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THE TRANSACTIONAL MEMORY PROGRAMMING PARADIGM COULD BECOME THE

COORDINATION METHODOLOGY OF CHOICE FOR ACTUAL AND FUTURE MULTICORE AND

MANY-CORE ARCHITECTURES. THE TRANSACTIONAL MEMORY SUPPORT SPANS A

COMPLETE SOFTWARE AND HARDWARE STACK, INCLUDING PROGRAMMING LANGUAGE

AND HARDWARE SUPPORT, RUNTIME AND LIBRARIES, COMPILERS, AND APPLICATION

ENVIRONMENTS. THE VELOX PROJECT HAS DEVELOPED SUCH A COMPREHENSIVE

TRANSACTIONAL MEMORY STACK.

......The use of multicore processors,
in which cores operate in parallel, each sup-
porting multiple threads, makes the case for
a broader use of parallel programming. The
success of multicore architectures depends
on software programmers’ ability to harness
parallelism within their software.

Traditionally, locks have served as the
common coordination mechanism for con-
current programming. Unfortunately, lock-
based programming is not a perfect solution.
Coarse-grained locking is easy to program but
scales poorly with the number of cores be-
cause of limited parallelism. Programs that
use fine-grained locks can perform exception-
ally well, but designing them is a difficult task
better left to experts. Finally, even when pro-
grammed optimally for a given architecture,
lock-based code might not scale when
moved to machines with a different memory
layout or more cores. We therefore need a
new approach to multicore programming
that retains scalability while preserving the
ease of programming with coarse-grained
locks.

Transactional memory could become the
paradigm of choice for replacing or comple-
menting locks in multicore programming.
Transactional memory simplifies the paralleli-
zation of existing single-threaded code by
eliminating the need to explicitly write fine-
grained lock-based code. Programmers simply
write code in which methods or blocks of code
accessing shared data are declared high-level
transactions, typically using transaction block
language constructs. The synchronization
and coordination details are left to the under-
lying transactional memory mechanisms.

Transactional memory executes in hard-
ware, software, or as a combination of the
two. Because transaction block constructs
are typically provided at the programming-
language level, transactional memory support
spans the complete computer stack, from
applications to hardware, encompassing lan-
guage extensions, compilers, libraries, trans-
actional memory runtime, and operating
system. The VELOX project (http://www.
velox-project.eu) aims at building such an
integrated stack for transactional memory.
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A new paradigm for concurrent
programming

Transactions let developers indicate that
code sections must execute atomically—that
is, as if they were run in isolation from the
rest of the code. Transactional memory is a
speculative execution mechanism in which
accesses to shared objects can run simultane-
ously. In case of conflicting accesses,
detected at runtime, one or several transac-
tions might have to roll back and restart
their execution. In other words, transactions
execute optimistically in parallel and, as long
as conflicts are rare, the performance gains
resulting from the higher concurrency dom-
inate the overheads introduced by transac-
tional execution.

To illustrate why transactions are attractive
from a software engineering perspective, con-
sider the problem of constructing a scalable
concurrent first-in, first-out (FIFO) queue
that lets several threads enqueue items at the
tail of the queue while other threads can
dequeue items from the head of the queue,
at least when the queue is not empty. Any
problem so easy to state, and that arises so nat-
urally in practice, should have an easily
devised, understandable, and efficient solu-
tion. However, solving this problem with
locks is quite difficult. In 1996, Michael
and Scott published a clever but subtle solu-
tion.1 The fact that solutions to such simple
problems are considered difficult enough to
be publishable results speaks poorly for fine-
grained locking as the mainstream program-
ming paradigm for the multicore era.

By contrast, it is almost trivial to solve
this problem using transactions (see
Figure 1). The solution consists of no more
than placing the methods of a sequential
queue implementation in a transactional
block (__transaction{}). In practice,
of course, a complete implementation would
include more details, but even so, this concur-
rent queue implementation by itself is simple.
Moreover, there is room for optimism: a
FIFO queue implemented using a software
transactional memory can deliver the same
performance as Michael and Scott’s hand-
crafted fine-grained lock-based algorithm.

