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ABSTRACT

The Vertebrate Genome Annotation (Vega) database

(http://vega.sanger.ac.uk) was first made public

in 2004 and has been designed to view manual

annotation of human, mouse and zebrafish genomic

sequences produced at the Wellcome Trust Sanger

Institute. Since its initial release, the number of

human annotated loci has more than doubled to

close to 33 000 and now contains comprehensive

annotation on 20 of the 24 human chromosomes,

four whole mouse chromosomes and around 40%

of the zebrafish Danio rerio genome. In addition,

we offer manual annotation of a number of haplo-

type regions in mouse and human and regions of

comparative interest in pig and dog that are unique

to Vega.

INTRODUCTION

Currently only three vertebrate genomes, human, mouse
and zebrafish, are being fully sequenced and finished to a
quality which merits manual annotation. Although labour
intensive and relatively slow compared with automatic
annotation methods, manual annotation provides an
invaluable reliable reference resource that can be used to
predict gene structures on low coverage genomes from
other vertebrate species. The Vega database is the central
repository for the majority of genome sequencing centres
to deposit their annotation of human chromosomes.
Unlike other browsers, Vega only displays a manually
annotated gene set on the latest chromosome assemblies,
which are often more up-to-date than the reference
genome assembly generated by NCBI. Currently, the
human database contains twenty chromosomes annotated
by eight different sequencing centres. The Havana Group
at the Wellcome Trust Sanger Institute (WTSI) is
updating the annotation through its involvement in the
consensus-coding sequence (CCDS) collaboration with
UCSC, NCBI and Ensembl (http://www.ncbi.nlm.nih.gov/
CCDS/) which aims to produce a reference set of protein-
coding gene annotation across the entire human genome.

The four mouse chromosomes (2, 4, 11 and X)
sequenced at WTSI have been virtually fully annotated

and can be browsed through Vega. The rest of the mouse
genome is being annotated on a gene-by-gene basis as part
of the mouse CCDS collaboration.
The Zebrafish genome, which is being fully sequenced

and manually annotated at the WTSI in collaboration
with Zfin (1), currently features eight completely anno-
tated chromosomes.
In addition to full genomes, and unlike other browsers,

Vega also displays small finished regions of interest from
genomes of other vertebrates, human haplotypes and
mouse strains. Currently this comprises the finished
sequence and annotation of the major histocompatability
complex (MHC) from different human haplotypes, and
dog and pig [the latter of which is currently otherwise only
available in very limited form in Ensembl Pre! (http://
pre.ensembl.org/Sus_scrofa/index.html)]. Additionally
there is mouse NOD (non-obese diabetes) strain annota-
tion of IDD (insulin-dependent diabetes) candidate
regions and two more pig regions.

Improvements and progress in Vega since 2004

All three complete genomes (mouse, human and zebrafish)
now contain a view of all the chromosomes in the
Karyotype View and the annotation progress of each
chromosome is highlighted with grey shading. Since the
original Vega publication in 2005 (2), the number of
human gene loci annotated has more than doubled to
almost 33 000 (June 2007 release), close to 19 000 of which
are predicted to be protein coding. Four chromosomes
(2, 4, 5 and 11) remain to be fully manually annotated
to the Havana standard and these will be completed as
part of the CCDS collaboration and the whole-genome
extension of the ENCODE project (see below). Since
annotation is continually re-evaluated on a gene-by-gene
basis, every locus is versioned and the date of creation and
last update can now be viewed by the user on the curated
locus report page (GeneView, see Figure 1).
The CCDS project aims to produce a set of protein-

coding transcripts that is agreed upon by the RefSeq
group at the NCBI, the Havana and Ensembl groups at
the Wellcome Trust Genome Campus and the Genome
Informatics group at the UCSC. Though originally limited
to human genes, the project now includes mouse. As part
of the collaboration, we are comprehensively annotating
(i.e. including all coding and non-coding variants) each
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human and mouse CCDS locus to provide a solid basis for
comparison with RefSeq. In the process, this supplies up-
to-date annotation to previously annotated sequences and
novel annotation to unannotated sequence. Where appro-
priate, Vega transcript and gene records (TranscriptView,
GeneView) have links to the CCDS gene records in the
CCDS database at the NCBI (http://www.ncbi.nlm.nih.
gov/CCDS/) (Figure 1).
As part of the ENCODE project (3,4), Havana have

