchange where the path (i 1, ,i2) is relocated between j
and j +1. The resulting route can be divided in four paths: (O, ...,j), (i 10 ,i2), (j+1, ...,i1-1), and
(i2+1, ...,n). We can compute FW··..·j ), f.o<kSjWk , and F~:z+I •....n) in advance in 0 (n) time, F~:h." .iz)

d ~ W be . t . ed ffi' tl . th I d FV+1•...•i\-I) d ~ Wan ~i\<k5iz k can malO am e Clen yIn e outer oop, an J+l ,an ~j+l<k5iI-l k

can be maintained efficiently in the inner loop. For the forward-Dr-exchange a similar argument can
be presented.

6.2. Profitability
Our objective is to minimize the route duration, which can be expressed as:

Dn-(eo+min{Fo,~ k Wk}).
~< <n

As we have shown above, the lexicographic search strategy in combination with a suitable set of
global variables allows the efficient computation, (constant time per edge-exchange) of the forward
time slack at the depot. What remains is to show that we can also compute Dn and f.o<k<nWk
efficiently.

The efficiency of the computation of the forward time slack is based on a concatenation theorem
that shows that it takes only constant time to compute the forward slack time of a concatenated path
using the forward slack times of the original paths. In this section, we present a similar concatenation
argument, in this case to compute the waiting time on a concatenated path, to show that Dn and
f.o<k<nWk can also be computed efficiently.



9

Observe that for a given path (i, ...,j) and a given departure time Di' the departure time Dj can be
computed as

Dj ~Di +1:......1. .tk,k+t +1:. k..... ·Wk.
I::>I<.<J 1< "'J

The above relation shows that for the computation ofDn it is also of crucial importance to be able to
compute the total waiting time on the route.

Consider the concatenation of the paths (i It ...,it) and (i2, ...,h). In the following analysis, we
show that the sum of the waiting times on the concatenated path can be computed in constant time
using the waiting times on the original paths. We distinguish four different cases based on whether or
not the change I:! in the departure time at i2, i.e, Djl +tjhi2-Di2, is nonnegative and on whether or not
the sum of the waiting times on the path (i2, ...,h) is zero. The results of the analysis are summarized
in Table 2.

I:W=O

I:W>o

~o 1:1<0

W t+max{O,-I:1-B}

Table 2. Computation of the waiting time on a concatenated path.

In case the change in the departure time at i 2 is nonnegative and the sum of the waiting times on the
path (i2, ...,h) is zero, the waiting on the concatenated path is just the waiting time of the first path.

In case the change in the departure time at i2 is nonnegative and the sum ofthe waiting times on the
path (i2, ...,h) is positive, some or all of the increase in the departure time Di

2
will be 'absorbed' and

used to reduce the waiting time along the path. Therefore, we have

1:. k..... · ......1. ...... Wk=1:. k..... · Wk+max{O,1:. k..... · Wk-I:!}·
11< "'Jt,12~"'J2 11< "'Jt 12< "'h

In case the change in the departure time at i2 is negative and the sum of the waiting times on the
path (i2, ...,h) is positive, the decrease in departure time Dj only introduces additional waiting time
either somewhere along the path or at i2 itself. Therefore, we have

1:. k" k .Wk=1:. k .Wk+1:.. Wk+l:1·
11< $JhI2$ $h 11< :SJt 12<k:Sh

In case the change in the departure time at i 2 is negative and the sum of the waiting times on the
path (i2' ..·,h) is zero, some or all of the decrease in the departure time Di may introduce additional
waiting time. To determine how much of the decrease introduces additional waiting time, we define
B~i, ...,j) to be the backward time slack at vertex i relative to the path (i, ... ,j), which indicates how far
the departure time of this vertex can be shifted backward in time without introducing waiting time.
The backward time slack can easily be computed and expressed as follows:

BF· ..·,j) =mini:Sk:Sj {Dk-ek.}

Consequently, we have

~ W -~ W (O A B(i2, .... j2)}
~. k ..... · ...... 1....... k-~. k<' k+max ,u- i 2 •

II < "'J1.12~"'J2 II < .J1

2-Exchanges. Consider the 2-exchange that involves the substitution of {i,i+l} and {j,j+l} with
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{i,j} and {i+l,j+l}. The resulting route can be divided in the following three paths: (O, ... ,i),
(j, ...,i+l), and (j+l, ... ,n). Observe that Di does not change, Io<kSiWk, I:j+ldSnWk and BWl·····,.)
can be computed in advance in O(n) time, and By·····i+l) and I:jdSi+1Wk can be maintained
efficiently in the inner loop. It is easy to see that the above quantities allow the detennination of D,.
and the total waiting on the route in constant time if the paths are concatenated.

