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Abstract. We describe the new version 3.0 NASA Ozone

Monitoring Instrument (OMI) standard nitrogen dioxide

(NO2) products (SPv3). The products and documentation

are publicly available from the NASA Goddard Earth Sci-

ences Data and Information Services Center (https://disc.

gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The ma-

jor improvements include (1) a new spectral fitting algorithm

for NO2 slant column density (SCD) retrieval and (2) higher-

resolution (1◦ latitude and 1.25◦ longitude) a priori NO2

and temperature profiles from the Global Modeling Initia-

tive (GMI) chemistry–transport model with yearly varying

emissions to calculate air mass factors (AMFs) required to

convert SCDs into vertical column densities (VCDs). The

new SCDs are systematically lower (by ∼ 10–40 %) than

previous, version 2, estimates. Most of this reduction in

SCDs is propagated into stratospheric VCDs. Tropospheric

NO2 VCDs are also reduced over polluted areas, especially

over western Europe, the eastern US, and eastern China.

Initial evaluation over unpolluted areas shows that the new

SPv3 products agree better with independent satellite- and

ground-based Fourier transform infrared (FTIR) measure-

ments. However, further evaluation of tropospheric VCDs is

needed over polluted areas, where the increased spatial res-

olution and more refined AMF estimates may lead to better

characterization of pollution hot spots.

1 Introduction

Emissions and concentrations of nitrogen oxides

(NOx = NO + NO2) are regulated in several countries,

as nitrogen dioxide (NO2) is a toxic pollutant (US EPA,

2017) and NOx leads to the formation of surface-level ozone,

acid rain, and particular matter (Seinfeld and Pandis, 1998).

NOx also indirectly impacts climate through the formation

of free-tropospheric ozone (Jacob et al., 1996), a greenhouse

gas, and secondary aerosols that scatter solar radiation and

cool Earth’s surface (Shindell et al., 2009). Major sources of

NOx include fuel combustion, soil, and lightning.

Away from sources of tropospheric pollution, nearly 90 %

of the NO2 total vertical column density (VCD) is found in

the stratosphere. There, it is approximately zonally symmet-

ric and varies meridionally with season. Stratospheric NO2 is

produced primarily by the oxidation of nitrous oxide (N2O)

transported from the troposphere. It catalytically destroys

ozone and suppresses ozone loss by other catalytic mecha-

nisms through the sequestration of active radical species (Se-

infeld and Pandis, 1998).

NO2 has strong spectral absorption lines in the visible

(Vis) and near-ultraviolet (UV) range, which permit its mea-

surement by remote-sensing techniques. A new generation

of spectroscopic ground-based instruments can measure to-

tal (Herman et al., 2009) and tropospheric (Hönninger et al.,

2004; Spinei et al., 2014) NO2 columns at high temporal

resolution. The first space-based NO2 observations started
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in the mid-1990s with the Global Ozone Monitoring Ex-

periment (GOME) instrument (Burrows et al., 1999; Mar-

tin et al., 2002; Richter et al., 2005). Similar measurements,

but at higher spatial resolution, continued with the SCan-

ning IMaging spectrometer for Atmospheric CHartographY

(SCIAMACHY: 2002–2012; Bovensmann et al., 1999), the

Ozone Monitoring Instrument (OMI: 2004–present; Levelt

et al., 2006a, b), and GOME-2 (2006–present; Callies et al.,

2000; Valks et al., 2011). Of these, OMI offers the highest

spatial resolution, longest record, and least instrument degra-

dation (Dobber et al., 2008; Marchenko and DeLand, 2014;

Schenkeveld et al., 2017).

Satellite NO2 data have been used as a proxy for (1) NOx

emissions (van der A et al., 2017; Beirle et al., 2011;

Boersma et al., 2015; Castellanos and Boersma, 2012; Curier

et al., 2014; Ding et al., 2015; Duncan et al., 2014, 2016, de

Foy et al., 2014, 2015, 2016; Ghude et al., 2013; Jaeglé et

al., 2004; Konovalov et al., 2006, 2010; Lamsal et al., 2011;

Liu et al., 2016; Lu et al., 2015; Lu and Streets, 2012; Mar-

tin et al., 2006; McLinden et al., 2016; Mijling and Van Der

A, 2012; Richter et al., 2004, 2005; Russell et al., 2012;

Stavrakou et al., 2008; Streets et al., 2013; Vinken et al.,

2014; Zhang et al., 2007; Zhou et al., 2012); (2) ground-

level NO2 (Lamsal et al., 2008) and NO2 deposition (Nowlan

et al., 2014); and (3) emissions of co-emitted gases, includ-

ing other pollutants, like particulate matter, and greenhouse

gases, such as CO2 (Berezin et al., 2013; Konovalov et al.,

2016; Reuter et al., 2014).

There are two operational OMI NO2 products: the NASA

standard product (SP) (Bucsela et al., 2013; Lamsal et

al., 2014) and the Dutch OMI NO2 (DOMINO), produced

by the Royal Netherlands Meteorological Institute, KNMI

(Boersma et al., 2011). Both products use the differential

optical absorption spectroscopy (DOAS) spectral fitting ap-

proach (Platt and Stutz, 2008) to derive NO2 slant col-

umn density (SCD), which represents the total NO2 amount

(molecules cm−2) along the average solar radiation path

through the atmosphere as observed from OMI. After sep-

aration of tropospheric and stratospheric SCDs, these are

converted to the respective NO2 VCDs using model-derived

air mass factors (AMFs): VCD = SCD/AMF. The previous

NASA algorithm (version SPv2) used the same NO2 SCDs

as DOMINO v2 (Boersma et al., 2011), employing differ-

ent approaches to the stratosphere–troposphere separation

(STS) and AMF calculation (Bucsela et al., 2013). Both

products were in general agreement and produced similar re-

gional trends in tropospheric VCDs (Krotkov et al., 2016),

but comparison of OMI stratospheric NO2 VCDs (SPv2

and DOMINO v2) with other independent measurements re-

vealed that they were overestimated by as much as 40 % over

unpolluted regions (Belmonte Rivas et al., 2014). The over-

estimation was traced to the common DOAS retrieval step

(Van Geffen et al., 2015; Marchenko et al., 2015).

