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Abstract. Given a lattice polytopeQ ⊆ R
n, we define an affine schemeM̄

that reflects the possibilities of splittingQ into a Minkowski sum. Denoting by
Y the toric Gorenstein singularity induced byQ, we construct a flat family over
M̄ with Y as special fiber. In caseY has an isolated singularity, this family is
versal.

1 Introduction

(1.1) The whole deformation theory of an isolated singularity is encoded in
its so-called versal deformation. For complete intersection singularities this is a
family over a smooth base space obtained by certain perturbations of the defining
equations.

As soon as we leave this class of singularities, the structure of the family,
and sometimes even the base space, will be more complicated. It is well known
that the base space may consist of several components or may be non-reduced.
In (9.2) we will present a (three-dimensional) example of a singularity admitting
a fat point as base space of its versal deformation.

For two-dimensional cyclic quotient singularities (coinciding with the two-
dimensional affine toric varieties), the computations of Arndt, Christophersen,
Koll ár/ Shepherd-Barron, Riemenschneider, and Stevens provide a description of
the versal family - in particular, the number and dimension of the components
of the reduced base (these components are smooth) are computed.

Christophersen observed that the total spaces over these components are toric
varieties again (cf. [Ch]). This suggests that the entire deformation theory of affine
toric varieties might remain inside this category. It should be a challenge to find
the versal deformation, its base space, or the total spaces over the components
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by purely combinatorial methods.

(1.2) Affine toric varieties are constructed from rational, polyhedral conesσ ⊆
R

n+1: One takes the dual cone

σ∨ := {r ∈ (Rn+1)∗ | 〈a, r 〉 ≥ 0 for eacha ∈ σ} ,
and Yσ is defined as the spectrum of the semigroup algebraC[σ∨ ∩ (Zn+1)∗].
In particular, equations ofYσ are induced from affine relations between lattice
points ofσ∨ ⊆ (Rn+1)∗. In the following we will no longer differentiate between
R

n+1 and its dual space; however, for vectors, we will try to use parentheses
and brackets for primal and dual ones, respectively. See [Ke] or [Od] for an
introduction into the subject of toric varieties.

For investigating versal deformation spaces, Gorenstein singularities could
serve as the first class to study beyond complete intersections. Ishida gave a
nice description of this class inside toric varieties (cf. [Ish], Theorem 7.7):Yσ is
Gorenstein if and only ifσ equals the cone over some lattice polytopeQ ⊆ R

n

(i.e. its vertices are lattice points) embedded into height one.
Therefore, our point of view will be the following: Given a lattice polytope

Q ⊆ R
n, we want to study the deformation theory of the affine, toric variety

Yσ with σ := Cone(Q) ⊆ R
n+1. Examples of these singularities are Del Pezzo

surfaces of degree≥ 6 (cf. (9.1)).

(1.3) The main tool to describe our results is the notion of Minkowski sums:

Definition. For two polytopes P,P′ ⊆ R
n we define their Minkowski sum as the

polytope P+ P′ := {p + p′ | p ∈ P, p′ ∈ P′}. Obviously, this notion also makes
sense for translation classes of polytopes.

�
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(See (9.3) for another illustration of this notion.) Each Minkowski summand of
a given polytopeQ ⊆ R

n (or some multiple ofQ) contains, up to the length, the
same edges asQ itself. This fact enables us to handle the “moduli space”C(Q)
of Minkowski summands which is a polyhedral cone (cf. (2.2)).

Attaching each Minkowski summand at the point that represents it inC(Q)
yields the so-called tautological coneC̃(Q) together with a projection ontoC(Q).
Its construction is very similar to that of a universal bundle, and indeed, apply-
ing the functor that makes toric varieties from cones will provide the main step
toward constructing the versal base space ofYσ (cf. Sect. 4).

(1.4) For a given lattice polytopeQ ⊆ R
n with primitive edges, i.e. they do

not contain any interior lattice points, we begin in Sect. 2 with describing an
affine schemeM̄ which seems to be interesting independently from the toric or
deformation context. It describes the possibilities of splittingQ into Minkowski
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summands. The underlying reduced space is an arrangement of planes corre-
sponding to those Minkowski decompositions involving summands that are lattice
polytopes themselves. Since all the proofs are based on quite the same method,
we have collected them in a separate section. Each theorem of Sect. 2 can be
translated into an easier language and corresponds to a certain lemma of Sect. 3.

In Sect. 4 we study the tautological coneC̃(Q). This leads in Sect. 5 to the
construction of a flat family overM̄ with Yσ (σ = Cone(Q)) as special fiber.
Note that forYσ the assumption ofQ having primitive edges means smoothness
in codimension two. Computing the Kodaira-Spencer map (in Sect. 6) as well as
the obstruction map (in Sect. 7) shows that for isolated singularities the family is
versal (nevertheless trivial for dimQ ≥ 3, cf. (6.3)). Its components are described
in Sect. 8.

In the general case, the Kodaira-Spencer map is an isomorphism onto the
homogeneous part ofT1

Y with the most interesting multidegree (cf. Theorem
(6.2)), and the obstruction map is still injective (cf. Theorem (7.2)).

Throughout the paper, an example accompanies the general theory. Further
examples can be found in Sect. 9.

(1.5) Acknowledgements:I am very grateful to Duco van Straten and Theo de
Jong for constant encouragement and valuable hints.

This paper was written during a one-year stay at MIT. I would like to thank
Richard Stanley and all the other people who made it possible for me to work
at this very interesting and stimulating place.

2 The Minkowski scheme of a lattice polytope

(2.1) Let Q ⊆ R
n be a lattice polytope, i.e. the vertices are contained inZ

n. We
will always assume that the edges do not contain any interior lattice points. Hence,
after choosing orientations they are given by primitive vectorsd1, . . . , dN ∈ Zn.

Definition. For every 2-faceε < Q we define its sign vectorε = (ε1, . . . , εN ) ∈
{0,±1}N by

εi :=

{ ±1 if d i is an edge ofε
0 otherwise

such that the oriented edgesεi · di fit into a cycle along the boundary ofε. This
determinesε up to sign, and we choose one of both possibilities. In particular,∑

i εi di = 0.

Example.Let us introduce the following example, which will be continued
throughout the paper: ForQ we take the hexagon

Q6 := Conv{(0, 0), (1, 0), (2, 1), (2, 2), (1, 2), (0, 1)} ⊆ R
2.
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hexagonQ6

Starting withd1 := (0, 0)(1, 0), the anticlockwise oriented edges are denoted by
d1, . . . , d6. As vectors they equal

d1 = (1, 0) ; d2 = (1, 1) ; d3 = (0, 1) ;

d4 = (−1, 0) ; d5 = (−1,−1) ; d6 = (0,−1) .

Q6 is 2-dimensional, hence, it is its own unique 2-faceε = Q. For Q we take
Q = (1, . . . , 1).

(2.2) We define the vector spaceV ⊆ R
N by

V := V (Q) := {(t1, . . . , tN ) |
∑

i

ti εi di = 0 for every 2-faceε < Q}.

Then,C(Q) := V ∩ RN
≥0 is obviously a rational, polyhedral cone inV .

Lemma. The points of C(Q) correspond to the Minkowski summands of positive
multiples of Q.

Proof. For an element (t1, . . . , tN ) ∈ C(Q), the corresponding summandQt is
built by the edgesti ·di (i = 1, . . . ,N ) as follows: Assume that 0∈ Rn coincides
with some vertex of the lattice polytopeQ. Then, each vertexa of Q can be
reached from 0 by some walk along the edges ofQ. We obtain

a =
N∑

i =1

λi di for someλ = (λ1, . . . , λN ) , λi ∈ Z.

Now, given an elementt ∈ C(Q), we may define the corresponding vertexat by

at :=
N∑

i =1

ti λi di .

The linear equations definingV = spanC(Q) ensure that this definition does
not depend on the particular path from 0 toa through the 1-skeleton ofQ. The
polytopeQt is defined as the convex hull of all theat . Finally, it is clear that all
Minkowski summands arise in this way. �
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For a particular Minkowski summandQ′ we will denote the corresponding point
in the cone by%(Q′) ∈ C(Q).

Example.1) Applying %, the two splittings ofQ6 drawn in (1.3) become

(1, 1, 1, 1, 1, 1) = (1, 0, 1, 0, 1, 0) + (0, 1, 0, 1, 0, 1)

= (1, 0, 0, 1, 0, 0) + (0, 0, 1, 0, 0, 1) + (0, 1, 0, 0, 1, 0) .

2) In any case we have%(t ·Q) = (t , . . . , t) ∈ C(Q) ⊆ V ⊆ R
N .

(2.3) For each 2-faceε < Q and for each integerk ≥ 1 we define the (vector
valued) polynomial

gε,k(t) :=
N∑

i =1

t k
i εi di .

Using coordinates ofRn, the gε,k(t) become regular polynomials; for each pair
(ε, k) we will get two linearly independent ones. We obtain an ideal

J :=
(
gε,k | ε < Q, k ≥ 1

) ⊆ C[t1, . . . , tN ]

which defines an affine closed subscheme

M := SpecC[t ]
/
J ⊆ VC ⊆ C

N .

Example.For our hexagonQ6 introduced in (2.1) we obtain

J =
(
t k
1 + t k

2 − t k
4 − t k

5 , t k
2 + t k

3 − t k
5 − t k

6 | k ≥ 1
)
.

Of course, finitely many polynomials are sufficient to generate the idealJ - but
we can even give an effective criterion to see which equations may be dropped:

Proposition. Let ε < Q be a 2-face. Thenε is contained in a two-dimensional
subspace ofRn, and this vector space comes with a natural lattice (the restriction
of the big latticeZn).

If ε is contained in two different strips defined by pairs of parallel lines of
lattice-distance≤ k0 each, then the equationsgε,k (k > k0) are contained in the
ideal generated bygε,1, . . . , gε,k0.

Proof. cf. (3.3).

Example.Obviously,Q6 is contained in at least three different strips of thickness
2. Hence,J is generated by polynomials of degree≤ 2:

J = (t1 + t2 − t4 − t5, t2 + t3 − t5 − t6, t2
1 + t2

2 − t2
4 − t2

5 , t2
2 + t2

3 − t2
5 − t2

6

)
.

(2.4) Denote by` the canonical projection
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` : CN −→−→ C
N/
C · (1, . . . , 1) = C

N/
C · %(Q) .

On the level of regular functions this corresponds to the inclusionC[ti − tj | 1≤
i , j ≤ N ] ⊆ C[t1, . . . , tN ].

Theorem. (See also Remark (4.4))

(1) J is generated by polynomials fromC[ti − tj ], i.e. M = `−1(M̄) for some

affine closed subschemeM̄ ⊆ VC
/
C · %(Q) ⊆ C

N/
C · %(Q) . M̄ is defined

by the idealJ ∩ C[ti − tj ].

(2) J ⊆ C[t1, . . . , tN ] is the smallest ideal that meets property (1) and, on the
other hand, contains the “toric” equations

N∏
i =1

td+
i

i −
N∏

i =1

t
d−i
i with

d ∈ ZN ∩ span
{

[〈ε1d1, c〉, . . . , 〈εN dN , c〉] | ε < Q 2-face, c ∈ Rn
}

. (For an
integerh we denote

h+ :=

{
h if h ≥ 0
0 otherwise

; h− :=

{
0 if h ≥ 0
−h otherwise

.)

Proof. cf. (3.4).

