
The VerCors Tool for
Verification of Concurrent Programs

Stefan Blom and Marieke Huisman

Formal Methods and Tools, University of Twente, The Netherlands
{s.blom,m.huisman}@utwente.nl

Abstract. The VerCors tool implements thread-modular static verifi-
cation of concurrent programs, annotated with functional properties and
heap access permissions. The tool supports both generic multithreaded
and vector-based programming models. In particular, it can verify mul-
tithreaded programs written in Java, specified with JML extended with
separation logic. It can also verify parallelizable programs written in a
toy language that supports the characteristic features of OpenCL. The
tool verifies programs by first encoding the specified program into a much
simpler programming language and then applying the Chalice verifier to
the simplified program. In this paper we discuss both the implementation
of the tool and the features of its specification language.

1 Introduction

Increasing performance demands, application complexity and explicit multi-core
parallelism make concurrency omnipresent in software applications. However,
due to the complex interferences between threads in an application, concurrent
software is also notoriously hard to get correct. Therefore, formal techniques are
needed to reason about the behavior of concurrent programs. Over the last years,
program logics have proven themselves to be useful to reason about sequential
programs. In particular, several powerful tools for JML have been developed [5].
These techniques now are mature enough to lift them to concurrent programs.

The VerCors tool supports the thread-modular verification of multithreaded
programs. Modularity is achieved by specifying for each thread which variables
on the heap it can access, by means of access permissions, which can be divided
and combined, but not duplicated [8]. To read a location, any share of the access
permission to that location suffices. To write a location a thread needs 100% of
the access rights. Hence, if a thread has write permission to a location, no other
thread can read that location simultaneously. Moreover, if a thread has read
permission to a location, other threads can also only read this location. Thus
specifications that are sufficiently protected by permissions are interference-free.
Moreover, verified programs cannot contain data races.

Just as multi-core processors are ubiquitous, the same applies to GPU hard-
ware. Therefore, the VerCors tool also provides the functionality to reason about
kernels running on a GPU, where a large number of threads execute the same
instructions, each on part of the data.

2 Design of the VerCors Tool

Rather than building yet another verifier, the VerCors tool leverages existing
verifiers. That is, it is designed as a compiler that translates specified programs
to a simpler language. These simplified programs are then verified by a third-
party verifier. If there are errors then the error messages are converted to refer
to the original input code.

Chalice Boogie Z3

Java PVL
OpenCL

C

Tool
VerCors

back ends

input languages

Common Object Language

Fig. 1. VerCors tool architecture.

Figure 1 shows the overall architec-
ture of the tool. Its main input lan-
guage is Java. For prototyping, we use
the toy language PVL, which is a very
simple object-oriented language that can
express specified GPU kernels too. The
C language family front-end is work-in-
progress, but will support OpenCL in
the near future. We mainly use Chalice
[10], a verifier for an idealized concur-
rent programming language, as our back-end, but for sequential programs we
also use the intermediate program verification language Boogie [1].

The implementation of the tool is highly modular. Everything is built around
the Common Object Language data structure for Abstract Syntax Trees. For
Java and C, parsing happens in two passes. In the first pass an existing ANTLR4
[13] grammar is used to convert the program into an AST while keeping all com-
ments. In the second pass those comments that contain specifications are parsed
using a separate grammar. This prevents us from having to maintain heavily
modified grammars and makes it much easier to support multiple specification
languages. The process of encoding programs consists of many simple passes. Ob-
viously, this impacts performance, but it is good for reusability and checkability
of the passes. Our back-end framework allows switching between different ver-
sions, by setting up their command line execution using environment modules,
a system for dynamic access to multiple versions of software modules [11].

3 The VerCors Specification Language

The VerCors specification language has JML as a starting point, and adds fea-
tures from Chalice, and from Hurlin’s permission-based separation logic for con-
current Java [8], in order to be equally expressive as Hurlin’s logic.

