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The Versatility of SpAM: A Fast, Efficient, Spatial Method of Data
Collection for Multidimensional Scaling

Michael C. Hout, Stephen D. Goldinger, and Ryan W. Ferguson
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Although traditional methods to collect similarity data (for multidimensional scaling [MDS]) are robust, they

share a key shortcoming. Specifically, the possible pairwise comparisons in any set of objects grow rapidly

as a function of set size. This leads to lengthy experimental protocols, or procedures that involve scaling

stimulus subsets. We review existing methods of collecting similarity data, and critically examine the spatial

arrangement method (SpAM) proposed by Goldstone (1994a), in which similarity ratings are obtained by

presenting many stimuli at once. The participant moves stimuli around the computer screen, placing them at

distances from one another that are proportional to subjective similarity. This provides a fast, efficient, and

user-friendly method for obtaining MDS spaces. Participants gave similarity ratings to artificially constructed

visual stimuli (comprising 2–3 perceptual dimensions) and nonvisual stimuli (animal names) with less-defined

underlying dimensions. Ratings were obtained with 4 methods: pairwise comparisons, spatial arrangement,

and 2 novel hybrid methods. We compared solutions from alternative methods to the pairwise method, finding

that the SpAM produces high-quality MDS solutions. Monte Carlo simulations on degraded data suggest that

the method is also robust to reductions in sample sizes and granularity. Moreover, coordinates derived from

SpAM solutions accurately predicted discrimination among objects in same–different classification. We

address the benefits of using a spatial medium to collect similarity measures.
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Modern psychological theorizing often relies largely on a notion of

similarity, or a sense of “sameness” among stimulus items (Goldstone

& Medin, 1994; Medin, Goldstone, & Gentner, 1993). For example,

predictions from memory theories (Gillund & Shiffrin, 1984; Hintz-

man, 1986, 1988; Hintzman & Ludlam, 1980; Hout & Goldinger,

2011), lexical access and production (Goldinger, 1998; Goldinger &

Azuma, 2004), and categorization (Goldstone, 1994b; Goldstone &

Steyvers, 2001; Nosofsky, 1986; Nosofsky & Palmeri, 1997) often

hinge upon degrees of similarity between a stimulus and exemplars

stored in memory. Shepard’s universal law of generalization

(Shepard, 1987, 2004) posits that the probability of generalizing from

one item to the next decays (exponentially) as a function of their

decreasing similarity. Proximity in psychological space can also gen-

erate stimulus confusions. For example, the well-documented “other-

race effect” in face perception may arise from a psychological space

that is more densely clustered for other-race faces, causing them to

appear excessively similar to one another (Byatt & Rhodes, 2004;

Goldinger, He, & Papesh, 2009; Levin, 1996; Papesh & Goldinger,

2010; Valentine, 1991).

Although similarity is a ubiquitous theoretical construct, it is

both labile and challenging to quantify. How similar are the colors

blue and green? To what degree do you resemble your mother

rather than your father? Such questions are difficult to answer with

direct, quantitative measures. Moreover, similarity estimates are

highly context sensitive; the perceived similarity between items

can change dramatically given different “backdrops” for compar-

ison. For example, a pole vaulter and a boxer are not particularly

similar, but if they were both members of the Norwegian Olympic

team, parading in the opening ceremonies with teams from all

other nations, their perceived similarity would doubtless increase.

To faithfully estimate peoples’ impressions of similarity, psychol-

ogists often rely on subjective similarity ratings, which are ana-

lyzed with multidimensional scaling (MDS) or a related approach

(see Shepard, 1980). By analyzing overt ratings of perceived

similarity, the frequencies of interitem confusions, or the latencies

of correct discriminations between items, we can obtain a quanti-

tative approximation regarding the similarity of items.

MDS

To provide context for the present investigation, we begin with

a brief review of MDS. Our goal is not to provide a comprehensive
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background (see Borg & Groenen, 1997; Kruskal & Wish, 1978;

Rabinowitz, 1975); rather we aim to contextualize the present

research, emphasizing a few challenging problems in MDS. As

Shepard (1980) noted, since Isaac Newton’s (1704) treatise on

optics, it has been suggested that psychological (or perceptual)

similarity is best approximated with spatial configurations,

wherein the proximity of any two items reflects their perceived

similarity. For instance, following Newton’s suggestion, spectral

hues can be represented on a “color wheel,” with red proximal to

orange, but distal from green, etc.

MDS is an exploratory data analysis technique that satisfies

Newton’s desire to represent similarity spatially; it uses various

forms of data (matrices of item-to-item similarities or dissimilar-

ities) to create spatial maps, intended to convey the relationships

among items (Attneave, 1950; Mugavin, 2008; Richardson, 1938).

More technically, MDS is a set of statistical techniques (e.g.,

Kruskal, 1964a, 1964b; Torgerson, 1958, 1965; Shepard, 1962a,

1962b, 1964) that generate geometric representations of the stim-

uli, with one point representing each item and the interitem dis-

tances representing the similarity (or “psychological distances”)

between them. There are many instantiations of MDS algorithms

(e.g., PROXSCAL, Busing, Commandeur, & Heiser, 1997;

ALSCAL, Young, Takane, & Lewyckyj, 1978; INDSCAL, Carroll

& Chang, 1970; PREFSCAL, Busing, Groenen, & Heiser, 2005).

Each performs MDS in slightly different ways, or for different

purposes, and most are implemented in data analysis software.

Generally, when the algorithms are executed, a random starting

configuration is generated (in k-dimensional space, as specified by

the analyst), and the proximities among points are calculated.

Ideally, these proximities will respect the similarity ratings ob-

tained from the data. A stress function (e.g., S-Stress, Stress I,

Stress II; the choice depends on the particular MDS algorithm) is

then calculated, quantifying the fit between the distances in space

and the input proximities, with lower values indicating closer fits.

MDS algorithms seek to minimize the stress function by iteratively

moving the items in space, attempting to increase fidelity to the

input data (Rabinowitz, 1975). This process is repeated (some-

times hundreds or thousands of times) until the configuration is

optimal.1

The outcome of MDS (i.e., the spatial map) provides a visual

representation of the underlying dimensions of a data set (Nosof-

sky, 1992), reflecting the important relationships within the data

(Ding, 2006). By subjectively examining the MDS solution, one

tries to identify which dimensions may have been used for object

comparisons. For instance, when providing similarity ratings be-

tween animals, a person may (implicitly or explicitly) appreciate

their respective sizes, ferocity, colors, habitats, etc. As such, a

potential MDS solution may reflect the primary dimensions of size

and ferocity: Small, docile animals (e.g., a mouse) may be located

far from small, aggressive animals (e.g., a piranha), and farther still

from large, aggressive animals (e.g., a lion). Examination of MDS

solutions can reveal such key dimensions, or confirm prior hy-

potheses about their importance (Giguère, 2006).

To appreciate how MDS works, it is useful to imagine exam-

ining a map. One could easily use a map to generate a table of

distances between all pairs of cities; a far harder task would be to

do the reverse, creating a map from a set of distances (for a full

treatment of this often-cited example, see Jaworska &

Chupetlovska-Anastasova, 2009; Kruskal & Wish, 1978). This is

what MDS achieves: Using proximity data (e.g., geographic dis-

tances), it generates a configuration of points that respects these

pairwise ratings. In this case, the outcome would be a map with

cities configured in a manner that respects their geographic loca-

tions; the dimensions would correspond to north–south and west–

east directions. Although this example is psychologically uninter-

esting, it illustrates two important characteristics of MDS: (a) that

it reduces an overwhelming data set (e.g., a large matrix of

city-to-city proximities) into a manageable form and (b) that it

provides spatial representations that allow simultaneous apprecia-

tion of many interrelations among data points.

With respect to the present research, a key issue is that psycho-

logical measurements are rarely as precise as measuring distances

between cities. Two further aspects of MDS therefore merit brief

consideration: choice of dimensionality and interpretation of solu-

tions. First, the researcher must decide how many dimensions the

algorithm should use. Increasing the dimensionality (i.e., the num-

ber of coordinate values used to locate points in space) adds

degrees of freedom to the movement of individual items, thereby

increasing the information represented by the solution (and de-

creasing its stress). In the animal example, one could plot the items

mouse, piranha, and lion along a single dimension of size, col-

lapsing over the dimension ferocity. From this configuration of

points on a line, we would glean that a mouse is similar to a

piranha and both are dissimilar to a lion. Only by adding the

ferocity dimension can we appreciate the dissimilarity of “mouse–

piranha” and the similarity of “piranha–lion.” To choose the right

number of dimensions, researchers will create scree plots, display-

ing stress as a function of dimensionality. Stress always decreases

with added dimensions, but a useful heuristic is to look for the

“elbow” in the plot, the value at which added dimensions cease to

substantially improve fit (Jaworska & Chupetlovska-Anastasova,

2009; see also Lee, 2001, for a Bayesian approach to dimension-

ality determination). This conservatism is applied because increas-

ing the dimensionality of an MDS solution is not always benefi-

cial. As Rabinowitz (1975) noted, a common goal of MDS is to

yield solutions in sufficiently low dimensionality to permit visual

examination. Therefore, choosing the correct dimensionality will

depend on stress, but also on interpretability (Kruskal & Wish,

1978). In essence, one must strike a balance between finding a

good solution and finding one that is interpretable.

Second, MDS solutions vary, even when the algorithms are

implemented on the same data set multiple times. No single

solution will provide the best fit (unless one is using a single data

matrix; Giguère, 2006).2 For instance, one solution from our map

example might display eastern cities on the right and western cities

on the left. A second attempt may reverse these dimensions, or

1 There are many different stopping rules; some algorithms allow for a

maximum number of iterations to be input by the user. Others will stop

once the change in stress value from solution to solution has dropped below

a certain threshold, indicating that the fit is no longer improving with

subsequent iterations.
2 The exception to this rule is that when using only a single matrix of

similarities, the MDS technique is the same as eigenvector or singular

value decomposition in linear algebra, wherein there is a “perfect” solution

(Giguère, 2006). We focus on the case of multiple matrices because it is

more likely that psychologists collect data from multiple participants.
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invert the solution. The interpretation of these solutions is the

same, however, as the relations among points will remain stable.

But with psychological data (that typically uses multiple partici-

pants, and noisy measurements), these interitem relationships may

change across scaling attempts. A good solution is stable, such that

it closely matches configurations across attempts, irrespective of

its orientation along the dimensions. More important to note, MDS

algorithms are blind to the “truth” of their solutions. The analyst

must determine the coherence and utility of the solution, with

dimensions that are subject to interpretation (see Green, Camone,

& Smith, 1989; Schiffman, Reynolds, & Young, 1981).