comprehensively annotated the target genes (1% of
human genes) in human and mouse and updated the
annotation following both experimental and compu-
tational feedback from the GENCODE project (5–7).
In human Vega, ENCODE regions are marked in
ContigView (users may have to switch on the relevant
track in the ‘Decorations’ menu).
Vega transcript objects are also shown, in a separate

track, in Ensembl Detailed View (tracks named ‘Vega
Havana Gene’ and ‘Vega External Gene’; the user may
have to switch these tracks on in the ‘Features’ menu). In
order to eliminate redundancy in the Ensembl transcript

track and highlight commonality, Ensembl and Vega have
started to match protein-coding transcripts between the
two datasets and only present a single transcript if
within a given locus a Vega and an Ensembl transcript
are identical. These transcripts (and loci containing them)
are coloured gold and labelled ‘Merged Known Protein
Coding’ or ‘Common Known Protein Coding’ in Ensembl
ContigVew (Figure 2). The project is currently limited to
human genes annotated by Havana, but is expected to
include Havana-annotated mouse genes in Ensembl
version 48 (December 2007 release).

In preparation for the zebrafish genome paper (which
will be based on genome assembly Zv8), all mRNA entries
in the Zfin database (http://zfin.org/) have been aligned to
the current Zv7 assembly and those that map have been
annotated (currently 6157). On an ongoing basis, known
mRNAs are being mapped and annotated as new finished
genomic sequence becomes available. To remove artificial
duplications, annotation from the previous mixed-strain
library genomic clones has been moved to a reference
assembly constructed from a single double-haplotype

Figure 1. Part of the GeneView Locus Report showing versioning information and CCDS and nomenclature (in this case HGNC) information
and links. Edited from http://vega.sanger.ac.uk/Homo_sapiens/geneview?gene=OTTHUMG00000008264&db=core.
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Tübingen strain individual. The original clones are still
visible in ContigView and annotation can be compared
between the two in MultiContigView (Figure 3) using the
‘Comparative’ menu in Detailed View.

We collaborate closely with the MGI group at The
Jackson Laboratory (http://www.informatics.jax.org/)
regarding mouse gene sets and their nomenclature.
Genes are cross-linked between Vega and MGI: Vega
GeneView pages link to MGI locus records and vice versa.
A similar collaboration is in place with the HGNC (http://
www.genenames.org/) for human genes (Figure 1) and
Zfin (http://zfin.org/) for zebrafish.

For the first time a large region of the porcine genome,
8.2Mb of chromosome 17 sequence orthologous to
human chromosome 20q13 and mouse 2, has been made

available (8). The region has been used to assess the
sequencing methodology for the pig genome (8). As both
the pig sequence and the orthologous human and mouse
sequences have been annotated by Havana, users can
compare the sequences in Vega’s MultiContigView. In
addition to the chromosome 17 sequence, Vega presents
the pig MHC region, located on chromosome 7 (9) (see
below), and the region of pig chromosome 6 containing
the LRC (leukocyte receptor complex) genes (10,11).
Their orthologous regions in human have been annotated
by Havana, so again, they can be viewed in Vega alongside
human sequence, and, in the case of the MHC, dog
as well.
Below, a selection of new projects, where the data have

been first released in Vega, are described in more detail.

Figure 2. Ensembl release 46 page showing the gold-coloured Ensembl-Vega gene merge loci (top: Overview) and transcripts (bottom: Detailed view).
Edited from http://www.ensembl.org/Homo_sapiens/contigview?c=1:39255078;w=63203.
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Mouse genes targeted for knockout. The WTSI is produ-
cing annotation for both the EUCOMM (European
Conditional Mouse Mutagenesis) (http://www.eucomm.
org/) and KOMP (Knock-Out Mouse Project) (http://
www.nih.gov/science/models/mouse/knockout/) efforts.
These two projects aim to generate a comprehensive

resource of (conditional) knockout (KO) alleles in mouse
embryonic stem cells. The target genes can be viewed in
Vega as a KO track. Transcript models shown in this track
are the transcripts produced in KO mice where target
exon(s) (also shown) have been deleted; the resulting
coding transcripts are subject to nonsense-mediated decay.