Using JML as a starting point allows to reuse existing JML specifications.
However, JML’s support for framing (i.e., modifies clauses) is not precise enough
to be used in a concurrent setting. Instead we use access permissions Perm(e, π),
where e is an expression denoting a location on the heap (a field in Java) and π
is a percentage. To specify properties of the value stored at the location we just
refer to the location in our formulas. Thus, we are forced to check that every
expression is self-framed, i.e., we need to check that only locations for which we
have access permission are accessed. This is different from classical separation

logic, which uses the PointsTo primitive, which has an additional argument that
denotes the value of the location and cannot refer to the location otherwise. We
prefer the Perm primitive because it fits JML and Chalice best. The VerCors
tool supports PointsTo as syntactic sugar, which can be extended to full support.
Moreover, it is proven that the two logics are equivalent [12]. Another feature of
our logic is the notion of thread-local predicates, which are used to axiomatize
the lockset predicate that keeps track of the locks held by the current thread [8].

Like Chalice, the VerCors tool disallows disjunction between resources. It
does so by distinguishing the type resource from the type boolean. Thus, boolean
formulas allow all logical operators and quantifications, while resource formulas
are limited to the separating conjunction, separating implication (magic wand),
and universal quantification. In method contracts, pre- and postconditions are
of type resource.

VerCors’ specification language uses several features that are not natively
present in Chalice and thus have to be encoded. Resource predicates can have
an arbitrary number of arguments, whereas Chalice only allows the implicit this

argument. This is encoded by (partially) translating the formulas to witness ob-
jects. That is, instead of passing arguments to a predicate, we put the arguments
in an object and define a predicate (without arguments) on that object. This
translation also turns proof construction annotations into method calls. Magic
wands are encoded using a similar strategy of defining witness objects [3]. By
encoding complex specifications as data structures with simple specifications,
we gain the ability to verify complex specifications with existing tools. However,
these existing tools have no specific support for our data structures. Therefore,
we also have to provide proof scripts to guide the proof search in the encoded
program.

Below, we show a small example of a program in PVL that computes the
fibonacci numbers by forking new threads instead of making recursive calls.

class Fib { static int fib (int n)=n<2?1:fib(n−1)+fib(n−2);
2 int input , output;

requires perm(input,50) ∗ perm(output,100);
4 ensures perm(input,50) ∗ perm(output,100) ∗ output=fib(input);

void run() { if (input<2) { output := 1; }
6 else { Fib f1 := new Fib; f1 . input := input−1;

Fib f2 := new Fib; f2 . input := input−2;
8 fork f1 ; fork f2 ;

assert f1 . input=input−1 ∗ f2.input=input−2;
10 join f1 ; join f2 ;

output := f1 .output + f2.output; }}}

Note that we use Chalice notation for fractions: 50 means read-only and 100
means write access. Also note how on line 9, we use an assert to remind the
prover that because we can read the inputs to the threads, these inputs cannot
change. The Java version of this example is much longer and can be found on
the tool’s website [14].

In addition to verification of Multiple Instruction Multiple Data programs,
the VerCors tool also supports verification of Single Instruction Multiple Data

programs. Specifically, it supports reasoning about GPU kernels written in PVL.
The concept of a kernel is that a large number of threads, divided over one or
more working groups, all execute the same code, but each on part of the data.
These computations cannot synchronize, except for barrier synchronization of
the threads within a working group. Due to the lack of other synchronization
primitives, the resources available for redistribution at a barrier are precisely
those available to a working group at the start of the computation. This is
reflected by the fact that the required resources upon entering a barrier are
deduced by our tool instead of being specified by the user. Moreover, it means
that in future versions we can simplify the permission model to three values:
no access, read access, full access. Our kernel logic imposes proof obligations to
ensure that all resources are always properly distributed [4]. The tool verifies
these proof obligations by encoding them as specified methods and classes.