Example.Toric equations forQ6 are for instancet1 t2 − t4 t5, t2 t3 − t5 t6, and
t1 t6 − t3 t4.

(2.5) We want to describe the structure of the underlying reduced spaces of
M or M̄. Let Q = R0 + . . . + Rm be a decomposition ofQ into a Minkowski
sum ofm + 1 lattice polytopes. Then, theN -tuples%(R0), . . . , %(Rm) have entries
0 and 1 only, and they sum up to (1, . . . , 1). In particular, the (m + 1)-plane
C · %(R0) + . . . + C · %(Rm) ⊆ C

N is contained inM. It is given by the linear
equationsti − tj = 0 if di , dj belong to a common summandRv.

Refinements of Minkowski decompositions (they form a partially ordered set)
correspond to inclusions of the associated planes.

Theorem. Mred equals the union of those flats corresponding to maximal
Minkowski decompositions of Q into lattice summands.̄Mred consists of their
images vià .

Proof. cf. (3.5).

Example.M(Q6) andM̄(Q6) are reduced schemes (for non-reduced examples
cf. Sect. 9). Let us study them directly:
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– The linear equations allow the following substitution:

t := t1
s1 := t1 − t3
s2 := t4 − t2
s3 := t1 − t4

t1 = t
t2 = t − s2 − s3

t3 = t − s1

t4 = t − s3

t5 = t − s2

t6 = t − s1 − s3 .

– The two quadratic equations transform intos1 s3 = s2 s3 = 0.

In particular,M̄ is the union of a line and a 2-plane - corresponding to the
Minkowski decompositions

Q6 = Conv{(0, 0), (1, 0), (1, 1)} + Conv{(0, 0), (0, 1), (1, 1)} and
Q6 = Conv{(0, 0), (1, 0)} + Conv{(0, 0), (0, 1)} + Conv{(0, 0), (1, 1)}

already mentioned in (2.2) and depicted in (1.3).

(2.6) M̄ (or M = `−1(M̄)) reflects the possibilities of Minkowski decompo-
sitions ofQ:

– The underlying reduced space encodes the decompositions ofQ into lattice
summands.

– Extremal decompositions into rational summands are hidden in the scheme
structure ofM̄.
Its tangent space in 0 (the smallest affine space containinḡM) equals
VC
/
C · %(Q) - it is the vector space arising from the coneC(Q) of Minkowski

summands by killing the summands homothetic toQ.

Therefore, we will callM̄ the (affine)Minkowski schemeof Q.

3 Proofs of the statements of Sect. 2

(3.1) Using vectorsc ∈ Z
N (or certainc ∈ R

N ) we can evaluate the edges
d1, . . . , dN to get integers

d1 := 〈ε1d1, c〉, . . . , dN := 〈εN dN , c〉
for every given 2-faceε < Q. Doing so, the statements of Sect. 2 can be reduced
to much simpler lemmas which will be presented here. Then, all these lemmas
are proved using the following recipe:

(i) Assumedi = ±1 - then the lemmas reduce to well known facts concerning
symmetric functions.

(ii) Move to the general case by specialization of variables.
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(3.2) For the whole Sect. 3 we use the following notation:

Let d1, . . . , dN ∈ Z such thatd1, . . . , dM ≥ 0, dM +1, . . . , dN ≤ 0, and
∑N

i =1 di =
0 .

gk(t) := gd,k(t) :=
∑N

i =1 di tk
i ,

p(t) := pd(t) := td1
1 · . . . · tdM

M − tdM +1
M +1 · . . . · tdN

N .

Denote byσk andsk the k-th elementary symmetric polynomial and the sum of
the k-th powers of a given set of variables, respectively.

Remark.For 1≤ i , j ≤ M or M + 1≤ i , j ≤ N , identifying the two variablesti
and tj (i.e. switching fromC[t ] to C[t ]/ti − tj ) yields the following situation:

– ti , tj are replaced by a common new variablet̃ (i.e. N is replaced byN − 1),
– di , dj are replaced bỹd := di + dj , but
– gk(t), p(t) keep their shapes in the new set up.

In particular, the general situation can always be obtained via factorization from
the special cased1 = . . . = dM = 1; dM +1 = . . . = dN = −1 (and N = 2M ).
Renamingti = xi , tM +i = yi (i ≤ M ) it looks like

gk(x, y) =
(∑M

i =1 xk
i

)
−
(∑M

i =1 yk
i

)
= sk(x)− sk(y) ,

p(x, y) = (x1 · . . . · xM )− (y1 · . . . · yM ) = σM (x)− σM (y).

(3.3) Lemma. If k0 :=
∑M

i =1 di = −∑N
i =M +1 di , then the polynomialsgk (k > k0)

areC[t ]-linear combinations ofg1, . . . , gk0. (This implies Proposition (2.3).)

Proof. As previously discussed, we may regard the special casedi = ±1. In
particular, k0 = M . Now, for an arbitraryk (> M ), the expressionsk(x) is a
polynomial ins1(x), . . . , sM (x), say

sk(x) = Pk (s1(x), . . . , sM (x)) .

Then,

gk(x, y) = sk(x)− sk(y) = Pk (s1(x), . . . , sM (x))− Pk
(
s1(y), . . . , sM (y)

)
,

and for each monomialsr1
1 sr2

2 . . . srM
M occurring inPk , we have

s1(x)r1 · . . . · sM (x)rM − s1(y)r1 · . . . · sM (y)rM =

=
M∑
v=1

rv∑
i =1

[sv(x)− sv(y)] · s1(x)r1 . . . sv−1(x)rv−1 sv(x)i−1

·sv(y)rv−i sv+1(y)rv+1 . . . sM (y)rM

=
M∑
v=1

gv(x, y) ·
( rv∑

i =1

s1(x)r1 . . . sv−1(x)rv−1 sv(x)i−1

·sv(y)rv−i sv+1(y)rv+1 . . . sM (y)rM

)
,
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proving the lemma. �

(3.4) Lemma. (implying Theorem (2.4))

(1) The idealJ := (gk | k ≥ 1) ⊆ C[t1, . . . , tN ] is generated by polynomials in
ti − t1 (i = 2, . . . ,N ) only.

(2) J is the smallest ideal generated by polynomials in ti − t1, which additionally
contains p.

Proof. (1) Replacingti by ti − t1 as arguments ingk yields

gk(t1 − t1, . . . , tN − t1) =
N∑

i =1

di (ti − t1)k =
N∑

i =1

di ·
(

k∑
v=0

(−1)v tv1 t k−v
i

)

=
k∑
v=0

(−1)v tv1 ·
(

N∑
i =1

di tk−v
i

)
=

k∑
v=0

(−1)v tv1 gk−v(t).

In particular,
(
gk(t) | k ≥ 1

)
and

(
gk(t − t1) | k ≥ 1

)
are the same ideals inC[t ].

(2) Each polynomialq(t) can be written uniquely as

q(t) =
∑
v≥0

qv(t2 − t1, . . . , tN − t1) · tv1 .

If J ⊆ C[t ] is an ideal generated by polynomials int − t1 only, then for each
q(t) ∈ J the componentsqv are automatically contained inJ , too. Hence, we
should look for the components of the polynomialp. In the polynomial ring
C[X,Y ,T] we know that

p(T + X,T + Y) = (T + X1) · . . . · (T + XM )− (T + Y1) · . . . · (T + YM )

hasσk(X) − σk(Y) as coefficient ofTM−k (k = 1, . . . ,M ). On the other hand,
there is a polynomialPk and a non-vanishing rational numberck (not depending
on M ) such that

σk(X) = Pk(s1(X), . . . , sk−1(X)) + ck · sk(X).

As in the proof of the previous lemma we obtain

σk(X)− σk(Y) = Pk(s1(X), . . . , sk−1(X))− Pk(s1(Y), . . . , sk−1(Y))

+ck · sk(X)− ck · sk(Y)

=
k−1∑
v=1

qv(X,Y) · gv(X,Y) + ck · gk(X,Y)

for some coefficientsqv. Specialization (first byT 7→ x1, Xi 7→ xi − x1, Yi 7→
yi − x1, then followed by the usual one) shows that the ideal generated by the
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componentspv(t − t1) of p equalsJ . �

(3.5) Lemma. Let c = (c1, . . . , cN ) ∈ C
N be a point such thatgk(c) = 0 for

each k≥ 1. Then, for every fixed c∈ C, we have
∑

ci =c di = 0. (This implies
Theorem (2.5).)

Proof. The equations
∑N

i =1 di ck
i = 0 present 0 as a linear combination of the vec-

tors (ci , c2
i , c

3
i , . . .). On the other hand, the Vandermonde tells us that this linear

combination has to be a trivial one, i.e. the sum of the coefficientsdi belonging
to equal variables vanishes. �

4 The tautological cone overC(Q)

(4.1) In (2.2) we have introduced the coneC(Q) of Minkowski summands of
R≥0 · Q. For an element (t1, . . . , tN ) ∈ C(Q) the corresponding summandQt

was built by the edgesti ·di (i = 1, . . . ,N ). Now, we paste the summands at the
points they are assigned to:

Definition. The tautological conẽC(Q) ⊆ R
n × V ⊆ R

n+N is defined as

C̃(Q) := {(a, t) | t ∈ C(Q); a ∈ Qt}.
It comes with a natural projectioñC(Q) → C(Q).

C̃(Q) is (asC(Q)) a rational, polyhedral cone. It is generated by the pairs
(ai

t j , t j ) with

• ai a vertex ofQ and
• t j a fundamental generator ofC(Q).

This follows from the simple rule (at+t ′ , t + t ′) = (at , t) + (at ′ , t ′) for vertices
a ∈ Q and t , t ′ ∈ C(Q). Defining σ := Cone(Q) ⊆ R

n+1 by putting Q into
the hyperplane (t = 1), we obtain a fiber product diagram of rational polyhedral
cones:

(The horizontal maps are projections onto theV and the (n+1)-th component,
respectively. The inclusioni is given by (t · a; t) 7→ (t · a; t , . . . , t).)

(4.2) Assigning toric varieties to polyhedral cones is functorial, i.e. we can
proceed so with the whole diagram. We obtain affine toric varietiesY , X, and
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S with coordinate ringsA(Y) = C[σ∨ ∩ Zn+1], A(X) = C[C̃(Q)∨ ∩ (Zn × V ∗
Z

)],
and A(S) = C[C(Q)∨ ∩ V ∗

Z
], respectively. (Recall thatY = Yσ is the toric

Gorenstein singularity we want to deform.) The varieties are arranged in the
following commutative diagram:

In (4.4) and (4.7) we will see thatY ↪→ X is the pull back of the closed
embeddingC ↪→ S. Notice thatp : S → C

N defines functionst1, . . . , tN on S.

(4.3) To study the toric varietiesY ,X, andS it is important tounderstand the
dual conesof σ, C̃(Q), andC(Q), respectively. Beginning with the dual cone of
σ, to each non-trivialc ∈ Zn we associate a vertexa(c) of Q and a non-negative
integerη0(c) meeting the properties

〈Q, −c〉 ≤ η0(c) and 〈a(c), −c〉 = η0(c).

