
The Verifying Compiler: A Grand Challenge for
Computing Research

C.A.R. Hoare

Microsoft Research Ltd.,
7 JJ Thomson Ave,

Cambridge CB3 0FB, UK
thoare@microsoft.com

Abstract. I propose a set of criteria which distinguish a grand challenge
in science or engineering from the many other kinds of short-term or
long-term research problems that engage the interest of scientists and
engineers.
The primary purpose of the formulation and promulgation of a grand
challenge is to contribute to the advancement of some branch of science
or engineering. A grand challenge represents a commitment by a signifi-
cant section of the research community to work together towards a com-
mon goal, agreed to be valuable and achievable by a team effort within
a predicted timescale. The challenge is formulated by the researchers
themselves as a focus for the research that they wish to pursue in any
case, and which they believe can be pursued more effectively by advance
planning and co-ordination. Unlike other common kinds of research ini-
tiative, a grand challenge should not be triggered by hope of short-term
economic, commercial, medical, military or social benefits; and its initi-
ation should not wait for political promotion or for prior allocation of
special funding. The goals of the challenge should be purely scientific
goals of the advancement of skill and of knowledge. It should appeal not
only to the curiosity of scientists and to the ambition of engineers; ideally
it should appeal also to the imagination of the general public; thereby it
may enlarge the general understanding and appreciation of science, and
attract new entrants to a rewarding career in scientific research.
As an example drawn from Computer Science, I revive an old challenge:
the construction and application of a verifying compiler that guarantees
correctness of a program before running it. A verifying compiler uses
automated mathematical and logical reasoning methods to check the
correctness of the programs that it compiles. The criterion of correctness
is specified by types, assertions, and other redundant annotations that
are associated with the code of the program, often inferred automati-
cally, and increasingly often supplied by the original programmer. The
compiler will work in combination with other program development and
testing tools, to achieve any desired degree of confidence in the structural
soundness of the system and the total correctness of its more critical com-
ponents. The only limit to its use will be set by an evaluation of the cost
and benefits of accurate and complete formalization of the criterion of
correctness for the software.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, p. 1, 2003.
c© Springer-Verlag Berlin Heidelberg 2003


