
The Verification Grand Challenge
Jim Woodcock

Dept. of Computer Science, University of York,
York YO10 5DD, UK jim@cs.york.ac.uk

Richard Banach
School of Computer Science, University of Manchester,
Manchester M13 9PL, UK banach@cs.man.ac.uk

I. INTRODUCTION

In today’s world, the cost of malfunctioning software is truly
staggering. According to a report of the US Department of
Commerce’s National Institute of Standards and Technology,
the cost to the US economy alone could be as high as $60Bn
a year. If you multiply by three to include the impact on the
world as a whole, you reach a figure that exceeds the gross
national product of many countries. If the manufacturers of
everyday goods, such as cars, sold their products in the way
that sofware vendors sell theirs, i.e. without any waranty that is
worth anything to the purchaser, they would quickly go out of
business. The situation with software is clearly unsatisfactory.

What can be done about this? Formal techniques, for many
years the almost exclusive province of computer science
researchers, and in the teeth of many who claimed that they
were impractical for industrial sized applications, are reaching
a level of usability that will enable software manufacturers to
issue meaningful guarantees for their products. It is forseen
by many people working in this field, that this will prove
to be not only the cheapest way of achieving this level of
reliability, but possibly also the only way of doing so routinely.
As this vision slowly becomes a reality, the somewhat hit-and-
miss character of conventional software engineering, with its
dependence on unreliable testing as a means of discovering
the flaws created by an unpredictable software construction
process, will be replaced by a software construction process
with predictable properties, comparable with most mature
engineering disciplines.

This short paper overviews a ‘Grand Challenge’ programme
of work, initiated by the Formal Methods community, whose
goal is to accelerate the maturation of formal techniques to
the point where they are seen by the majority of the software
industry, as an ingredient in their activities that not only
delivers, but is eminently usable, and is financially convincing.

II. THE GRAND CHALLENGE

The Verification Grand Challenge (VGC) [1], [2], is an ambi-
tious, international, long-term research programme that seeks
to create a substantial and useful body of of code that has
been verified to the highest standards of rigour and accuracy.
It has a 15 year perspective, hoping in that time, to achieve
three major objectives:

• to establish a unified framework within which different
theories of program construction and verification may co-exist
and communicate productively;

• to build an integrated suite of tools to support all aspects
of verified software construction: requirements capture, spec-
ification, validation test-case generation, refinement, analysis,
verification, run-time chacking;
• to populate a repository of formally specified and verified
codes, that can not only serve as exemplars to convince others
of the utility and practicability of formal techniques, but that
also are seen as being useful in practice, and, ideally, that are
taken up and used in anger.

The verification of which we speak in principle embraces
any properties that are seen as significant for software. There
are functional correctness issues such as: conformance to
functional specification, type correctness, data consistency, nu-
merical accuracy, absence of runtime errors, termination, trans-
lation validation, memory leakage, serialisability etc. There are
also many nonfunctional issues such as: dependability, safety,
security, timeliness of response, deployability, maintainability
etc.

Initially, the VGC can set up the repository and populate
it with interesting and useful software artifacts. This will
provide a focus round which the remaining objectives can
congregate. Thus the existence of a growing family of verified
case studies will help to mobilize an international community
of researchers, and encourage the creation of tools that can
deal with the repository’s contents in a uniform and integrated
manner, backed up by suitable theory. So the repository is
a key early objective. Researchers have already proposed a
range of substantial problems to work on, including a verified
Apache Web Server, a reference TCP/IP implementation, and
the Linux Kernel.

III. A FIRST CASE STUDY: MONDEX

To get the ball rolling, an initial case study was proposed for
the repository, to be worked on during 2006: the mechanical
verification of the Mondex Electronic Purse. Mondex is a
smartcard purse application. That is to say it contains (in
digital form) real money, that can be traded in the same way
as cash. The idea is to make the electronic cash reflect the
properties of real cash as closely as possible. Thus, just as for a
£10 note, or a $10 note, or a Rp10 note, since the sole concern
of the note (once it is in the field) is to be unforgeable, so for
Mondex cash the overriding property is also non-forgeability.
Moreover, just as it is not the responsibility of the note to be
concerned about whether it is being transacted in an honest
way, or in a way in keeping with its current owner’s intentions,
it is not the responsibility of Mondex cash to check on who

owns it, or whether some transaction is as the Mondex cash’s
owner thinks it is.