Methods for Collecting Similarity Data

Similarity is inherently a dynamic (and sometimes slippery)

notion (Goldstone, Medin, & Gentner, 1991; Goldstone, Medin, &

Halberstadt, 1997; Spencer-Smith & Goldstone, 1997). For any

two objects, there are potentially infinite features shared between

them (Tversky, 1977). Measuring the subjective similarity among

objects can therefore be difficult, and there are different techniques

for collecting such data. Jaworska and Chupetlovska-Anastasova

(2009) distinguished between direct and indirect methods. In di-

rect methods, participants knowingly rate or classify items, such as

sorting stimuli into categories (e.g., Faye et al., 2004, 2006;

Rosenberg, Nelson, & Vivekananthan, 1968). A proximity data

matrix would be derived by counting how often stimuli are cate-

gorized together, across participants. By contrast, indirect methods

typically involve data captured by secondary empirical measure-

ments, such as stimulus confusability. For example, participants

might briefly see pairs of stimuli for same–different judgments

(e.g., Shepard, 1963). Proximities would be estimated by the

percentage of trials wherein different items are mistakenly identi-

fied as the same (e.g., Wish & Carroll, 1974), or by speed of

accurate responses (e.g., Papesh & Goldinger, 2010).

Perhaps the most commonly used direct method is simply to ask

people to numerically rate object pairs (typically via Likert scales),

collecting ratings for every possible pairwise combination of stim-

uli (hereafter denoted the pairwise method). For example, partic-

ipants may respond “1” when the items are very similar, “9” when

they are very different, and use intermediate numbers to represent

varying levels of similarity.3 Typically, participants are encour-

aged not to overthink their responses, but rather to make swift,

“gut-feeling,” similarity estimates. Such instructions are designed

to discourage feature listing, explicit decisions about underlying

dimensions, or strategy changes over the course of a session.

Undoubtedly, the pairwise technique is useful and simple to im-

plement. However, as Goldstone (1994a) noted, it confers several

disadvantages. First, it is inefficient, as the number of required

comparisons (to create a full matrix) increases as a quadratic

function of set size: For a stimulus set of n items, n(n � 1)/2

ratings must be made by each participant. Although it is possible

to collect partial matrices from participants (see Spence &

Domoney, 1974), researchers typically prefer to obtain complete

matrices, because they provide more robust and precise solutions

(Giguère, 2006). This inherent inefficiency creates lengthy exper-

imental protocols. To preview our experiments, it took participants

approximately 20–30 min to rate only 25 stimuli (300 compari-

sons) using the pairwise method. Second, using such lengthy

protocols may cause participants to change strategies over time,

become fatigued, or simply disengage and rate arbitrarily (John-

son, Lehmann, & Horne, 1990). Third, people are not particularly

adept at using discrete rating systems. Likert scales limit the

responses that people can make, thereby limiting resolution.

Fourth, people often remember their previous responses and may

be influenced by them (Parducci, 1965; Wedell, 1995). For in-

stance, when presented with a pairing that strikes a participant as

a “4,” the participant may consider how often that number was

used recently and shift the current response to a “5” (see Helson,

1964; Helson, Michels, & Sturgeon, 1954).

In response to these concerns, Goldstone (1994a) proposed a

novel method for collecting similarity data. He suggested that

researchers could benefit from utilizing the spatial nature in which

people tend to conceptualize similarity (Casasanto, 2008; Lakoff &

Johnson, 1980). This method (hereafter denoted the spatial ar-

rangement method, or SpAM) involves presenting multiple stimuli

(e.g., images) to the participant at once, randomly arranged on a

computer screen. The participant’s task is to arrange the items on

the screen (using the computer mouse), such that their interitem

distances reflect their perceived similarity. When the participant is

finished organizing the space, a proximity matrix is derived from

item-to-item Euclidean distances (i.e., dissimilarities). In essence,

SpAM allows people to create their own MDS maps in two-

dimensional planes.

SpAM has intuitive appeal, as participants can use space to their

advantage, and it provides an extremely fast way to collect simi-

larity ratings. The same stimuli that require a 20- to 30-min

pairwise protocol can be scaled in 4–5 min with SpAM. It is also

very efficient: Each movement simultaneously changes the rela-

tionships of the moved object to all other stimuli present on-screen.

Of greater importance, SpAM allows quick appreciation of the

entire stimulus set, such that all judgments can be made without

variations in context. Finally, SpAM allows graded, high-

resolution responding, limited only by the resolution of the com-

puter monitor. Although the method has been occasionally applied

(Busey & Tunnicliff, 1999; Levine, Halberstadt, & Goldstone,

1996; Perry, Samuelson, Malloy, & Shiffer, 2010), we find it

surprising that SpAM has not been widely used. Perhaps research-

ers are more comfortable with the tried-and-true pairwise method,

or are unable to implement SpAM. As such, this investigation had

two primary goals: (a) to critically examine the quality of solutions

derived by SpAM, relative to pairwise methods, and (b) to assess

two new methods for collecting similarity data that combine as-

pects of pairwise and SpAM techniques.

The Current Investigation

To compare methods for collecting similarity data, we first

constructed stimuli with well-controlled perceptual dimensions.

We then collected data using various methods and created com-

parable MDS solutions to assess how faithfully each method

reproduced the original sets. As there exists no method for reveal-

3 There are several variants of this method, such as magnitude estimation

(Stevens, 1971), wherein one pair is chosen as a standard for other pairs to

be judged against, and the anchor stimulus method (Borg & Groenen,

1997), which involves iteratively choosing items that are most similar to

the “anchor” and removing them from the stimulus set until all items have

been selected.
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ing the “true” underlying structure of a psychological space (Gold-

stone & Medin, 1994), nor any analysis that perfectly reveals the

quality of an MDS solution, our strategy was to amass converging

evidence using several analytical techniques. Following Goldstone

(1994a), we correlated interitem distances across methods to assess

levels of agreement across MDS solutions. We also used devia-

tional analyses and cluster analyses (described in detail later) to

assess the quality of our solutions, relative to “ideal” organizations

of the stimulus spaces.

In Experiment 1, we constructed two sets of stimuli: wheels,

which were based on stimuli used by Shepard (1964), and bugs.

We expected SpAM to perform well for two-dimensional stimuli,

as it involves arranging objects on a two-dimensional plane, but we

were unsure whether it would recover more than two underlying

dimensions. As such, the wheels and bugs each consisted of two

stimulus subsets (rated by different participants), including both

two-dimensional and three-dimensional structures. Beyond evalu-

ating SpAM, our second goal was to evaluate two new methods for

collecting similarity data, as described in Experiment 1. In Exper-

iment 2, we examined scaling for conceptual stimuli, consisting of

two sets of animals (presented as text, not images). The first set

(categorical animals, from Hornberger, Bell, Graham, & Rogers,

2009) consisted of animals that are easily categorized along two

primary dimensions: an avian dimension (animals were either

birds or not) and a habitat dimension (animals that live primarily

on land or in/on water). The second set (continuous animals, from

Henley, 1969; Howard & Howard, 1977) was chosen to compare

techniques on stimuli with no salient dimensions. Finally, in Ex-

periment 3, we assessed how well the solutions derived from

SpAM and the pairwise method would predict stimulus discrimi-

nation. Participants rated the similarity of our bugs and novel,

computer-generated faces; we then used the distances derived from

the MDS spaces to predict speed and accuracy in two same–

different discrimination tasks.

Experiment 1

In Experiment 1, we collected similarity ratings on four sets of

stimuli (two- and three-dimensional wheels and bugs). Following

Shepard (1964), we constructed stimuli to vary along a small

number of perceptually distinct and salient dimensions (see also

Garner, 1974; Shepard, 1991). Our goal was to evaluate how well

each of four methods (pairwise, SpAM, total-set pairwise, and

triad) would discover these dimensions. In the total-set pairwise

method, we modified the pairwise technique, endowing it with one

of the advantages from SpAM. Specifically, by presenting all

stimuli at once, participants are “instantly calibrated” to dimen-

sional ranges of the stimuli. This approach places each decision in

the greater context of the entire stimulus set. As Goldstone (1994a)

noted, in pairwise ratings, the values assigned to the first few

object pairs are arbitrary because the entire context only emerges

with continued experience. The total-set pairwise method allevi-

ates that concern (see also the conditional rank-ordering task, or

the free sorting method; Ahn & Medin, 1992; Schiffman et al.,

1981).

Our second new technique, the triad method, follows Chan,

Butters, and Salmon (1997), who showed participants three items

at once and asked them to choose which two were most similar.

Proximity matrices were derived by counting how often each

incorporated pair was chosen as most similar. In Experiment 1, we

added the SpAM interface to the method from Chan et al. Partic-

ipants were shown triads of objects, and created small-scale MDS

maps of the three items by moving them around the screen. Thus,

people were free to pair items together, but could also place them

equidistant to one another (if they deemed no pairing as having

higher similarity), or could apply any asymmetric organization that

seemed correct.

Method

Participants. Experiment 1 included 183 Arizona State Uni-

versity students who participated for partial course credit. All

participants had normal or corrected-to-normal vision.

Design. Each participant provided similarity ratings for three

stimulus sets. Because SpAM takes very little time, participants

performed it twice, and also completed one of the lengthier pro-

cedures (pairwise, total-set, or triad). They first performed SpAM

on a randomly selected set of stimuli, then rated a different set of

items using another technique, then performed SpAM on a third set

of stimuli. Short breaks were provided between sessions. Although

we collected data for all three stimulus types (wheels, bugs, and

animals) simultaneously, we consider the animal stimuli in Exper-

iment 2, for clarity. Selection of methods (pairwise, total-set,

triad), stimulus type (wheels, bugs, animals), and subset (two-

dimensional vs. three-dimensional, categorical vs. continuous) was

random, with the constraint that no individual participant scale the

same stimulus type more than once.

Stimuli. Stimuli were line drawings: schematic one-spoked

wheels and rudimentary bugs, as shown in Figure 1.

Wheels. The two dimensions of variation were the thickness

of the lines composing the drawing and the angle of the spoke. For

the three-dimensional stimuli, we added a dimension of hue, filling

the wheels with varying shades of red.

Bugs. The two dimensions of variation were the number of

legs and the shading of the back and head. For the three-

dimensional stimuli, we added variation in the curvature of the

antennae. Two-dimensional sets included 25 items; three-

dimensional sets had 27 objects.