The VELOX transactional memory
stack at a glance

As Figure 2 illustrates, the VELOX transac-
tional memory stack consists of several basic
components.

Language extensions and APIs are the
most visible aspects of transactional memory
for programmers. Although programmers
could add transactional memory support to
applications using explicit library calls or
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Class Queue {

QNode head;

QNode tail;

public eng(Object x) {

__transaction {

QNode q = new QNode (x);

q.next = head;

head = q;

}

}

}

Figure 1. Constructing a scalable concurrent

first-in, first-out (FIFO) queue using

transactions simply involves placing each

method into its own atomic block.
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declarative mechanisms (such as annota-
tions), such an approach is not satisfactory
for large systems. It relies on coding conven-
tions, can lead to intricate code, and is often
error prone. On the other end of the spec-
trum, automated source or binary code in-
strumentation work on simple examples,
but are difficult to extend to realistic code.
Adding new language constructs with well-
defined semantics is the soundest approach
for importing transactional memory support
into existing languages.

Compiler support is necessary for imple-
menting an efficient transactional memory
stack in a way that is transparent to the pro-
grammer. For instance, it lets us identify
transactional load and store operations on
shared data and map them to the underlying
transactional memory without requiring the
programmer to explicitly mark these opera-
tions. Moreover, the compiler support lets
us propose transactional memory-specific

optimizations that improve the transactional
code’s performance and reduce the overheads
of transactional memory accesses.

To better exploit transactional memory,
system libraries must be adapted to execute
speculatively inside transactions despite per-
forming potentially unsafe operations (for
example, I/O). Where applicable, a devel-
oper can also replace locks with transactions
within libraries for better performance.

The transactional memory runtime is the
transactional memory integrated stack’s cen-
tral component. It implements the transac-
tional memory’s synchronization logic. The
VELOX project proposes several such libraries.
A first class uses software transactional mem-
ory (STM) only; a second uses a mix of soft-
ware-based transaction support with specific
hardware extensions for scalability and effi-
ciency; and a third relies on a pure hardware
approach in which the transactional memory
mechanisms are completely implemented in
hardware (HTM).

Operating system extensions can help im-
prove transactional memory’s performance
for some tasks relating to the system as a
whole (scheduling, for example), in particu-
lar because transactional workloads coexist
with traditional workloads. A typical exam-
ple in the context of the VELOX stack is the
support of transactional memory-aware
scheduling in the Linux kernel to avoid pre-
empting threads inside transactions and to
serialize conflicting transactions on the
same core.2

Finally, the complete stack builds upon a
hardware platform that provides the neces-
sary support for designing efficient transac-
tional memory implementations. We use
synchronization facilities such as Advanced
Micro Devices’ Advanced Synchronization
Facility (ASF)3 to support much of the appli-
cation’s transactional execution in hardware,
and rely on software for unsupported trans-
actions. Another approach is to design pro-
cessors that fully support transactional
memory in hardware.4

Other issues related to the VELOX stack’s
design and implementation include transac-
tional models (for example, elastic transac-
tions5), optimization strategies, scheduling
algorithms, contention management, and
progress and safety guarantees.
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Figure 2. The VELOX stack supports two families of programming languages:

C/Cþþ and Java and the associated tool chains and libraries. The VELOX

project has studied a set of crosscutting research challenges to drive the

design and development of the stack components. (TM: transactional

memory)
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Language-level transactional memory
constructs

Programmers have used transactional
memory in the form of STM libraries for
some time. However, when using these libra-
ries, they must explicitly inject calls to the
transactional memory libraries in their
code (for example, for accessing shared
memory locations). This method has severe
disadvantages:

� It is harder to program and understand
and is error-prone (for example, it’s
easy to forget to annotate a memory
access).

� The compiler does not get insight into
a transaction’s actions and access pat-
terns. The library cannot perform
important optimizations such as detect-
ing which data are shared or thread-
private. In contrast, compilers can perform
many transaction optimizations at compi-
lation time.