Figure 3. Zebrafish haplotype clones are marked in yellow (Top level and Navigational overview panels above). In MultiContigView, annotation can
be shown on both reference and haplotype simultaneously with lines linking homologous genes (Detailed View panel above). This view is accessible
by choosing the desired second dataset from the ‘View alongside’ menu from the left-hand menu/navigation bar in ContigView (not shown). Edited
from http://vega.sanger.ac.uk/Danio_rerio/multicontigview?sr1=H_4_11;s1=Danio_rerio;c=4:8468245;w=44415.
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Mouse diabetes (IDD) candidate regions. Mouse strain
NOD (non-obese diabetic) is a model for identifying genes
involved in IDD (insulin-dependent diabetes) (12–14).
We are annotating candidate regions, in parallel, in the
reference BL/6 strain and the NOD strain in order to
compare the two strains and detect differences that may be
relevant to type I diabetes susceptibility. Reference and
NOD strain annotation can be viewed alongside each
other in Vega MultiContigView.

MHC haplotype and comparative MHC. The primary aim
of the human MHC Haplotype Project (15–17) is to
provide a comprehensively annotated reference sequence
of a single, HLA-homozygous MHC haplotype and to use
it as a basis against which we could assess variations from
seven other similarly homozygous cell lines, representative
of the most common MHC haplotypes in the European
population. Through the Vega database users can access
gene annotation of the eight MHC haplotype sequences as
it becomes available, providing a valuable public resource
and a means of integrating annotation and variation data.
As mentioned earlier, canine (Doberman breed) (18) and
porcine MHC regions have been sequenced and annotated
as well, allowing for a direct comparison of the region
between three different organisms and between a number
of human haplotypes (Figure 4).

Additional classification and improved annotation of
alternatively spliced variants. Our locus classification
classes were developed to aid standardization of the
annotation of gene features by different groups across
the human genome and were initially developed through
a series of workshops (http://www.sanger.ac.uk/HGP/
havana/hawk.shtml). However, as the transcript diver-
sity appears to present a complex landscape for each
locus, we have introduced an in-depth classification at
the transcript level to aid interpretation of their
functionality. As mentioned above, the Havana group
produced the reference annotation for the ENCODE
project as part of the GENCODE collaboration. As
part of this project, all coding transcripts were analysed
by the Biosapiens consortium which examined the
structural viability of each protein by various methods
(19). On feedback from the consortium we have started
to classify our coding transcripts into the following four
categories:

(i) Known CDS: identical to SwissProt entry or RefSeq
NP protein.

(ii) Novel CDS: shares >60% of its coding length with
Known CDS, has cross-species or gene family
support for its structure or a Pfam domain structure
identical to Known CDS.

(iii) Putative CDS: shares <60% of its coding length
with Known CDS, has novel first or last coding
exon or lacks cross-species or gene family support
for its structure.

(iv) NMD: if the CDS (following the appropriate
reference CDS) of a transcript finishes >50 bp
from a downstream splice site, the transcript is

tagged as being subject to nonsense-mediated decay
(NMD)

Further more, transcript variants for which a CDS
cannot be assigned confidently, are classified into the
following main types:

(i) Transcript: does not qualify for any of the specific
types below.

(ii) Retained intron: relative to an appropriate reference
variant, transcript contains intronic sequences not
due to alternative splice sites.

(iii) Putative: up to three exons, supported by only up to
two ESTs (from same or other species).

(iv) Non-coding: for known non-coding genes only.
(v) Antisense: for known antisense genes only (i.e. genes

that have a published regulatory/expression/
functional relationship with the gene on the
opposite strand, such as mouse Nespas).

(vi) IG segment: for known immunoglobulin gene
fragments only (e.g. the IGL cluster on human
chromosome 22 or the Trav cluster on mouse
chromosome 14).

As far as we are aware, Vega is the only place to
find large-scale annotation of putative NMD targets
[though there is a database of SNP-induced NMD targets
(20) (http://variome.kobic.re.kr/SNP2NMD/)]. The full
description of the current locus and transcript classifica-
tion classes can be found at: http://vega.sanger.ac.uk/info/
about/gene_and_transcript_types.html.