Apparatus. Data were collected with up to eight computers

simultaneously; each was equipped with identical software and

hardware (Gateway E4610 PC, 1.8 GHz, 2 GB RAM). Dividing

walls separated subject stations on either side to reduce distraction.

Each display was a 17-in. (43.18-cm) NEC (16.0 in. [40.64 cm]

viewable) CRT monitor, with resolution set to 1280 � 1024 and

refresh rate of 60 Hz. Display was controlled by an NVIDIA GE

Force 7300 GS video card (527 MB). E-Prime (Version 1.2;

Schneider, Eschman, & Zuccolotto, 2002) was used to control

stimulus presentation and collect responses.

Procedure.

Pairwise method. Participants were shown two items at a

time and provided similarity ratings using a Likert scale (1 � most

similar, 9 � most dissimilar). Each possible pairwise combination

was presented in random order, for a total of 300 trials for

two-dimensional stimuli and 351 trials for three-dimensional stim-

uli. Placement of items on the left or right of center was also

randomized.

SpAM. Participants were shown all the stimuli simultane-

ously, organized in discrete rows, with randomized item place-
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ment. They were instructed to drag and drop objects, organizing

the space such that the distance among items was proportional to

their perceived similarity, with closer denoting greater similarity.

Once participants finished arranging the items, a right mouse-

button press completed the trial. To avoid accidental termination,

participants were asked if the space was satisfactory, indicating

responses via the keyboard, and were given more time as needed.

Only a single trial was administered.

Total-set pairwise method. The total-set pairwise method

followed the same general procedure as the pairwise method.

However, rather than present two items at a time, we presented all

the stimuli simultaneously (organized in discrete rows, with ran-

domized item placement). Participants gave similarity ratings to a

single pair of items at a time, which were indicated by highlighting

a black border around the to-be-scaled objects. Therefore, the

number of trials matched the pairwise technique.

Triad method. The triad method followed the same general

procedure as SpAM. However, rather than present all stimuli

simultaneously, we showed three items per trial, presented in an

equilateral triangle at the center of the monitor. Trials were ran-

domized with the constraint that each item could appear with any

other item only once, as determined with a Steiner system (see

Rumov, 2001): In a three-item Steiner system, the number of triads

is equal to n(n � 1)/6, where n is the total number of items. Thus,

participants completed 100 and 117 trials for the two- and three-

dimensional stimuli, respectively.

Results

As noted earlier, our strategy was to provide converging mea-

sures regarding the quality of the MDS solutions. We first present

results for two-dimensional stimuli, followed by three-dimensional

stimuli. In each section, we show MDS spaces derived from each

method of data collection, followed by the results of correlational

and deviational analyses.4

4 Although stress is a useful quantification of agreement between the

MDS solution and its input proximities, we chose not to report stress values

for two reasons. First, stress varies according to many different factors,

such as the number of stimulus pairs or data matrices (Giguère, 2006).

Accordingly, our stress values would not be directly comparable across

methods or stimuli. Second, more informative analyses derive from a focus

on the solutions themselves, rather than a blind measure of congruence

with the data.

Figure 1. All stimuli used in Experiment 1. The top portion of the figure shows the two-dimensional wheels

and bugs, and the bottom portion shows three-dimensional items.

5VERSATILITY OF SPAM



MDS algorithm and choice of dimensionality. All MDS

solutions were derived with the PROXSCAL algorithm (Busing et

al., 1997) with 1,000 random starts, via SPSS 15.0 (SPSS, 2006).

This algorithm uses a least squares method of representation and

can accommodate multiple data sources. As Davidson (1983)

noted, selecting the number of dimensions for scaling depends

largely on substantive knowledge that the analyst brings to bear.

Because our stimuli were created with specific dimensions in mind

(without supplementary visual characteristics), we did not rely on

scree plots to choose dimensionality, but simply plotted solutions

according to the input dimensions of the stimuli.

Two-dimensional stimuli. Figure 2 shows the MDS spaces

generated by each method. The x-axis of each plot is the primary

dimension, with the secondary dimension plotted along the y-axis.

Note that, across methods, there was not always agreement about

the primary dimension; sometimes, for instance, participants

deemed the “thickness” dimension as most salient for the wheels,

whereas others found “inclination” most important.

Correlations. For each solution, we calculated the item-to-

item distances for each stimulus pair, measured in Euclidean

space, with 300 and 351 distances for two- and three-dimensional

stimuli, respectively. These values were correlated across methods

to measure the consistency of the solutions. Higher positive cor-

relations indicate that two solutions have comparable layouts,

regardless of rotation around the coordinate axes. Table 1 shows

the Pearson product–moment correlation coefficients of each

method to one another, for each stimulus set separately. All cor-

relations were positive and significant (p � .01), and by Cohen’s

(1988) norms, all were moderate to large in effect size. The

total-set method (.77) produced the largest average correlation,

followed in order by SpAM (.75), pairwise (.71), and triad (.61).

Correlations for bug stimuli (.91) were, on average, higher than

those for wheel stimuli (.50). Thus, as suggested by the regularities

across panels in Figure 2, all the methods generated roughly

similar solutions.

Deviations. Because our stimuli were constructed with spe-

cific dimensions, it was possible to derive “ideal spaces” for

comparison to the solutions derived from each method. The ideal

spaces had perfect, orderly arrangements of stimulus items, with

equal intervals between the levels of each dimension; in essence,

they were perfect squares or cubes. To assess the quality of the

solutions, we derived ideal spaces that matched the height and

width (and depth, for three-dimensional stimuli) of the solutions

generated by each method, separately, and placed the coordinates

at equal intervals along each dimension.5 They were also rotated to

match the orientation of each solution. We then calculated a

deviation score for each stimulus item, measuring the Euclidean

distance from the PROXSCAL coordinates to its “ideal location”

(see Figure 3). Deviation values are arbitrary because no basic unit

of measurement is present in MDS (Rabinowitz, 1975); however,

because PROXSCAL generates solutions of approximately equal

size across methods, the deviation scores are directly comparable.

These values were entered into a 4 � 2 (Method � Stimuli)

analysis of variance (ANOVA), with each stimulus item treated as

a participant. Method and Stimuli were between- and within-

subjects factors, respectively.

The ANOVA revealed a main effect of Method, F(3, 96) �

30.80, �p
2

� .49, p � .001, with the smallest average deviations for

the SpAM (.06), followed by total-set (.15), pairwise (.41), and

triad (.43) methods. There was also a main effect of Stimuli, F(1,

96) � 35.83, �p
2

� .27, p � .001, with smaller deviations for bugs

(.18), relative to wheels (.35). The interaction of Method � Stimuli

was also reliable, F(3, 96) � 8.59, �p
2

� .21, p � .001. Although

this deviation analysis does not perfectly measure the quality of the

observed solutions, it does comport with subjective impressions

regarding the organization of the spaces. For instance, our impres-

sion is that the two-dimensional bug solution from the total-set

method is more orderly, relative to that of the triad method: This

intuition is confirmed by the deviation analysis.

Three-dimensional stimuli. In the supplemental materials,

Figures A2–A5 show the three-dimensional MDS spaces derived

from each method. The solutions are shown in two panels: The left

panels show the primary dimension along the x-axis and secondary

along the y-axis. The right panels show the tertiary dimensions

along the y-axis.

Correlations. The observed correlations (see Table 1) were

again all significantly positive (p � .01) and ranged from small or

moderate to large in effect size. The total-set method again pro-

duced the largest average correlation (.44), followed by SpAM

(.42), pairwise (.41), and triad (.28). Correlations for bug stimuli

(.41) were higher, relative to wheels (.36).

Deviations. The deviation analysis (see Figure 4) revealed a

main effect of Method, F(3, 104) � 4.00, �p
2

� .10, p � .01, with

the smallest average deviations for the pairwise method (.60),

followed by SpAM (.62), total-set (.65), and triad (.77). There was

a main effect of Stimuli, F(1, 104) � 10.38, �p
2

� .09, p � .01,

with smaller deviations to bugs (.60), relative to wheels (.72). The

interaction of Method � Stimuli was reliable, F(3, 104) � 4.03,

�p
2

� .10, p � .01. Inspection of individual solutions shows that it

is not always clear which dimensions of the solutions most closely

correspond to each stimulus characteristic. To give each solution

the best chance of obtaining small deviation scores, we calculated

scores for every possible combination of rotations and selected the

combination that minimized the deviations scores for each solu-

tion.

Monte Carlo simulations. In Experiment 1, SpAM produced

orderly solutions that were comparable in organization to the

traditional pairwise technique. However, because each MDS solu-

tion is unique, our results may have been fortuitous. To address

this possibility, we ran Monte Carlo simulations wherein scaling

algorithms were applied to the pairwise and SpAM data 25 times

each, per stimulus set.

We also attempted to isolate the characteristics of SpAM that

elicit its high-quality solutions by performing Monte Carlo simu-

lations on modified SpAM data. We considered two major aspects

of SpAM that differ from the pairwise method: its granularity and

sheer data mass. The data from SpAM have high granularity

because the resolution of individual responses is greatly increased,

relative to Likert scales. That is, one method allows nine scale

5 It is likely that these ideal spaces are, to some degree, overly con-

strained. Specifically, the linearity assumption is likely too strict, and a

more appropriate space may be one wherein there is unequal spacing

between levels of each dimension, or skewed (e.g., curved) edges. How-

ever, because we used this analysis simply to complement subjective

inspection of the MDS spaces, we deemed that square or cube ideal spaces

provided the simplest, assumption-free metric.
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values per trial, whereas the other allows hundreds of pixels. It is

possible that having more continuous values promotes more accu-

rate proximity matrices. In the reduced granularity simulations,

we transformed the SpAM data into measures akin to a Likert scale

by rounding each value to the nearest hundred (e.g., a distance of

430 pixels was reduced to a score of 4). Next, because SpAM takes

so little time, the foregoing solutions represent large sample sizes

(between 80 and 90 participants), relative to the pairwise method

(between 10 and 20 participants). Having more representa-

tive samples could clearly contribute to the quality of the

SpAM solutions. In the reduced subjects simulations, we reduced

sample sizes to levels that matched the pairwise technique by

randomly selecting subsets of participants for analysis. Finally, in

the both reduced simulations, we reduced both granularity and

sample sizes to ascertain whether the spatial interface alone was

sufficient to engender accurate solutions.6

Within-method correlations. We first calculated the interi-

tem distances from each solution and correlated them within

methodologies. Essentially, we tested to what degree the solutions

generated by a single method were consistent across iterations.

High positive correlations indicate stability within a data set.