This paper describes the new OMI operational NO2 stan-

dard product, version 3 (SPv3), which is available from the

NASA Goddard Earth Sciences Data and Information Ser-

vices Center (GES DISC: https://disc.gsfc.nasa.gov/datasets/

OMNO2_V003/summary/). For version 3, we have devel-

oped a new DOAS spectral fitting algorithm, described in

Sect. 3, which has brought OMI NO2 SCDs and inferred

VCDs into much better agreement with independent satellite-

and ground-based measurements and with model simula-

tion results (Marchenko et al., 2015). Other changes in-

clude the use of higher-spatial-resolution a priori NO2 pro-

files from the Global Modeling Initiative (GMI) chemistry

and transport model (CTM), with updated, year-dependent

emissions (Strode et al., 2015) and new higher-resolution

temperature profiles and tropopause height from the NASA

Modern-Era Retrospective Analysis for Research and Appli-

cations (MERRA) model (Rienecker et al., 2011), discussed

in Sect. 2. Sections 4 and 5 compare the SPv3 with the pre-

vious version and with ground-based and satellite data.

2 Observations and model climatology

2.1 OMI measurements

The OMI instrument (Levelt et al., 2006b) on the Earth

Observing System Aura satellite (Schoeberl et al., 2006)

is a push broom UV–Vis spectrometer that measures the

Earth’s backscattered radiance and solar irradiance. The EOS

Aura satellite is flying in a sun-synchronous polar orbit

with an Equator-crossing time of about 13:45 local time

(ascending node). The swath width of OMI is 2600 km,

enabling global daily coverage with a nadir field-of-view

(FOV) size of 13 km × 24 km (along track × across track).

OMI measurements have been radiometrically stable, as ev-

idenced by regular evaluations of the instrument sensitiv-

ity changes (Dobber et al., 2008; Marchenko and DeLand,

2014; Schenkeveld et al., 2017). Comprehensive monitor-

ing of the instrument’s mission-long performance shows less

than 3 % degradation in radiances and irradiances in the 400–

470 nm spectral range, stable long-term wavelength registra-

tion (1λ∼ 0.002 nm, with ∼ 0.001 nm seasonal fluctuations),

stable instrument slit function (∼ 0.1 %), and stable stray-

light contamination in radiance and irradiance (∼ 0.5 % in

the visible range; Schenkeveld et al., 2017). These quali-

ties ensure generation of a consistent, long-term data record

of NO2 needed for the estimation of global trends, emis-

sions, and other applications. Beginning in 2007, radiance

measurements in some FOVs have been affected, apparently

by a physical blockage of the entrance optics, rendering

those measurements useless; this is called the “row anomaly”

(Dobber et al., 2008). Rejection of the anomalous FOVs leads

to complete global coverage in 2 days instead of one, as be-

fore the row anomaly.
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2.2 GMI model

Calculation of the AMF relies on an a priori NO2 pro-

file shape. The SPv3 AMF calculation uses the GMI three-

dimensional CTM simulation in the troposphere and strato-

sphere (Duncan et al., 2007; Strahan et al., 2013). The GMI

CTM uses a stratosphere–troposphere chemical mechanism,

natural and anthropogenic emissions, and aerosol fields from

the Goddard Chemistry Aerosol Radiation and Transport

(GOCART) model (Chin et al., 2014). It simulates tropo-

spheric processes such as NOx production by lightning, scav-

enging, and wet and dry deposition. Meteorological fields,

including temperature profile and tropopause pressure, are

the results of MERRA and have 72 levels from the sur-

face to 0.01 hPa with a resolution ranging from ∼ 150 m

in the boundary layer to ∼ 1 km in the upper troposphere

and lower stratosphere. GMI simulations with MERRA have

been evaluated in the troposphere and stratosphere. Strode

et al. (2015) showed good agreement with tropospheric O3

and NOx trends in the US in a 1990–2013 hindcast simu-

lation. Strahan et al. (2016) demonstrated realistic seasonal

and interannual variability of Arctic composition using com-

parisons to Aura Microwave Limb Sounder (MLS) O3 and

N2O. We have found GMI’s NO2 simulation in both the tro-

posphere (Lamsal et al., 2015) and stratosphere (Spinei et al.,

2014; Marchenko et al., 2015) to be in good agreement with

observations.

As in SPv2, the a priori profiles for SPv3 are monthly

means of daily GMI profiles, sampled at the OMI overpass

time (13:00–14:00 local time). The changes in the GMI sim-

ulation are summarized in Table 1. Galactic cosmic rays

(GCRs) were added to the model as an important source

of stratospheric NOx at high latitudes. The NO photodisso-

ciation rate, j (NO), was reduced by 40 %, consistent with

recent recommendations (M. Prather, personal communica-

tion, 2016), in part based on a discrepancy between a related

model and balloon measurements of NOy (Hsu and Prather,

2010). As NO photodissociation leads to loss of NOx in the

stratosphere, reduction of j (NO) increases stratospheric NO2

relative to the GMI simulation used in SPv2.

3 Algorithm description

As mentioned before, the SPv3 algorithm makes important

improvements to the SPv2 approach, including a new OMI-

optimized DOAS spectral fit to determine SCDs (S) and the

improvement of AMFs for both the stratosphere and tropo-

sphere (Astrat and Atrop). The STS algorithm remains un-

changed from Bucsela et al. (2013). The main steps are de-

picted in Fig. 1 and described in more detail in the following

subsections.