� Close interaction between transactional
memory and compiler-generated code
such as exception handling is difficult
to impossible.

Therefore, we have developed program-
ming language extensions. For the VELOX

project, we concentrate primarily on
C/Cþþ and Java.

For both C and Cþþ, the main exten-
sion is a construct to declare a transaction.
In C, this is achieved with the __tm_
atomic keyword, whereas Cþþ uses the
__transaction keyword followed by
a Cþþ1x-style attribute, as documented in
a draft specification (http://software.intel.
com/file/21569). One can use this construct
to introduce a transaction statement (that is,
a block or expression). All memory accesses
inside the lexical scope of the block or ex-
pression will be performed using the
transactional memory library, unless they
are proven to not conflict with any other
thread’s operations.

Figure 3 shows some of the Cþþ exten-
sions. At the top, two declarations with
attributes indicate whether the functions are
transactional memory safe (that is, safe to
be used in transactions). The following

lines declare a transaction. The two declared
functions are called within the transaction
and then, depending on a condition, an ex-
ception might be thrown that cancels the
transaction at the same time. This short se-
quence also shows how legacy code can be
used. The do_io function is unsafe for
use within transactions. The only prerequisite
for using unsafe functions is that the transac-
tion is marked with the [[relaxed]] at-
tribute (which lets the compiler use a weaker
kind of isolation).

The second noteworthy aspect of the
work on the transactional memory language
constructs is the integration of exception
handling and transaction cancellation.
Thrown exceptions can be declared to can-
cel the transaction (as in our example) or
they propagate normally as in nontransac-
tional code.

The resulting binary files use functions in
a transactional memory runtime library. The
ABI was developed to be compatible with
other compilers and runtime from other
interested parties in the industry (http://
software.intel.com/en-us/articles/intel-c-stm-
compiler-prototype-edition/#ABI). The goal
is to avoid compatibility problems be-
tween different compilers and transactional-
memory runtime implementations. The
functions provided by the transactional-
memory runtime enable optimizations that
the compiler can implement, such as
advanced read-set and write-set manipula-
tions. The compiler can generate several
variants of a transaction’s code that will
use different implementation variants in
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[[transaction_safe]] void do_work () ;

[[transaction_unsafe]] void do_io () ;

__transaction [[relaxed]] {

do_work () ;

if (buffer)_full) {

do_io (0) ;

if (failure)

__transaction_cancel throw "again";

}

}

Figure 3. Transactional language constructs in Cþþ. The __transaction

keyword marks a transactional block. The associated attribute declares

that the transaction shall use a weak kind of isolation to allow the use of

transaction-unsafe operations such as do_io().

....................................................................
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the transactional memory library (for
example, STM or HTM). At runtime, the
transactional memory library chooses
the implementation to be used to execute
the transaction.

The C and Cþþ implementations share
the transactional memory runtime ABI. We
optimized the ABI for Linux and for
x86/x86-64 architectures by reducing the
overhead of the various calls and providing
fast access to the thread-specific metadata
required by most transactional memory run-
time libraries. The VELOX stack implements
transactional C/Cþþ extensions directly in
the popular GNU Compiler Collection, as
well as in the experimental Dresden transac-
tional memory compiler (DTMC).3

On the Java side, we support transactions
by adding an atomic block construct to de-
clare transactions and a few extra keywords
to handle operations such as explicit abort
and retry. The VELOX project provides a
transactional compiler, TMJava (http://
www.tmware.org/tmjava), which processes
Java source code with transactional con-
structs and generates pure Java classes that
will subsequently be instrumented by the
Deuce6 framework to produce a transac-
tional application.

Transactional memory runtime
We developed transactional memory run-

times for the two families of languages sup-
ported by the VELOX stack. For C/Cþþ,
we implemented a software-only and a hy-
brid runtime. For Java, our runtime executes
on top of the Java virtual machine and is thus
purely software.

