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Chapter 1

Introduction

The main topic of this thesis is the Vertex Coloring Problem and its generalizations, for which
models, algorithms and bounds are proposed in the First Part.

The Second Part is dedicated to a different problem on graphs, namely a Routing Problem
in telecommunication networks where not only the efficiency, but also the fairness of the
solution are considered.

1.1 The Vertex Coloring Problem and its Generalizations

Consider the following problems:

1. Color the map of England, in such a way that no two counties touching with a common
stretch of boundary are given the same color, by using the smallest number of colors 1.

2. Organize the timetable of examinations of a university. Each examination needs a time
slot, and the university wants to organize as many examinations in parallel as possible,
without exceeding the availability of classrooms, in order to reduce the number of time
slots. Since students can take more than one course, and they must be able to take part
in the exams of all the courses they have followed, two examinations cannot be scheduled
at the same time, if there is at least one student taking both the corresponding courses.

3. Radio spectrum has to be assigned to broadcast emitting stations, in such a way that
adjacent stations, which could interfere, use different frequencies (each station may need
one or more frequencies). In general it is required that two interfering stations use fre-
quencies that are far each other, with a distance depending on propagation phenomena.
Since radio spectrum is a very scarce and expensive resource, the allocation of frequency
must be the most efficient, i.e. the total number of frequencies has to be minimized.

4. In the metal industry, metal coils are heated in furnaces. Each coil has to be heated for
at least a given amount of time (different for each coil), and coils heated together must

1Four are enough for any map, see Appel, Haken and Koch [10], the Four Color Conjecture was proposed
by Francis Guthrie in 1852
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2 Introduction

be compatible, i.e. they must have similar heights. The problem is to decide which coils
will be heated together, in order to minimize the total heating time.

5. An nXn traffic matrix has to be transmitted through an analogical satellite. Each entry
of the matrix represents the amount of traffic (i.e. the connection duration) to be sent
from a transmitting antenna to a receiving antenna. In order to be transmitted, the
matrix must be decomposed into mode matrices, i.e. matrices with at most one non
zero element (corresponding to the traffic sent for each pair of transmitting-receiving
antennas) per row and per column, in such a way that the sum of the mode matrices
corresponds to the original traffic matrix. The transmitting time of each mode matrix
corresponds to its largest element, and the problem is to minimize the total transmitting
time.

6. Some vehicles are used to deliver items. Some items cannot travel on the same vehicle,
because they are dangerous or require special equipment. The problem is to minimize
the number of vehicles, by considering that each item has a weight and the capacity of
vehicles is bounded.

7. Aircrafts are approaching an airport. The traffic control system assigns them an alti-
tude, where they wait their landing time. If the arrival intervals of two planes overlap,
they cannot use the same altitude. The available altitudes are limited, and they have
to be assigned efficiently.

At first sight, the problems listed above have nothing in common. They consider coloring a
map, telecommunications, heating in a furnace, timetabling, delivery, assignment of altitudes
to aircrafts, etc. However, they all are optimization problems with a common structure.

A resource is shared among users. Some users can access the resource simultaneously,
while others are pairwise incompatible, and the resource must be duplicated. The problem
asks how to group the users that will access the resource simultaneously, in such a way that
the number of copies of the resource is minimized.

Problems with this structure have been represented as Vertex Coloring Problems. For-
mally, consider an undirected graph G = (V,E), where V is the set of vertices and E the set of
edges, having cardinality n and m, respectively. The Vertex Coloring Problem (VCP) requires
to assign a color to each vertex in such a way that colors on adjacent vertices are different and
the number of colors used is minimized. Vertex Coloring is a well known NP-hard problem
(see Garey and Johnson [53]), and has received a large attention in the literature, not only for
its real world applications in many engineering fields, a subset of those is reported above as
an example, but also for its theoretical aspects and for its difficulty from the computational
point of view. Actually, exact algorithms proposed for VCP are able to solve consistently only
small instances, with up to 100 vertices for random graphs. On the other hand, real world
applications commonly deal with graphs of hundreds or thousands of vertices, for which the
use of heuristic and metaheuristic techniques is necessary.

Since n colors will always suffice for coloring any graph, a straightforward Integer Linear
Programming (ILP) model for VCP can be obtained by defining the following two sets of
binary variables: variables xih (i ∈ V, h = 1, . . . , n), with xih = 1 iff vertex i is assigned to
color h, and variables yh (h = 1, . . . , n) denoting if color h is used in the solution. A possible
model for VCP reads:
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min
n∑

h=1

yh(1.1)

n∑

h=1

xih = 1 ∀i ∈ V(1.2)

xih + xjh ≤ yh ∀(i, j) ∈ E, h = 1, . . . , n(1.3)
xih ∈ {0, 1} ∀i ∈ V, h = 1, . . . , n(1.4)
yh ∈ {0, 1} h = 1, . . . , n(1.5)

Objective function (1.1) minimizes the number of colors used. Constraints (1.2) require
that each vertex is colored, while (1.3) impose that at most one of a pair of adjacent vertices
receive a color, when the color is used. Finally, (1.5) and (1.4) impose the integrality of the
variables. Albeit more sophisticated models can lead to better computational results when
solved by means of exact or heuristic techniques, and are discussed in the following of this
thesis, the model using binary variables xih and yh has the advantage of the clarity, and can
be easily extended to VCP generalizations, as discussed in the following.