Figure 1. Schematic description of the OMI NO2 processing al-

gorithm. S variables represent slant column densities (SCDs); A

represents air mass factors (AMFs). V variables represent vertical

column densities (VCDs). W denotes the scattering weight (Eq. 1),

pre-computed using the radiative transfer program TOMRAD.

3.1 New SCD retrieval

In the new spectral fitting approach (Marchenko et al., 2015),

we address certain shortcomings of the conventional DOAS

approach, as applied to OMI retrievals. Conventional DOAS

relies on very precise wavelength calibration and simulta-

neously determines the trace gas absorptions and magni-

tude of the inelastic rotational Raman (RR) scattering effect

(Chance and Spurr, 1997; Grainger and Ring, 1962; Joiner

et al., 1995). However, it is quite sensitive to the selection

of the spectral fitting window; to the order of the closure

polynomial; and, most of all, to even a slight misregistra-

tion between the radiance and irradiance wavelengths. We

apply a multi-step, iterative – rather than simultaneous – re-

trieval procedure for all interfering species in the broad spec-

tral window from 402 to 465 nm.

Due to the statistical characteristics of the individual OMI

solar irradiance measurements (Marchenko and DeLandm

2015), we use monthly-averaged, rather than daily, solar

spectra. The monthly-averaged solar spectra will not capture

the daily solar variability, which may differ by about 0.1 %

around 430 nm and < 0.05 % elsewhere.

In most spectral measurements, the RR effect imposes

by far the largest signal in the spectral reflectances (radi-

ance/irradiance). Our first step is to use the spectral struc-

ture of the RR signal to (1) ascertain and correct the wave-

length offset between radiance and irradiance (∼ 0.002 nm;

cf. with the 0.21 nm spectral sampling step) and (2) remove

the RR signal prior to estimating the SCDs. We assess the

wavelength dependence of the shifts by splitting the entire

fitting window into multiple overlapping micro-window seg-

ments and evaluating the RR spectrum amplitudes and wave-

length adjustments for each segment. To account for the RR

line-filling patterns, we use a linear combination of the atmo-

spheric (Joiner et al., 1995) and the liquid-water (Vasilkov,

2002) RR spectra, convolved with the wavelength- and cross-

track-dependent OMI spectral transfer function (Dobber et

al., 2006).
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Table 1. GMI model specifications used in SP NO2 retrieval.

Model parameter SPv2.1 (released 2012) SPv3.0 (released 2016)

Spatial resolution (lat × lon) 2◦ × 2.5◦ 1◦ × 1.25◦

Meteorological fields GEOS5.1 MERRA

Fossil fuel NOx emissions Constant 2005–7 Time-dependent

Biomass burning NOx emissions Constant 2005–7 Time-dependent

Lightning NOx coefficients Calculated from 2005–2007 of older simulation Calculated from over 20 years of MERRA reanalysis

Tropospheric aerosols Constant year 2001 GOCART Time-dependent GOCART

Stratospheric aerosols Constant year 2000 Time-dependent (IGAC)

Galactic cosmic rays No Yes

j (NO) scaling factor 1.0 0.6

Other steps in the algorithm include the estimation of, and

correction for, spectral under-sampling patterns (Chance et

al., 2005) and aggressive suppression of instrumental noise.

3.2 AMF calculation

The method of AMF calculation remains the same as in SPv2

(Bucsela et al., 2013), which agrees well with independent

estimates (Lorente et al., 2017). To calculate stratospheric

and tropospheric AMFs, we use a pre-computed dimension-

less scattering weight vector W (also known as the Box-

AMF; Platt and Stutz, 2008). W describes the relationship

between S for a column (stratospheric or tropospheric) and

the local VCD, Vi , in each atmospheric layer i within the

column (Palmer et al., 2001; Martin et al., 2002):

S =

∑

i

W i × Vi = A ×

∑

i

Vi = A × V. (1)

W is pre-computed using the radiative transfer program

TOMRAD (Dave, 1965), accounting for multiple molecular

(Rayleigh) scattering in an atmosphere bounded by a Lam-

bertian surface. Since the Lambertian equivalent surface re-

flectance (LER) is assumed to be wavelength-independent,

W varies smoothly with wavelength (within ∼ 20 %) across

the NO2 fitting window. Therefore, we calculate a single

W vector, representative of the entire spectral fitting win-

dow, which is stored in a lookup table (Bucsela et al., 2013).

Stratospheric and tropospheric AMFs are calculated, sep-

arated at the climatological MERRA monthly tropopause

pressure (i.e., Atrop and Astrat in Fig. 1). In the stratosphere,

W is approximately constant with altitude and is deter-

mined by the solar and viewing zenith angles: W i,strat ≈

sec(SZA) + sec(VZA). In the free troposphere, W i,trop in-

creases with altitude and strongly depends on the cloud ra-

diance fraction and optical centroid pressure (Sneep et al.,

2008; Stammes et al., 2008; Vasilkov et al., 2009). In the

boundary layer and under cloud-free conditions, W depends

most strongly on altitude and surface pressure and reflectance

(Vasilkov et al., 2017).

The AMF for a stratospheric or tropospheric column is

computed as the vertical integral of the NO2 profile shape

weighted average of W (Eq. 1) using the a priori profiles de-

scribed in Sect. 2.2. These profiles capture the interannual

(Lamsal et al., 2015) and seasonal (Lamsal et al., 2010) vari-

ability of the AMF. The SPv3 uses yearly varying monthly

mean NO2 profiles from 2004 to 2014. For dates starting in

2015, the 2014 monthly profiles are used. The W is corrected

for the monthly mean GMI temperature profile as described

in Bucsela et al. (2013), since the S retrieval algorithm re-

lies on a constant temperature (220 K) NO2 cross sections.

We provide W to allow users to derive their own estimates of

AMFs and VCDs using their own a priori NO2 profiles, for

example from another model or observations.