TinySTM: An STM runtime
TinySTM is a lightweight and efficient

STM implementation developed as the ref-
erence C/Cþþ transactional memory run-
time of the VELOX stack.7 It is word-based
(that is, it achieves conflict detection at
the memory address level) and uses revoca-
ble locks to protect shared data from con-
current accesses. It uses a single-version
variant of the lazy snapshot algorithm (LSA)7

and provides several operation modes—
write-through or write-back updates with
eager or lazy acquisition—as well as various
contention managers.

TinySTM is purely implemented in soft-
ware and supports the standard transactional
memory library ABI (http://software.intel.
com/en-us/articles/intel-c-stm-compiler-
prototype-edition/#ABI). It performs and
scales well on many types of workloads.7

ASF-TM: A hybrid transactional memory runtime
HTM achieves better performance than

STM but has limitations (such as capacity)
that prevent it from supporting all work-
load types. It is therefore typically coupled
with an STM for executing transactions
that cannot run entirely in hardware. In
the VELOX project, we implemented a hy-
brid variant of TinySTM that uses ASF3

as an HTM. As the simple example in
Figure 4 shows, the transactional compiler
transforms the original source code
(Figure 4a) into an intermediate representa-
tion in which the __transaction block
is replaced with appropriate calls to the
transactional memory library to start
(_ITM_beginTransaction) and to
commit (_ITM_commitTransaction)
a transaction (Figure 4b). It replaces reads
(_ITM_R*) and writes (_ITM_W*) of
shared data as well. We can link the resulting
files against ABI-compatible transactional
memory libraries.

The ASF-TM library implements the ABI
by inserting the appropriate ASF instruc-
tions, as we describe later. Figure 4c shows
the resulting code. Most operations are di-
rectly mapped to single ASF instructions.
However, several features must be imple-
mented by the ASF-TM software library.
For example, if hardware transactions are
aborted because of ASF capacity limitations,
the library switches to a serial mode that exe-
cutes one transaction at a time with no in-
strumentation. This software-only fallback
mode is also used in other cases, such as to
ensure that the transaction will eventually
commit despite a high rate of conflict with
other transactions.

Another challenge associated with ASF-
based transactions is that they can be aborted
at any time because of hardware conditions.
Imagine, for instance, a hardware transaction
that aborts while executing the malloc()
function. This would leave the memory-
management data structures in an
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inconsistent state. Therefore, we developed
variants that are robust to asynchronous
aborts triggered by ASF for some functions.

Deuce: A Java transactional memory runtime
Deuce is an efficient open source Java

framework that delivers full-featured transac-
tional support to an existing application
without changing its compiler or libraries.6

This framework has two components:

� a transactification tool that processes
annotated Java bytecode at load time
to insert transactions and instrument
loads and stores, and

� an STM runtime that executes
transactions using one of the backend
algorithms (currently, Transactional
Locking II8 and LSA7).

Deuce’s original locking scheme detects
conflicts at the level of individual fields,
which provides finer granularity and better
parallelism than object-based lock designs.

Deuce relies on Java annotations to spec-
ify transactions and so supports transaction
blocks at the level of complete methods
only. However, the TMJava front end com-
piles any Java source code with transactional
constructs to generate the annotated byte-
code that Deuce can use.

Hardware support for transactional
memory

In general, HTM implementations are
faster but are more difficult to design and
verify than STMs. In the VELOX project,
our aim has been to design transactional-
memory hardware that remains simple yet
offers high performance and scalability for
key transactional memory applications.
Meanwhile, VELOX STMs provide the ideal
platform to test transactional memory ex-
tension ideas and to support common
CPU architectures. These STMs must also
provide good performance. We therefore ex-
ploit hardware-acceleration mechanisms
provided by the processor, such as ASF, in
the context of a hybrid transactional mem-
ory (HyTM).

EazyHTM
EazyHTM4 is a scalable HTM imple-

mentation with eager conflict detection.