Supplement Figures A7 and A8 show histograms of correlation

coefficients for two- and three-dimensional wheels and spokes, for

each of our five simulations (refer to supplement Table A2 for the

values used to generate these histograms, and for the percentages

of correlations that were reliable). The highest stability was shown

for the pairwise and SpAM simulations (average correlation coef-

ficients of .70 for both), followed by reduced subjects (.65) and

then reduced granularity and both reduced (.57 for both). Two-

dimensional stimuli (.90) produced more stable solutions, relative

to three-dimensional (.38), and bugs (.70) were more stable, rela-

tive to wheels (.57).

Cross-method correlations. We next correlated the interitem

distances from each simulation with those of the pairwise method,

using it as a baseline for comparison. Our questions were twofold:

How well does SpAM correlate with the pairwise method across

multiple iterations, and how does degradation of the SpAM data

affect the agreement of the solutions? The most agreement was

shown by the SpAM and reduced subjects simulations (.59 for

both), followed by both reduced (.56) and reduced granularity

(.51). Consistent with the within-method correlations, agreement

was higher for two-dimensional stimuli (.75), relative to three-

dimensional (.37), and for bugs (.67), relative to wheels (.46). (See

supplemental materials for further details and analyses.)

6 It should be noted that our procedures were biased against the reduced

subjects and both reduced simulations. This is because for each of these

simulations, we sampled random sets of data for SpAM solutions; our only

constraint was that each participant’s data be used at least once. By

contrast, in each of the other simulations (pairwise, SpAM, reduced gran-

ularity), the same data were used in each simulation, providing total

consistency in the similarity ratings provided.

Figure 2. Two-dimensional multidimensional scaling spaces generated by each method, from Experiment 1.

The top row of solutions presents the wheels; the bottom row presents the bugs.

Table 1

Pearson Product–Moment Correlation Coefficients for Interitem

Distance Vectors, From Experiment 1

Method SpAM Total-set Triad

Wheels
Two-dimensional

Pairwise .47 .55 .45
SpAM .90 .31
Total-set .34

Three-dimensional
Pairwise .44 .44 .21
SpAM .52 .25
Total-set .32

Bugs
Two-dimensional

Pairwise .96 .96 .86
SpAM .99 .86
Total-set .85

Three-dimensional
Pairwise .53 .53 .31
SpAM .51 .24
Total-set .32

Note. All correlations are significant at p � .01. SpAM � spatial ar-
rangement method.
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Deviations. As before, we calculated deviation scores for

each solution, measuring the distance from each stimulus item

to its ideal location (see Figure 5). These values were entered

into three-way mixed-model ANOVAs (for two- and three-

dimensional stimuli, separately): Simulation (pairwise, SpAM,

reduced granularity, reduced subjects, both reduced) � Stimuli

(wheels, spokes) � Iteration (1–25). Simulation was a between-

subjects factor, whereas Stimuli and Iteration were within-

subjects factors.

Two-dimensional stimuli. The deviation analysis revealed a

main effect of Simulation, F(4, 120) � 73.36, �p
2

� .71, p � .001,

with smallest average deviations for SpAM (.06), followed in

order by reduced granularity (.07), reduced subjects and both

reduced (both .21), and pairwise (.33). There was also a main

effect of Stimuli, F(1, 120) � 548.67, �p
2

� .82, p � .001, with

smaller deviations to bugs (.13), relative to wheels (.22). There

was a main effect of Iteration, F(24, 97) � 39.50, �p
2

� .91, p �

.001, and all the interactions were significant (Fs � 14, ps � .001).

(For brevity, we do not discuss these effects, but the full data set

and histograms are found in the supplemental materials, Table A4

and Figure A11.)

Three-dimensional stimuli. The analysis showed a main

effect of Simulation, F(4, 130) � 11.72, �p
2

� .27, p � .001,

with the smallest deviations in pairwise and reduced subjects

simulations (both .60), followed by SpAM (.64), both reduced

(.68), and reduced granularity (.77). There was a main effect of

Stimuli, F(1, 130) � 45.99, �p
2

� .26, p � .001, with smaller

deviations to bugs (.63), relative to wheels (.69). The main

effect of Iteration was significant, F(24, 107) � 6.19, �p
2

� .58,

p � .001, as were each of the interactions (all Fs � 3, ps �

.001).

Individual differences analysis. As Goldstone (1994a)

noted, a potential shortcoming of SpAM is that instructions

about using the space may be interpreted differently across

individuals. Indeed, subjective inspection of the solutions sug-

gests that people “solved” the scaling problem in various ways,

due to either differing interpretations of instructions or strate-

gies used to construct arrangements. Consider Figure 6: Some

participants (e.g., the top-left panel) produced spaces that ap-

pear highly structured and tend to correlate strongly with oth-

ers. Other spaces (e.g., the top-right panel) appeared less well

structured; such spaces reflect some appreciation for the stim-

ulus dimensions, but correlate with others more weakly (or less

often). Finally, there were participants (e.g., the bottom panels)

whose spaces appeared unstructured, or exhibited “clustering”

along one dimension without appreciation for another. How

should we reconcile these individual differences, and what is

the best way to integrate such participants’ data into aggregate

solutions? In this section, we show that these potential outliers

are not particularly problematic for SpAM, and suggest a way

to identify participants who produce irregular solutions.

Our general strategy was to identify outliers by analyzing the

extent to which each participant’s MDS space correlated with all

others, for the SpAM and pairwise methods. This entailed several

steps: (a) We created individual MDS spaces for each participant

and derived vectors of interitem distances from those spaces. (b)

Next, we correlated the distance vectors across all participants (for

each stimulus set and methodology, separately). (c) For each

participant, we then calculated two scores: their average correla-

tion coefficient and the proportion of correlations that were reli-

able. (d) Finally, we rank-ordered the participants and (in separate

analyses) identified those with the lowest average correlations or

proportions of reliable correlations. The bottom 25% were identi-

fied as outliers; this is likely an overly conservative estimate of

“outlying” data, but we chose this strict criterion for illustrative

purposes. Many participants were considered outliers based on

both measures, but some were outliers according to one measure

and not another.

Once we identified these irregular participants, we created

two MDS spaces, one that excluded the outliers and another for

the outliers themselves. To gauge the extent to which these

participants skewed the aggregate results, we then correlated

Figure 3. Results of the deviation analysis from Experiment 1, two-

dimensional stimuli. Error bars represent �1 standard error of the mean.

SpAM � spatial arrangement method.

Figure 4. Results of the deviation analysis from Experiment 1, three-

dimensional stimuli. Error bars represent �1 standard error of the mean.

SpAM � spatial arrangement method.
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the interitem distances from these exclusionary solutions to the

entire data set. Figures 7 and 8 show the results of this proce-

dure for the two-dimensional bugs, obtained by SpAM and

pairwise methods, respectively. For SpAM, removal of irregular

participants had very little effect on the solutions: Relative to

the aggregate data, the “regular” solutions were in high agree-

ment (r � .99 for both exclusion criteria). By contrast, the

irregular solutions deviated more strongly from the organiza-

tion of the aggregate solution (rs � �.04 and .18 for the mean

r and proportion-significant criteria, respectively). For the pair-

wise method, removal of irregular participants also had little

effect on the solutions (relative to the aggregate data, rs � .97

and .99 for the same criteria, respectively). However, the irreg-

ular pairwise solutions also showed a moderate or high resem-

blance to the aggregate data (rs � .90 and .43 for the same

criteria, respectively). See supplemental materials (Table A6)

for analyses concerning three-dimensional bugs.

Discussion

In Experiment 1, we critically examined a novel method of

collecting similarity ratings proposed by Goldstone (1994a), in

addition to evaluating two new, hybrid techniques. The results

are easily summarized: (a) The correlations of interitem dis-

tances across methods show that each method provides solu-

tions with roughly comparable organizations. To the extent that

the pairwise method is an appropriate baseline for comparison,

SpAM provides solutions that closely agree with well-

established procedures. The total-set method also produced

comparable solutions, and to a lesser extent, the triad method

did as well. (b) In comparison to ideal MDS spaces, SpAM

produced solutions that were most orderly for two-dimensional

stimuli (owing, no doubt, to its use of a two-dimensional plane).

When three-dimensional stimuli were rated, SpAM no longer pro-

duced superior solutions, but nevertheless generated solutions that

Figure 5. Results of the deviation analysis from Experiment 1, Monte Carlo simulations. Two-dimensional

stimuli are shown in the top panel; three-dimensional stimuli are shown on the bottom. Error bars represent �1

standard error of the mean. SpAM � spatial arrangement method.
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were comparable to the other techniques. (c) The Monte Carlo sim-

ulations revealed high levels of stability (across iterations of the

scaling algorithms) for pairwise and SpAM methods, and show that

the stability of SpAM was reduced slightly by reducing sample size or

granularity. (d) The simulations also showed that SpAM consistently

correlates highly with solutions from the pairwise technique; these

correlations are generally unaffected by reductions in sample size or

granularity. Finally, (e) the individual differences analyses suggest

that participants approach SpAM in different ways. However, remov-

ing even a full quarter of the least regular data did not drastically

affect the overall solutions provided by SpAM. We revisit the issue of

individual differences in the General Discussion.

Experiment 2

In Experiment 2, we further examined the foregoing methods,

now considering conceptual stimuli (animal names) with loosely

established underlying dimensions. In short, we assessed how well

the methods would perform on psychologically interesting mate-

rials. As in Experiment 1, we present cross-method correlations of

the interitem distances. We also added data derived by latent

semantic analysis (LSA; Landauer & Kintsch, 2003), as another

baseline condition. For the categorical stimuli, we also added a

cluster analysis, designed to measure the degrees of separation

between semantic categories.

Method

The participants, apparatus, design, and procedure were iden-

tical to those in Experiment 1, as all data were collected

simultaneously. The only exception was that, in analysis, we

included data derived from LSA as an additional baseline. LSA

uses statistical computations on a large text corpus to extract the

contextual-usage meaning of words. Its core assumption is that

shared contexts of appearance can reflect the similarity among

words (Landauer, Foltz, & Laham, 1998; Wolfe & Goldman,

2003). We obtained (for each stimulus set) an LSA term-to-term

comparison matrix (using a topic space that included “general

reading up to 1st year college,” with 300 factors) and fed these

matrices into the MDS algorithms, just like data derived from

our actual participants.

Stimuli. We used two sets of animal names (see supplement

Table A1). Categorical animals (from Hornberger et al., 2009)

were easily categorized along two dimensions. Each animal was

either a bird or a four-legged animal (avian dimension), and was

either a land or water dweller (habitat dimension). The continuous

animals (from Henley, 1969) were selected with no obvious cat-

egorical classification or any prespecified underlying structure.