With respect toQ, c /= 0 is the inner normal vector of the affine supporting
hyperplane〈•,−c〉 = η0(c) througha(c). In particular,η0(c) is uniquely deter-
mined, whilea(c) is not. Forc = 0 we definea(0) := 0∈ Rn andη0(0) := 0∈ Z.
Recall that the dual cone ofσ is defined asσ∨ := {r ∈ Rn+1 | 〈σ, r 〉 ≥ 0}. Hence,
by the definition ofη0, we have

∂σ∨ ∩ Zn+1 = {[c, η0(c)] | c ∈ Zn} .
Moreover, if c1, . . . , cw ∈ Zn \ 0 are those elements producing irreducible pairs
[c, η0(c)] (i.e. not allowing any non-trivial lattice decomposition [c, η0(c)] =
[c′, η0(c′)] + [c′′, η0(c′′)]), then the elements

[c1, η0(c1)], . . . , [cw, η0(cw)], [0, 1]

form the minimal generator set forσ∨ ∩ Zn+1 as a semigroup. Among them are
all pairs [c, η0(c)] corresponding to facets (i.e. top dimensional faces) ofQ. We
obtain a closed embeddingY ↪→ C

w+1. The coordinate functions ofCw+1 will
be denoted byz1, . . . , zw, t corresponding to [c1, η0(c1)], . . . , [cw, η0(cw)], [0, 1],
respectively.

Example.We continue our exampleQ6 from Sect. 2. Here, the facets ofQ6 equal
its edgesd1, . . . , d6, and they are sufficient for producing all irreducible pairs
[c1, η0(c1)], . . . , [c6, η0(c6)]. We have

c1 = [0, 1], c2 = [−1, 1], c3 = [−1, 0], c4 = [0,−1], c5 = [1,−1], c6 = [1, 0] .

The corresponding vertices are (for instance)



454 K. Altmann

a(c6) = a(c1) = (0, 0), a(c2) = a(c3) = (2, 1), a(c4) = a(c5) = (1, 2),

and we obtain

η0(c1) = 0, η0(c2) = 1, η0(c3) = 2, η0(c4) = 2, η0(c5) = 1, η0(c6) = 0 .

(4.4) Thinking of C(Q) as a cone inRN instead ofV allows dualizing the
equationC(Q) = R

N
≥0 ∩ V to get C(Q)∨ = R

N
≥0 + V⊥. Hence, forC(Q) as a

cone inV we obtain

C(Q)∨ = R
N
≥0 + V⊥/

V⊥ = im [RN
≥0 −→ V ∗].

(As withRn, we do not use different notation forRN and its dual space. Let
e1, . . . , eN be the canonical basis of the latter one.)The surjectionRN

≥0 −→
−→ C(Q)∨ induces a mapNN −→ C(Q)∨ ∩ V ∗

Z
, which does not need to be

surjective at all. This leads to the following definition:

Definition. On V∗
Z

we introduce a partial ordering “�” by

η � η′ ⇐⇒ η − η′ ∈ im [NN → V ∗
Z ] ⊆ C(Q)∨ ∩ V ∗

Z .

On the geometric level, the non-saturated semigroup im [N
N → V ∗

Z
] ⊆ C(Q)∨ ∩

V ∗
Z

corresponds to the scheme theoretical imageS̄ of p : S → C
N , andS → S̄

is its normalization (cf. (5.2)). The equations ofS̄ ⊆ C
N are collected in the

kernel of

C[t1, . . . , tN ] = C[NN ]
ϕ−→ C[C(Q)∨ ∩ V ∗

Z ] ⊆ C[V ∗
Z ],

and it is easy to see that

kerϕ =

(
N∏

i =1

td+
i

i −
N∏

i =1

t
d−i
i

∣∣∣∣∣ d ∈ ZN ∩ V⊥
)

with

V⊥ = span
{

[〈ε1d1, c〉, . . . , 〈εN dN , c〉] ∣∣ ε < Q is a 2-face, c ∈ Rn
}
.

Remark.Using our new notation, we can reformulate Theorem (2.4) as:M ⊆
C

N is the largest closed subscheme that is contained inS̄ and, additionally, comes
from C

N/%(Q) via `−1.

On the other hand, dualizing the embeddingR≥0 ↪→ C(Q) yields

C(Q)∨ ∩ V ∗
Z

−→−→ N

η 7→ ∑
i ηi

at the level of semigroups. This map is surjective, even after restricting to the
subset im [NN → V ∗

Z
]: All vectors ei corresponding to the functionsti map onto
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1 ∈ N. Geometrically this means that both mapsC→ S andC→ S̄ are closed
embeddings, and the corresponding ideals are(

xη − xη
′ ∣∣ η, η′ ∈ C(Q) ∩ V ∗

Z
with

∑
i ηi =

∑
i η

′
i

)
and (ti − tj | 1 ≤ i , j ≤

N ), respectively. In particular, we have made a first step towards proving the
claims made in (4.2).

(4.5) In the next two sections we take a closer look at the dualized coneC̃(Q)∨.

Definition. For c ∈ Z
n let λc = (λc

1, . . . , λ
c
N ) ∈ Z

N describe some path from
0 ∈ Q to a(c) ∈ Q through the 1-skeleton of Q (similar to that in (2.2)). Then,

η(c) :=
[−λc

1〈d1, c〉, . . . ,−λc
N 〈dN , c〉] ∈ ZN

defines an elementη(c) ∈ V ∗
Z

not depending on the choice of the particular path
λc.

(Let λ̃
c

be a different path from 0 toa(c). It will differ from λc by some
linear combination

∑
ε<Q gε ε (gε ∈ Z for 2-facesε < Q) only. In particular,

λ̃c
i 〈di , c〉 − λc

i 〈di , c〉 =
∑

ε<Q gε〈εi di , c〉, and we obtainη(c)λ̃ − η(c)λ ∈ V⊥.)

Lemma. (i) η(0) = 0∈ V ∗
Z

.

(ii) For all c ∈ Zn we haveη(c) � 0 (in the sense of Definition (4.4)).
(iii) η is convex:

∑
v gv η(cv) � η(

∑
v gv cv) for natural numbersgv ∈ N.

(iv)
∑N

i =1 ηi (c) = η0(c) for arbitrary c ∈ Zn.

Proof. (ii) a(c) is a vertex ofQ providing the minimal value of the linear function
〈•, c〉. In particular, we can choose a pathλc from 0∈ Q to a(c) such that this
function decreases in each step, i.e.λc

i 〈di , c〉 ≤ 0 (i = 1, . . . ,N ).

(iii) We define the following paths through the 1-skeleton ofQ:

– λ := path from 0∈ Q to a(
∑

v gv cv) ∈ Q,
– µv := path froma(

∑
v gv cv) ∈ Q to a(cv) ∈ Q such thatµvi 〈di , cv〉 ≤ 0 for

eachi = 1, . . . ,N .

Then,λv := λ+µv is a path from 0∈ Q to a(cv), and fori = 1, . . . ,N we obtain∑
v gv ηi (cv)− ηi

(∑
v gv cv

)
= −∑v gv (λi + µvi ) 〈di , cv〉

+λi

〈
di ,
∑

v gv cv
〉

= −∑v gv µ
v
i 〈di , cv〉 ≥ 0 .

(iv) By definition of λc we have
∑N

i =1λ
c
i di = a(c). In particular,

N∑
i =1

ηi (c) = −
N∑

i =1

〈λc
i di , c〉 = −〈a(c), c〉 = η0(c).
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�

Example.In our hexagonQ6 we choose the following paths from (0, 0) to the
verticesa(c1), . . . , a(c6), respectively:

λ6 = λ1 := 0, λ2 = λ3 := [1, 1, 0, 0, 0, 0], λ4 = λ5 := [1, 1, 1, 1, 0, 0] .

They provide

η(c1) = [0, 0, 0, 0, 0, 0] , η(c2) = [1, 0, 0, 0, 0, 0] ,
η(c3) = [1, 1, 0, 0, 0, 0] , η(c4) = [0, 1, 1, 0, 0, 0] ,
η(c5) = [−1, 0, 1, 1, 0, 0] , η(c6) = [0, 0, 0, 0, 0, 0] .

Since [1, 0,−1,−1, 0, 1] = [〈d1, [1,−1]〉, . . . , 〈d6, [1,−1]〉] ∈ V⊥, the vector
η(c5) can be transformed into [0, 0, 0, 0, 0, 1].

Remark.The definitions ofa(c), η0(c), and η(c) also make sense for general
c ∈ Rn. However,η0(c) ∈ R andη(c) ∈ V ∗ no longer need to be contained in
the lattices. The previous lemma will remain valid (even forgv ∈ R≥0 in (iii)),
if the relation “� 0” is replaced by the weaker version “∈ C(Q)∨”.

(4.6) Proposition. (1) C̃(Q)∨ =
{

[c, η] ∈ Rn × V ∗ ∣∣ η − η(c) ∈ C(Q)∨
}

(2) In particular, [c, η(c)] ∈ C̃(Q)∨, and moreover, it is the only preimage of
[c, η0(c)] ∈ σ∨ via the surjection i∨ : C̃(Q)∨ −→−→ σ∨.

(3) [c1, η(c1)], . . . , [cw, η(cw)] together with C(Q)∨ ∩ V ∗
Z

(embedded as
[0,C(Q)∨]) generate the semigroup̃C(Q)∨ ∩ (Zn × V ∗

Z

)
. (For the definition

of c1, . . . , cw, cf. (4.3).)

Proof. (1) Let [c, η] ∈ R
n × V ∗ be given; if some representative ofη in R

N

is needed, then it will be denoted by the same name. We have the following
equivalences:

[c, η] ∈ C̃(Q)∨ ⇐⇒ 〈(Qt , t), [c, η]〉 ≥ 0 for eacht ∈ C(Q)

⇐⇒ 〈Qt , c〉 + 〈t , η〉 ≥ 0 for eacht ∈ C(Q)

⇐⇒ 〈a(c)t , c〉 + 〈t , η〉 ≥ 0 for eacht ∈ C(Q).

Using some pathλc we obtain:

[c, η] ∈ C̃(Q)∨ ⇐⇒
N∑

i =1

ti λ
c
i 〈di , c〉 + 〈t , η〉 ≥ 0 for eacht ∈ C(Q)

⇐⇒
N∑

i =1

ti ·
(
λc

i 〈di , c〉 + ηi
) ≥ 0 for eacht ∈ C(Q)

⇐⇒ [
λc

1 〈d1, c〉 + η1, . . . , λ
c
N 〈dN , c〉 + ηN

] ∈ C(Q)∨.
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(2) By part (1) we know that for each [c, η] ∈ C̃(Q)∨ it is possible to choose
R

N -representatives ofη, η(c) such thatηi ≥ ηi (c) for i = 1, . . . ,N . On the other
hand, the two equalities

∑
i ηi (c) = η0(c) (cf. (iv) of the previous lemma) and∑

i ηi = η0(c) (corresponding to the fact [c, η] 7→ [c, η0(c)]) imply η = η(c).

(3) Let [c, η] ∈ C̃(Q)∨. Then, [c, η0(c)] is representable as a non-negative linear
combination [c, η0(c)] =

∑w
v=1 pv [cv, η0(cv)] (pv ∈ N if c ∈ Z

n). Since both
elements [c, η(c)] and

∑
v pv[cv, η(cv)] are preimages of [c, η0(c)] via i ∨, they

must be equal by (2), and we obtain

[c, η] = [c, η(c)] + [0, η − η(c)] =
∑
v

pv [cv, η(cv)] + [0, η − η(c)] .