Or-exchanges. Consider the backward-Or-exchange where the path (i I, ,i2) is relocated between j
and j +1. The resulting route can be divided in four paths: (O, ...,j), (i I, ,i2), (j+1, ...,i I-I), and
(iz+l, ...,n). Observe that Dj does not change, IodSjWk, I:iz+ldSnWk, and B~~~~I .....,.) can be com-

puted in advance in O(n) time, B~:I0· ..·i2) and I:ildSizWk can be maintained efficiently in the outer

loop, and By·····i'-I) and IjdSiI-1 Wk can be maintained efficiently in the inner loop. It is not hard to

see that the above quantities allow the detennination of both D,. and the total waiting time on the
route in constant time if the paths are concatenated. For the forward-Or-exchange a similar argument
can be presented.

7. Edge-exchanges for the vehicle routing problem.
After analyzing iterative improvement methods for the TSP, we now tum to the VRP. We will
describe three k-exchange neighborhoods for the VRP, that relocate vertices between two routes. The
neighborhoods are chosen such that testing for optimality over the neighborhood requires 0 (nz)
time. As we are dealing with two routes, we will sometimes refer to the route that currently contains
the vertices we want to relocate as the origin route and the other as the destination route. In addition,
for presentational convenience, we will only describe relocations of single vertices. It is straightfor
ward to extend the presented techniques to the case where paths are relocated instead of single ver
tices.

As the neighborhoods can be completely described in tenns of the substitutions that are con
sidered, we will use the following notation to describe a neighborhood:

{set of links to be removed
from the current routes}

~ {set of links to replace the
removed links}.

Furthennore, a vertex i will always refer to a vertex from the origin route and prei and SUCi will
denote its predecessor and successor, and a vertex j will always refer to a vertex from the destination
route and prej and SUCj will denote its predecessor and successor.

Relocate: {(prei,i),(i,sUCi),(j,SUCj)} ~ {(prei,suci),(j,i),(i,sucj)}
Relocate tries to insert a vertex from one route into another. A relocation is pictured in Figure 8.

Exchange: {(prei, i),(i,suci),(prej,j),(j,sUCj)} ~ {(prei,j),(j,Suci),(prej,i),(i,suCj)}
A slight modification of the previously described relocate-neighborhood leads to what we will call
the exchange-neighborhood. Here we look simultaneously at two vertices from different routes and
try to insert them into the other routes. An exchange is pictured in Figure 9.

Cross: {(i,SUCi),(j,SUCj)} ~ {(i,SUCj),(j,SUCi)}
Cross tries to remove crossing links and turns out to be very powerful. As a special case, if the
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Figure 8. The relocate neighborhood.

Figure 9. The exchange neigborhood.

constraints allow it, it can combine two routes into one. A cross-change is pictured in Figure 10. Note
that if a cross-change is actually perfonned, the last part of either route will become the last part of
the other.

Figure 10. The cross neighborhood.

The extension ofthe lexicographic search strategy to these three neighborhoods is straightforward.
We choose i in reverse order of the origin route. More precisely, i=n-l, ...,1 for the relocate and
exchange neighborhoods and i=n-l, ... ,O for the cross neighborhood. After i has been fixed, we
choose j in reverse order of the destination route. More precisely, i=n -I, ...,0 for the relocate and
cross neighborhoods and i=n -1, ...,1for the exchange neighborhood.

To test the feasibility and profitability of an exchange, we split the resulting routes in paths and use
the concatenation ideas to show that the forward slack time at the depot and the total waiting can be
computed in constant time.
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Relocate. The resulting origin route can be divided in the two paths (O, ... ,prej) and (SUCj, ...,n) and is
trivially feasible since customers were deleted only. Note that FbO.....pre.) and F;s::f"····n) can be com
puted in advance for all i from 1 to n -1 in 0 (n) time. The resulting destination route can be divided
. th thr ths (0 .) (. .) d ( ) N th F(O'·..·J) d F(sucj .....n) 11m e ee pa ,...,j, l, ...,l, an SUcj, ...,n. ote at ° an SUCj , as we as
~<kSjWt, can be computed in advance for all jfrom 0 to n-1 in O(n) time. Furthermore, Ffi....,i) can
easily be maintained during the lexicographic search. It is easy to see that the above quantities are
precisely the ones needed to determine the feasibility and the profitability of an exchange.

Exchange. The resulting origin route can be divided in the following three paths (O, ....prei), U, ...,j),
d ( ) N te th t F (O.....prei) d F(sucio ....II) 11 ~- W be ted . dan Suci, ...,n. 0 a ° an SlICi ' as we as -u<k<i t, can compu In a vance

for all i from 1 to n -1 in0(n) time. Furthermore, Fy· ..··j) can easily be maintained during the lexico
graphic search. The resulting destination route can be divided in the following three paths:
(0 ) ( . .) d ( ) N th F(O.....prej) d F(sUCj.....II) II ~- W be,...,prej , l, ... ,l , an SUcj, ...,n. ote at ° an SUCj , as we as -U<k<j kt can
computed in advance for all j from 1 to n -1 in 0 (n) time. Furthermore, Ffi· ..··j) can easily be main
tained during the lexicographic search. It is easy to see that the above quantities are precisely the
ones needed to determine the feasibility and the profitability ofan exchange.