EazyHTM lazily defers conflict resolution
until commit time, and thereby avoids the
difficulty of determining the most appropri-
ate transaction to abort. In this approach,
each transaction tracks conflicts with concur-
rently running transactions. Then, when a
transaction reaches its commit point, it
knows exactly which transactions need to
be aborted to maintain system consistency.
After all conflicting transactions have termi-
nated, the transaction reaching its commit
point publishes speculatively written values.
Tracking all conflicts that a transaction
encounters during execution can be useful.
One direct consequence of this conflict
map is that all nonconflicting transactions
can commit fully in parallel.

We designed the EazyHTM protocol
with existing chip multiprocessors in mind.
It builds on commonly used directory proto-
cols without requiring extensive changes.
For example, EazyHTM does not require
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Figure 4. An example of how the transactional compiler transforms Cþþ
code with a transaction statement (a) to target a transactional memory

library application binary interface (ABI) (b) and to native code that uses

Advanced Micro Device’s Advanced Synchronization Facility (ASF) (c). For

brevity, we omitted additional code around speculate for providing full

semantics of _ITM_beginTransaction.

extern long cntr;

void increment () {

__transaction {

cntr = cntr + 5;

}

}

(a)

extern long cntr;

void increment () {

__ITM_beginTransaction (...) ;

long 1_cntr = (long ) __ITM_R8 (&cntr);

1_cntr = 1_cntr + 5;

__ITM_W8 (&cntr, 1_cntr);

__ITM_commitTransaction ();

}

(b)

; meml for cntr

SPECULATE

JNZ handle_abort

LOCK MOV RCX, ’meml

ADD RCX, 5

LOCK MOV meml, RCX

COMMIT

(c)
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splitting directories for parallelism or using a
specific on-chip interconnection topology.

Advanced Synchronization Facility
ASF is an experimental AMD64 architec-

ture-extension proposal for transactional
programming and lock-free data structures.3

It comprises seven new instructions:

� speculate and commit demarcate
transaction boundaries;

� abort rolls back a transaction
voluntarily;

� the lock prefix annotates transactional
memory accesses (MOV);

� watchr and watchw add addresses
to the transaction’s read and write set;
and

� release drops read-set addresses.

ASF’s design focuses on implementation
simplicity while maintaining a versatile,
broad use of the mechanism. For simplicity,
ASF reuses the existing, unchanged coher-
ence and multiprocessor-interconnect proto-
cols. Furthermore, it automatically aborts
transactions that exceed ASF’s limited capac-
ity, are context switched, or are transitioning
into the kernel.

Although ASF’s actual capacity and exe-
cution behavior are closely tied to microarch-
itectural features, the specification ensures
several baseline properties, which designers
deemed as easily implementable:

� a minimal capacity that allows lock-free
use cases without capacity-overflow
logic in software;

� strong isolation, which protects transac-
tions from other transactions and
nontransactional code;

� general eventual-forward-progress prop-
erties that free the applications from
worrying about repeated aborts due
to difficult-to-control microarchitec-
tural conditions (such as translation
look-aside buffer misses or other re-
source conflicts);

� early abort, which prevents orphan
transactions from continuing execution
using stale data values.

Because ASF supports reporting of excep-
tions from within the transaction to the

operating system, it can effectively handle
transient conditions, such as page faults,
ensuring eventual progress of the transactions.

ASF’s remaining design choices—eager
conflict detection, requestor-wins conflict res-
olution, and limited register checkpointing—
follow the simplicity requirement.

VELOX evaluation of ASF
In the VELOX stack, ASF provides

transactional memory support in the lowest
layer. For its evaluation, we added several
faithful, detailed implementations of ASF
to a realistic out-of-order AMD64 processor
simulator (PTLsim). The first implementa-
tion variant uses a new CPU data structure,
the locked-line buffer (LLB), to monitor
transactional memory addresses and keep
backup copies of speculatively modified
cache lines, which are restored if an abort
occurs. We can configure the LLB to be of
varying size; we evaluated eight- and 256-
entry LLBs (LLB8 and LLB256).