�

(4.7) Finally, we will take a short look at the geometrical situation reached at
this point. The linear map

C̃(Q)∨ ∩ (Zn × V ∗
Z

) −→−→ σ∨ ∩ Zn+1

[c, η] 7→ [c,
∑

i ηi ]

is surjective ([c, η(c)] 7→ [c, η0(c)]; [0, ei ] 7→ [0, 1]). Since x[c,η] − x[c,η′] =

x[c,η(c)] ·(x[0,η−η(c)]−x[0,η′−η(c)] ), the kernel of the corresponding homomorphism
between the semigroup algebras equals the ideal(

x[0,η] − x[0,η′]
∣∣∣ ∑

i

ηi =
∑

i

η′i
)
.

In particular,Y ↪→ X is a closed embedding. Moreover, looking at the similar
statement concerningC(Q)∨ andN at the end of (4.4), we see that this map
equals the pull back ofC ↪→ S as claimed in (4.2).

The elements [c1, η(c1)], . . . , [cw, η(cw)] ∈ C̃(Q) induce some regular func-
tions Z1, . . . ,Zw on X. They define a closed embeddingX ↪→ C

w×S lifting the
embeddingY ↪→ C

w+1 of (4.3).

X ↪→ C
w × S

↑ ↑
Y ↪→ C

w × C
Moreover, fori = 1, . . . ,N , Zi is the only monomial function liftingzi from Y
to X.

5 A flat family over M̄

(5.1) Theorem. Denote byX̄ andS̄ the scheme theoretical images of X and S
in Cw × CN andCN , respectively. Then,

(1) X → X̄ and S→ S̄ are the normalization maps.
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(2) π : X → S induces a map̄π : X̄ → S̄ , andπ can be recovered from̄π via
base change S→ S̄ .

(3) Restricting toM ⊆ S̄ and composing with̀ turns π̄ into a family X̄ ×S̄

M π̄−→ M `−→ M̄ . It is flat in 0 ∈ M̄ ⊆ C
N−1, and the special fiber

equals Y .

The proof of this theorem will fill Sect. 5.

(5.2) The ring of regular functionsA(S̄) is given as the image of the map
C[t1, . . . , tN ] → A(S). SinceZN −→−→ V ∗

Z
is surjective, the ringsA(S̄) ⊆ A(S) ⊆

C[V ∗
Z

] have the same field of fractions. On the other hand, whilet-monomials
with negative exponents might be involved inA(S), the surjectivity ofRN

≥0 −→−→
C(Q)∨ tells us that sufficiently high powers of these monomials always come
from A(S̄). In particular,A(S) is normal overA(S̄).

A(X̄) is given as the imageA(X̄) = im (C[Z1, . . . ,Zw, t1, . . . , tN ] → A(X)).
Since A(X) is generated byZ1, . . . ,Zw over its subringA(S) (cf. Proposition
(4.6)(3)), the same arguments as forS and S̄ apply. Hence, Part (1) of the pre-
vious theorem is proved.

(5.3) Recalling thatz1, . . . , zw, t ∈ A(Y) stand for the monomials with expo-
nents [c1, η0(c1)], . . .,[cw, η0(cw)], [0, 1] ∈ σ∨∩Zn+1, respectively, we obtain the
following equations describingY as a subset ofCw+1:

f(a,b,α,β)(z, t) := tα
w∏
v=1

zav
v − tβ

w∏
v=1

zbv
v

with a, b ∈ Nw :
∑

v av cv =
∑

v bv cv and
α, β ∈ N :

∑
v av η0(cv) + α =

∑
v bv η0(cv) + β .

Defining c :=
∑

v av cv =
∑

v bv cv we can lift f(a,b,α,β) to the following ele-
ment ofA(S̄)[Z1, . . . ,Zw] (described via the mapC[Z1, . . . ,Zw, t1, . . . , tN ] −→−→
A(S̄)[Z1, . . . ,Zw]):

F(a,b,α,β)(Z , t) := f(a,b,α,β)(Z , t1)− Z [c,η(c)] ·
(

tαe1+
∑

v
avη(cv)

−tβe1+
∑

v
bvη(cv)

)
· t−η(c)

Remark.(1) The symbolZ [c,η(c)] means
∏w

v=1 Zpv
v with natural numberspv ∈ N

such that [c, η(c)] =
∑

v pv [cv, η(cv)] or equivalently
[c, η0(c)] =

∑
v pv [cv, η0(cv)]. This condition does not determine the coeffi-

cientspv uniquely. Any choice satisfying the equation will do. Choosing other
coefficientsqv with the same property yieldsZp1

1 · . . . · Zpw
w − Zq1

1 · . . . · Zqw
w =

F(p,q,0,0)(Z , t) = f(p,q,0,0)(Z , t), anyway.
(2) By part (iii) of Lemma (4.5), we have

∑
v avη(cv),

∑
v bvη(cv) � η(c).

In particular, representatives of theη’s can be chosen such that allt-exponents
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occurring in monomials ofF are non-negative, i.e.F indeed defines an element
of A(S̄)[Z1, . . . ,Zw].

Lemma. The polynomials F(a,b,α,β) generateker (A(S̄)[Z ] → A(X)), i.e. they can
be used as equations for̄X ⊆ C

w × S̄ .

Proof. Recall first that the map fromA(S̄)[Z ] to A(X) = ⊕[c,η] Cx[c,η] , where

[c, η] runs through all elements of̃C(Q)∨ ∩ (Zn × V ∗
Z

), sendsZv 7→ x[cv,η(cv)]

and ti 7→ x[0,ei ] . Hence,

F(a,b,α,β) =
(

tα1
∏

v Zav
v − Z [c,η(c)] tαe1+

∑
v

avη(cv)−η(c)
)
−

−
(

tβ1
∏

v Zbv
v − Z [c,η(c)] tβe1+

∑
v

bvη(cv)−η(c)
)

7→
(

xα[0,e1]+
∑

v
av [cv,η(cv)] − x[c,η(c)]+α[0,e1]+

∑
v

av [0,η(cv)]−[0,η(c)]
)
−

−
(

xβ[0,e1]+
∑

v
bv [cv,η(cv)] − x[c,η(c)]+β[0,e1]+

∑
v

bv [0,η(cv)]−[0,η(c)]
)

= 0 − 0 = 0.

On the other hand, ker (A(S̄)[Z ] → A(X)) is obviously generated by the binomials

tη Za1
1 · . . . · Zaw

w − tµ Zb1
1 · . . . · Zbw

w such that∑
v av[cv, η(cv)] + [0, η] =

∑
v bv[cv, η(cv)] + [0, µ] ,

i.e. • c :=
∑

v av cv =
∑

v bv cv

• ∑
v av η(cv) + η =

∑
v bv η(cv) + µ .

However,

tη Za − tµ Zb = tη ·
(∏

v Zav
v − Z [c,η(c)] t

∑
v

avη(cv)−η(c)
)
−

−tµ ·
(∏

v Zbv
v − Z [c,η(c)] t

∑
v

bvη(cv)−η(c)
)

= tη · F(a,p,0,α) − tµ · F(b,p,0,β)

with p ∈ Nw such that
∑

v pv[cv, η(cv)] = [c, η(c)], α =
∑

v avη0(cv) − η0(c),
andβ =

∑
v bvη0(cv)− η0(c). �

(5.4) Using exponentsη, µ ∈ ZN (instead ofNN ), the binomialstη Za − tµ Zb

generate the kernel of the map

A(S)[Z ] = A(S̄)[Z ] ⊗A(S̄) A(S) −→−→ A(X̄)⊗A(S̄) A(S) −→−→ A(X) .

SinceZa⊗tη−Zb⊗tµ = Z [c,η(c)]⊗
(

t
∑

v
avη(cv)−η(c)+η − t

∑
v

bvη(cv)−η(c)+µ
)

= 0

in A(X̄)⊗A(S̄) A(S), this implies that the surjectionA(X̄)⊗A(S̄) A(S) −→−→ A(X) is
injective, too. In particular, part (2) of our theorem is proved.

(5.5) We are going to use the following well known criterion of flatness:
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Theorem. ([Ma], (20.C), Theorem 49)Let π̃ : X̃ ↪→ C
w+1 × M̄ −→−→ M̄ be

a map with special fiber Y= π̃−1(0); in particular, Y ⊆ C
w+1 is defined by the

restrictions of the equations defining̃X ⊆ C
w+1×M̄ to 0 ∈ M̄. Then,π̃ is flat

if and only if each linear relation between the (restricted) equations for Y lifts to
some linear relation between the original equations forX̃ .

For our special situation takẽX := X̄ ×S̄ M (and M̄ := M̄, Y := Y); in
(5.3) we have seen how the equations definingY ↪→ C

w × C can be lifted to
those definingX̄ ↪→ C

w × S̄, henceX̄ ×S̄ M ↪→ C
w ×M ∼→ C

w × C× M̄.
In particular, to show (3) of Theorem (5.1), we just have to determine the linear
relations between thef(a,b,α,β)’s and lift them to relations between theF(a,b,α,β)’s.
There are three types of relations between thef(a,b,α,β)’s:

(i) f(a,r ,α,γ) + f(r ,b,γ,β) = f(a,b,α,β)

with • ∑
v avcv =

∑
v rvcv =

∑
bvcv and

• ∑
v avη0(cv) + α =

∑
v rvη0(cv) + γ =

∑
v bvη0(cv) + β .

For this relation, the same equation between theF ’s is true.
(ii) t · f(a,b,α,β) = f(a,b,α+1,β+1) lifts to t1 · F(a,b,α,β) = F(a,b,α+1,β+1).
(iii) zr · f(a,b,α,β) = f(a+r ,b+r ,α,β).

With c :=
∑

v avcv =
∑

v bvcv, c̃ := c +
∑

v rvcv we obtain

Zr · F(a,b,α,β) − F(a+r ,b+r ,α,β) =

= Z [c̃,η(c̃)] ·
(

tαe1+
∑

v
avη(cv)+

∑
v

rvη(cv) − tβe1+
∑

v
bvη(cv)+

∑
v

rvη(cv)
)

·t−η(c̃) −−Z [c,η(c)] Zr ·
(

tαe1+
∑

v
avη(cv) − tβe1+

∑
v

bvη(cv)
)
· t−η(c)

=
(

tαe1+
∑

v
avη(cv)−η(c) − tβe1+

∑
v

bvη(cv)−η(c)
)
·(

tη(c)+
∑

v
rvη(cv)−η(c̃)Z [c̃,η(c̃)] − Z [c,η(c)]Zr

)
.

Now, the inequalities∑
v

avη(cv),
∑
v

bvη(cv) � η(c) and η(c) +
∑
v

rvη(cv)− η(c̃) � 0

imply that
– the first factor is contained in the ideal defining 0∈ M̄, and
– the second factor is an equation ofX̄ ⊆ C

w × S̄ (called F(p̃,p+r ,ξ,0) in
(7.4)).

In particular, we have found a lift for the third relation, too.

The proof of Theorem (5.1) is complete.

(5.6) Example.The singularityY6 induced by the hexagonQ6 equals the cone
over the Del Pezzo surface of degree 6 obtained by blowing up three points of
(P2,O (3)). As a closed subset ofC7, it is given by the following 9 equations:
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f(e1,e6+e2,1,0) = z1 t − z6 z2, f(e2,e1+e3,1,0) = z2 t − z1 z3,
f(e3,e2+e4,1,0) = z3 t − z2 z4, f(e4,e3+e5,1,0) = z4 t − z3 z5,
f(e5,e4+e6,1,0) = z5 t − z4 z6, f(e6,e5+e1,1,0) = z6 t − z5 z1,
f(0,e1+e4,2,0) = t2 − z1 z4, f(0,e2+e5,2,0) = t2 − z2 z5,
f(0,e3+e6,2,0) = t2 − z3 z6 .