OMI NO2 column averaging kernels (AKs) can be calcu-

lated from the W and corresponding AMFs for stratospheric

or tropospheric columns: AK = dV/dVi = W/A (Eskes and

Boersma, 2003). The AKs are used in data assimilation, ob-

servational system simulation experiments, and comparisons

with vertically resolved measurements and CTM models.

3.3 Stratosphere–troposphere separation

The STS algorithm remains the same as in the previous

version (Bucsela et al., 2013), which shows overall good

agreement with the independent STRatospheric Estimation

Algorithm from Mainz (STREAM) – a verification algo-

rithm for the Sentinel-5 Precursor TROPOspheric Monitor-

ing Instrument (TROPOMI) STS (Beirle et al., 2016). The

Vstrat and Vtrop are retrieved separately under the assump-

tion that the two are largely independent (Fig. 1). The strato-

spheric field is computed first, beginning with creation of a

gridded global initial field Vinit = S/Astrat, assembled from

data taken within ±7 orbits of the target orbit. An a pri-

ori estimate of the tropospheric contribution to this field,

Strop_ap/Astrat, based on a monthly GMI model climatology

and OMI cloud measurements is subtracted, and the poten-

tially contaminated grid cells where this contribution ex-

ceeds 0.3 × 1015 molec. cm−2 are masked. A three-step (in-

terpolation, filtering, and smoothing) algorithm (Bucsela et

al., 2013) is then applied to fill in the masked regions and

data gaps and to remove residual tropospheric contamina-

tion. The resulting stratospheric vertical column field Vstrat is

converted to a slant column field using Astrat and subtracted

Atmos. Meas. Tech., 10, 3133–3149, 2017 www.atmos-meas-tech.net/10/3133/2017/
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Table 2. SP NO2 retrieval biases and noise estimated over unpolluted, mostly cloud-free (cloud radiance fraction < 0.3) Pacific Ocean regions

in July 2011 (× 1015 molec. cm−2).

Parameter SPv2.1 (released 2012) SPv3.0 (released 2016)

Bias in S max(1.2, 0.1 × S)1 ±0.52

Noise in S 0.8 ± 0.23 0.9 ± 0.34

Bias in Vinit = S/A5
strat +0.60 ±0.25

Noise in Vinit = S/A5
strat 0.40 ± 0.10 0.45 ± 0.15

Bias in Vstrat +0.66 < 0.37

Noise in V 8
strat 0.10 ± 0.04 0.10 ± 0.03

Bias in V 9
trop ±0.1 −0.1

Noise in V 10
trop 0.36 ± 0.03 0.45 ± 0.04

1 Estimated as constant offset value ∼ 1.2 (Van Geffen et al., 2015) for S < 12 × 1015 molec. cm−2 and

multiplicative value ∼ 0.1 × S for S > 12 × 1015 molec. cm−2 (Marchenko et al., 2015).
2 Intercomparison of independent DOAS fitting algorithms (Zara et al., 2016). 3–4 Mission time average

value of standard deviation in S over Pacific regions in 2011; upper limit corresponds to small S. The

noise increased by ∼ 20 % during OMI mission: from ∼ 0.8 × 1015 molec. cm−2 in 2005 to ∼ 1.0

× 1015 molec. cm−2 in 2016 (Zara et al., 2016). 5 Upper limit of uncertainty in Vint is estimated from

uncertainties in S assuming Astrat ∼ 2. 6 Relative to satellite limb observations (Belmonte Rivas et al.,

2014). 7 Comparisons with independent satellite- and ground-based Fourier transform infrared (FTIR)

measurements at Izana. 8 Estimated as the standard deviation of Vstrat over the tropical South Pacific

region (5 to 15◦ S and 130 to 160◦ W) in 2011. Uncertainty reflects noise seasonal dependence (Fig. 2).
9 Estimated as the difference between mean OMI retrieved and a priori bias = < Vtrop > − < Vtrop_ap >

over unpolluted homogeneous tropical South Pacific region. 10 Estimated as the standard deviation of

Vtrop over the tropical South Pacific region (5 to 15◦ S and 120 to 160◦ W) in 2011. Uncertainty reflects

noise seasonal dependence (Fig. 2).

from the measured S to provide Strop, leading to the desired

Vtrop = Strop/Atrop (Fig. 1). As discussed in Sect. 3.2, the

Strop can be combined with independently calculated Atrop to

develop customized regional Vtrop products, for example, us-

ing higher-spatial-resolution a priori information (Goldberg

et al., 2017; Kuhlmann et al., 2015; Laughner et al., 2016;

Lin et al., 2014; Russell et al., 2011, 2012).

3.4 Retrieval noise and bias

We compare noise and biases in SPv2 and SPv3 by ana-

lyzing retrievals over homogeneous unpolluted Pacific re-

gions with negligible tropospheric contribution (Fig. 2). The

data are filtered to minimize geophysical, observational, and

cloud-induced variability. The selection criteria result in low

SCDs with the largest DOAS fitting uncertainties and should

be treated as upper bounds on uncertainties over unpolluted,

mostly cloud-free regions (Table 2). In this relatively clean

region, uncertainties in the AMF and STS are much smaller

than in polluted regions, where (1) the tropospheric column

is much larger than the stratospheric column and (2) the STS

algorithm is filling in where data were masked (Beirle et al.,

2016; Bucsela et al., 2013).