Mondex was developed by NatWest, a UK high-street bank.
Since a genuine commercial enterprise (typically a bank such
as NatWest), must underwrite the funds contained in a product
like Mondex, in order to not undermine commercial confidence
in the bank the application must be as secure as possible.
Consequently, state-of-the-art techniques of the time (about ten
years ago) were used in the Mondex development. This meant
conformance to the UK standard for high-assurance systems
(the Information Technology Security standard, ITSEC [3]), at
its highest level, E6.1

ITSEC E6 demands that there is an abstract model and a
concrete model of the application, and that there is a proof
of correspondence between them. The abstract model should
reflect the desired properties of the system in the cleanest way
possible, while the concrete model should reflect the actual
implementation in a credible way. In the case of Mondex,
both models were written in the formal specification language
Z [5], [6], and the proof of correspondence was a hand-
performed refinement proof, showing that the actual Mondex
n-step concrete protocol was mathematically equivalent to an
abstract notion of transaction in which the the funds were
either transfered instantaneously, or were ‘lost in transit’ (the
latter possibility covering a range of scenarios in which the
environment prevented the completion of the protocol in the
normal way). Moreover, the properities of the n-step protocol
were such that even if funds were lost in transit, this fact itself
was knowable by the system as a whole, so that in such cases,
funds could be reliably restored to their rightful owner, in a
way that undermined neither the bank’s financial solidity, nor
customers’ confidence.

Following a rather conservative strategy, the original proto-
col design was done before the formal part of the development
was embarked on. The formal analysis revealed a flaw in
a secondary protocol, which was then fixed. The third-party
evaluators also found a flaw in one of the proofs, which was
also fixed. Following that, and somewhat uniquely for a gen-
uine commercially sensitive development, a sanitized version
of the Mondex formal development, authored by the principal
actors, was put in the public domain [7]. This reduced version
is about 230p. long. A further 100p. document [8] gives a
precise description of the notion of refinement used in the
development. At the time, most people believed that gaining
additional assurance, by checking the proofs mechanically, was
beyond the state of the art — a view that recent events have
shown to be overly pessimistic, as noted below. So the goal of
the VGC initial case study was to tackle the Mondex formal
development using today’s tools.

There are essentially two approaches to such a task. One
can take the original documentation, and attempt to verify it
‘straight out of the box’; one might call this an ‘archeology
driven’ approach. Alternatively, one could attempt to translate

1Nowadays, national standards such as ITSEC have been superseded by a
worldwide ISO standard called Common Criteria [4]. ITSEC E6 corresponds
to the highest Common Criteria level, EAL7.

the original into a different notation in order to be able to
use tools specific to the other notation; one might call this a
‘technology driven’ approach. In a sense, any approach which
does not deal directly with the original Z formulation contains
elements of technology.

A number of groups around the world took up one variant or
another of the Mondex challenge, using a number of contem-
porary formalisms and tools: Alloy [9] at the Massachusetts
Institute of Technology; Event-B [10] at the University of
Southampton; OCL [11] at the University of Bremen; Perfect
Developer [12] at Escher Technologies; RAISE [13] at the
University of the United Nations Macao and the the Technical
University of Denmark; Z [5], [6] at the University of York.
Another group, at the University of Augsburg, heard about
the Mondex endeavour after it had started, and decided to join
in, using ASMs [14]. We briefly review some of these efforts
now.

Z and Z/Eves at York

In a project such as the Mondex retrospective, there should be
at least one group which takes the original documentation at
100% face value, and attempts verification directly. It is thus
fitting that at York, the current affiliation of two of the authors
of [7], such a task was undertaken. Jim Woodcock and Leo
Freitas worked directly from the documentation in [7], and
attempted a mechanisation using the Z/Eves theorem prover.