The LLB is fully associative and thus is
not susceptible to aborts due to associativity
conflicts. However, it therefore has a limited
capacity. Our second ASF implementation
also uses the layer-1 (L1) data cache for
read-set tracking. This implementation
(LLB8-L1, LLB256-L1) can use the full L1
size as capacity for transactions, but the
L1’s limited associativity can reduce capacity
for unfavorable address layouts.

These simulator-based implementations
contain many of the microarchitectural
subtleties and resulting performance and
semantic implications found on current
microprocessors and expected for future
high-performance microprocessors, giving
us high confidence that ASF is implement-
able in modern out-of-order cores.

To make ASF available for transactional-
memory workloads, we developed a compiler
tool chain that can generate code using the
new ASF instructions. We also added soft-
ware logic to our transactional memory run-
time to alleviate ASF’s hardware-induced
limitations, such as limited capacity and
system calls. In these unrecoverable and unretri-
able abort scenarios, we use a compiler-
generated software fallback path that aborts all
transactions and runs the transaction in serial
mode.
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Applications and performance
In the context of the VELOX project, we

developed several applications to assess the
transactional memory stack’s benefits and
benchmarks to evaluate its performance.
We classify these programs into three
categories:

� application use cases that demonstrate
the usability of STMs;

� unit tests and microbenchmarks; and
� highly tunable realistic application

benchmarks.

We compile these programs using the
VELOX C/Cþþ and Java transactional-
memory compilers.

Application use cases
We developed two multithreaded ver-

sions of the Quake game server that exploit
STM. Atomic Quake9 is derived from the
parallel lock-based version of the Quake
game server, in which atomic blocks replace
all critical sections. This benchmark exhib-
its irregular parallelism, system calls, and
error handling. Complex transactions in-
clude function calls, memory management,
and nested transactions. To compare the
programming effort with Atomic Quake,
we created QuakeTM10 from Quake’s se-
quential version, keeping transactional
memory-specific considerations in mind.
Large atomic regions that put significant
pressure on the underlying STM system
characterize this application.

Among other C/Cþþ application use
cases, we parallelized the Globulation2
real-time strategy game and developed
a speculative stream-processing system.
As for Java use cases, we implemented
transactional memory-based Java beans
for application servers.

Unit testing and microbenchmarking
To understand the performance and se-

mantics of transactional memory runtimes,
we designed TMunit,11 which provides a
simple and expressive domain-specific lan-
guage for transactional memory workloads.
TMunit allows expressing workloads as
thread specifications consisting of a series of
transactions that comprise, in turn, a series

of read/write operations. TMunit is espe-
cially useful for unit testing because it runs
replayable deterministic schedules of read/
write operations, but can also test the perfor-
mance of transactional memory runtimes in
pathological scenarios or search for unneces-
sary aborts12 as well as possible safety and
liveness violations.

We also developed a set of transactional
memory-based, lock-free, and lock-based
concurrent data structures (hash table, linked
list, skip list, and so on) to stress test the
VELOX stack and identify performance bottle-
necks with controlled workloads. These
various data structures implementations let
us demonstrate that STM scales well even
without hardware support.13

Realistic application benchmarks
To evaluate the VELOX stack with sizable

nondeterministic workloads, we developed
the STMbench7 benchmark, which
extends the well-known OO7 database
benchmark. STMbench7 operates on an
object-graph data structure with millions
of objects and many interconnections be-
tween them. It can be configured to exe-
cute read-dominated, balanced read-write,
and write-dominated workloads. We devel-
oped both a Java and a Cþþ version of
STMbench7.14

The RMS-TM benchmark suite15

includes lock-based and transactional
memory-based implementations of seven
real-world many-core applications from the
emerging recognition, data mining, and syn-
thesis domains that have a wide range of
transactional memory characteristics in
terms of transaction lengths, read/write set
sizes, and contention. This benchmark suite
is suitable for evaluating both STM and
HTM systems. In addition, RMS-TM
uniquely presents many desirable properties,
such as nested transactions, I/O operations,
and system calls inside transactions.