Our new OMI DOAS spectral fitting algorithm

(Marchenko et al., 2015) greatly reduces the positive biases

(i.e., constant offset in S ∼ + 1.2 × 1015 molec. cm−2 and

multiplicative factor 0.1 × S) in the previous version, albeit

with slightly increased noise (0.9 ± 0.3 × 1015 molec. cm−2,

Table 2). We estimate the noise as a standard deviation

of the mostly cloud-free S retrievals over nearly homo-

Vtrop	 Vstrat	

Figure 2. Probability distribution functions (PDFs) of the new

SPv3 (solid lines) and previous version SPv2 (dashed lines)

VCDs (× 1015 molec. cm−2) retrieved in the Pacific region

15◦ S < lat < 5◦ S and 160◦ E < lon < 130◦ W during 2011. The

width of the Vtrop is used as proxy for estimated noise in

Vtrop ∼ 0.5 × 1015 molec. cm−2 (Table 2).

geneous Pacific regions. The upper limit corresponds to

the tropical regions and near-nadir observations, while

the lower limit corresponds to large solar and/or OMI

zenith angles (i.e., large S). The noise increased ∼ 20 %

with time: from ∼ 0.8 ± 0.3 × 1015 molec. cm−2 in 2005 to

∼ 1.0 ± 0.3 × 1015 molec. cm−2 in 2015.

www.atmos-meas-tech.net/10/3133/2017/ Atmos. Meas. Tech., 10, 3133–3149, 2017
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Figure 3. OMI NO2 maps (a, b) and difference maps (c, d) for December 2006: tropospheric VCD (Vtrop: a, c) and stratospheric VCD

(Vstrat: b, d). Bottom row: change in Vtrop due to new SCD only (e), and change in Vtrop due to new a priori NO2 profile shapes only (f).

Similar maps for July 2006 are shown in Supplement Fig. S1.

Figure 4. Monthly-averaged vertical distribution of NO2 in July from GMI over selected locations in the eastern US, western Europe, and

China. The color lines show the average NO2 profiles derived from the new high-resolution (1◦ × 1.25◦) GMI simulation for 2005 (green)

and 2011 (red). The black line shows NO2 profiles derived from previous (SPv2) GMI simulation at 2◦ × 2.5◦.

Figure 2 compares probability distribution functions

(PDFs) of retrieved Vstrat and Vtrop derived by both versions

over the equatorial South Pacific region for 4 months in 2011.

As expected, the known overestimation in Vstrat is reduced

by a constant offset ∼ 0.6 × 1015 molec. cm−2 in the new re-

trievals, bringing them into closer agreement with indepen-

dent satellite (Adams et al., 2016; Belmonte Rivas et al.,

2014; Marchenko et al., 2015) and ground-based FTIR mea-

surements (Sect. 5). The noise in Vstrat, estimated as stan-

dard deviation of the Vstrat spatial distribution over the region

15◦ S < latitude < 5◦ S and 160◦ E < longitude < 130◦ W for

each month, is unchanged from the previous version (Ta-

ble 2). It is much lower than the upper-bound estimate of

the noise in Vinit = S/2 ∼ 0.45 ± 0.15 × 1015 molec. cm−2,

which is a result of the smoothing step in the STS algorithm

(Bucsela et al., 2013).

The noise in Vtrop ∼ 0.45 ± 0.04 × 1015 molec. cm−2 (Ta-

ble 2) is estimated using its monthly standard deviation

(Fig. 2). It is consistent with the upper bound of the noise

in Vinit = S/Astrat assuming near-nadir observations and

Atmos. Meas. Tech., 10, 3133–3149, 2017 www.atmos-meas-tech.net/10/3133/2017/



N. A. Krotkov et al.: The version 3 OMI NO2 standard product 3139

Figure 5. Annual average OMI NO2 Vtrop maps over the eastern US for 2005, 2010, and 2015: SPv3 (a), SPv2 (b) and the difference: SPv3 –

SPv2 (c). The blue box outlines the Ohio River valley and southwestern Pennsylvania region with the predominant emissions from coal-fired

power plants (Ohio in Fig. 6). The red box outlines the megalopolis from Washington, DC to New York along the I-95 interstate highway

(I-95 corridor in Fig. 6) with predominant emissions from mobile sources. The regions have been discussed in Krotkov et al. (2016).

Astrat ∼ 2. The deviation of the mean Vtrop from Vtrop−ap is

less than 0.1 × 1015 molec. cm−2, as is expected given how

the STS algorithm works (Bucsela et al., 2013).

Over polluted regions the “bias” in Vtrop is poorly defined,

as (1) it may be larger and more variable (Fig. 3) due to

the larger spatiotemporal variability in tropospheric VCDs;

(2) the Atrop is computed using OMI retrieved cloud pres-

sures/fractions, climatological coarse-resolution surface re-

flectivities, and model-based monthly mean profiles, which

may not accurately represent the true AMF (Lorente et al.,

2017); and (3) the STS procedure fills in the stratospheric

field over polluted regions using measurements from some

distance away (Beirle et al., 2016; Bucsela et al., 2013).

The noise can be reduced with time averaging, e.g., cre-

ating monthly, seasonal, and annual average Vtrop. Pixel av-

eraging techniques, such as oversampling and pixel rotation

along wind direction, have been developed to increase ef-

fective spatial resolution and signal-to-noise ratio, leading to

improved detection and characterizations of point emission

sources (Fioletov et al., 2015; de Foy et al., 2015; Kuhlmann

et al., 2014; Lu et al., 2015; McLinden et al., 2016).

4 Comparison with previous version

Figure 3 shows global monthly mean Vstrat and Vtrop maps

and difference maps from the previous SPv2 for Decem-

ber 2006, when we see the largest differences between

the versions. The SPv3 Vstrat is uniformly reduced by

0.5–0.8 × 1015 molec. cm−2. One notices very large reduc-

tions in Vtrop (∼ 2–5 × 1015 molec. cm−2) over heavily pol-

luted regions in Europe; the eastern US; and, particu-

larly, eastern China. However, for exceedingly large Vtrop >

1016 molec. cm−2 the relative difference between the two

versions is usually less than ∼ 20 %. The reductions in Vtrop

are smaller in other seasons (see Supplement Fig. S1 for

July 2006). The Vtrop reductions are caused by combined ef-

fects of smaller SCD (Fig. 3e) and changes in the updated

emissions and spatial resolution of the a priori NO2 profile

shapes (Fig. 3f). All these changes reduce Vtrop over most

polluted areas of the world. By capturing the year-to-year

changes in NO2 profile shapes (Fig. 4), the updated emis-

sions used in the new GMI simulation substantially change

the NO2 vertical distribution in the highly polluted regions,

lending more confidence to the observed rapid changes in

NO2 around the globe in the last decade (Krotkov et al.,

2016). These changes reflect a considerable decline in NOx
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Figure 6. Annual average OMI NO2 Vtrop regional trends for se-

lected regions outlined in Figs. 5 and 7–8. The regions in the eastern

US and eastern China have been presented in Krotkov et al. (2016).

emissions between 2005 and 2011 over the US and western

Europe, and an increase over China. The observed difference

in NO2 profiles between the two simulations could also arise

from the changes in model resolution.