Cross. The resulting origin route can be divided in the two paths (0, ...,0 and (SUcj, ...,n). Note that
F&O, ...,i), as well as r.O<kSjWkt for all i from 0 to n and F~s::.j· ..··II) for all j from 0 to n-l can be com-

J

puted in advance in 0 (n) time. The resulting destination route can be divided in the two paths
(O, ...,j) and (SUCj, ... ,n). Note that FW· ..··j) , as well as I.o<kSjWk , for all j from 0 to n and F~::io ....II) for
all i from 0 to n -1 can be computed in advance in 0 (n) time. It is easy to see that the above quantities
are precisely the ones needed to determine the feasibility and the profitability ofan exchange.

The above described iterative improvement methods can easily be extended to larger neighborhoods
by the introduction of paths instead of vertices. The paths have to be checked but that involves only
local information. Figure 11 illustrates some possible extensions.

8. Empirical analysis
The objective of our empirical analysis is twofold. First, to investigate the effect of different objec
tive functions. Second, to evaluate the efficiency of the proposed methods.

Test problems are randomly generated using the following scheme. There are four control parame
ters: n,l,w, and p. The locations of the n customers are uniformly distributed in [1,... ,100] x
[1,...,100]; the depot is located at (50,50). The coordinates of the locations of the customers are used
to compute the intercity Euclidean distances. The loads of the customers are uniformly distributed in
[1,...,1]. Time windows ofw minutes are generated for p percent of the customers. The other custo
mers and the depot have the time window [480,1200], i.e., a period oflOhours (times will always be
given in minutes). There is ahomogeneous set ofvehicles with capacity 500. Vehicles are assumed to
travel at an average speed of40 km/h.

The iterative improvement methods were embedded in a two phase approximation algorithm for
the VRPfW. In the first phase, an initial set of routes is constructed with the parallel insertion heuris
tic described in Savelsbergh [1991]. In the second phase, an improved set of routes is obtained
through the use of the exchange procedures. First, the relevant iterative improvement methods are
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Figure 11. Extensions to the relocate-, exchange-, and cross-neighborhoods.

applied to all possible combinations of two routes. Second, the relevant iterative improvement
methods are applied to all separate routes. As long as feasible and profitable exchanges have been
found, the process is repeated. Although this is clearly an unsophisticated brute-force approach, it is
suitable for our purposes.

To investigate the effect of different objective functions, we have compared the solutions obtained
with minimizing route duration as objective to those obtained with minimizing travel time and
minimizing completion time as objective for a set of 10 randomly generated problem instances
(n=IOO,I=50,w=I20,p=50). The results shown in Table 3 clearly indicate the importance of being
able to handle different objective functions.

To evaluate the efficiency of the described methods, we have compared the running times of our
proposed implementation of iterative improvement techniques with a straightforward
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minimizing route duration minimizing travel time minimizing completion time

problem route travel completion route travel completion route travel completion
duration time time duration time time duration time time

1 2758 2695 6236 3263 1857 6324 3480 2978 6216
2 3086 3005 6061 3641 1940 6425 3377 3110 5867
3 2891 2753 7345 4174 1966 7951 4237 3842 7213
4 2401 2383 5462 2911 1923 flJ27 3275 3009 5722
5 2593 2482 6780 3395 1982 7239 3489 3034 6505
6 3135 3038 6722 3807 1794 6840 3651 3305 6256
7 2560 2446 7166 3731 1833 7675 3624 3439 6169
8 2342 2335 7113 3752 1814 7856 3509 3445 6881
9 3529 2921 7441 4162 1886 7776 3938 3120 7103
10 2622 2612 7584 3287 1931 7796 3499 3403 7077

Table 3. The effect of different objective functions.

implementation of these techniques, i.e., (temporarily) perfonn an exchange and test its feasibility
and profitability, for various problem types. The CPU times shown in Table 4, which include the time
required to generated the initial set ofroutes, demonstrate the efficiency ofour proposed implementa
tion. As expected the advantage increases with the number of customers per route, but even with 10
to 15 customers per route the overhead is small enough to give a betterperfonnance than the straight
forward implementation. The fact that the CPU times increase when time windows are present
(w=120 and p=50) is a consequence of the fact that more profitable exchanges are identified.

problem straightforward proposed
parameters implementation implementation

(100,50,0,0) 10.60 7.04
(100,50,120,50) 22.61 13.99
(300,25,0,0) 135.97 55.21
(300.25,120,50) 234.05 68.82

Table 4. CPU times (in seconds) for the two implementations.

9. Conclusion
The growing importance of side constraints as well as realistic objectives in practical distribution
management and the need for fast implementations of algorithms in the context of interactive plan
ning systems justify the current research. The main contribution of this paper lies in the fact that we
have concentrated on more realistic objective functions. The relative ease with which the general
framework presented in Savelsbergh [1990] could be generalized and extended to accommodate
these objective functions exemplifies the robustness of this framework.
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