Below, we show a small example of a kernel. It displays a typical case: first
each of the gsize threads computes a value based on an unknown function f and
its identifier tid. Then the threads synchronize using a barrier and add their own
result to that of the preceding thread to get their final result:

global int [gsize] x, y;
2 requires perm(x[tid],100) ∗ perm(y[tid],100);

ensures perm(x[tid],100) ∗ (0<tid & tid<gsize −> x[tid]=f(tid)+f(tid−1));
4 void main(){

y[tid] := f(tid);
6 barrier (global){

requires y[tid]=f(tid);
8 ensures perm(x[tid],100) ∗ perm(y[tid],50) ∗ perm(y[(tid−1) mod gsize],50);

ensures y[tid]=f(tid) ∗ (tid>0 −> y[tid−1]=f(tid−1)); }
10 if (tid>0) { x[tid] := y[tid]+y[tid−1]; } }

4 Conclusion

This paper gives a brief overview of the VerCors tool set and its specification
language. The main application areas of the tool are MIMD programs written in
Java, using Java’s concurrency library, and SIMD applications, such as OpenCL
kernels. The tool website [14] contains additional information such as our col-
lection of verified examples, which can be tested with the online version of the
tool. These examples demonstrate reasoning about the fork/join pattern, reen-
trant locks, and about magic wands in specifications. Additionally, there are also
several verified kernel examples.

There are several other static verifiers that support reasoning about MIMD
programs, such as VCC [6] for C, VeriFast [9] for C and Java, jStar [7] for Java,
and Chalice [10] for an idealized concurrent language. The VCC tool has its own
permission system and does not use separation logic. The VeriFast and jStar
tools both use classical separation logic, with jStar being more limited (e.g. no
support for fractional permissions). The Chalice tool, like VerCors uses implicit
dynamic frames, which can be seen as a variant of separation logic [12]. The
distinguishing feature of the VerCors tool compared to the ones above is that it

supports specifications using the magic wand operator. Moreover, VerCors has
support for other concurrency models, such as the SIMD model used for GPU
kernels. Memory safety for kernels can also be checked with GPUVerify [2], but
additionally, VerCors can check functional correctness of kernels.

At the moment, the tool requires a considerable amount of annotations to
verify a program. To reduce this, we will work on automatic generation of spec-
ifications and also on identifying and implementing useful default specifications
and syntactic sugar. To turn the tool into a full-fledged verification tool, we have
to add support for reasoning about e.g., exceptions. Moreover, we will continue
the work on the C parser, so the tool can verify OpenCL.
Acknowledgement This work is supported by the ERC 258405 VerCors project
and by the EU FP7 STREP 287767 project CARP.

References

1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Formal Methods for
Components and Objects, volume 4111 of LNCS, pages 364 – 387. Springer, 2005.

2. A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. GPUVerify: a
verifier for GPU kernels. In OOPSLA’12, pages 113–132. ACM, 2012.

3. S. C. C. Blom and M. Huisman. Witnessing the elimination of magic wands. Tech-
nical Report TR-CTIT-13-22, Centre for Telematics and Information Technology,
University of Twente, Enschede, November 2013.

4. S. C. C. Blom, M. Huisman, and M. Mihelcic. Specification and verification of
gpgpu programs. Technical Report TR-CTIT-13-21, Centre for Telematics and
Information Technology, University of Twente, Enschede, November 2013.

5. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, and E. Poll.
An overview of JML tools and applications. STTT, 7(3):212–232, 2005.

6. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, TPHOLs, volume
5674 of LNCS, pages 23–42. Springer, 2009.

7. D. DiStefano and M. Parkinson. jStar: Towards practical verification for Java.
In ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 213–226. ACM Press, 2008.

8. C. Hurlin. Specification and Verification of Multithreaded Object-Oriented Pro-
grams with Separation Logic. PhD thesis, Université Nice Sophia Antipolis, 2009.

9. B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report
CW520, Katholieke Universiteit Leuven, 2008.

10. K. Leino, P. Müller, and J. Smans. Verification of concurrent programs with Chal-
ice. In Lecture notes of FOSAD, volume 5705 of LNCS, pages 195–222. Springer,
2009.

11. The environment modules project. http://modules.sourceforge.net.
12. M. Parkinson and A. Summers. The relationship between separation logic and

implicit dynamic frames. Logical Methods in Computer Science, 8(3:01):1–54, 2012.
13. T. Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.
14. The vercors tool online. http://www.utwente.nl/vercors/.

http://modules.sourceforge.net
http://www.utwente.nl/vercors/

	The VerCors Tool forVerification of Concurrent Programs