4.1 Impact on regional trends

Regional Vtrop maps and trends comparing OMI NO2 from

SPv2 and SPv3 are shown in Figs. 5–8. Figure 5 shows an-

nual average Vtrop in 2005, 2010, and 2015 over the east-

ern US for both versions as well as their differences. We

see reductions up to ∼ 2 × 1015 molec. cm−2 over mostly

polluted megacity regions in the eastern US along Inter-

state 95 (I-95) from Baltimore to New York (I-95 corridor,

red box in Fig. 5). Elsewhere, the reductions are less than

1015 molec. cm−2, including major industrial regions with

coal-burning power plants in southwest Pennsylvania and the

Ohio River valley (blue box in Fig. 5).

A signature of the change in model resolution can be seen

in the difference map as subtle box-like artifacts. The signif-

icant NO2 reduction with time is also evident. The reduction

is a result of emission regulations on power plants and vehi-

cles (Duncan et al., 2013; de Foy et al., 2015; Lamsal et al.,

2015; Lu et al., 2015; Russell et al., 2012; Tong et al., 2015).

Figure 6 compares relative changes in Vtrop in 2005–2015

for the I-95 and Ohio regions calculated from the two ver-

sions and other polluted regions discussed later. The relative

trends are largely the same using both versions. NO2 concen-

trations over polluted regions in the eastern US fell by more

than 40 %, as result of the Clean Air Act Amendments and

follow-up regulations (Krotkov et al., 2016).

Figure 7 compares annual mean tropospheric NO2 over

western Europe in 2005, 2010, and 2015. One may no-

tice large differences in Vtrop ∼ 2–3 × 1015 molec. cm−2 over

densely populated and industrialized regions in southwest

Netherlands, northwest Belgium, Westphalia in Germany

(Randstad-Ruhr in Fig. 6, blue box in Fig. 7), and along

the industrial Po River valley in northern Italy (red box in

Fig. 7). The changes are much smaller (< 1015 molec. cm−2)

over less polluted regions. During the OMI mission we see

significant NO2 reductions with time (∼ 25 % for Randstad-

Ruhr and ∼ 40 % for the Po River valley) related to national

regulations and EU air quality directives aimed at reducing

emissions from transportation and power sectors and creat-

ing a sustainable living environment (Boersma et al., 2015;

Castellanos and Boersma, 2012). As seen in the I-95 and

Ohio Valley samples, SPv2 and SPv3 retrieved tropospheric

columns give trends that are well within statistical uncertain-

ties of each other for both European regions (Fig. 6).

Figure 8 compares annual mean Vtrop over eastern China

in 2005, 2010, and 2015. The maximum Vtrop values in pol-

lution hot spots were reduced in new version, but areas with

increased Vtrop can also be seen over Yangtze and Pearl River

deltas. The NO2 plumes over the coastal regions reach much

farther offshore. In densely populated areas the plumes seem

to spread farther into the suburban regions. This could be the

result of the increase in spatial resolution of the a priori pro-

files on the AMF calculation: in the lower panel, a signature

of the previously much coarser grid (2◦ ×2.5◦) used in SPv2

can easily be seen. These changes have a direct implication

for derived products, such as the top-down inference of NOx

emissions. Over highly polluted areas, NO2 columns respond

nearly linearly to NOx emissions with a slope close to unity

(Lamsal et al., 2011), suggesting that a ∼ 15 % lower Vtrop in

SPv3 over eastern China will also be reflected in the inferred

NOx emissions.

The blue box in Fig. 8 outlines the region of the North

China Plain (NCP), which has the world’s largest NO2 pollu-

tion, with an annual average Vtrop > 1016 molec. cm−2. This

is a result of the high density of coal-fired power plants and

other industries, as well as dense traffic. The impact of the

new version on NO2 relative trends is more evident for the

NCP than from the other regions considered. Figure 6 shows

that over the NCP the NO2 peaked in 2010–2011 but de-

creased from the peak by ∼ 50 % by 2015 (Krotkov et al.,

2016). The reduction is likely due to government regula-

tions; economic slowdown; and technological improvements

in limiting NOx emissions by vehicles, industry, and power

generation (de Foy et al., 2016). The new version shows a
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Figure 7. OMI SP V3 (a) and V2 (b) and difference Vtrop maps over western Europe for 2005, 2010, and 2015. The boxes outline the densely

populated and industrialized regions in the southwest Netherlands, northwest Belgium, and Westphalia in Germany (blue box: Randstad-Ruhr

in Fig. 6), and in the industrial Po River valley in northern Italy (red box: Po Valley in Fig. 6).

Figure 8. OMI SPv3 (a) and SPv2.1 (b) and difference Vtrop maps (c) over eastern China for 2005, 2010, and 2015. The box outlines the

densely populated and industrialized region in the North China Plain (NCP in Fig. 6). The region has been discussed in Krotkov et al. (2016).
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Figure 9. OMI Vtotal versus ground-based FTIR at Izana in Tenerife (28.3◦ N, 16.5◦ W), seasonally for 2005–2011. SPv2 and SPv3 are shown

for FOVs within 50 km of the ground-based site. Photochemical corrections have been made for the OMI overpass time. Box-and-whisker

plots show 10th, 25th, 50th, 75th, and 90th percentiles; the dots in the middle are the means.