Then, the construction described in (5.3) yields the liftings

F(e1,e6+e2,1,0) = (Z1 t1 − Z6 Z2)− Z1(t1 − t1)
= Z1 t1 − Z6 Z2,

F(e2,e1+e3,1,0) = (Z2 t1 − Z1 Z3)− Z2(t2
1 − t1 t2) t−1

1
= Z2 t2 − Z1 Z3,

F(e3,e2+e4,1,0) = (Z3 t1 − Z2 Z4)− Z3(t2
1 t2 − t1 t2 t3) t−1

1 t−1
2

= Z3 t3 − Z2 Z4,

F(e4,e3+e5,1,0) = (Z4 t1 − Z3 Z5)− Z4(t1 t2 t3 − t2 t3 t4) t−1
2 t−1

3
= Z4 t4 − Z3 Z5,

F(e5,e4+e6,1,0) = (Z5 t1 − Z4 Z6)− Z5(t1 t6 − t2 t3) t−1
6

= Z5 t5 − Z4 Z6,
F(e6,e5+e1,1,0) = (Z6 t1 − Z5 Z1)− Z6(t1 − t6)

= Z6 t6 − Z5 Z1,
F(0,e1+e4,2,0) = (t2

1 − Z1 Z4)− (t2
1 − t2 t3) = t2 t3 − Z1 Z4

= t5 t6 − Z1 Z4,
F(0,e2+e5,2,0) = (t2

1 − Z2 Z5)− (t2
1 − t3 t4)

= t3 t4 − Z2 Z5,
F(0,e3+e6,2,0) = (t2

1 − Z3 Z6)− (t2
1 − t1 t2)

= t1 t2 − Z3 Z6 .

Together with the four equations mentioned at the end of (2.3), they describe a

family contained inC6 × C6 pr2−→ C
6/C · (1, . . . , 1).

6 The Kodaira-Spencer map

(6.1) Denote byE ⊆ σ∨ ∩ Zn+1 the minimal generating set

E := {[c1, η0(c1)], . . . , [cw, η0(cw)], [0, 1]}
mentioned in (4.3). To each vertexaj ∈ Q (or identically named fundamental
generatoraj := (aj , 1) ∈ σ) and each elementR ∈ Zn+1 we associate the subset

ER
j := ER

aj := {r ∈ E | 〈aj , r 〉 < 〈aj ,R〉} .

Theorem. (cf. [Al 1]) The vector space T1Y of infinitesimal deformations of Y is
Z

n+1-graded, and in degree−R it equals

T1
Y (−R) =

(
LC
(∪j E

R
j

)/∑
j

LC(ER
j )
)∗

,
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where L(. . .) denotes the vector space of linear relations.

(6.2) There is a special degreeR∗ = [0, 1] ∈ Zn+1 corresponding to the affine
hyperplane containingQ. The associated subsets ofE equal

ER∗
j = E ∩ (aj )⊥ = {[cv, η0(cv)] | 〈aj ,−cv〉 = η0(cv)} .

In (4.5), for eachc ∈ Zn, we have defined the linear formη(c) ∈ V ∗
Z

. Restricted
to the coneC(Q), it maps t to Max〈Qt ,−c〉 = 〈a(c)t ,−c〉. This induces the
following bilinear map:

Φ : VZ/(1, . . . , 1) × LZ(E ∩ ∂σ∨) −→ Z

t , q 7→ ∑
v,i ti qv ηi (cv) .

(Indeed, for t := 1 we obtain
∑

v,i qv ηi (cv) =
∑

v qv η0(cv) = 0 sinceq ∈
LZ(E ∩ ∂σ∨).) Moreover, if q comes from one of the submodulesLZ(ER∗

j ) ⊆
LZ(E ∩ ∂σ∨), we obtain

Φ(t , q) =
∑
v

qv ·Max〈Qt ,−cv〉 =
∑
v

qv · 〈aj
t ,−cv〉

= 〈aj
t ,−

∑
v

qvcv〉 = 0 .

Theorem. The Kodaira-Spencer map of the familȳX ×S̄ M → M̄ of Sect. 5
equals the map

T0M̄ =VC/(1, . . . , 1) −→
(

LC(E ∩ ∂σ∨)
/∑

j

LC(ER∗
j )
)∗

= T1
Y (−R∗)

induced by the previous pairing. Moreover, this map is an isomorphism.

Proof. Using the same symbolJ for the ideal J ⊆ C[t1, . . . , tN ] and the
intersectionJ ∩ C[ti − tj | 1 ≤ i , j ≤ N ] (cf. (2.4)), our family corresponds to
the flatC[ti − tj ]/J -moduleC[Z , t ]/(J ,F•(Z , t)). Now, we fix a non-trivial

tangent vectort0 ∈ VC. Via ti 7→ t + t0
i ε it induces the infinitesimal family given

by the flatC[ε]/
ε2-module

At0 := C[z, t , ε]
/

(ε2,F•(z, t + t0 ε)) .

To obtain the associatedA(Y)-linear mapI /I 2 → A(Y), where I := (f•(z, t))

denotes the ideal ofY in C
w+1, we have to compute the images off•(z, t) in

εA(Y) ⊆ At0 and divide them byε: Using the notation of (5.3), inAt0

0 = F(a,b,α,β)(z, t + t0 ε)

= f(a,b,α,β)(z, t + t0
1 ε)−

−z[c,η(c)] ·
(

(t + t0 ε)αe1+
∑

v
avη(cv)−η(c) − (t + t0 ε)βe1+

∑
v

bvη(cv)−η(c)
)
.
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The relationε2 = 0 yields

f(a,b,α,β)(z, t + t0
1ε) = f(a,b,α,β)(z, t) + ε · (α tα−1 t0

1 za − β tβ−1 t0
1 zb) ,

and similarly we can expand the other terms. Eventually, we obtain

f(a,b,α,β)(z, t) = −ε t0
1 (α tα−1 za − β tβ−1 zb) + ε z[c,η(c)]

tα+
∑

v
avη0(cv)−η0(c)−1 · [t0

1 (α− β) +
∑

i t0
i

(∑
v(av − bv)ηi (cv)

)]
= ε · x

∑
v

av [cv,η0(cv)]+[0,α−1] ·
(∑

i t0
i

(∑
v(av − bv)ηi (cv)

))
.

(In εA(Y) we were able to replace the variablest andzi by x[0,1] andx[cv,η0(cv)] ,
respectively.)

On the other hand, we use Theorem (3.4) of [Al 3]: FixingR∗ ∈ Zn+1, the
element ofLC(E ∩ ∂σ∨)∗ given by q 7→ ∑

i ,v t0
i qv ηi (cv) corresponds to the

infinitesimal deformation ofT1
Y (−R∗) defined by the map

I
/

I 2 −→ A(Y)

tα za − tβ zb 7→
(∑

i ,v t0
i (av − bv)ηi (cv)

)
· x
∑

v
av [cv,η0(cv)]+[0,α−1] .

�

(6.3) To discuss the meaning of the homogeneous partT1
Y (−R∗) inside the

whole vector spaceT1
Y , we have to look at the results of [Al 2], (6.5): If dimT1

Y <
∞ (for instance, ifY has an isolated singularity), then

(1) T1
Y = T1

Y (−R∗), but
(2) T1

Y = 0 for dimY ≥ 4.

In particular, the interesting cases arise from 2-dimensional lattice polygonsQ
with primitive edges only. The corresponding 3-dimensional toric varietiesY
have an isolated singularity, and the Kodaira-Spencer mapT0M̄ → T1

Y is an
isomorphism.

If T1
Y has infinite dimension, then this comes from the existence of infinitely

many non-trivial homogeneous piecesT1
Y (−R). Whenever〈aj ,R〉 ≤ 1 holds for

all verticesaj ∈ Q, we have

T1
Y (−R) = VC(conv{aj | 〈aj ,R〉 = 1}) ,

i.e. T1
Y (−R) equals the vector space of Minkowski summands of some face ofQ,

whereasT1
Y (−R) = 0 for all otherR ∈ Zn+1. In particular,T1

Y (−R∗) is a typical,
but nevertheless extremal and perhaps the most interesting part ofT1

Y .
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7 The obstruction map

(7.1) Dealing with obstructions in the deformation theory ofY involves the
A(Y)-moduleT2

Y . Usually, it is defined in the following way:

Let m := {([a, α], [b, β]) ∈ Nw+1 × Nw+1 |
∑
v

av cv =
∑
v

bv cv;∑
v

av η0(cv) + α =
∑
v

bv η0(cv) + β}

denote the set parametrizing the equationsf(a,b,α,β) generating the idealI ⊆
C[z, t ] of Y . Then,

R := ker(C[z, t ]m −→−→ I )

is the module of linear relations between these equations; it contains the sub-
moduleR0 of the so-called Koszul relations.

Definition. T2
Y :=

Hom (R/R0
,A(Y))/

Hom (C[z, t ]m,A(Y)) .

Now, we have a similar theorem forT2
Y as we had in (6.1) forT1

Y ; in par-
ticular, we use the notation introduced there.

Theorem. (cf. [Al 3]) The vector space T2Y is Zn+1-graded, and in degree−R it
equals

T2
Y (−R) =

(
ker

(⊕j LC(ER
j ) −→ LC(E)

)
im
(⊕〈ai ,aj 〉<QLC(ER

i ∩ ER
j ) → ⊕i LC(ER

i )
))∗

.

(7.2) In this section we build up the so-called obstruction map. It detects all
possible infinitesimal extensions of our family overM̄ to a flat family over
some larger base space. We follow the explanation given in Sect. 4 of [JS]. As
before,

J = (gε,k(t − t1) | ε < Q, k ≥ 1)

= (gd,k(t − t1) | d ∈ V⊥ ∩ ZN , k ≥ 1)⊆ C[ti − tj ]

denotes the homogeneous ideal of the base spaceM̄. Let

J̃ := (ti − tj )i ,j ·J + J1 · C[ti − tj ] ⊆ C[ti − tj | 1≤ i , j ≤ N ] .

Then, W := J
/

J̃ is a finite-dimensional,Z-graded vector space (W =

⊕k≥2Wk , and Wk is generated by the polynomialsgd,k(t − t1)). It is the ker-
nel of the exact sequence
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0→ W −→ C[ti − tj ]
/

J̃ −→ C[ti − tj ]
/

J → 0 .

Identifying t with t1 andz with Z , the tensor product withC[z, t ] (overC) yields
the important, exact sequence

0→ W ⊗C C[z, t ] −→ C[Z , t ]
/

J̃ · C[Z , t ]
−→ C[Z , t ]

/
J · C[Z , t ] → 0 .

Now, let s be any relation with coefficients inC[z, t ] between the equations
f(a,b,α,β), i.e. ∑

s(a,b,α,β) f(a,b,α,β) = 0 in C[z, t ] .

By flatness of our family (cf. (5.5)), the components ofs can be lifted toC[Z , t ]
obtaining an ˜s such that

λ(s) :=
∑

s̃(a,b,α,β) F(a,b,α,β) 7→ 0 in C[Z , t ]
/

J · C[Z , t ] .