Generating the database for the Vega website

As mentioned in Ashurst et al. (2), the data released via
the Vega website is produced by merging two in-house
databases at the Sanger Institute: the pipeline database
containing the genome assembly and alignments of
features (mRNAs, proteins and ESTs, gene predictions,
etc.) to that assembly, and the Otter annotation database
containing the manual annotation. The Vega website runs
from an Ensembl (21–23) schema database, the version of
which is, as far as possible, kept synchronized with that of
the Ensembl website. This strategy of keeping closely
synchronized with Ensembl has advantages such as
facilitating maintenance of the website—new features
developed for Ensembl can sometimes become available
to Vega with little or no development time being required.
However, the schema difference between the Otter
annotation database (which is based on a version of the
schema originating from 2003 and positions genes on
clones instead of chromosomes) and the Vega website
database is significant for the Vega release process: the
genes have to be mapped from clones onto chromosomes,
and data has to be moved from legacy tables into core
Ensembl schema tables. Whilst there have been numerous
improvements to this process over the four year life of
Vega, this step does remain a bottleneck in the release
process. For this, and for other reasons, we are currently
in the process of migrating the Otter annotation database
onto the current Ensembl schema (see Future Plans
section). However, the frequency of release of the website
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Figure 4. MultiContigView of a region of the pig and dog MHC. Lines link computationally determined orthologues in the Detailed View. This
view is accessible by choosing the desired second dataset from the ‘View alongside’ menu from the left-hand menu/navigation bar in pig ContigView
(not shown). Edited from http://vega.sanger.ac.uk/Sus_scrofa/multicontigview?sr1=6;s1=Homo_sapiens;c=7-MHC:1296785;w=19183.

D758 Nucleic Acids Research, 2008, Vol. 36, Database issue

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
6
/s

u
p
p
l_

1
/D

7
5
3
/2

5
0
8
2
9
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



will always be limited by the requirement to generate
additional data required for the functionality of each
specific release of the website. These data include the
Compara database that allows for the comparative
analysis in Vega, the files used for sequence (BLAST
and SSAHA) and text (Exalead) searching, and updates
to help documentation and other information.

Accessing and querying data

Most of the Vega annotation data can be accessed via
Ensembl through its BioMart system (24,25) for data
queries. Furthermore, genomic, transcript and protein
sequences can be easily exported in several formats from
the various Views (for example ‘Export cDNA’ or ‘Export
peptide’ from the menu obtained by clicking on gene
cartoons in the Detailed View or Basepair View panels in
ContigView). We also have Blast and SSAHA services
available for alignments of user’s query sequences against
Vega transcripts, proteins or genomic sequence and users
can download Fasta files from the Vega FTP site (ftp://
ftp.sanger.ac.uk/pub/vega).

Feedback and submitting data

In order to maintain and enhance the quality and coverage
of our annotation, the Havana team is always interested in
feedback, collaboration and high-quality external data.
Please feel free to contact us at vega@sanger.ac.uk for
feedback and queries or contact the corresponding author
to discuss collaborations and data submissions.

Future plans

A significant development in the near future will be the
migration of the Otter annotation database to a near-
current version of the Ensembl schema. This should
increase the release frequency and allow us to present the
most recent data to the community. It will also improve
versioning, searching, dealing with exceptions (e.g. seleno-
cysteine), and mapping features across clone boundaries.
In addition, in the longer term we are aiming for much of
the data that is currently generated after merging the
pipeline and annotation databases, such as the location of
protein domains on translations, links between Vega
genes/transcripts and external databases (such as MGI),
karyotype images, etc. to be incorporated into the
annotation database.

We will continue adding mouse, and updating human,
CCDS annotation in collaboration with the NCBI and
UCSC. Other ongoing collaborations are Ensembl-Vega
gene merges, refining and extending ENCODE annotation
with the ENCODE and GENCODE consortia and
refining nomenclature and annotation with HGNC,
MGI and Zfin. Maintenance and updating of existing
annotation in human, mouse and zebrafish is ongoing, as
is general (non-project related) de novo annotation.
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