Figure 10. Comparison of OMI data with MAX-DOAS data retrieved in Hong Kong. The OMI daily data have been spatially interpolated

and gridded on a 1 km × 1 km grid, and then the pixel for the measurement site has been extracted. The dots show daily values and the error

bars. The lines connect monthly averages; their thickness is proportional to errors in monthly averages. Note that, compared to other parts

of eastern China, Vtrop values do not decrease significantly in SPv3 and even increase for some months, probably because of the improved

a priori profiles better capturing the sharp contrast between clean ocean profiles and steep vertical gradients in one of the most densely

populated cities in the world.

10–20 % smaller increase in peak NO2 in 2010–2013 but

negligible changes in early and recent years (Fig. 6).

4.2 Impact on lightning NOx emissions estimate

Lightning-produced NOx (LNOx) plays an important role

in tropospheric chemistry. Recent research has shown that

satellite measurements are a useful tool for estimating LNOx

(Boersma et al., 2005; Beirle et al., 2010; Bucsela et al.,

2010; Pickering et al., 2016). Pickering et al. (2016) com-

bined OMI Vtrop data with data from the World Wide Light-

ning Location Network (WWLLN) (Dowden et al., 2002;

Lay et al., 2004; Virts et al., 2013) to estimate the production

efficiency (PE) of LNOx (moles per flash). Using SPv2 and

WWLLN data from the Gulf of Mexico over five Northern

Hemisphere summers (2007–2011), they obtained a mean PE

value of 80 ± 45 mol flash−1. Applying the same algorithm

to SPv3 data, we obtain 77 ± 45 mol flash−1; the difference

with the SPv2 result is not statistically significant. Using the

new SPv3 data will likely have little effect on LNOx PE es-

timates derived in other regions.

5 Comparisons with independent measurements

We assess OMI SPv3 data by comparing with other indepen-

dent observations. Here we present only initial consistency

checks with other data sets. Sparse and short-term ground-
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based NO2 measurements, incomplete information, prefer-

ential placement of ground-based instruments, and the need

for assessing the validation data themselves make validation

of satellite NO2 retrievals challenging and warrant detailed

validation work.

5.1 Comparison with FTIR measurements in Tenerife

Figure 9 shows an improved agreement of Vtotal (= Vstrat +

Vtrop) from SPv2 to SPv3 when evaluated against ground-

based FTIR spectrometer measurements at Izana, Tenerife

(28.3◦ N, 16.5◦ W; Schneider et al., 2005). Izana was chosen

as the best candidate station in the Network for the Detection

of Atmospheric Composition Change (NDACC), whose data

are publicly available (http://www.ndacc.org). It is a low-to-

middle-latitude site, is remote from pollution sources, makes

Vtotal measurements throughout the day (not just at sun-

rise/sunset), and has a long data record. The FTIR measure-

ments made before, near, and after the OMI overpass time

(all solar zenith angles < 75◦) were selected and corrected to

the OMI measurement time. The seasonal mean differences

with OMI SPv2 ranged from 25 to 35 %, with the OMI Vtotal

always larger than the FTIR values. With SPv3, the mean

differences are reduced to ∼ 10 %, with OMI still higher, on

average. We use the difference, ∼ 0.3 × 1015 molec. cm−2, as

an estimate of the bias in Vstrat over unpolluted, low-latitude

areas (Table 2).

5.2 Comparison with MAX-DOAS measurements in

Hong Kong

In previous studies, Vtrop measured by OMI were seen to

be systematically lower than multi-axis (MAX)-DOAS mea-

surements in highly polluted “hot spots” in urban environ-

ments (Chan et al., 2012; Wenig et al., 2008). We have con-

ducted a comparison with ground-based MAX-DOAS (tro-

pospheric) NO2 column measurements in the heavily pol-

luted Hong Kong area to quantify the differences brought

by the new version. The results are presented in Fig. 10.

In agreement with previous studies, monthly-averaged OMI

data are systematically lower than the monthly-averaged

ground-based measurements but are very similar for SPv2

and SPv3. The winter values are slightly higher in the new

version, bringing them closer to the MAX-DOAS data. Hong

Kong is unique in that new OMI SPv3 data are close to the

previous version (cf. the bottom row of panels Fig. 8). This

could be due to the opposing effects of smaller SCDs and

smaller AMFs due to the higher spatial resolution of the a

priori NO2 profile shapes (Fig. 3). For most other polluted

locations the new SPv3 data are lower than the previous ver-

sion, as confirmed with direct-sun Pandora comparisons in

Helsinki (Ialongo et al., 2016). Some reasons for the discrep-

ancies between satellite- and ground-based NO2 retrievals in-

clude the spatial averaging inherent in the large OMI field of

view; the still quite coarse sampling of the a priori profiles

Figure 11. OMI, SCIAMACHY, and GOME-2 retrievals over the

Pacific Ocean region (180–140◦ W) for (a) VCDtotal in March 2005

and (b) VCDstrat in 2010. The SCIAMACHY and GOME-2 data

have been adjusted to the local time of the OMI overpass by making

photochemical corrections based on the diurnal variation simulated

by the GMI CTM

and surface reflectance used for the AMF calculation; and

the influence of aerosols, which have not been explicitly in-

cluded in the AMF calculation. OMI shows similar annual

variability to the MAX-DOAS data, and the changes made to

the retrieval of the new NO2 standard product do not signifi-

cantly change the annual patterns, including derived trends.