With today’s experience of program proving, the Z/Eves
exercise fell within predictable boundaries. The close adher-
ence to the original hand-crafted proof meant that the greatest
challenge in such an undertaking, the discovery of exactly
the right invariants relating the different models, was already
overcome. As typically happens during full mechanisation,
some relatively small gaps in the proof that the humans had
overlooked came to light, and were fixed. Other small details,
handled efficiently by humans because of their ‘obvious’
nature, proved nevertheless surprisingly difficult to convince
a machine about. However, as a whole, the underlying proof
survived mechanical scrutiny unaltered. This archaeological
exercise revealed that the whole job could be done in a matter
of weeks.

The most notable thing is that Z/Eves has been in existence
and has not changed for 10 years or so. One therefore con-
cludes that this mechanisation could have been contemplated
and successfully carried through at the time of the original
Mondex development. What was lacking above all then, was
the belief that a theorem proving task on such a scale was
actually within the scope of the tools of the day, within a
reasonable timescale.

RAISE and PVS at Macao and DTU

Chris George from UNU and Anne Haxthausen from DTU
used the RAISE method and associated RSL specification
language [13] to examine the Mondex proof, verifying the
RSL text by translation into the input language of the PVS
theorem prover [15]. While starting from a fairly faithful
representation of the original, they rapidly found that it led

to inconvenient and unidiomatic RSL. So they decided to
develop their own versions of the models. This classes the
work as technology driven. The price to be paid for this is
that the delicate invariants, painstakingly discovered by the
original developers, no longer worked, and new ones had to
be constructed, a time consuming process. Also, the discovery
of the tactics to guide PVS in the efficient discharge of various
proofs, turned out to be another significant challenge.

Pefect Developer at Escher Technologies

Perfect Developer from Escher Technologies [12], is a modern
tool that allows the user to specify his desired system at a
high level in an object oriented style, after which an automatic
refinement phase can be invoked to turn the specification into
working code. The automatic refinement can be replaced by
a hand crafted one, after which the tool attempts to prove it
correct automatically. Parts of the proof that do not go through
automatically are left for the user to handle by interacting with
the tool.

One technical snag that that Escher’s David Crocker hit
quite quickly, was that the original Mondex proof uses ‘back-
ward simulation refinement’ whereas Perfect Developer is
designed for ‘forward simulation refinement’ (see [16] for a
discussion of the difference between the two).2 The Mondex
specification was therefore reformulated in a way that was
closer to the distributed nature of the actual protocol, after
which, this evidently technology driven project was completed
in about 60 hours work.

ASMs and KIV at Augsburg

Gerhard Schellhorn and the Augsburg team came to the
Mondex challenge indpendently, and started rather later than
other groups. Nevertheless they completed the verification of
the entire inter-purse protocol at the end of January 2006,
after a month’s work, and were the first group to complete
the whole challenge. The scope of their work is considerable.
They formalised the theory of backward simulation used in
the original Mondex development within the KIV theorem
prover [18], and showed that it constituted a valid notion of
refinement. They then formulated the abstract and concrete
Mondex models using the ASM formalism, and showed that
these models constituted a valid instance of the backward
simulation theory, all within KIV [19]. It has to be said
that Gerhard and his team have had significant experience
of formalising different kinds of refinement notion in KIV,
and of proving system developments to be instances of such
refinements, but this fact in no way detracts from the scale of
their achievement.

The team have built upon their initial success. More recently
they have taken the forward simulation approach to Mondex
advocated in [17], and have developed it into a fully me-
chanically verified generalised forward simulation treatment
of Mondex [20].

2Following a recent re-examination of the Mondex protocol motivated by
different considerations [17], the prospects for a forward refinement between
the Mondex abstract and concrete models have now been very much improved.

IV. AFTER MONDEX

The Mondex verification pilot project showed that the verifi-
cation community is appreciative of the benefits that technical
confluence brings, and finds them attractive and convincing.
The cross-fertilisation between projects that has been seen
in the Mondex pilot is a foretaste of the wider common
vision that the VGC hopes to foster. Thus the VGC envisages
following up the Mondex case study with a series of projects
of gradually greater scope and complexity.