In particular, each relations ∈ R induces some elementλ(s) ∈ W ⊗C C[z, t ],
which is well defined after the additional projection toW ⊗C A(Y). This pro-
cedure describes a certain elementλ ∈ T2

Y ⊗C W = Hom(W∗,T2
Y ) called the

obstruction map.

Theorem. The obstruction mapλ : W∗ → T2
Y is injective.

Corollary. If dim T1
Y < ∞, our family equals the versal deformation of Y . In

general, we could say that it is “versal in degree−R∗”.

Proof. In (6.2) we have proved that the Kodaira-Spencer map is an isomorphism
(at least onto the homogeneous pieceT1

Y (−R∗)). By a criterion also described in
[JS], this fact combined with injectivity of the obstruction map implies versality.

�

The remaining part of Sect. 7 contains the proof of the previous theorem.

(7.3) We have to improve the notation of Sects. 4 and 5. SincēM ⊆ S̄ ⊆ C
N ,

we were able to use the toric equations (cf. (2.4)) during computations modulo
J . In particular, the exponentsη ∈ ZN of t only needed to be known modulo
V⊥; it was enough to defineη(c) as elements ofV ∗

Z
. However, to compute the

obstruction map, we have to deal with the smaller idealJ̃ ⊆ J . Let us start
by refining the definitions of (4.5):

(i) For each vertexa ∈ Q we choose the following paths through the 1-skeleton
of Q:
• λ(a) := path from 0∈ Q to a ∈ Q .
• µv(a) := path froma ∈ Q to a(cv) ∈ Q such thatµvi (a)〈di , cv〉 ≤ 0 for

eachi = 1, . . . ,N .
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• λv(a) := λ(a)+µv(a) is then a path from 0∈ Q to a(cv), which depends
on a.

(ii) For eachc ∈ Zn we use the vertexa(c) to define

ηc(c) :=
[−λ1(a(c))〈d1, c〉, . . . ,−λN (a(c))〈dN , c〉] ∈ ZN

and

ηc(cv) :=
[−λv1(a(c))〈d1, cv〉, . . . ,−λvN (a(c))〈dN , cv〉] ∈ ZN .

(iii) For eachc ∈ Zn we fix a representationc =
∑

v pc
v cv (pc

v ∈ N) such that
η0(c) =

∑
v pc

v η0(cv). (That means,c is represented only by those generators
cv that define faces ofQ containing the face defined byc itself.)

Remark.Let a ∈ Nw. Denotingc :=
∑

v avcv we obtain
∑

v av ηc(cv)− ηc(c) ∈
N

N by arguments as in Lemma (4.5). Moreover, for the special representation
c =

∑
v pc

vcv, the equation
∑

v pc
v η

c(cv) = ηc(c) is true.

Now, we improve the definition of the polynomialsF•(Z , t) given in (5.3).
Let a, b ∈ Nw, α, β ∈ N such that

c :=
∑
v

av cv =
∑
v

bv cv and
∑
v

av η0(cv) + α =
∑
v

bv η0(cv) + β .

Then,

F(a,b,α,β)(Z , t) := f(a,b,α,β)(Z , t1)− Zpc ·
(

tαe1+
∑

v
avη

c(cv)−ηc(c)

−tβe1+
∑

v
bvη

c(cv)−ηc(c)
)
.

(7.4) We have to discuss the same three types of relations as we did in (5.5).
Since there is only one single elementc ∈ Zn involved in the relations (i) and
(ii), calculating moduloJ̃ instead ofJ makes no difference in these cases -
we always obtainλ(s) = 0.
Let us regard the relations :=

[
zr · f(a,b,α,β) − f(a+r ,b+r ,α,β) = 0

]
(r ∈ Nw). We

will use the following notation:

– c :=
∑

v av cv =
∑

v bv cv; p := pc; η := ηc;
– c̃ :=

∑
v(av + rv) cv =

∑
v(bv + rv) cv =

∑
v(pv + rv) cv; p̃ := pc̃; η̃ := ηc̃;

– ξ :=
∑

i

((∑
v(pv + rv)η̃i (cv)

)− η̃i (c̃)
)

=
∑

v(pv + rv)η0(cv)− η0(c̃) .

Using the same lifting ofs to s̃ as in (5.5) yields

λ(s) = Zr · F(a,b,α,β) − F(a+r ,b+r ,α,β) −
−
(

tαe1+
∑

v
avη(cv)−η(c) − tβe1+

∑
v

bvη(cv)−η(c)
)
· F(p̃,p+r ,ξ,0)

= −Zp+r ·
(

tαe1+
∑

v
(av−pv)η(cv) − tβe1+

∑
v

(bv−pv)η(cv)
)

+

+ Zp̃ ·
(

tαe1+
∑

v
(av+rv−p̃v)η̃(cv) − tβe1+

∑
v

(bv+rv−p̃v)η̃(cv)
)
−



The versal deformation of an isolated toric Gorenstein singularity 467

−
(

tαe1+
∑

v
(av−pv)η(cv) − tβe1+

∑
v

(bv−pv)η(cv)
)

·
(

Zp̃ t
∑

v
(pv+rv−p̃v)η̃(cv) − Zp+r

)
= Zp̃ ·

(
tαe1+

∑
v

(av+rv−p̃v)η̃(cv) − tαe1+
∑

v
(pv+rv−p̃v)η̃(cv)+

∑
v

(av−pv)η(cv)
)
−

−Zp̃ ·
(

tβe1+
∑

v
(bv+rv−p̃v)η̃(cv) − tβe1+

∑
v

(pv+rv−p̃v)η̃(cv)+
∑

v
(bv−pv)η(cv)

)
.

As in (5.5)(iii), we can see thatλ(s) vanishes moduloJ (or even inA(S̄))
merely by identifyingη and η̃.

(7.5) In (7.2) we have already mentioned the isomorphism

W ⊗C C[z, t ]
∼−→ J · C[Z , t ]

/
J̃ · C[Z , t ]

obtained by identifyingt with t1 andz with Z . Now, withλ(s), we have obtained
an element of the right hand side, which has to be interpreted as an element of
W ⊗C C[z, t ].

Lemma. Let A,B ∈ N
N such that d := A − B ∈ V⊥, i.e. tA − tB ∈ J ·

C[Z , t ]. Then, via the previously mentioned isomorphism, tA− tB corresponds to
the element ∑

k≥1

ck · gd,k(t − t1) · t k0−k ∈ W ⊗C C[z, t ] ,

where k0 :=
∑

i Ai , and ck are the constants occurred in (3.4). In particular, the
coefficients from Wk vanish for k> k0.

Proof. First, we remark that we may assume thatA = d+, B = d−, i.e. tA − tB =
pd(t) (cf. (3.2)). Otherwise we could write this binomial as

tA − tB = tC ·
(

td+ − td−
)

(C ∈ NN ),

and since

tC = (t1 + [t − t1])C ≡ t

∑
i

Ci

1 (mod (ti − tj )) ,

we would obtain

tA − tB ≡ t

∑
i

Ci

1 ·
(

td+ − td−
)

(mod J̃ ) .

In (3.4) we have seen that

pd(t) =
k0∑

k=1

t k0−k
1 ·

(
k−1∑
v=1

qv,k(t − t1) · gd,v(t − t1) + ck · gd,k(t − t1)

)

with k0 :=
∑

i d+
i . Sinceqv,k(t − t1) ∈ (ti − tj ) · C[ti − tj ], this implies
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pd(t) ≡
k0∑

k=1

t k0−k
1 · ck · gd,k(t − t1) (mod J̃ ) .

On the other hand, fork > k0, Lemma (3.3) tells us thatgd,k(t−t1) is aC[ti −tj ]-
linear combination of the elementsgd,1(t − t1), . . . , gd,k0(t − t1). Then, the degree
k part of the corresponding equation showsgd,k(t − t1) ∈ J̃ . �

Corollary. Transferred to W⊗C C[z, t ], the elementλ(s) equals∑
k≥1

ck · gd,k(t − t1) · zp̃ · t k0−k with d :=
∑

v(av − bv) · (η̃(cv)− η(cv)
)
,

k0 := α +
∑

v(av + rv) η0(cv)− η0(c̃) .

The coefficients vanish for k> k0.

Proof. We apply the previous lemma to both summands of theλ(s)-formula of
(7.4). For the first one we obtain

da =
[
αe1 +

∑
v

(av + rv − p̃v) η̃(cv)
]

−
[
αe1 +

∑
v

(pv + rv − p̃v) η̃(cv) +
∑
v

(av − pv) η(cv)
]

=
∑
v

(av − pv) · (η̃(cv)− η(cv)
)

and

k0 =
∑

i

(
αe1 +

∑
v

(av + rv − p̃v) η̃(cv)
)

i

= α +
∑
v

(av + rv − p̃v) η0(cv)

= α +
∑
v

(av + rv) η0(cv)− η0(c̃) .

k0 has the same value for both thea- andb-summand, and

d = da − db =
∑
v

(av − pv) · (η̃(cv)− η(cv)
)

−
∑
v

(bv − pv) · (η̃(cv)− η(cv)
)

=
∑
v

(av − bv) · (η̃(cv)− η(cv)
)
. �

(7.6) Now, we try to approach the obstruction mapλ from the opposite direction.
Using the description of T2Y given in (7.1), we construct an element of T2

Y ⊗C W
that afterwards will turn out to equalλ.

For a path% ∈ ZN along the edges ofQ, we denote by

d(%, c) := [〈%1 d1, c〉, . . . , 〈%N dN , c〉] ∈ ZN
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the vector measuring the behavior ofc ∈ Z
n passing each particular edge. If,

moreover,% comes from a closed path,d(%, c) is also contained inV⊥. On
the other hand, for eachk ≥ 1, we can use thed’s from V⊥ to get elements
gd,k(t − t1) ∈ Wk generating this vector space. Composing both procedures we
obtain, for each closed path% ∈ ZN , a map

g(k)(%, •) : R
n −→ V⊥ −→ Wk

c 7→ gd(%,c),k(t − t1) .

Lemma. (1) Taking the sum over all 2-faces we get a surjective map∑
ε<Q

g(k)(ε, •) : ⊕ε<QC
n −→−→ Wk .

(2) Let c∈ Zn (having integer coordinates is very important here). If%1, %2 ∈ ZN

are two paths each connecting vertices a, b ∈ Q such that
• |〈a, c〉 − 〈b, c〉| ≤ k − 1 and
• c is monotone along both paths, i.e.〈%1

i di , c〉; 〈%2
i di , c〉 ≥ 0 for i =

1, . . . ,N ,
then%1 − %2 ∈ ZN will be a closed path yieldingg(k)(%1 − %2, c) = 0 in Wk.

Proof. (1) is a consequence of the fact that the elementsd(ε, c) (ε < Q 2-
face; c ∈ Zn) generateV⊥ as a vector space. For the proof of (2), we look at
d := d(%1 − %2, c). Sincedi = 〈%1

i di , c〉 − 〈%2
i di , c〉 is the difference of two

non-negative integers, we obtaind+
i ≤ 〈%1

i di , c〉. Hence,∑
i

d+
i ≤

∑
i

〈%1
i di , c〉 = 〈b, c〉 − 〈a, c〉 ≤ k − 1 ,

and as in (7.5) we obtaingd,k(t − t1) ∈ J̃ by Lemma (3.3). �

(7.7) Using the notation introduced in (6.1) we obtain forR := k R∗, k ≥ 2

EkR∗
j = {[cv, η0(cv)] | 〈aj , cv〉 + η0(cv) ≤ k − 1} ∪ {R∗} ⊆ σ∨ ∩ Zn+1 .