5.3 Comparison with independent satellite retrievals

Figure 11 shows comparisons of OMI Vtotal and Vstrat with

independent satellite NO2 data from GOME-2 (Pieter Valks,

personal communication, 2013) and SCIAMACHY (Bovens-

mann et al., 1999) nadir measurements using the German

Aerospace Center (DLR) retrievals (version 5.02) over the

Pacific region for March in 2005 and 2010. The OMI data

were filtered so that only FOVs unaffected by OMI’s so-

called row anomaly (Dobber et al., 2008) were used. The

data were additionally filtered so only FOVs with a mea-

sured cloud radiance fraction of less than 0.5 were included.

The Pacific region was chosen because it is relatively free

of tropospheric pollution. Thus, virtually all the NO2 col-

umn is in the stratosphere. Because stratospheric NO2 in-

creases largely monotonically during the day, as photochem-

istry repartitions nitrogen oxides (e.g., Bracher et al., 2005),

observations made at different local solar times cannot be

compared directly. Stratospheric NO2 increases during the

day from the time of the GOME-2 and SCIAMACHY over-

passes (morning) to that of OMI (early afternoon), so the

GOME-2 and SCIAMACHY data shown in Fig. 11 have

been adjusted to 13:45 local time, based on the diurnal vari-

ation of NO2 simulated by the GMI CTM. Previous version

retrievals exceed both SCIAMACHY and GOME-2 by 20–

30 %. The new SPv3 data are in much better agreement with

the other satellite measurements, to within about 10 %, ex-

cept at higher latitudes, above 50◦ N. These comparisons are

in general agreement with the ground-based FTIR measure-

ments in Izana (Fig. 9). The observed difference at high lati-

tudes could arise from the difference in retrieval algorithms,

instrumental behavior, or imperfect photochemical correc-

tion.
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Figure 12. Mean tropospheric and stratospheric NO2 VCDs re-

trieved using the new version SPv3 over several polluted and un-

polluted regions: China: 110–125◦ E, 30-42◦ N; eastern Europe:

33–48◦ E, 42–50◦ N; southern Africa: 25–35◦ E, 22–30◦ S; central

Africa: 10–30◦ E, 0–14◦ S; North Atlantic: 25–3◦ 5W, 45–51◦ N;

and equatorial Pacific: 150–160◦ W, 5◦ S–5◦ N. In all cases, the

GOME-2 data have been adjusted to the local time of the OMI over-

pass by making a photochemical correction to the stratospheric por-

tion of the total column, based on the diurnal variation simulated by

the GMI CTM.

Figure 12 shows comparisons of OMI SPv3 with GOME-

2 separately for stratospheric and tropospheric VCDs.

Overall, Vstrat retrievals show better agreement, mostly

well within the specified 0.5 × 1015 molec. cm−2uncertainty.

However, over polluted regions in eastern China and south-

ern Africa, OMI Vtrop fall below the GOME-2 values by 1–

2 × 1015 molec. cm−2. Although the retrieval algorithms for

OMI (Bucsela et al., 2013) and GOME-2 (Valks et al., 2011)

use a similar approach, the details of the retrievals differ quite

greatly.

6 Conclusions

For the past 12 years, OMI has been making UV–Vis hyper-

spectral earthshine radiance measurements, including in the

range 400–470 nm, where NO2 has a strong, structured ab-

sorption feature that lends itself well to the DOAS retrieval

technique. We have recently released a new version 3 OMI

NO2 standard product (SPv3) based on significant improve-

ments in both the estimation of the NO2 SCDs and the esti-

mation of the AMFs. While the revised SCD estimates come

from a new retrieval algorithm, the AMF refinements relate

to updates in the GMI chemical and transport model inputs,

primarily emission inventories and a horizontal resolution

that is twice as fine in both latitude and longitude.

The quantities of greatest interest are the tropospheric,

stratospheric, and total VCDs. Here we provide the uncer-

tainties in these VCDs and evaluate the changes in the VCDs

from the previous version (SPv2), also showing the improved

agreement between the SPv3 VCDs and independently mea-

sured values from ground- and space-based instruments.

Over unpolluted areas Vtrop has not changed appreciably

from SPv2 to SPv3. Over more polluted areas, the Vtrop

values have typically decreased, from SPv2 to SPv3. Fig-

ure 3 shows that most of the decrease in the highly pol-

luted areas is due to the change in SCD, with additional

decrease due to the changed AMF. The Vtrop is reduced by

2–5 × 1015 molec. cm−2 over heavily polluted regions in Eu-

rope; the eastern US; and, particularly, eastern China. The

relative differences between the two versions are less than

∼ 20 %. With the currently adopted AMF estimates we an-

ticipate an overall reduction in the OMI-derived top-down

anthropogenic NOx emissions and surface concentrations.

However, applying a new geometry-dependent Lambertian

equivalent reflectivity in AMF calculation would result in in-

creasing tropospheric VCDs (Vasilkov et al., 2017) and de-

rived top-down NOx emissions and surface concentrations.

Despite large absolute differences, the relative temporal

regional changes in Vtrop as well as estimates of lightning

NOx production efficiency in free troposphere are not sig-

nificantly affected in the revised data. Additional long-term

ground-based column NO2 measurements and surface con-

centration network data will be very helpful in validating the

presented version 3 of the standard OMI NO2 product.

Data availability. OMI NO2 data used in this study have been

publicly released as part of the Aura OMI standard NO2 prod-

uct (OMNO2.003, https://doi.org/10.5067/Aura/OMI/DATA2017)

and can be obtained free of charge from the NASA Goddard

Earth Sciences (GES) Data and Information Services Center’s new

public website: https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/

summary/. New OMI NO2 overpasses as well as daily and monthly

maps are available from the NASA Aura Validation Data Cen-

ter website: https://avdc.gsfc.nasa.gov/. The FTIR data at Izana as

part of the Network for the Detection of Atmospheric Composition

Change (NDACC) are publicly available (see http://www.ndacc.org

and the Aura Validation Data Center, https://avdc.gsfc.nasa.gov/).
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