From the list of proposed problems, Problem 1 is a classical VCP, by defining a vertex for
each county of England, and an edge connecting two vertices if the corresponding counties
are touching with a common stretch of boundary. Problem 7 is a VCP too, if we associate
a vertex to each aircraft and an edge connecting two vertices if the arrival intervals of the
corresponding aircrafts overlap.

In many practical situation, the number of users that can access to a resource is bounded,
or it may happen that each user consumes a (possibly different) fraction of the resource, and
the total capacity of the resource is limited. We can model this situation by assigning a
positive weight wi to each vertex, and imposing a capacity constraint on the total weight of
the vertices that receive the same color. The corresponding problem is known as Bounded
Vertex Coloring Problem (BVCP) or Bin Packing Problem with Conflicts (where the Bin
Packing Problem requires to assign a set of items, each one with a positive weight, to the
smallest number of bins, each bin with the same capacity C, see Martello and Toth [88]). If
C is the capacity of each color, we can impose a capacity constraint as follows:

n∑

i=1

wixih ≤ C ∀h = 1, . . . , n(1.6)

Model (1.1)–(1.4), with constraint (1.6) is a BVCP. When all the weights of the vertices
are equal to 1, constraint (1.6) determines the maximum number of vertices which can receive
the same color. This models for example Problem 2, if a vertex i of weight 1 is associated
to each examination, and a color h corresponds to a time slot: vertex i is assigned color h
iff examination i is scheduled in time slot h; two vertices are adjacent if the corresponding
examinations cannot be scheduled in the same time slot, because there is at least one student
who may want to take part in both the examinations. Each time slot has a maximum capacity
C, corresponding to the number of classrooms available for the examinations. Problem 6 can
be modelled as a BVCP as well, if a vertex is associated to each item, a color to each vehicle,
and C represents the capacity of a vehicle with respect to a given dimension.
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In the Bandwidth Coloring Problem (BCP) distance constraints are imposed between
adjacent vertices, replacing the difference constraints (1.3) of model (1.1)–(1.4), and the
largest color used is minimized. A distance d(i, j) is defined for each edge (i, j) ∈ E, and the
absolute value of the difference between the colors assigned to i and j must be at least equal
to this distance: |c(i)− c(j)| ≥ d(i, j) (in this problem more than n colors may be necessary,
so let H be the set of available colors).

A possible model for BCP, using binary variables xih and yh defined above, and a contin-
uous variable k, reads:

min k(1.7)
k ≥ yhh h ∈ H(1.8) ∑

h∈H

xih = 1 i ∈ V(1.9)

xih + xjl ≤ 1 (i, j) ∈ E, h ∈ H, l ∈ {h− d(i, j) + 1, ..., h + d(i, j)− 1}(1.10)
xih ≤ yh i ∈ V, h ∈ H(1.11)

xi,h ∈ {0, 1} i ∈ V, h ∈ H(1.12)
yh ∈ {0, 1} h ∈ H(1.13)

The objective function (1.7) (in conjunction with constraints (1.8)) asks for minimizing
the maximum color used. Note that in BCP the number of colors assigned to the vertices
can be smaller than maximum color used. Constraints (1.10) state that the absolute value of
the difference between the colors assigned to vertices i and j must be at least equal to d(i, j).
Constraints (1.11) ensure that if a vertex i uses a color h, then color h results as used.

In the Multicoloring Problem (MCP) a positive request ri is defined for each vertex i ∈ V ,
representing the number of colors that must be assigned to vertex i, so that for each (i, j) ∈ E
the intersection of the color sets assigned to vertices i and j is empty. The Bandwidth
Multicoloring Problem (BMCP) is the combination of the two problems above. Each vertex i
must be assigned ri colors, and each of these colors must respect the distance d(i, j) with all
the colors assigned to any adjacent vertex j. In this case, loop d(i, i) represents the minimum
distance between different colors assigned to the same vertex i. The three problems defined
above, and in particular the BMCP (which generalizes the BCP and MCP) received a wide
interest in telecommunications [4], where they model frequency assignment problems, like the
one proposed in Problem 3

In all the problems and corresponding models considered up to now, the cost of each color
has been set equal to one. In this thesis we consider also a Weighted version of the Vertex
Coloring Problem (WVCP) in which each vertex i of a graph G has associated a positive
weight wi, and the objective is to minimize the sum of the costs of the colors used, where the
cost of each color is given by the maximum weight of the vertices assigned to that color. The
most natural model for this problem requires, in addition to the binary xih variables, saying
if vertex i receives color h, continuous variables zh (h = 1, . . . , n), denoting the cost of color
h in the solution. The corresponding model for WVCP is:

min
n∑

h=1

zh(1.14)
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zh ≥ wi xih i ∈ V, h = 1, . . . , n(1.15)
n∑

h=1

xih = 1 i ∈ V(1.16)

xih + xjh ≤ 1 (i, j) ∈ E, h = 1, . . . , n(1.17)
xih ∈ {0, 1} i ∈ V, h = 1, . . . , n(1.18)

where objective function (1.14) minimizes the sum of the costs of the colors, which are
defined by constraints (1.15). This model can be used to represent Problem 4, where each
metal coil is associated to a vertex, its heating time to the vertex weight, and the coils which
are heated together receive the same color, while coils which cannot enter the furnace together
are connected by an arc. The heating time of a subset of the coils which enter the furnace
together corresponds to the largest heating time, and to the cost of the color as well. The
same model represents also Problem 5, when a vertex is associated to each non zero element
of the traffic matrix, and an edge connects each vertex to all vertices appearing on the same
row and on the same column. In this case a color corresponds to a so called mode matrix.