Candidate projects for such a followup role share a number
of characteristics that makes them attractive to the verification
community. First and foremeost, they must be of sufficient
size that it is evident that customary software development
techniques will not guarantee their correctness. Secondly, they
must nevertheless be of a size within the reach of today’s
tools, given reasonable investment in manpower. So a system
of several tens of millions of lines of code would be too
large to be practicable, even though one might be able to
check such a system for specific properties using a tailor-made
static checker (as happens these days for WindowsTM). Within
broad limits, a system of around a hundred thousand lines of
code is in the right ballpark. Thirdly, there must be adequate
documentation for the system available in the public domain,
so that all who wish to tackle such a project can share the
same starting conditions.

Beyond these points, if a system has a wider impact than
that of simply being a verification exercise, then so much the
better. The ideal would be that a fully verified implementation
would be created, and that this would then become the ‘pref-
ered implementation’ worldwide. The more such reference
implementations that could be created, the more powerful
would the message be that the VGC proclaimed to potentially
skeptical observers.

V. A VERIFIABLE FILE STORE

A proposal for a first successor to Mondex comes from
NASA’s Jet Propulsion Laboratory. Rajeev Joshi and Gerald
Holzmann have suggested the creation of a verifiable file store.
This is a good suggestion for a number of reasons.

File systems are ubiquitous within the world of computers,
and since —-independently implemented backup measures
aside— all computer data is entrusted to them, the importance
of their correct working can hardly be underestimated. Widely
used file systems still contain serious bugs that can result
in the loss of the entire filestore contents. There is much
public domain documentation available on file systems, thus
putting such a project within the scope of many teams —
the Posix standard constitutes a widely known reference point
for many systems. Also there are many approaches that one
could contemplate for the verifiable file store. One could start
from scratch, drawing up a formal definition of the file system
starting from the informal (but quite precise) Posix standard,
and then develop this specification to code in a verifiable way.
Alternatively, one could take an existing implementation, and
attempt to prove it (or a close variant derived as a result of the

verification process), correct with respect to a suitably drawn
up specification.

An interesting aspect of file system correctness goes be-
yond mere functional correctness, i.e. beyond whether the file
system’s data structures and code can store and retrieve data
without running into logical flaws. File systems interact with
physical media, such as magnetic and optical media, and these
days increasingly, flash memory. Each of these has its own in-
dividual physical characteristics; beyond which, they all share
the possibility of power failure. To be acceptable to users in
terms of not experiencing unexpected unrecoverable failures,
a file system must take such properties into consideration,
and where necessary, modify its interactions with the physical
media so as to remain within appropriate parameters.

Flash memory is particularly interesting in this respect. It
typically has an upper limit on block usage (say 100,000
uses), blocks can unexpectedly become unusable, bits can
flip at random, etc. Developing a file system that is built on
such physically shaky foundations, and yet is sufficiently de-
pendable over a reasonably long period, poses significant and
interesting challenges. The problems are compounded when
you consider that critical software can typically only allocate
memory during initialisation, in order to enable static analysis
techniques to verify properties of the code in a sufficiently
asssured manner. NASA has a particular motivation for seeing
the development of such a flash-based filestore, because of the
great attractiveness of using non-moving bulk data storage on
space missions.3

VI. CONCLUSIONS

We have known for a long time that much software is not
as reliable as products in other walks of life. One factor in
this is that software is easy to create —personal computers
are now relatively cheap, and bits themselves cost nothing, so
‘anyone’ can set about creating software— whereas normal
manufactured goods need specialist processes run by trained
personnel. Another factor is that a large piece of software has a
high complexity, and the nature of its basic ingredients is very
brittle —we all know that an unfortunate error in a single bit
can have catastrophic consequences for the whole package—
whereas in other walks of life, there is much more scope for
‘graceful degradation’.

The potentially anarchic capabilities of a single inappropri-
ately set bit mean that rather draconian measures are needed
if one is to be sure that software performs reliably. These go
beyond traditional notions of ‘correctness’ for self contained
programs, since it is often a failure to appreciate some poorly
understood interaction with the environment or interaction
between components or subsystems that is the root cause of
the bit having become inappropriately set in the first place.