Both stimulus sets included 25 items. Thus, for the pairwise and

total-set methods, 300 trials were necessary to acquire a complete

data matrix from each participant; 100 trials were necessary for the

triad method, and one trial was used for SpAM.

Results

We first present the results from categorical animals, followed

by continuous animals. All MDS solutions were again derived with

PROXSCAL (Busing et al., 1997) with 1,000 random starts. We

scaled the categorical animals in two dimensions because they

Figure 6. Spatial arrangement method spaces (for two-dimensional bugs) created by four participants, from

Experiment 1. The numbers represent Pearson product–moment correlation coefficients (� p � .05; �� p � .01)

between the item-to-item distance vectors from each solution.
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were selected with two specific dimensions in mind. For the sake

of consistency, we also scaled the continuous animals in two

dimensions. Although solutions with higher dimensionality may

have yielded additional information, we used two-dimensional

solutions for ease of interpretation, and so both stimulus sets could

be analyzed comparably.7

Categorical animals. Figure 9 shows the MDS spaces gen-

erated by each method and the LSA data. Again, the x-axis of each

plot presents the primary dimension, and the secondary dimension

is plotted along each y-axis. The categories are shown with dif-

ferent symbols: Birds are displayed with diamonds, and nonbirds

with circles; land dwellers are shown with filled symbols, and

water dwellers with unfilled symbols. From this, it is easy to

rapidly identify each hypothesized dimension, for example, by

comparing the locations of diamonds and circles.

Correlations. Table 2 shows the Pearson product–moment

correlation coefficients (for item-to-item distances generated by

each MDS space) of all methods. All correlations were signifi-

cantly positive (p � .01) and were moderate to large effects. The

highest average correlation was produced by the total-set method

(.71), followed by pairwise and SpAM (both .69), triad (.60), and

LSA (.44).

Cluster analyses. To estimate how well each MDS solution

discovered the hypothesized underlying category structures, we

calculated the average item-to-item distance from each stimulus

item to (a) members of its own specific category (e.g., duck to

goose); (b) items that matched on the habitat dimension, but not

the avian dimension (e.g., duck to turtle); (c) items that matched on

the avian dimension, but not the habitat dimension (e.g., duck to

chicken); and (d) items that were opposites on both dimensions

(e.g., duck to squirrel). A solution with consistent categorization

should have small within-category distances, large distances to

items that are opposites on both dimensions, and intermediate

values for items that share singular features (see Figure 10). These

values were tested in a two-way mixed-model ANOVA (again,

treating each stimulus item as a subject): Method (pairwise,

SpAM, total-set, triad, LSA) � Cluster (within-category, off-

habitat, off-avian, off-both). Method and Cluster were between-

and within-subjects factors, respectively.

The ANOVA revealed no effect of Method, F(4, 120) � 1, p �

.90, reflecting the fact that PROXSCAL generates solutions of

approximately equal size. We observed a main effect of Cluster,

F(3, 118) � 372.99, �p
2

� .90, p � .001, with the shortest average

distances to within-category members (0.46), followed by off-

habitat (0.80), off-avian (0.97), and off-both (1.16). The Method �

Cluster interaction was reliable, F(12, 312) � 4.42, �p
2

� .13, p �

7 Indeed, the annulus structure of the solutions suggests that perhaps the

stimuli should be scaled in a higher dimensionality. As such, for each

method, we also scaled the data in one to five dimensions and assessed the

stress values at each level. Scree plots showed an elbow that consistently

appeared at Dimension 2. Although adding a third dimension reduced

stress, the largest reductions occurred from one dimension to two dimen-

sions (an average of 62% and 59% reduction in overall stress, for categor-

ical and continuous animals, respectively). The reduction from two to three

dimensions was modest (15% and 17%), and the reduction from three to

four dimensions was minor (7% and 8%). This indicates that two-

dimensional analyses were most likely appropriate.

Figure 7. Multidimensional scaling spaces for two-dimensional bugs, derived by the spatial arrangement

method (SpAM; Experiment 1). The left panels show solutions that exclude outlier participants; the right panels

are solutions from only outliers. The numbers represent Pearson product–moment correlation coefficients (�� p �

.01) between the item-to-item distance vectors from each solution.
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.001, driven largely by the comparatively poor performance of

LSA. The effect of Cluster shows that our analysis reliably quan-

tified the classifications drawn out by each solution, with distance

in space increasing as a function of featural dissimilarity. More-

over, it affirms subjective inspection of the solutions, for example,

showing that SpAM created the tightest categorical clusters (i.e.,

the smallest within-category distances and largest off-both dis-

tances).

Continuous animals. The MDS spaces generated from each

data set are shown in Figure 11, with primary and secondary axes

shown on the x- and y-axes, respectively. The correlations between

each method were significantly positive, ranging from small to

large effect sizes (see Table 2). The total-set method (.54) pro-

duced the highest average correlations, followed by pairwise (.51),

SpAM (.48), triad (.42), and LSA (.23).

Monte Carlo simulations. Experiment 2 again showed that

SpAM produced MDS spaces that were comparably organized,

relative to more time-intensive methods. Moreover, this congru-

ence was not limited to perceptual similarity but extended to

conceptual similarity. To verify again that the findings were not

simply a fortunate outcome, we performed Monte Carlo simula-

tions wherein scaling algorithms were repeatedly applied (25 iter-

ations each) to the pairwise and SpAM data, and to modified

SpAM data (with reduced granularity, sample size, or both).

We first calculated the interitem distances from each solution

and correlated them, within methods, to estimate internal stability.

The pairwise method (.68) showed the highest average correlation,

followed by SpAM (.65), reduced subjects (.60), reduced granu-

larity (.54), and both reduced (.51). Categorical animals (.77)

produced more stable solutions, relative to the continuous animals

(.41). We next correlated the interitem distances from each simu-

lation with those of the pairwise method to see how consistently

SpAM correlates across iterations, and to examine how the sys-

tematic removal of its potential advantages might affect its per-

formance. The highest agreement was shown by the full SpAM

(.59), followed by reduced subjects (.55) and then reduced gran-

ularity and both reduced (both .52). The supplemental materials

(Table A3 and Figures A9 and A10) show histograms of the

correlation coefficients for each simulation, along with values used

to generate each histogram.

Cluster analysis. As before, we calculated scores from each

solution, measuring the average distance from an animal to mem-

bers of its own category, to members sharing one feature, and to

those sharing no features (for the categorical animals only). These

values (see Figure 12) were entered into a three-way mixed-model

ANOVA: Simulation (pairwise, SpAM, reduced granularity, re-

duced subjects, both reduced) � Cluster (within-category, off-

habitat, off-avian, off-both) � Iteration (1–25). Simulation was a

between-subjects factor, and Cluster and Iteration were within-

subjects factors. There was no main effect of Simulation, F(4,

120) � 1, p � .99. There was a main effect of Cluster, F(3, 118) �

1260.49, �p
2

� .97, p � .001, with the smallest distance to

within-category items (0.41), followed by off-habitat (0.80), off-

avian (0.98), and off-both (1.19). There was no main effect of

Iteration, F(24, 97) � 1, p � .99. The Cluster � Method, Clus-

ter � Iteration, and Simulation � Cluster � Iteration interactions

were all significant (all Fs � 1.8, ps � .05). For brevity, we do not

discuss these effects (see supplemental materials, Table A5 and

Figure 8. Multidimensional scaling spaces for two-dimensional bugs, derived by the pairwise method (Ex-

periment 1). The left panels show solutions that exclude outlier participants; the right panels are solutions from

only outliers. The numbers represent Pearson product–moment correlation coefficients (�� p � .01) between the

item-to-item distance vectors from each solution.
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Figure 9. Categorical animal multidimensional scaling spaces generated by each of the four methodologies,

and by latent semantic analysis, from Experiment 2.
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Figure A12). Two important points can be gleaned from this

analysis. First, we replicated the findings from Experiment 2,

showing that the pairwise and SpAM techniques produce satisfac-

tory categorical discrimination, with distance in space increasing

as a function of featural dissimilarity. Second, neither reducing the

sample size nor reducing the granularity of the SpAM data greatly

hindered its ability to generate conceptually organized MDS solu-

tions.

Individual differences analysis. As in Experiment 1, we

identified outlier participants by examining how well each per-

son’s MDS space correlated with the others (for the SpAM and

pairwise methods). Then we created solutions for the 75% most

regular and 25% least regular participants, separately. In Experi-

ment 1, we included solutions derived by two criteria: the average

correlation coefficient per participant and the percentage of sig-

nificant correlations. In Experiment 2, the outlying participants

were the same people, for both methods, according to both criteria.

Figure 13 shows the results (for brevity, we limit our analysis to

the categorical animals; see supplemental materials, Table A6).

For SpAM, removing irregular data again had a minimal effect

on the solutions. The regular solution was in high agreement with

aggregate data (r � .91), whereas the irregular solution weakly

correlated with the aggregate (r � .12). For the pairwise method,

removal of irregular participants also had a minor effect; the

regular solution was highly correlated with the aggregate (r � .85).

In contrast to the SpAM irregular data, the pairwise irregular

solution was more highly correlated with the aggregate solution

(r � .42).

Discussion

In Experiment 2, we examined conceptual, rather than percep-

tual, similarity. The results can be summarized as follows: (a)

Correlating the interitem distances across methods showed that the

solutions were comparably organized. Notably, both the SpAM

and total-set methods reliably produced strong correlations (the

triad method performed less well). LSA provided the least consis-

tent data; this is not altogether surprising, however, as large

corpora may lack the precision necessary to adequately mimic

human performance. (b) With respect to categorical animals, each

method clustered the stimuli such that interitem distances tended to

increase as a function of featural dissimilarity. (c) The Monte

Table 2

Pearson Product–Moment Correlation Coefficients for Interitem

Distance Vectors, From Experiment 2

Method SpAM Total-set Triad LSA

Categorical animals
Pairwise .81 .85 .64 .47
SpAM .83 .70 .40
Total-set .66 .49
Triad .39

Continuous animals
Pairwise .61 .75 .48 .18
SpAM .58 .45 .29
Total-set .56 .25
Triad .20

Note. All correlations are significant at p � .01. SpAM � spatial ar-
rangement method; LSA � latent semantic analysis.