The first part of this thesis is devoted to the Vertex Coloring Problem and its gener-
alizations, namely those introduced in this Chapter. The interest is mainly on models and
efficient heuristic and metaheuristic algorithms for the approximate solution of large instances,
which could not be tackled by means of exact techniques. All proposed algorithms have been
implemented, and extensive computational experiments have been performed on benchmark
instances from the literature, in order to evaluate the performance of the proposed approaches.

In detail, in Chapter 2 we consider the classical VCP, for which a two-phases metaheuristic
approach is proposed: the first phase is based on an Evolutionary Algorithm, while the second
one is a post-optimization phase based on the Set Covering formulation of the problem.
Computational results on a set of benchmark instances conclude that the approach represents
the state of the art heuristic algorithm for the problem.

Chapter 3 considers the BMCP, for which a metaheuristic algorithm, inspired to the one
proposed in Chapter 2, is presented. The algorithm outperforms, on a set of benchmark
instances, other metaheuristic approaches from the literature.

Chapter 4 is devoted to the WVCP. We propose a straightforward formulation for WVCP,
and two alternative ILP models: the first one is used to derive, dropping integrality require-
ment for the variables, a tight lower bound on the solution value, while the second one is used
to derive a 2-phase heuristic algorithm, also embedding fast refinement procedures aimed at
improving the quality of the solutions found. Computational results on a large set of instances
from the literature are reported.

Finally, Chapter 5 considers the BVCP, for which we present new lower and upper bounds,
and investigate their behavior by means of computational experiments on benchmark in-
stances.
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1.2 Fair Routing

The term routing, in its broadest meaning, refers to selecting paths in a network along which
to send data, vehicles, flow, etc., depending on the specific problem. In the second part of this
thesis we consider the routing of packets in a telecommunication network, i.e. the selection
of paths to send packets from their source in the network, toward their ultimate destination
through intermediary nodes.

In particular we will consider a wireless ad hoc network, i.e. a network formed by a
set of nodes which communicate through wireless connections, and do not make use of any
preexisting infrastructure. Wireless ad hoc networks are characterized by two main aspects:

• the lack of preexisting infrastructure, and the possibility that the network topology
changes over time, preventing the use of centralized solutions for the control of these
networks. Decisions are usually taken at node level, where only local information, about
the node condition and its close neighbors, is normally available;

• the use of wireless connections, which, in all situations where the network nodes are feed
by an internally owned limited energy supply (e.g. a battery), raises problems about
the energetic efficiency of the network.

Examples of ad hoc networks are sensor networks, used for geographical surveys, or temporary
networks present during meetings or happenings. Wireless ad hoc networks will be highly
pervasive in the next future, and it is not unlikely that the Internet network will be often
extended through wireless ad hoc networks, instead of using wired connections.

A wide literature is available on ad-hoc networks (see Tonguz and Ferrari [105] for an
introduction to ad-hoc networks), mainly devoted to the study of the efficiency of networks,
and to the design of mechanisms to obtain a desired behavior from the network nodes. The
efficiency of an ad hoc network is highly related to the routing protocols that the network
uses. Since transmitting packets through the network has an energetic cost for the nodes,
the routing of packets should be the most efficient one, in order to minimize the energy
cost of the network, and to ensure its survival. Concerning the behavior of nodes, it must be
considered that a node participates to the network by sending its own traffic, and, in addition,
by forwarding the traffic of other nodes, thus ensuring the connectivity and improving the
efficiency of the network. Forwarding traffic has no tangible benefit for the node; of course,
the node has a benefit if other nodes forward too. The absence of immediate benefit for nodes
contributing to the network raises the problem of nodes that, acting selfishly, do not forward
network traffic. This led to the design of mechanisms to obtain a desired behavior from nodes.

The study of network efficiency and the design of forcing mechanisms do not consider that
routing decisions in the network may be very unfair. The definition of the fairness of ad hoc
networks is far from trivial and is part of this work, however, intuitively, the fairness of a
network should measure the contribution that each node gives to the network with respect to
the benefit it obtains from being in the network. It may happen that a very efficient routing,
for the network as a whole, leads a node to spend all its energy to forward packets from other
nodes, thus draining its energy source without benefit, and this is unfair.

The second part of this thesis is devoted to the study of possible measures for the fairness
of ad hoc networks, to the relation existing between an efficient routing algorithm and a fair
one, and to the design of fair and efficient routing algorithms.
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To this aim, we first propose a model for the routing of packets in ad hoc networks. The
network is represented as a weighted digraph G = (V, A), where each node corresponds to a
vertex i ∈ V , and the network links correspond to arcs a ∈ A. The weight of each arc a rep-
resents the energy needed to send a unit of information through the arc, and depends on the
adopted propagation model. Each node has a capacity, depending on its remaining energy,
which limits the amount of traffic it can send and forward. We want the analysis to be inde-
pendent of the specific transmitting protocol, and then we use a fluid model representation,
i.e. we describe the traffic in the network as a flow (of bits). Bits will be grouped into pack-
ets, but how the bits are grouped depends on the chosen protocol. Thus, from the feasibility
viewpoint, the routing problem is tackled as a Splittable MultiCommodity Flow with node
Capacity, i.e., given the quantity of information to be routed for a set of origin-destination
pairs, the information can be split into multiple paths, and the routing is constrained by the
capacities given by the residual battery life associated with the nodes.