Then, we can define the following linear maps :

/υ(k)
j : L(EkR∗

j ) −→ Wk

q 7→ ∑
v qv · g(k)

(
λ(aj ) + µv(aj )− λ(a(cv)), cv

)
.

(The q-coordinate corresponding toR∗ ∈ EkR∗
j is not used in the definition of

/υ(k)
j .)

Lemma. Let 〈ai , aj 〉 < Q be an edge of the polyhedron Q. Then, on L(EkR∗
i ∩

EkR∗
j ) = L(EkR∗

i ) ∩ L(EkR∗
j ), the maps/υ(k)

i and /υ(k)
j coincide. In particular (cf.

Theorem (7.1)), the/υ(k)
j ’s induce a linear map/υ(k) : T2

Y (−kR∗)∗ → Wk.
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Proof. Let q ∈ L(EkR∗
i ∩ EkR∗

j ), and denote by%ij ∈ ZN the path consisting of
the single edge running fromai to aj . Then,

/υ(k)
i (q)− /υ(k)

j (q) =
∑

v qv · g(k)
(
λ(ai ) + µv(ai )− λ(aj )− µv(aj ), cv

)
= g(k)

(
λ(ai )− λ(aj ) + %ij ,

∑
v qv cv

)
+

+
∑

v qv · g(k)
(
µv(ai )− µv(aj )− %ij , cv

)
,

and both summands vanish for several reasons. The first one is killed simply by
the equality

∑
v qv cv = 0. For the second one we can use (2) of the previous

lemma: If qv /= 0, then the assumption aboutq implies the inequalities

0≤ 〈ai , cv〉 − 〈a(cv), cv〉 ; 〈aj , cv〉 − 〈a(cv), cv〉 ≤ k − 1 .

Hence, assuming w.l.o.g.〈ai , cv〉 ≥ 〈aj , cv〉, we can take%1 := −µv(aj ) − %ij

and%2 := −µv(ai ) to see thatg(k)
(
µv(ai )− µv(aj )− %ij , cv

)
= 0. �

(7.8) Proposition.
∑

k≥1 ck /υ(k) equalsλ∗, the adjoint of the obstruction map.

Proof. In Theorem (3.5) of [Al 3] we gave a dictionary between the twoT2-
formulas mentioned in (7.1). Using this result we can find an element of

Hom(R/R0
, Wk ⊗ A(Y)) representing/υ(k) ∈ T2

Y ⊗ Wk . It sends relations of
type (i) (cf. (5.5)) to 0 and deals with relations of type (ii) and (iii) in the
following way:

[zr tγ · f(a,b,α,β) − f(a+r ,b+r ,α+γ,β+γ) = 0]

7→ /υ(k)
j (a − b) · x

∑
v

(av+rv)[cv,η0(cv)]+(α+γ−k)R∗

if
〈(Q, 1),

∑
v

(av + rv) [cv, η0(cv)] + (α + γ − k)R∗〉 ≥ 0

and j is such that

〈(aj , 1),
∑
v

av [cv, η0(cv)] + (α− k)R∗〉 < 0 ;

otherwise the relation is sent to 0 (in particular, if there is not anyj meeting the
desired property).

On Q, the linear formsc :=
∑

v av cv andc̃ =
∑

v(av+rv)cv admit their minimal
values at the verticesa(c) and a(c̃), respectively. Hence, we can transform the
previous formula into

[zr tγ ·f(a,b,α,β) − f(a+r ,b+r ,α+γ,β+γ) = 0]

7→ /υ(k)
a(c)(a − b) · x

∑
v

(av+rv)[cv,η0(cv)]+(α+γ−k)R∗

if
∑
v

(av + rv)η0(cv)− η0(c̃) + (α + γ − k) =
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=

〈
(a(c̃), 1),

∑
v

(av + rv) [cv, η0(cv)] + (α + γ − k)R∗
〉
≥ 0 ,∑

v

av η0(cv)− η0(c) + (α− k) =

=

〈
(a(c), 1),

∑
v

av [cv, η0(cv)] + (α− k)R∗
〉

< 0

(or mapping to 0 otherwise). Adding the coboundaryh ∈ Hom (C[z, t ]m, Wk ⊗
A(Y))

h(a,α),(b,β) :=


/υ(k)

a(c)(a − b) · x
∑

v
av [cv,η0(cv)]+(α−k)R∗

for
∑

v av η0(cv)− η0(c) + α ≥ k ,

0 otherwise

does not change the class inT2
Y (−kR∗), which still represents/υ(k), but it does

improve the representative from Hom(R/R0
, Wk ⊗ A(Y)). It still maps type-

(i)-relations to 0, and moreover

[zr tγ · f(a,b,α,β) − f(a+r ,b+r ,α+γ,β+γ) = 0] 7→

7→



(
/υ(k)

a(c)(a − b)− /υ(k)
a(c̃)(a − b)

)
· x
∑

v
(av+rv)[cv,η0(cv)]+(α+γ−k)R∗

for k0 + γ ≥ k

0 otherwise

with k0 = α+
∑

v(av + rv) η0(cv)− η0(c̃). By definition of/υ(k)
j andg(k) we obtain

/υ(k)
a(c)(a − b) −/υ(k)

a(c̃)(a − b) =

=
∑
v

(av − bv) · g(k)
(
λ(a(c)) + µv(a(c))− λ(a(c̃))− µv(a(c̃)), cv

)
=
∑
v

(av − bv) · g(k)
(
λv(a(c))− λv(a(c̃)), cv

)
= gd, k(t − t1)

with d =
∑
v

(av − bv) · d
(
λv(a(c))− λv(a(c̃)), cv

)
=
∑
v

(av − bv) · (η̃(cv)− η(cv)
)
,

and this completes our proof. Indeed,

– for relations of type (ii) (i.e.r = 0; γ = 1) we knowc = c̃, hence, these
relations map onto 0;



472 K. Altmann

– for relations of type (iii) (i.e.γ = 0) we compare the previous formula with the
result obtained in Corollary (7.5) - the coefficients coincide, and the monomial

zp̃ tk0−k ∈ C[z, t ] maps ontox
∑

v
(av+rv)[cv,η0(cv)]+(α+γ−k)R∗ ∈ A(Y).

�

(7.9) It remains to show that the summands/υ(k) of λ∗ are indeed surjective maps
from T2

Y (−kR∗)∗ to Wk . We will do so by composing them with auxiliary sur-
jective mapspk : ⊕ε<QC

n −→−→ T2
Y (−kR∗)∗ yielding /υ(k) ◦ pk =

∑
ε<Q g(k)(ε, •).

Then, the result follows from the first part of Lemma (7.6).

In Sect. 6 of [Al 3] we used a short exact sequence of complexes called

0→ LC(ER)• −→ (CER

)• −→ span
C

(ER)• → 0

to obtain from Theorem (7.1) an isomorphism

T2
Y (−R) ∼=

(
im [⊕ε<QC

n+1 → ⊕〈ai ,aj 〉<QC
n+1]

im [⊕ε<Qspan
C

(∩aj∈εER
j ) → ⊕〈ai ,aj 〉<QC

n+1]

)∗
.

SinceR∗ = [0, 1] ∈ EkR∗
j for k ≥ 2, the induced surjective map⊕ε<QC

n+1 −→
−→ T2

Y (−kR∗)∗ factorizes through⊕ε<QC
n+1/
C · R∗ = ⊕ε<QC

n yielding the
auxiliary mappk just mentioned. Taking a closer look at the construction of
[Al 3] Sect. 6, we can give an explicit description ofpk ; eventually we will be
able to compute/υ(k) ◦ pk .

Let us fix some 2-faceε < Q. Assume thatd1, . . . , dM are its counterclockwise
oriented edges, i.e. the sign vectorε looks likeεi = 1 for i = 1, . . . ,M andεj = 0
otherwise. Moreover, we denote the vertices ofε < Q by a1, . . . , aM such that
di runs fromai to ai +1 (M + 1 := 1). Starting with a [c, η0] ∈ Cn+1 (and, as just
mentioned, only thec ∈ Cn is essential) we have to proceed as follows:

(i) For i = 1, . . . ,M we represent [c, η0] as a linear combination of elements of
EkR∗

i ∩ EkR∗
i +1 , which corresponds to the lifting from span

C
(ER)• to (CER

)•.

[c, η0] =
∑
v

qiv [cv, η0(cv)] + qi [0, 1] ,

andqiv /= 0 implies [cv, η0(cv)] ∈ EkR∗
i ∩ EkR∗

i +1 , i.e.

〈ai , cv〉 + η0(cv) ≤ k − 1 ; 〈ai +1, cv〉 + η0(cv) ≤ k − 1 .

(ii) We map the result to⊕M
i =1C

EkR∗
i by taking successive differences, corre-

sponding to the application of the differential in the complex (C
ER

)•. The
result is automatically contained in ker

(⊕i L(EkR∗
i ) → L(E)

)
, and its i -th

summand is the linear relation∑
v

(qi ,v − qi−1,v) · [cv, η0(cv)] + (qi − qi−1) · [0, 1] = 0 .



The versal deformation of an isolated toric Gorenstein singularity 473

(iii) Finally, we apply /υ(k) to obtain

/υ(k)(pk(c)) =
∑M

i =1

∑
v(qi ,v − qi−1,v) · g(k)

(
λ(ai )− λ(a(cv)) + µv(ai ), cv

)
=

∑
i ,v g

(k)
(
λ(ai )− λ(a(cv)) + µv(ai ), qi ,v cv

) −
− ∑i ,v g

(k)
(
λ(ai +1)− λ(a(cv)) + µv(ai +1), qi ,v cv

)
=
∑

i ,v g
(k)
(
λ(ai )− λ(ai +1) + µv(ai )− µv(ai +1), qi ,v cv

)
.

Similar to the proof of Lemma (7.7) we introduce the path%i consisting of the
single edgedi only. Then, if qiv /= 0 and w.l.o.g.〈ai , cv〉 ≥ 〈ai +1, cv〉, the pair
of pathsµv(ai ) andµv(ai +1) + %i meets the assumption of Lemma (7.6)(2) (cf.
(i)). Hence, we can proceed as follows:

/υ(k)(pk(c)) =
∑

i ,v g
(k)
(
λ(ai )− λ(ai +1) + %i , qiv cv

)
+

+
∑

i ,v g
(k)
(
µv(ai )− µv(ai +1)− %i , qiv cv

)
=
∑M

i =1 g
(k)
(
λ(ai )− λ(ai +1) + %i ,

∑
v qiv cv

)
=
∑M

i =1 g
(k)
(
λ(ai )− λ(ai +1) + %i , c

)
= g(k)

(∑M
i =1 %

i , c
)

= g(k)(ε, c) .

Hence, Theorem (7.2) is proven.

8 The components of the reduced versal family

(8.1) The components of the reduced base spacēMred correspond to maxi-
mal decompositions ofQ into a Minkowski sumQ = R0 + . . . + Rm with lattice
polytopesRk ⊆ R

n as summands. Intersections of components are obtained by
the finest Minkowski decompositions ofQ that are coarser than all the maximal
ones involved.