Figure 10. Cluster analyses showing the average item-to-item distance for stimuli that shared two features

(within-category), one feature (off-habitat, off-avian), or no features (off-both), from Experiment 2 (categorical

animals). Error bars represent �1 standard error of the mean. SpAM � spatial arrangement method; LSA �

latent semantic analysis.
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Carlo simulations show that, across iterations, the pairwise method

and SpAM demonstrate high stability. Stability of the SpAM

solutions were again reduced only slightly by reducing the gran-

ularity of the data or the sample size. (d) In the same vein, SpAM

consistently correlated with the pairwise method; this congruence

was minimally affected by reduction of data mass and granularity.

(e) The cluster analyses were replicated in the Monte Carlo sim-

ulations and showed no discernible effects from degrading the

SpAM data. Lastly, (f) the individual differences analyses suggest

that removing a full quarter of the least regular data from SpAM

did not dramatically affect the overall solutions (i.e., the method is

robust to outliers).

Taken together, the findings from Experiment 2 suggest that

the utility of SpAM is not limited to stimuli with obvious

perceptual similarity. It is also clear that the total-set technique

offers a strategic advantage, relative to pairwise method;

namely, instant appreciation of the entire stimulus set. Although

we are cautious about subjective interpretation of the continu-

ous animal spaces, the findings from these stimuli were also

informative. Although the stimuli were not selected with any

dimensions in mind, across methods and simulations, the solu-

tions showed high agreement.

Experiment 3

Each day people are faced with stimuli and situations that are

nearly identical to those they have encountered previously. It is

imperative that an organism be able to adequately generalize

and discriminate; a successful creature is one that can detect

when two situations (or stimuli) are similar enough to be acted

upon as the same and when they are dissimilar enough to

require different actions. Early theorists (e.g., Hull, 1943) rec-

ognized that no learning theory was complete without address-

ing how learning in one situation generalized to (or discrimi-

nated from) another. For example, a lifetime of experience

drinking from coffee mugs affords a person the knowledge that

a previously unseen ceramic cup is a more appropriate conduit

for a hot beverage than a disposable, plastic cup. Shepard

(1987) argued that generalization is an abstract cognitive act;

we generalize not because we cannot tell the difference between

situations, but because we reason that they belong to a larger set

of situations (or “consequential regions”) that share a common

outcome. Importantly, Shepard and others (Russell, 1988;

Shepard, 1957, 1958, 2004; Shepard & Chang, 1963) have

shown that generalization gradients (i.e., the function relating

the probability that two items will be acted upon as the same,

against their distance in psychological space) follow a mathe-

matical law, falling off exponentially as the disparity between

stimuli increases (see also Henmon, 1906). This work has

firmly established that points (representing objects or situa-

tions) lying closer together in psychological space will more

often (and/or more quickly) lead to generalization and, con-

versely, that points lying farther apart in psychological space

Figure 11. Continuous animal multidimensional scaling spaces generated by each of the four methodologies,

and by latent semantic analysis, from Experiment 2.
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tend to elicit discrimination behavior (more frequently and/or

more quickly).

Germane to the current investigation, MDS-derived percep-

tual spaces have been used to predict behavior in independent

tasks, such as “same– different” classification (e.g., Gilmore,

Hersh, Caramazza, & Griffin, 1979; Podgorny & Garner, 1979;

Townsend, 1971). Accordingly, as a final test, we assessed the

extent to which solutions derived from SpAM and pairwise

methods predicted perceptual discrimination, using two variants

of a same– different task. By assessing reaction times (RTs) and

error rates on “different” trials, we gauged how well each

method predicted discrimination across objects. Stimuli that are

distant from one another in psychological space should elicit

shorter RTs and fewer errors, relative to points that are closer

together, as discrimination should be easier in these cases.

Perceptual discriminations thus provide a robust metric to as-

sess the quality of MDS solutions.

Method

Participants. Experiment 3 included 48 new students from

Arizona State University who participated for partial course

credit. All participants had normal or corrected-to-normal vi-

sion.

Design. In the first part of the experiment, each participant

provided similarity ratings for two stimulus sets, once using

SpAM and once using the pairwise method; task order and

method-to-stimuli pairing were counterbalanced across partic-

ipants. Following these similarity ratings, participants com-

pleted two blocks of same– different classification; one block

was speeded and one was nonspeeded (task order and stimuli

pairing were again counterbalanced).

Stimuli.

Bugs. We selected 16 of the two-dimensional bugs, crossing

four levels of body color (light gray to black) with four levels of

legs (three to six legs per side).

Faces. Novel faces were generated with FaceGen Modeller

software (Singular Inversions, 2004). Faces were created by gen-

erating a prototype (a racially ambiguous, male face) and then

systematically distorting the prototype along two dimensions: skin

shade and separation of the eyes (varying in equal steps from �1

to 2 and �3 to 3 for skin shade and eye separation, respectively;

see supplement Figure A1).

Procedure.

Similarity ratings. The pairwise and SpAM methods for

collecting similarity ratings were identical to those of the previous

experiments. There were 120 trials for the pairwise method and

one trial of SpAM.

Speeded classification. Participants made 152 judgments;

each of the 120 “different” stimulus pairs was shown, with an

additional 32 “same” trials, all in random order. Pairs were

presented side by side, and participants quickly pressed buttons

on the keyboard indicating “same” or “different.” Feedback was

given only for incorrect responses, and a 500-ms intertrial

interval separated each pairing.

Nonspeeded classification. The procedure was identical to

speeded classification, except stimuli were presented sequen-

Figure 12. Cluster analyses showing (for each simulation type) the average item-to-item distance for stimuli

that shared two features (within-category), one feature (off-habitat, off-avian), or no features (off-both), from

Experiment 2, Monte Carlo simulations (categorical animals). Error bars represent �1 standard error of the

mean. SpAM � spatial arrangement method.
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tially. Each trial began with a fixation cross (250 ms), followed

by a noisy forward mask (250 ms) and then the first item of the

pair (250 ms). This image was replaced by a 500-ms mask and

then the second stimulus item (250 ms). The second stimulus

was offset slightly to the left or right of the first (randomly),

such that items could not be matched as templates of one

another. Finally, a backward mask (250 ms) was presented,

after which participants indicated responses using the keyboard.

Results

All MDS solutions were derived with the same techniques

used in Experiments 1 and 2; both the bug and face stimuli were

scaled in two dimensions. The aggregate solutions are shown in

supplement Figure A6.

Discrimination gradients. From each MDS solution, we

acquired 120 values, representing the Euclidean distances in

psychological space between all pairs of items. We then plotted

these distances against the mean “different” RT and error rate

for each pair (from the speeded and nonspeeded classification

tasks, respectively). Exponential fit lines could not be applied to

the raw error rates, because several pairs elicited no errors;

therefore, we adjusted the error rates by adding .001 to each

value. Next, we plotted the best fitting functions (logarithmic

and exponential) relating discrimination to distance in psycho-

logical space. The results, as shown in Figure 14, were uni-

formly concave upward, with more efficient discrimination

(i.e., faster RTs, fewer errors) as distance in psychological

space increased.

Logarithmic trend lines produced uniformly better fits, rela-

tive to exponential trends. For the following results, logarithmic

and exponential fit values are shown outside and inside brack-

ets, respectively. For the bug stimuli, SpAM (Radjusted
2

� .45

[.41] and .61 [.43] for RTs and errors, respectively) provided

MDS coordinates that fit the same– different data better, relative

to the pairwise method (Radjusted
2

� .35 [.34] and .47 [.37] for

RTs and errors, respectively). For the face stimuli, the pairwise

method (Radjusted
2

� .65 [.64] and .74 [.55] for RTs and errors,

respectively) provided a better fit, relative to SpAM (Radjusted
2

�

Figure 13. Multidimensional scaling spaces for categorical animals, derived by the spatial arrangement method

(SpAM) and the pairwise method (Experiment 2). The left panels show solutions that exclude outlier partici-

pants; the right panels are solutions from only outliers. The numbers represent Pearson product–moment

correlation coefficients (�� p � .01) between the item-to-item distance vectors from each solution.
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.60 [.56] and .66 [.37] for RTs and errors, respectively). Each

trend line produced a reliable fit (all ps � .01).8

Discussion

Experiment 3 provided additional evidence that SpAM gener-

ates MDS solutions that are comparably organized, relative to the

pairwise method. Moreover, the MDS coordinates produced by

SpAM predicted stimulus generalization with approximately the

same precision as those derived by the pairwise methodology.

Thus, we suggest that SpAM’s utility is not limited to producing

solutions with reasonable or subjectively pleasing organizations.

Rather, the spaces provided by SpAM are precise enough to

predict psychological data from a task unrelated to scaling (cf.

Shepard, 1987).

General Discussion

In this investigation, we examined various methods used to

collect similarity data for MDS. We systematically evaluated a

relatively new, spatial arrangement method proposed by Goldstone

(1994a), and we also evaluated two new, hybrid methods that each

borrow aspects of the pairwise and SpAM techniques.

Assessment of New Techniques: SpAM, Total-Set

Pairwise, and Triad Methodologies

SpAM exhibits four methodological advantages, relative to the

pairwise procedure, for collecting similarity data. First, it is fast

and efficient. Each time a participant moves an object on the

screen, the action simultaneously changes the relationship of the

moved object to all other stimuli present. Thus, with a few move-

ments, organization of the entire space can be modified: Our

participants scaled 25–27 stimuli in roughly 5 min, compared with

25–30 min necessary for the pairwise method. This disparity, it

should be noted, will grow as the stimulus set grows. SpAM allows

a researcher to collect full data matrices from many participants

with fewer concerns about fatigue or inconsistencies across trials

(see Bijmolt & Wedel, 1995). Second, SpAM produces data with

high resolution. Pairwise responses are often limited to points

along a Likert scale, thereby limiting individual responses to

approximately 10 units. By contrast, SpAM generates ratings that

are only limited by the resolution of the computer monitor, as the

ratings are Euclidean distances, measured in pixels.

Third, because all (or many) of the stimuli are presented simul-

taneously, participants are instantly calibrated to the full ranges of

the important stimulus dimensions. This lies in stark contrast to the

pairwise method, wherein the first several ratings may be arbitrary,

and will likely conflict with later, better informed decisions. For

example, if presented with the pairing sparrow–goose, one may be

inclined to indicate a high degree of similarity, as both are birds.

However, if the entire stimulus set was composed of numerous

small birds and other large birds, this initial rating would prove

relatively inaccurate, given full context. In the full set, sparrow

should be rated similar to other small birds (e.g., robin) and less

similar to larger birds such as a goose. One may assert that such a

participant was not “zoomed in” enough on the initial rating,

failing to appreciate relevant aspects of dissimilarity. If every

possible pair is presented only one time, such uncalibrated re-

sponses can have deleterious effects on the overall coherence of

the data matrix. SpAM provides a stable context in which to make

similarity decisions, because the presented stimuli remain constant

as each decision (i.e., movement of items in the space) is made.