If fairness is disregarder, the problem asks for finding the routing of minimum cost on
graph G, i.e. the most energetically efficient, such that all the demand is transmitted. In this
thesis we give two alternative measures for the fairness of a routing in such networks, and
discuss how an efficient routing can be computed by satisfying a minimum fairness constraint,
through the solution of a Linear Programming Model. The computation of this routing,
however, requires a set of information which is normally not available at single node level,
where the routing decisions are taken. Thus, the routing obtained through the solution of the
proposed model can be considered as a benchmark on the best possible routing, and could be
implemented only by a centralized control of the system, which is impossible for the intrinsic
decentralized nature of ad hoc network.

So, we propose also a distributed routing algorithm, which uses only local information,
available at node level. The algorithm is aimed at computing an efficient routing, while taking
into consideration the fairness experienced by the nodes in the network.

The cost of fairness and the efficiency of the proposed distributed routing algorithm are
evaluated through extensive computational experiments on randomly generated networks,
which represent various network and traffic configurations.
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Chapter 2

A Metaheuristic Approach for the
Vertex Coloring Problem

1

Given an undirected graph G = (V,E), the Vertex Coloring Problem (VCP) requires to
assign a color to each vertex in such a way that colors on adjacent vertices are different and
the number of colors used is minimized. In this paper we propose a metaheuristic approach
for VCP which performs two phases: the first phase is based on an Evolutionary Algorithm,
while the second one is a post-optimization phase based on the Set Covering formulation of
the problem. Computational results on the DIMACS set of instances show that the overall
algorithm is able to produce high quality solutions in a reasonable amount of time. For 4
instances, the proposed algorithm is able to improve the best known solution, while for almost
all the remaining instances it finds the best known solution in the literature.

2.1 Introduction

Given an undirected graph G = (V,E), the Vertex Coloring Problem (VCP) requires to assign
a color to each vertex in such a way that colors on adjacent vertices are different and the
number of colors used is minimized.

Vertex Coloring is a well known NP-hard problem (see Garey and Johnson [53]) with
real world applications in many engineering fields, including scheduling [80], timetabling [39],
register allocation [30], frequency assignment [52] and communication networks [112]. This
suggests that effective algorithms would be of great importance. Despite its relevance, few
exact algorithms for VCP have been proposed, and are able to solve consistently only small
instances, with up to 100 vertices for random graphs [72, 101, 103, 41]. On the other hand,
several heuristic and metaheuristic algorithms have been proposed which are able to deal with
graphs of hundreds or thousands of vertices. We review below, after some useful definitions,
the most important classes of known heuristics and metaheuristics proposed for VCP.

Let n and m be the cardinalities of vertex set V and edge set E, respectively; let δ(v) be
the degree of a given vertex v. A subset of V is called an independent set if no two adjacent
vertices belong to it. A clique of a graph G is a complete subgraph of G. A k coloring of G
is a partition of V into k independent sets. An optimal coloring of G is a k coloring with the

1The results of this chapter appear in [84].
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smallest possible value of k (the chromatic number χ(G) of G). The chromatic degree of a
vertex is the number of different colors of its adjacent vertices.

The first approaches to VCP were based on greedy constructive algorithms. These algo-
rithms sequentially color the vertices of the graph following some rule for choosing the next
vertex to color and the color to use. They are generally very fast but produce poor results,
which can be very sensitive to some input parameter, like the ordering of the vertices. Beyond
the simple greedy sequential algorithm SEQ, the best known techniques are the maximum
saturation degree DSATUR and the Recursive Largest First RLF procedures proposed by
Brèlaz [20] and by Leighton [80], respectively (see Section 2.1.2 for a short description of
these algorithms). Culberson and Luo [37] proposed the iterated greedy algorithm IG which
can be combined with various techniques. In [18] Bollobàs and Thomason proposed algo-
rithm MAXIS that recursively selects the maximun independent set from the set of uncolored
vertices.

Many effective metaheuristic algorithms have been proposed for VCP. They are mainly
based on simulated annealing (Johnson, Aragon, McGeoch and Schevon [72] compared dif-
ferent neighborhoods and presented extensive computational results on random graphs; Mor-
genstern [92] proposed a very effective neighborhood search) or Tabu Search (Hertz and De
Werra [62]; Dorne and Hao [43]; Caramia and Dell’Olmo [25] proposed a local search with
priorities rules, inspired from Tabu Search techniques). Funabiki and Higashino [50] proposed
one of the most effective algorithms for the problem, which combines a Tabu Search technique
with different heuristic procedures, color fixing and solution recombination in the attempt to
expand a feasible partial coloring to a complete coloring. Hybrid algorithms integrating local
search and diversification via crossover operators were proposed (Fleurent and Ferland [49];
Galinier and Hao [51] proposed to combine an effective crossover operator with Tabu Search),
showing that diversification is able to improve the performance of local search.