Theorem. Fix such a Minkowski decomposition. Then, the corresponding com-

ponent (or intersection of components)̄M0 is isomorphic toC
m+1

/C · (1, . . . , 1),
and the restriction X0 → C

m of the versal family can be described as follows:

(i) Defining the cone

σ̃ := Cone
( m⋃

k=0

(Rk × {ek})
)
⊆ R

n+m+1 ,

it contains σ = Cone (Q × {1}) ⊆ R
n+1 via the diagonal embedding

R
n+1 ↪→ R

n+m+1 ((a, 1) 7→ (a; 1, . . . , 1)). The inclusionσ ⊆ σ̃ induces a
closed embedding of the affine toric varieties defined by these cones, giving
Y ↪→ X0.
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(ii) The projectionRn+m+1 −→−→ R
m+1 provides m+ 1 regular functions on X0, i.e.

we obtain a map X0 → C
m+1. Composing this map with

` : Cm+1 −→−→Cm+1
/C · (1, . . . , 1) yields the family.

The theorem is a straight consequence of knowing the versal deformation.
Hence, we omit the proof here.

(8.2) Example.At the end of (2.5) we presented two decompositions ofQ6 into
a Minkowski sum of lattice summands. Let us describe now the restrictions of
the versal family to the associated components of̄M:

(i) Putting the two trianglesR0,R1 into two parallel planes contained inR3

yields an octahedron as the convex hull of the whole configuration. Then, ˜σ is
the (4-dimensional) cone over this octahedron

σ̃ = 〈(0, 0; 1, 0), (1, 0; 1, 0), (1, 1; 1, 0), (0, 0; 0, 1), (0, 1; 0, 1), (1, 1; 0, 1)〉 .

(ii) Looking at the second decomposition, we have to put three line segments
R0,R1,R2 on three parallel 2-planes in general position inside the affine space
R

4. Taking the convex hull of this configuration yields a 4-dimensional polytope
that is dual to (triangle)×(triangle). Again, ˜σ is the (5-dimensional) cone over
this polytope

σ̃ = 〈(0, 0; 1, 0, 0), (1, 0; 1, 0, 0), (0, 0; 0, 1, 0),

(0, 1; 0, 1, 0), (0, 0; 0, 0, 1), (1, 1; 0, 0, 1)〉 .

The total spaces over the components arise as the toric varieties defined by ˜σ.
In our example, they equal the cones overP

1×P1×P1 andP2×P2, respectively.

9 Further examples

(9.1) Three examples of toric Gorenstein singularities arise as cones over the
Del Pezzo surfaces obtained by blowing up (P

2,O (3)) in one, two, or three
points, respectively. They correspond to the following polygons:
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PolygonQ6

Let us discuss these three examples:
(iv) The edges equal

d1 = (1, 0), d2 = (1, 2), d3 = (−2,−1), d4 = (0,−1) ,
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and they imply the following equations of the versal base space as closed sub-

scheme ofC
4
/C · (1, 1, 1, 1):

t1 + t2 = 2t3, t3 + t4 = 2t2, t2
1 + t2

2 = 2t2
3 , t2

3 + t2
4 = 2t2

2 .

Using the two linear equations, only two coordinatest := t1, ε := t1 − t3 are
sufficient. (We get theti ’s back by t1 = t , t2 = t − 2ε, t3 = t − ε, t4 = t − 3ε.)
Then, the two quadratic equations transform into 2ε2 = 0, i.e. the versal base
space is a fat point.
On the other hand,Q4 does not allow any splitting into a Minkowski sum involv-
ing lattice summands only. This reflects the triviality of the underlying reduced
space. (Cf. (9.2).)

(v) The polygonQ5 allows the decomposition into the sum of a triangle and
a line segment. In particular, the reduced base space of the versal deformation
of Y5 has to be a line. We compute the true base space:d1 = (1, 1), d2 = (−1, 1),
d3 = (−1, 0), d4 = (0,−1), d5 = (1,−1) yield the equations

t1 − t3 = t2 − t5 = t4 − t1 and t2
1 − t2

3 = t2
2 − t2

5 = t2
4 − t2

1 .

With t := t1, s1 := t1− t3, s2 := t1− t2 andt1 = t , t2 = t−s2, t3 = t−s1, t4 = t +s1,
t5 = t − s1 − s2, they turn into

s2
1 = 2s1s2 = 0 .

(vi) This example was spread throughout the paper.

(9.2) We will use the polygonQ4 := Conv{(0, 0), (1, 0), (2, 2), (0, 1)} of
(9.1)(iv) for a more detailed demonstration of how the theory works. In par-
ticular, we will describe the versal family ofY4 over SpecC[ε]/

ε2:
(1) The (t , ε)-coordinates ofV correspond to the linear map

1 0
1 −2
1 −1
1 −3

 : R2 ∼−→ V ↪→ R
4 .

We obtain

C(Q4) = {(a, b) ∈ R2 | a ≥ 0, a − 2b ≥ 0, a − b ≥ 0, a − 3b ≥ 0}
= {(a, b) ∈ R2 | a ≥ 0, a − 3b ≥ 0}
= 〈[1, 0], [1,−3]〉∨ = 〈(0,−1), (3, 1)〉 ⊆ R

2 ,

and the mapN4 → C(Q4)∨ ∩ V ∗
Z

sendse1, e2, e3, e4 to [1, 0], [1,−2], [1,−1],
[1,−3], respectively. In particular, this map is surjective, i.e.S4 = S̄4 andX4 = X̄4.

(2) To compute the tautological conẽC(Q4), we need the Minkowski sum-
mands associated to the two fundamental generators ofC(Q4):



476 K. Altmann

(Q4)(0,−1) = Conv{(0, 0), (2, 4), (0, 3)},
(Q4)(3,1) = Conv{(0, 0), (3, 0), (4, 2)} .

Hence,

C̃(Q4) =
〈

(0, 0; 0,−1); (2, 4; 0,−1); (0, 3; 0,−1);

(0, 0; 3, 1); (3, 0; 3, 1); (4, 2; 3, 1)
〉
.

(3) Now, we have all the information needed to obtain the versal family of
Y4:

– Restrict the family SpecC[C̃(Q4)∨∩Z4] → SpecC[C(Q4)∨∩Z2] ⊆ C
4 to

the subspaceC2 ' VC ⊆ C
4, i.e. use the (t , ε)-coordinates instead of (t1, t2, t3, t4).

– Compose the result with the projectionC2 −→−→ C
1 ((t , ε) 7→ ε). That means

we no longer regardt as a coordinate of the base space.
– Finally, we restrict our family to the closed subscheme defined by the

equationε2 = 0.
(4) To obtain equations, we could either take a closer look to the family

constructed so far, or we can proceed more directly as described in (4.5) and
(5.3):

– Computing the minimal generator set of the semigroup Cone (Q4)∨ ∩ Z3,
we get the elements [cv; η0(cv)]:

[c1; η1
0] = [0, 1; 0], [c2; η2

0] = [−1, 1; 1], [c3; η3
0] = [−2, 1; 2],

[c4; η4
0] = [−1, 0; 2], [c5; η5

0] = [0,−1; 2], [c6; η6
0] = [1,−2; 2],

[c7; η7
0] = [1,−1; 1], [c8; η8

0] = [1, 0; 0].
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Together with [0, 0; 1], they induce coordinatesz1, . . . , z8, t on Y4, i.e. we have
obtained an embeddingY4 ↪→ C

9. (The sums of the three components of the
vectors are always 1. In the figure we have drawn the first two coordinates.)

– Y4 ⊆ C
9 is defined by the following 20 polynomials:

t2 − z4z8, t2 − z1z5, t2 − z2z7, z1t − z2z8, z2t − z3z8,
z2t − z1z4, z3t − z2z4, z4t − z3z7, z4t − z2z5, z5t − z4z7,
z5t − z2z6, z6t − z5z7, z7t − z5z8, z7t − z1z6, z8t − z1z7,
z1z3 − z2

2 , z3z5 − z2
4 , z4z6 − z2

5 , z6z8 − z2
7 , z3z6 − z4z5.
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– Choosing paths from (0, 0) ∈ Q4 to the other vertices, we obtain the list

η1 = [0, 0, 0, 0], η2 = [1, 0, 0, 0], η3 = [2, 0, 0, 0],
η4 = [1, 1, 0, 0] = [0, 0, 2, 0], η5 = [0, 2, 0, 0] = [0, 0, 1, 1].
η6 = [0, 0, 0, 2], η7 = [0, 0, 0, 1], η8 = [0, 0, 0, 0],

– Now, we can lift our 20 polynomials to the ringC[Z1, . . . ,Z8, t1, . . . , t4]:

t1t2 − Z4Z8, t2
2 − Z1Z5, t1t4 − Z2Z7, Z1t1 − Z2Z8, Z2t1 − Z3Z8,

Z2t2 − Z1Z4, Z3t2 − Z2Z4, Z4t3 − Z3Z7, Z4t2 − Z2Z5, Z5t3 − Z4Z7,
Z5t2 − Z2Z6, Z6t3 − Z5Z7, Z7t3 − Z5Z8, Z7t4 − Z1Z6, Z8t4 − Z1Z7,
Z1Z3 − Z2

2 , Z3Z5 − Z2
4 , Z4Z6 − Z2

5 , Z6Z8 − Z2
7 , Z3Z6 − Z4Z5.

– Finally, we restrict the family to the versal base space by switching to the
(t , ε)-coordinates and obeying the equationε2 = 0. Moreover,t is no longer a
coordinate of the base space:

t(t − 2ε)− z4z8, t(t − 4ε)− z1z5, t(t − 3ε)− z2z7,
z1t − z2z8, z2t − z3z8, z2(t − 2ε)− z1z4,
z3(t − 2ε)− z2z4, z4(t − ε)− z3z7, z4(t − 2ε)− z2z5,
z5(t − ε)− z4z7, z5(t − 2ε)− z2z6, z6(t − ε)− z5z7,
z7(t − ε)− z5z8, z7(t − 3ε)− z1z6, z8(t − 3ε)− z1z7,
z1z3 − z2

2 , z3z5 − z2
4 , z4z6 − z2

5 ,
z6z8 − z2

7 , z3z6 − z4z5.

(9.3) At last we want to present an example involving more than only quadratic
equations for the versal base space. LetQ8 be the “regular” lattice 8-gon; it is
contained in two strips of lattice thickness 3.
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Q8 admits three maximal Minkowski decompositions into a sum of lattice sum-
mands:
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(iii) Q8 =
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The decompositions (i), (ii) and (i), (iii) are refinements of the coarser decom-
positions
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respectively. These facts translate directly into the geometry of the reduced base
space of the versal deformation ofQ8:

– It is embedded in some affine spaceC5 and equals the union of a 3-plane
with two 2-planes (through 0∈ C5).

– The two 2-planes each have a common line with the 3-dimensional compo-
nent. However, they intersect each other in 0∈ C5 only.

On the other hand, we can write down the equations of the true versal base space

(as a closed subscheme ofC
8
/C · (1, . . . , 1)):

t k
1 + t k

2 + t k
8 = t k

4 + t k
5 + t k

6 , t k
2 + t k

3 + t k
4 = t k

6 + t k
7 + t k

8 (k = 1, 2, 3) .
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pen). Math. Ann.209 (1974), 211-248.
[St] Stevens, J.: On the versal deformation of cyclic quotient singularities. In: Singularity Theory

and its Applications, Warwick 1989, Part I: Geometric Aspects of Singularities, pp. 302-319,
Springer-Verlag Berlin Heidelberg, 1991 (LNM 1462).

This article was processed by the author using the LaTEX style file pljour1m from Springer-Verlag.