Fourth, SpAM is intuitive and user-friendly. Given a large stimu-

lus set, pairwise methods can be quite tiresome. SpAM provides a

more engaging technique for collecting data, and it exploits peo-

ples’ natural tendency to think of similarity in spatial terms, by

giving them a spatial medium to indicate their perceptions.

Earlier, we speculated that researchers may be hesitant to use

SpAM because pairwise procedures are better established and have

been used across myriad domains. Interestingly, however, SpAM

bears a striking resemblance to several other procedures that are

currently in use. For instance, sensory analysts use a technique

called “projective mapping” to collect consumer research data:

People place products (e.g., samples of chocolate) on sheets of

paper that are marked with coordinate axes in locations that respect

the perceived similarity of each pair of items (King, Cliff, & Hall,

1998; Risvik, McEwan, Colwill, Rogers, & Lyon, 1994; Risvik,

McEwan, & Rødbotten, 1997). “Napping” is a nearly identical

technique (Nestrud & Lawless, 2011; Pagès, 2005; Perrin et al.,

2008) wherein people place food or drinks on a sheet of paper or

tablecloth. Importantly, the data acquired from these procedures

have been analyzed with methods including MDS, such as

INDSCAL (e.g., Qannari, Wakeling, & MacFie, 1995), three-way

MDS (Abdi, Dunlop, & Williams, 2009; Abdi, Valentin, Chollet,

& Chrea, 2007), and others. What brings these methods together is

not a common analysis, but their shared use of space as the

medium by which to acquire similarity estimates.

To assess the quality of SpAM data, relative to the well-

established pairwise procedure, we sought converging evidence

from several analytical techniques. With perceptual stimuli, we

found that the method was adept at “discovering” the dimensions

by which the stimuli were constructed. Using conceptual stimuli,

we corroborated this finding, as SpAM uncovered the categorical

(i.e., binary) dimensions by which our stimuli were selected.

Generally, SpAM provided MDS solutions that were (a) compa-

rably organized to those derived by pairwise procedures, (b) stable

across multiple iterations of MDS, and (c) relatively robust to

reductions in data mass or granularity. This final point suggests

that although these aspects of SpAM contribute to its high quality

solutions, they are not necessary elements. Moreover, SpAM-

derived MDS solutions accurately predicted stimulus generaliza-

tion in a same–different task. Giguère (2006) noted that there are

no “convincing” statistical techniques for verifying the interpreta-

tion of an MDS space. But taken together, the present results

suggest that SpAM provides consistent, stable, coherent, and,

perhaps most importantly, useful MDS solutions.

8 For each data set, we compared the fits (indexed by Radjusted
2 values) for

discrimination behavior, relative to MDS solutions with one, two, and three

dimensions. The best fits were always provided by 2D solutions. We also

plotted fit lines for distances derived from non-MDS data. That is, we used

average aggregate proximities, without subjecting the data to a scaling

algorithm. Relative to MDS-derived proximities, the “raw” proximities

provided some improvements in fit, suggesting that raw values can also

predict discrimination behavior.
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We also evaluated two hybrid techniques for collecting similar-

ity data: the total-set pairwise and triad methods. The total-set

method follows the traditional pairwise procedure, but the entire

stimulus set is shown at once, and participants are cued about

which pair to rate in each trial. This simple modification of the

pairwise procedure allows people to instantly calibrate themselves

to the important dimensions of the stimuli. Across experiments, it

consistently produced MDS solutions that were comparable to

those of the pairwise method. Thus, the total-set method is an

attractive technique for collecting similarity data, particularly

when researchers are concerned that participants may not be

zoomed in (or out) appropriately, given the context of the stimuli.

However, this method suffers some of the same drawbacks (i.e.,

lengthy experimental protocols and low granularity) as the stan-

dard pairwise procedure.

The triad method can be envisioned as a series of miniature

spatial arrangement procedures (SpAM lite!) wherein participants

are shown three-item sets and arrange the objects at distances

proportional to their similarity. This method uses the intuitive

interface and high-resolution responding from SpAM. By limiting

the number of stimuli presented per trial (rather than presenting

large sets, as in SpAM), the triad method might encourage more

thoughtful, accurate responding. Although we observed reliable

congruence with the pairwise procedure, the triad method gener-

ally performed the worst among our tested methods (e.g., its

correlations and deviation scores were often the lowest and high-

est, respectively). Note that although our approach in the present

research was to display all stimuli simultaneously, Goldstone’s

(1994a) original method used multiple partial-set trials (20 items

per trial). It therefore may not be necessary to display all items at

once, but perhaps limiting each trial to three items is disadvanta-

geous. Our triad procedure took approximately the same time to

complete as the pairwise method, so the large number of trials

(100–117) may have created fatigue. For now, our recommenda-

tion is to use this procedure with caution, and to consider present-

ing larger subsets of stimuli to diminish the length of the experi-

mental protocol, but still encourage appreciation for the larger

context of the set as a whole.

Individual Differences

Goldstone (1994a) suggested that the SpAM is prone to indi-

vidual differences in the interpretation of instructions. His partic-

ipants sometimes treated distance as a continuous measure and at

other times organized the stimuli into small clusters of items; our

participants did this as well (see Figure 6). Judging by the robust

solutions we observed, such individual differences appear as a

minor concern. First, the Monte Carlo simulations suggested that

SpAM produces stable results that are largely unaffected by sep-

arate iterations of the scaling algorithms; in short, individual

differences do not appear to make SpAM solutions unstable.

Second, our exclusionary individual differences analyses indicated

that solutions derived from SpAM remain consistent even when a

full quarter of the least regular data (as indexed by the extent to

which individual data matrices correlate with others) is removed.

Third, individual differences also arise in pairwise techniques, as

some participants use the entire scale for responding, whereas

others reduce their ratings to a few numbers (e.g., the lowest,

middle, and highest scale values). Indeed, when we applied the

same exclusion criteria to data obtained by pairwise methods, we

found that the irregular pairwise solutions were substantially dif-

ferent from the aggregate data (as were SpAM’s irregulars), indi-

cating that SpAM is not uniquely susceptible to individual differ-

ences in task performance (see Hutchinson & Lockhead, 1977).

Sometimes individual differences in MDS solutions are infor-

mative rather than a nuisance. For example, Krumhansl and

Shepard (1979) found that whereas the musically inclined tend to

appreciate structural features of tone stimuli (e.g., tonal hierar-

chies), more naive participants attend to simpler stimulus charac-

teristics (e.g., pitch height; see also Kessler, Hansen, & Shepard,

1984). Bimler, Kirkland, and Pichler (2004) observed “com-

pressed” color spaces for individuals with different forms of color

deficiency, relative to normal perceivers. Hollins, Bensmaı̈a, Kar-

lof, and Young (2000) found that most people perceive two pri-

mary dimensions of tactile sensation (rough/smooth and soft/hard),

but some appreciate a sticky/slippery dimension as well. And

Schiffman, Reilly, and Clark (1979) observed wide variability in

the perception of sweeteners, suggesting that sweetness perception

may be mediated by many different properties (e.g., viscosity,

aftertaste, bitterness).

Moreover, individual differences in the use of space may actu-

ally contribute to the quality of high-dimensional SpAM solutions.

Although individual participants likely use two primary dimen-

sions when arranging stimuli, aggregate data pooled across partic-

ipants may yield satisfactory high-dimensional solutions because

of the way different participants organize their spaces. To verify

this notion, we created two hypothetical SpAM participants: Each

appreciated only a single dimension of our two-dimensional bugs

and ignored the other (e.g., bugs of varying colors were arranged

along a line, with those sharing the same number of legs being

stacked on top of one another). We then fed the coordinate values

from these two participants into PROXSCAL and recovered the

two-dimensional solution. The result was an aggregate solution

that perfectly appreciated both dimensions of the stimuli. For

three-dimensional stimuli (and beyond), this idea expands to a

problem of representing multiple, overlapping dimensions on a

two-dimensional plane. Again, we created hypothetical SpAM

participants that each appreciated only a subset of the relevant

stimulus dimensions for the three-dimensional bugs. We generated

three participants; each appreciated two dimensions at a time and

stacked items over the third dimension. When the data were scaled

in three dimensions, all three stimulus characteristics were appre-

ciated. Figure 15 shows the results: Dimension 1 organizes the

items according to number of legs, Dimension 2 reflects antennae

curvature, and Dimension 3 (most clearly visible in the lower right

panel) reflects color.

Thus, even if participants produce solutions that only appreciate

subsets of the full dimensionality, individual variations in the

salience of these dimensions (i.e., which two dimensions any

person deems important) can engender aggregate solutions that

represent the full set in high-dimensional space. It should also be

noted that more than two dimensions can be represented on a

single plane. For instance, one could create three equidistant

clusters of bugs grouped by color wherein each cluster is arranged

according to legs and antennae. This strategy would create imper-

fect appreciation of some dimensions to the benefit of others, but

again, individual differences in the salience of multiple dimensions

will foster a high-quality group solution. As noted earlier, because
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SpAM allows fast data collection, it is not particularly challenging

to sample adequately.

Like other aspects of performing MDS (e.g., choosing the di-

mensionality of the solution, interpreting the dimensions), the

approach to dealing with individual differences should ultimately

be driven by the research question at hand. In some cases, indi-

vidual differences are unimportant, and the analyst may choose to

trust SpAM’s relatively robust solutions. If the researcher deems

individual differences a nuisance, outliers may be identified with

the procedure suggested earlier, by testing the extent to which each

participant’s solution agrees with those of others. There are, of

course, other criteria that could be used. For instance, if individual

differences scaling (INDSCAL) is performed, the distribution of

weights for individual dimensions could be used to identify un-

usual participants (e.g., MacKay, 1989). More generally, the ra-

tionale for concatenating data across participants is to reduce

measurement error, but in some cases the averaging process may

be fundamentally problematic (e.g., Estes, 1956). For instance,

Ashby, Maddox, and Lee (1994; see also Lee & Pope, 2003) used

simulated data matrices to show that an aggregate solution that

respects the triangle inequality assumption of metric MDS (see

Krantz & Tversky, 1975; Tversky & Krantz, 1970) may be com-

prised of individuals that violate that assumption. Lee and Webb

(2005) advocate a Bayesian approach, wherein participants are

partitioned into families, grouped by individual differences param-

eters; aggregation is applied within but not between families. This

technique confers two advantages: It reduces noise by aggregating

data within families, while simultaneously respecting individual

differences between families. With respect to the current work, a

researcher may apply this technique (broadly construed) by select-

ing families of individuals that correlate highly with one another

and then generate separate MDS solutions for each group. (This is

a less sophisticated approach than Lee and Webb described, but it

is potentially useful.) Determining the optimal approach for han-

dling individual differences is beyond the scope of this article.