As a general observation, two main strategies can be identified in the literature, which
correspond to different formulations of the problem. The first strategy tackles the problem
in the most natural way, trying to assign a color to each vertex. This leads to fast greedy
algorithms but seems to produce poor results. The second strategy tackles the problem of
feasibly coloring the graph by partitioning the vertex set into independent sets. Algorithms
based on this strategy build different color classes by identifying different independent sets
in the graph, and try to cover all the vertices by using the minimum number of independent
sets. All the algorithms able to find good solutions on large graphs are based on the latter
strategy.

The paper is organized as follows: in the remaining part of this section a new two-phase
heuristic approach for VCP is presented. Sections 2.2 and 2.3 describe the first phase, based
on an Evolutionary algorithm, and the second phase, which is a post optimization procedure
based on the Set Covering formulation of the problem, respectively. Extensive computational
experiments on literature instances are presented in Section 2.4. Concluding remarks are
discussed in Section 2.5.

2.1.1 The Heuristic Algorithm MMT

The approach we propose is based on the second strategy and performs, in sequence, an
initialization step and two optimization phases. In the initialization step, some fast lower
bounding procedures and greedy heuristics from the literature are executed to derive a lower
and an upper bound (LB and UB, respectively) on the optimal solution value. In the first
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optimization phase (Evolutionary Generation), an effective Evolutionary Algorithm, based on
the concept of partitioning the vertex set into independent sets, is executed. This algorithm
works in decision version (i.e., given as input the number k of colors to use, it looks for
a k coloring in the graph G), trying to improve on the best valued solution found by the
greedy procedures executed in the initialization step. Sometimes the Evolutionary Algorithm
is able to find a provably optimal solution; in any case, this algorithm generally improves the
best incumbent solution, and during the search generates a very large number of independent
sets (columns). When optimality of the incumbent solution is not proved, such columns are
stored in a family S ′. The second optimization phase (Column Optimization) considers the
Set Covering Problem (SCP) associated with the columns in S ′ and heuristically solves it
through the Lagrangian heuristic algorithm CFT proposed by Caprara, Fischetti and Toth
[23], improving many times the best incumbent solution.

Both optimization phases can be stopped as soon as a solution which is proven to be
optimal is found, i.e., if the value of the best solution found so far is equal to a lower bound
for the original problem.

The overall algorithm MMT is structured as follows:

begin
Initialization Step
1. compute lower bound LB;
2. compute upper bound UB;
3. S ′ := ∅;
Phase 1: Evolutionary Algorithm (Evolutionary Generation)
4. while (not time limit)

apply the Evolutionary Algorithm;
update UB and S ′;
if LB = UB stop

5. endwhile;
Phase 2: Column Optimization
6. apply heuristic algorithm CFT to the Set Covering instance corresponding to

subfamily S ′ with a given time limit (possibly updating UB)
end.

2.1.2 Initialization Step

Lower Bounding

As lower bound LB we use the cardinality of a maximal clique K of G. Although this is the
simplest lower bound for the problem, better lower bounds would require a big computational
effort (see for instance Caramia and Dell’Olmo [26], [27]). We compute LB as the maximum
cardinality of the maximal cliques of G obtained by executing several times (say 10), with
different random orderings of the vertices, the following greedy algorithm, which defines a
maximal clique K. Let vi be the i-th vertex of the considered ordering, LB the incumbent
value of the lower bound and η(vi) the K-degree of vi, i.e. the number of vertices in K that
are adjacent to vi. While the incumbent clique K can be expanded, we insert in K the first
vertex of the considered ordering having maximum K-degree, if this insertion can improve on
the best incumbent LB:
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begin
1. K := ∅;
2. while (|K| = maxi:vi∈V \K η(vi))
3. j := min(arg maxi:vi∈V \K and δ(vi)>LB η(vi));
6. if no such j exists then break;
4. K := K ∪ {vj}
7. end while
end.

Upper Bounding

To derive an initial upper bound UB for the problem we perform one iteration of the greedy
procedures SEQ, DSATUR, RLF [72].

SEQ is the simplest greedy algorithm for VCP. Assume that the vertices are labelled
v1, ..., vn. Vertex v1 is assigned to the first color class, and thereafter, vertex vi (i = 2, ..., n)
is assigned to the lowest indexed color class that contains no vertices adjacent to vi.

DSATUR [20, 72] is similar to SEQ, but dynamically chooses the vertex to color next,
picking the first vertex that is adjacent to the largest number of distinctly colored vertices
(i.e. the vertex with maximum chromatic degree).

The Recursive Largest First (RLF) algorithm [80, 72] colors the vertices, one class at a
time, in the following greedy way. Let C be the next color class to be constructed, V ′ the
set of uncolored vertices that can legally be placed in C, and U the set (initially empty) of
uncolored vertices that cannot legally be placed in C.

• Choose the first vertex v0 ∈ V ′ that has the maximum number of adjacent vertices in
V ′. Place v0 in C and move all the vertices u ∈ V ′ that are adjacent to v0 from V ′ to
U .

• While V ′ remains nonempty, do the following: choose the first vertex v ∈ V ′ that has
the maximum number of adjacent vertices in U ; add v to C and move all the vertices
u ∈ V ′ that are adjacent to v from V ′ to U .