Evaluating the VELOX stack
Figure 5 presents some experimental

results obtained with the VELOX stack.
Figure 5a shows the STMbench7 running
with the TinySTM runtime on a four
quad-core AMD Opteron machine (16 cores).
Although the read-dominated workload
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scales well, as we introduce more writes,
performance flattens out with many threads.

Figure 5b shows the throughput of the
ASF-based HyTM implementation on a
red-black tree containing approximately
four thousand elements with 20 percent up-
date operations (insertions and removals).
The LLB-8 implementation performs poorly
because its capacity is insufficient for holding
the parts of the data structure that are
accessed, leading to constant execution
of the software fallback path. LLB-256
scales remarkably well, and the L1/LLB

variants perform only slightly worse because
they are susceptible to cache-associativity
limitations.

Figure 5c presents the scalability results of
the RMS-TM benchmark suite using the
EazyHTM implementation. As the graph
shows, performance increases almost linearly
with the number of threads on several
benchmarks.

Finally, Figure 5d shows the throughput
of the skip list microbenchmark in Java
using the Deuce transactional memory run-
time on a Sun UltraSPARC T2 Plus
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multicore machine (two 8-core CPUs with
eight hardware threads each). The list con-
tains approximately 16 thousand elements,
and we conducted experiments with three
update ratios (0, 20, and 50 percent) and
two STM algorithms (TL2 and LSA).
Results demonstrate the good overall scal-
ability of transactional memory with shared
data structures.

W e need more research to enable
transactional memory as the abstrac-

tion of choice for leveraging the power of
multicore and many-core architectures. We
have identified a set of particularly impor-
tant challenges, which our current and
future work will address.

A premier challenge is the need for a
larger and more diverse body of applications
to be used as benchmarking and functional
testing tools. This requires even more syn-
thetical and well-understood benchmarks
and larger-scale applications—either built
especially for transactional memory or con-
verted from existing massively multithreaded
applications.

Use of transactional memory runtimes
and libraries must follow the simplicity ob-
jective underlying the declaration of atomic
regions to be executed speculatively, while
letting the underlying transactional memory
system handle the complexity. In contrast
with this objective, transactional memory-
unaware compilers require the programmer
to instrument each transactional load and
store. We therefore need transactional-
memory-aware compilers, such as DTMC,
or transactional memory extensions of exist-
ing commercial compilers. In addition to
the simplicity aspect, transactional memory
awareness at the compiler level allows for
more optimization and lower runtime
overhead.

The operating system also must be aware
of the workload’s transactional memory-
specific aspects. For example, an important
challenge lies in the interaction of the task
scheduler and the transactional memory run-
time to optimally schedule threads perform-
ing transactions (for example, by avoiding
preempting threads inside transactions or
by serializing conflicting threads on the
same core to gain from locality).

Furthermore, the interaction between
speculatively executed code and irrevocable
actions such as I/Os requires being able
to detect the occurrence of such actions
and switch dynamically to an irrevocable
mode.

Finally, a general challenge is associated
with overall performance and spans the entire
transactional memory stack. The overhead
associated with transactional memory can
currently degrade performance and therefore
impact an application’s scalability. MICRO
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Compiègne, France.

Stephan Diestelhorst is a software engineer
2 at AMD’s Operating System Research
Center, Germany. He has a MSc in
computer science from Technische Universi-
tät Dresden, Germany.

Michael Hohmuth is a member of the
technical staff at AMD’s Operating System
Research Center, Germany. He has a Dr.-
Ing in Computer Science from the Tech-
nische Universität Dresden, Germany. He is
a member of the ACM.

Martin Pohlack is a senior software engineer
at AMD’s Operating System Research
Center, Germany. He has a Dr-Ing in
computer science from the Technische
Universität Dresden, Germany. He is a
member of EuroSys.

Adrián Cristal is a researcher and comanager
of computer architecture for parallel para-
digms at the Barcelona Supercomputing
Center and the Artificial Intelligence
Research Institute, Spanish National Re-
search Council. He has a PhD in computer
science from the Universitat Politècnica de
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