3In space, spinning up a disk transfers angular momentum from the body of
the spacecraft to the disk. This causes the body of the spacecraft to rotate in
the opposite direction, potentially causing the spacecraft to lose its orientation
in the sky if the rotation is not compensated for by firing correction rockets
just the right amount. Spinning the disk down causes the converse problem. In
space, accessing data is just as much a problem of mechanics as of computer
science.

(One can mention the famous Mars Polar Lander disaster [21]
as being a case in point. Poor integration of subsystems meant
that the jolt of deployment of a landing leg erroneously set a
bit signalling landing, causing the engines to be switched off
too early.)

The VGC has all of this in its remit, and with this breadth
in mind, is keen to welcome new participants that share its
vision and would wish to contribute to its goals. In this paper
we have described the first few steps along the road, and these
certainly bode well for the future. And whereas in the past
there was much reluctance to adopt verification tachniques
within the ‘mainstream,’ the more powerful tools that are being
created nowadays are much more persuasive that in future,
verification tachniques will add genuine value to mainsteam
software processes.

REFERENCES

[1] QPQ Deductive Software Repository,
http://qpq.csl.sri.com.

[2] Verified Software: Theories, Tools, Experiments Conference,
http://vstte.ethz.ch.

[3] Information Technology Security Evaluation Criteria, Department of
Trade and Industry, 1991, http://www.cesg.gov.uk/site/
iacs/itsec/media/formal-docs/Itsec.pdf.

[4] Common Criteria for Information Security Evaluation, ISO 15408, v.
3.0 rev. 2, 2005.

[5] J. Spivey, The Z Notation: A Reference Manual, 2nd ed. Prentice-Hall,
1992.

[6] Information Technology – Z Formal Specification Notation – Syntax,
Type System and Semantics: International Standard, ISO/IEC 13568,
2002,
http://www.iso.org/iso/en/ittf/PubliclyAvailable
Standards/c021573 ISO IEC 13568 2002(E).zip.

[7] S. Stepney, D. Cooper, and J. Woodcock, “An Electronic Purse: Speci-
fication, Refinement and Proof,” Oxford University Computing Labora-
tory, Tech. Rep. PRG-126, 2000.

[8] D. Cooper, S. Stepney, and J. Woodcock, “Derivation of Z Refinement
Proof Rules,” University of York, Tech. Rep. YCS-2002-347, 2002.

[9] Alloy Homepage, http://alloy.mit.edu/.
[10] J.-R. Abrial, Event-B, to be published.
[11] OCL Definition,

http://www.omg.org/docs/ptc/03-10-14.pdf.
[12] Escher Technologies, http://www.eschertech.com.
[13] RAISE Method Group, The RAISE Method Manual. Prentice Hall,

1995.
[14] E. Börger and R. Stärk, Abstract State Machines. A Method for High

Level System Design and Analysis. Springer, 2003.
[15] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal verification

for fault-tolerant architectures: Prolegomena to the design of PVS,” IEEE
Transactions on Software Engineering, vol. 21, no. 2, pp. 107–125,
February 1995.

[16] W.-P. de Roever and K. Engelhardt, Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge University Press,
1998.

[17] R. Banach, M. Poppleton, C. Jeske, and S. Stepney, “Retrenching
the Purse: The Balance Enquiry Quandary, and Generalised and (1,1)
Forward Refinements,” Fund. Inf., vol. 77, pp. 29–69, 2007.

[18] The Karlsruhe Interactive Verifier, http://i11www.iti.uni-
karlsruhe.de/˜kiv/KIV-KA.html.

[19] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif, “The Mondex
Challenge: Machine Checked Proofs for an Electronic Purse,” in Proc.
FM 2006, ser. LNCS, J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol.
4085. Springer, 2006, pp. 16–31.

[20] G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and W. Reif, “A
Systematic Verification Approach for Mondex Electronic Purses using
ASMs,” in Proc. Dagstuhl Workshop on Rigorous Methods for Software
Construction and Analysis, ser. LNCS Festschrift. Springer, 2007.

[21] Mars Polar Lander Disaster, http://news.bbc.co.uk/2/hi/
science/nature/4522291.stm.