We use these algorithms also during the initialization of the Evolutionary Algorithm (see
Section 2.2.2).

Complexity

The time complexity of the initialization procedure is analyzed in the following.

• The maximal clique algorithm of Section 2.1.2 asks for choosing at most n times the
vertex vj with maximum value of η(vj), with a total complexity of O(n2). Every time
a new vertex is inserted into the clique K the value of η of its adjacent vertices must
be updated. The total time of this update is O(m). The overall time complexity of the
algorithm is O(n2).

• In the implementation of the SEQ algorithm a data structure of size O(n2) is used to
store, for every vertex vi and for every color h, if at least one vertex adjacent to vi has
color h. When trying to assign vertex vi to a color class, the algorithm checks in this
data structure if the color is available for vi. So, the algorithm has to check O(n) colors
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for n vertices, with a total time complexity of O(n2). Every time a new vertex is colored
the information stored in the data structure is updated for all its adjacent vertices, with
a total complexity of O(m). The overall time complexity of the SEQ algorithm is O(n2).

• The DSATUR algorithm uses the same data structure, the only difference being that, for
n times, the vertex with the maximum chromatic degree is picked (with total complexity
of O(n2)). The update of the chromatic degree for every vertex is performed together
with the update of the data structure, and the corresponding total complexity is O(m).
The overall time complexity of the DSATUR algorithm is O(n2).

• The RLF algorithm chooses every time the next vertex to be colored as the vertex vi

with the maximum number of adjacent vertices (in V ′ or in U), the total complexity
of this search is O(n2). For every chosen vertex vi, all its adjacent vertices wj are
moved in U with a total complexity of O(m). Every time one adjacent vertex wj is
moved, its adjacent vertices zl are adjacent to one more vertex in U . The update of
this information has a total complexity of O(m2/n), since for every chosen vertex the
algorithm has to retrieve all its adjacent vertices and all the vertices adjacent to them.
The overall complexity of the RLF algorithm is O(m2/n).

2.2 PHASE 1: Evolutionary Algorithm

To find high quality solutions our first idea was to use a Tabu Search procedure, a meta-
heuristic technique that showed a very good experimental behavior on hard combinatorial
optimization problems. The first results were quite encouraging but showed some drawbacks
of our approach. In particular, for several instances, the Tabu Search procedure was unable to
explore different regions of the whole solution space. So we decided to use it as a component
of a more complex Evolutionary Algorithm.

2.2.1 Tabu Search Algorithm

A local search procedure can be seen as the result of three main components:

• the definition of a solution S;

• the solution evaluating function f(S);

• the solution neighborhood N(S).

In the simple local search procedures, given a solution S the algorithm explores its neigh-
borhood N(S) and moves to the best (according to the evaluating function f(S)) improving
solution S′ ∈ N(S). If a solution S is the best of its neighborhood, i.e. it is a local op-
timum, the local search algorithm is not able to move and the search is stopped. In Tabu
Search procedures, to avoid local optimum traps, the algorithm moves to the best solution
S′ in the neighborhood, even if it is not improving the current solution. To avoid cycling,
some attributes of solution S′ are stored in a Tabu List ; for a specified number of iterations
(the so called Tabu Tenure) a solution which presents tabu attributes is declared tabu and
is not considered, except in the case it would improve the best incumbent solution (aspira-
tion criterion). Most of the Tabu Search algorithms proposed so far for VCP move between
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infeasible solutions, i.e. they partition the set V in subsets which are not necessary inde-
pendent sets, trying to reduce the number of infeasibilities in every subset. Following an
idea by Morgenstern [92], we propose a Tabu Search procedure which moves between partial
feasible colorings, i.e. solutions in which each vertex subset is an independent set but not all
vertices are assigned to subsets. In [92] Morgenstern defines the Impasse Class Neighborhood,
a structure used to improve a partial k coloring to a complete coloring of the same value.
The Impasse Class requires a target value k for the number of colors to be used. A solution
S is a partition of V in k + 1 color classes {V1, ..., Vk, Vk+1} in which all classes, but possibly
the last one, are independent sets. This means that the first k classes constitute a partial
feasible k coloring, while all vertices that do not fit in the first k classes are in the last one.
Making this last class empty gives a complete feasible k coloring. To move from a solution
S to a new solution S′ ∈ N(S) one can randomly choose an uncolored vertex v ∈ Vk+1,
assign v to a different color class, say h, and move to class k + 1 all vertices v′ in class h
that are adjacent to v. This assures that color class h remains feasible. Class h is chosen
by comparing different target classes by mean of the evaluating function f(S). Rather than
simply minimizing | Vk+1 | it seems a better idea to minimize the value:

f(S) =
∑

w∈Vk+1

δ(w)(2.1)

This forces vertices having small degree, which are easier to color, to enter class k + 1.
Morgenstern uses this idea, together with a procedure for the recombination of the solutions,
to build a simulated annealing algorithm. We use the same idea within a Tabu Search
approach. At every iteration we move from a solution S to the best solution S′ ∈ N(S) (even
if f(S) < f(S′)). To avoid cycling, we use the following tabu rule: a vertex v cannot take the
same color h it took at least one of the last T iterations; for this purpose we store in a tabu
list the pair (v, h). While pair (v, h) remains in the tabu list, vertex v cannot be assigned
to color class h. We also use an Aspiration Criterion: a tabu move can be performed if it
improves on the best solution encountered so far. A Tabu Search algorithm based on the
same neighborhood structure was experimented by Blöchliger and Zufferey [15]: in this work
the next vertex to color is not chosen randomly, but selected so that it, entering the best color
class, produces the best solution in the neighborhood. This approach increases the size of the
neighborhood reducing at the same time the randomness introduced in the search. Thus, to
avoid premature convergence, the authors use an evaluating function that simply minimizes
| Vk+1 |.