With respect to SpAM, however, there appear to be no inherent

problems that do not also arise in the pairwise method, and its

efficiency offers greater likelihood that outliers will not unduly

affect the results.

Why Use Space to Collect Similarity Estimates?

Although SpAM’s speed and efficiency are appealing at the

level of data acquisition, there are substantive, theoretical reasons

to believe that space is an appropriate medium by which to acquire

estimates of similarity. Lakoff and Johnson (1980) famously ar-

gued that metaphor plays a large role in conceptual representation

and that space is a fundamental construct. Consider, for example,

the so-called orientation metaphors such as more is up (“My

income rose”), less is down (“Stocks fell”), good is up (“Things are

looking up”), and bad is down (“I’m feeling really low”). Other

examples include the life as a journey metaphor (“Look how far

I’ve come”) and the tendency to portray intimacy spatially

(“We’ve drifted apart”; Lakoff, 1989). Metaphors, they reasoned,

are the means by which unstructured domains of experience get

organized on the basis of other highly structured domains, such as

space. Shepard (2004) went a step farther, suggesting that spatial

competence may underlie cognitive functions that do not, at a

glance, seem spatial in nature (e.g., memory organization;

Shepard, 1966). He gave a particularly compelling example re-

garding a game wherein two players select (without replacement)

single digits from 1 to 9, with the aim of obtaining three digits that

sum to 15:

Figure 15. A three-dimensional bug solution derived from three hypothetical spatial arrangement method

spaces, each of which appreciates only two dimensions at a time (e.g., legs and color, ignoring curvature of the

antennae).
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People are very slow to master this game. Yet, it is isomorphic to the

trivial but spatially presented game of tic-tac-toe. This can be seen

from the existence of a 3 � 3 magic square with the number 1 through

9 assigned to the nine cells in such a way that (for example) the top,

middle, and bottom rows contain 8-1-6, 3-5-7, and 4-9-2, in that order.

In this square, the three numbers in each row, each column, and each

diagonal (and only these) sum to 15. (Shepard, 2004, p. 7)

Thus, people are capable of using space to their advantage, such

that a challenging game of math and logic is reduced to the simple

task of obtaining a straight, 3-point line. This heuristic is not an

isolated trick, however. Mental rotation is a more cognitively

demanding example: The time required to determine whether two

objects (e.g., abstract shapes) are the same increases linearly as a

function of the shortest rigid-axis rotation necessary to transform

one shape into the other (Cooper, 1976; Shepard & Cooper, 1982).

It is as if people literally rotated inner representations, as they

would rotate objects in the physical world.

Furthermore, Landy and Goldstone (2007b, 2010) showed that

spatial layouts can affect rule-based decision making, even when

spatial relationships are irrelevant to task performance (see also

Bassok, Chase, & Martin, 1998; Campbell, 1994). For instance,

when mathematical expressions are widely spaced, people tend to

give larger estimates, relative to more narrowly spaced problems

(Landy & Goldstone, 2010). And when people write out expres-

sions, multiplications tend to be grouped more closely than addi-

tions or equality signs, respecting the order of operations (Landy &

Goldstone, 2007a). In another study, they found that the physical

structure of algebraic expressions affects the reasoning of

would-be problem solvers (Landy & Goldstone, 2007b). Their

participants judged the validity of simple mathematical equations

(e.g., “a � b * c � d � b � a * d � c?”); accuracy was highest

when irrelevant grouping pressure (e.g., physical spacing) sup-

ported the correct order of operations.

Certainly, space is useful to ground potentially difficult con-

structs (as in spatial metaphors), and spatial relationships can be

manipulated to help or hinder more abstract, cognitive processing.

But what of the relationship between similarity and spatial prox-

imity? Casasanto (2008) had participants give similarity ratings

(using a Likert scale) to pairs of stimuli that varied as a function of

how far apart they were placed on the computer screen. He found

that ratings differed, depending on the distance between stimuli.

For conceptual judgments (e.g., abstract nouns), stimuli presented

close together were rated as more similar, relative to more distal

stimuli. However, for perceptual stimuli (e.g., unfamiliar faces,

object pictures), stimuli presented close together were rated as less

similar. The latter finding would seem to contradict the former, but

considering that one function of the perceptual system is stimulus

discrimination, the finding is intuitive: It is hard to determine if a

group of lines are the same length when they are far apart, but

unique lengths “pop out” when the lines are placed close together.

Thus, it appears that the relationship between physical and psy-

chological proximity is not a one-way street.

We suggest that space is not just a convenient way to assess

similarity relations; it is an appropriate one. Shepard (1984) made

a compelling argument that internal representations are guided by

the external constraints of the world. A key piece of evidence is the

phenomenon of apparent motion (Carlton & Shepard, 1990a,

1990b; McBeath & Shepard, 1989)—the finding that alternately

presenting two views of an object induces the experience of

simple, rigid rotation of the object in three-dimensional space.

Shepard contended that beyond perception, imagining, thinking,

and dreaming also respect our lifetime experience with the phys-

ical world. If this is true, then it seems wholly appropriate to ask

people to project their internal representations in a medium that

respects both their internal and external constraints. We do not

mean to suggest that SpAM spaces are veridical depictions of

participants’ mental representations. Our argument is only that

space is appropriate to portray representations that are de facto

easily conceptualized in spatial terms. A key benefit of using

SpAM is that internal representations do not require conversion

into an arbitrary rating system, such as a Likert scale. Rather, the

computer monitor may serve as an extension of the rater’s psy-

chological space.

Limitations

Although SpAM confers many advantages, it certainly has lim-

itations. It is not apparent whether SpAM is equally appropriate for

conceptual and perceptual similarity ratings, which answer differ-

ent questions. Two things that are alike perceptually (e.g., a curtain

and a blanket) may serve very different purposes, and thus be

conceptually dissimilar (and vice versa; e.g., a curtain and window

blinds). Goldstone (1994a) noted that SpAM may be more appli-

cable to conceptual similarity and that confusion or discrimination

measures may be more appropriate for perceptual similarity. Nev-

ertheless, our findings suggest that SpAM is useful for collecting

perceptual similarity data, especially considering that confusion

measures often take as much time as pairwise procedures. More-

over, Experiment 3 suggests that SpAM solutions are, in fact,

congruous with perceptual discrimination measures.

Clearly, SpAM’s utility is constrained to the visual domain;

pictures of objects or textual references to conceptual material. For

nonvisual stimuli (e.g., olfactants, tastes), this method would seem

to have limited direct utility. Nevertheless, cross-modal research-

ers may choose to rely on similar methods that involve physical

manipulation of to-be-rated items (e.g., projective mapping and

napping ). Alternatively, if a researcher wishes to rely on the

convenient output from SpAM (i.e., the matrix of item-to-item

distances), it would be possible to have SpAM display items

on-screen that refer to stimuli in the physical world and have the

rater manipulate the space accordingly.9

Of greater concern are arenas of similarity to which SpAM may

not logically apply. Broadly, geometric models of similarity

(Shepard, 1962a, 1962b) and contrast (or feature-matching) mod-

els (Gati & Tversky, 1982; Tversky & Gati, 1982) share the

assumption of nonhierarchical representations; they focus on stim-

ulus features, ignoring potential relational structures across stim-

uli. But as noted by Goldstone (1994c, 1996), estimating similarity

is not simply a process of assessing the shared features between

items. Consider the following terms: Dog, puppy, cat, kitten.

Undoubtedly, dogs are more similar to puppies than they are to

cats. But there is an aspect of the items that is not reflected by their

isolated features, the parental relationships between a dog and

puppy and between a cat and kitten. Moreover, as in analogical

reasoning (see Gentner & Markman, 1997), in order for an accu-

rate assessment to be given, aspects of one stimulus must be placed

in correspondence with its comparison item.
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It seems likely that given stimuli with complex or hierarchical

relationships (e.g., a family tree), SpAM may not adequately

capture these relational structures. Of course, one clear benefit of

using SpAM is that the context of the stimuli is instantly revealed.

Thus, for simple relational structures, SpAM may be more useful

than pairwise methods. But when the relationships among to-be-

rated items increase in complexity, the spatial medium may actu-

ally hinder the rater’s ability to respect the relevant dimensions. It

is tempting to thinking of similarity as a fixed, unwavering con-

struct and to assume that collected data reflect it faithfully. But

similarity is dynamic and changes with context. SpAM may not be

universally applicable, but it has great utility for estimating psy-

chological similarity.

Software Availability

The software used in the present research is freely available

from the first author’s website (http://www.michaelhout.com). Re-

sources are provided for conducting the SpAM, pairwise, and

total-set MDS methods, along with Excel workbooks that include

macros for data organization and concatenation. With these re-

sources, any researcher with the appropriate software can create

and analyze new MDS experiments (like its namesake, SpAM

comes conveniently packaged and ready to use).

Conclusion

The present research focused on evaluating a relatively new,

spatial method for collecting similarity judgments for MDS (Gold-

stone, 1994a). Given the broad applicability of MDS to various

areas of psychology, the availability of a robust and efficient

method may have great impact. MDS has been used for test

construction and validation (Napier, 1972), creation of personality

profiles (Ding, 2006), organization of individual differences in

counseling psychology (Dawis, 1992; Watson & Sinha, 1995),

various forms of perceptual research (e.g., Bergmann Tiest &

Kappers, 2006; Lawless, 1989), representation of emotions (Iz-

mailov & Sokolov, 1991; Kroskaand & Goldstone, 1996), and

thermal pain perception (Clark, Carroll, Yang, & Janal, 1986),

among other examples. Similarity is, without question, a pivotal

concept in the psychological sciences; our hope is that SpAM will

help researchers measure similarity more easily and more accu-

rately.

9 It has been suggested to us that giving participants a three-dimensional

layout might improve SpAM’s ability to fit high-dimensional stimuli.

Although this is almost certainly true, it is not feasible in the current

platform (E-Prime). Moreover, a low-dimension solution is often more

parsimonious than a high-dimensional one. For instance, Shepard (1980)

noted that a two-dimensional representation of spectral colors is superior to

Ekman’s (1954) original five-dimensional solution.
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