Our Tabu Search algorithm takes in input:

• graph G(V, E);

• the target value k for the coloring;

• a feasible partial k coloring;

• the maximum number L of iterations to be performed ;

• the tabu tenure T .

If the algorithm solves the problem within L iterations it gives on output a feasible coloring
of value k, otherwise it gives on output the best scored partial coloring found during the search.

Let S be the current solution and S∗ the best incumbent solution. The Tabu Search
algorithm works as follows:
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begin
1. initialize a solution S := {V1, ..., Vk, Vk+1};
2. S∗ := S;
3. tabulist := ∅;
4. for ( iterations = 1 to L )
5. randomly select an uncolored vertex v ∈ Vk+1;
6. for each j ∈ {1, ..., k} (explore the neighborhood of S)
7. V

′
j := Vj \ {w ∈ Vj : (v, w) ∈ E} ∪ {v};

8. V
′
k+1 := Vk+1 \ {v} ∪ {w ∈ Vj : (v, w) ∈ E};

9. Sj := S \ {Vj , Vk+1} ∪ {V ′
j , V

′
k+1}

10. end for;
11. h := arg minj∈{1,...,k}:(v,j)/∈tabulist or f(Sj)<f(S∗) f(Sj);
12. if no such h exists then h := arg minj∈{1,...,k} f(Sj);
13. S := Sh;
14. insert (v, h) in tabulist, (v, h) is tabu for T iterations;
15. if f(S) < f(S∗) then S∗ := S;
16. if Vk+1 = ∅ then return S∗

17. end for;
18. return S∗

end.

At line 10 we try to select the best color class which improves on the best solution so far
or does not represent a tabu move. If all moves are tabu, at line 11 we simply select the best
color class.

Our Tabu Search algorithm is very simple and requires as parameter to be experimentally
tuned only the tabu tenure T . At the same time it has a good experimental behavior, since
it is often able to find good solutions in very short computing times (see Section 2.4.1).
Computational experiments showed that the algorithm generally needs a small number of
iterations to solve the problem, and when this does not occur, seldom the algorithm is able
to solve the problem even if a bigger number of iterations is allowed. This behavior can
be explained by the aggressive strategy adopted: we start with a partial feasible coloring
and iteratively try to insert uncolored vertices in color classes. If a colored vertex is not
conflicting (adjacent) with an uncolored one, its color is not changed, and possibly it will
never be changed during the execution of the algorithm. The main drawback of this strategy
is that in some cases it is not able to explore different regions of the whole solution space.
This can be explained with an example: suppose that a pair of vertices belonging to different
color classes are not conflicting with any of the uncolored vertices nor conflicting each other:
their assignment to a color class will never be changed, and the algorithm will not explore the
feasible solutions where the two vertices are in the same class. This consideration suggests
that this Tabu Search scheme could be much more effective if combined with a suitable
diversification strategy.

Complexity

The Tabu Search procedure represents the most time consuming part of the proposed ap-
proach, actually millions of Tabu Search iterations are performed to solve hard instances. An
iteration is composed by four main operations: the random choice of the vertex v to color,
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performed in constant time; the computation of how much would cost (according to the eval-
uating function (2.1)) to insert v in each color class, requiring the retrieve of all the vertices
adjacent to v, with an average complexity of O(m/n) (O(n) if the graph is complete); the
choice of the best color class Vh which is not tabu, with a complexity of O(k); the update of
the current coloring (i.e. the movement of the vertices adjacent to v which are in color class
Vh to color class Vk+1), requiring the retrieve of all the vertices adjacent to v, is performed
on average in O(m/n) (in O(n) if the graph is complete). Thus the total time complexity of
one Tabu Search iteration is O(n) in the worst case.

2.2.2 Evolutionary Diversification

Our Tabu Search procedure is simple, very quick in exploring a portion of the search space
and often able to find good solutions in short times. To improve its performance we use it
together with a diversification operator, trying to extend the search to the whole solution
space. Diversification is usually used in genetic algorithms, in which a pool of solutions (pop-
ulation) is stored during the computation. Solutions in the pool evolve through interactions
with other solutions during the diversification phase, when they mix together (parent solu-
tions) to generate new solutions (offspring). In addition they evolve by themselves during
the mutation phase, when, to avoid premature convergence and to preserve diversity, they
are randomly perturbed. In general, solutions in the pool are improved by using some local
search technique. Every solution is evaluated according to a fitness function so that, when
new good solutions are generated, the worst solutions can be removed from the population.
As shown by Davis [38], the classical genetic algorithms give poor results for VCP.

A recent development of these algorithms is represented by Evolutionary Algorithms. In
this case the evolution of the population is obtained by means of two elements: an efficient
local search procedure and a specialized crossover operator. The crossover operator should be
able to create new and potentially good solutions to be improved through the local search pro-
cedure. For this a reason it cannot be a general operator but it must be designed specifically
for the considered problem. In addition it must be able to transmit interesting properties
from parents to new offspring. The main idea behind the use of a specialized crossover oper-
ator is that good solutions share part of their structure with optimal ones, and a specialized
crossover should be able to identify properties that are meaningful for the problem.

In our algorithm we start with an initial pool of partial feasible solutions of value k (in
the following simply solutions) obtained by using different methods (greedy and Tabu Search
procedures initialized with different parameters). Then we apply the Tabu Search algorithm
to improve these solutions during the local search phase. We implemented a variation of
the specialized crossover operator Greedy Partition Crossover proposed by Galinier and Hao
[51] to generate new solutions and diversify the search. Our purpose is to extend a feasible
partial k coloring to a complete coloring. The general procedure is summarized as follows:
given a pool of solutions, we randomly choose two parents from the pool and generate an
offspring, which is improved by means of the Tabu Search algorithm and finally inserted in
the pool, deleting the worst parent. After the initialization, the generation-improvement-
insertion procedure is iterated until the problem is solved (i.e. a partial feasible solution is
extended to a complete solution) or the number of iterations equals a given threshold.
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Initialization

We initialize the pool by generating poolsize initial solutions (partial feasible k colorings).
In this phase it is crucial to start with solutions which are far each other, thus exploring the
whole search space and avoiding premature convergence of the search. For this purpose we
generate the initial pool by using three different algorithms:

• The sequential algorithm SEQ applied with different random orderings of the vertices
to generate the first third of the solutions in the pool. Each application of the algorithm
is stopped as soon as k color classes are built (uncolored vertices being in class k + 1).

• The maximum saturation degree algorithm DSATUR applied with different random
orderings of the vertices to generate the second third of the solutions in the pool. Each
application of the algorithm is stopped as soon as k color classes are built (uncolored
vertices being in class k + 1).

• The Tabu Search algorithm applied starting from a dummy solution (all vertices in
class k + 1) to generate the last third of the solutions in the pool (the random choice
of the next vertex to color in the Tabu Search procedure leads the algorithm to obtain
different initial partial colorings).

Every initial solution is improved with Tabu Search before being inserted in the pool. The
use of an off-line procedure to compute diversity in the pool confirms that this choice is able
to generate a well diversified pool.

Crossover Operator

Given two parent solutions randomly chosen from the pool, the crossover operator outputs
an offspring sharing “interesting properties” with the parents. A solution is a partition
of the vertices in k + 1 sets where the first k are independent sets. It seems reasonable
that interesting structures of the parents could be identified in these independent sets (in
the following we will refer to independent sets or color classes). In [51] Galinier and Hao
proposed a crossover operator which, given two parents (partition of the vertices in k sets, not
necessarily independent), alternatively considers each parent to generate the next color class
of the offspring in this way: the color class of maximum cardinality of the considered parent
becomes the next color class of the offspring; all the vertices in this color class are deleted
from the parents. When k steps are performed, some vertices may remain unassigned. These
vertices are then assigned to a class randomly chosen. We modified this operator according
to our purpose. Indeed in our case the offspring must be a (possibly partial) k coloring .
Given two parents S1 = {V 1

1 , ..., V 1
k , V 1

k+1} and S2 = {V 2
1 , ..., V 2

k , V 2
k+1} the crossover operator

outputs the offspring S3 = {V 3
1 , ..., V 3

k , V 3
k+1} as follows:

begin
1. CurrentColor := 1;
2. while (CurrentColor ≤ k and V 1

1 ∪ ... ∪ V 1
k ∪ V 2

1 ∪ ... ∪ V 2
k 6= ∅

3. A := SelectParent();
6. h := arg maxi=1,...,k |V A

i |;
7. V 3

CurrentColor := V A
h ;

8. remove the vertices of V A
h from S1 and S2;
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9. CurrentColor := Currentcolor + 1
9. end while;
10. for each vertex v ∈ V \ (V 3

1 ∪ ... ∪ V 3
k ) try to color v in a greedy way

(i.e. try to insert v in one of the k color classes V 3
1 , ..., V 3

k );
11. V 3

k+1 := V \ (V 3
1 ∪ ... ∪ V 3

k )
end.

Function SelectParent(), which returns the parent chosen to generate the next color class,
works as follows:

begin
1. if ((V 1

1 , ..., V 1
k ) 6= ∅ and (V 2

1 , ..., V 2
k ) 6= ∅) then

2. if CurrentColor is odd then A := 1 else A := 2
3. else if (V 1

1 , ..., V 1
k ) 6= ∅ then A := 1 else A := 2

end.

This function takes into account that one parent can terminate the available colored
vertices, in this case it considers only color classes from the parent who still has colored
vertices. When both parents terminate the available colored vertices or the offspring has used
k colors, we try to insert each uncolored vertex v in one of the offspring color classes in the
following sequential greedy way:

begin
1. for each color class h = 1, ..., k
2. if 6 ∃w ∈ V 3

h : (v, w) ∈ E then V 3
h := V 3

h ∪ {v} and exit
3. end for
end.

Solution evaluation

The quality (score) of every solution S in the pool is evaluated through the function f(S)
defined by (2.1) and used during the Tabu Search algorithm. This allows us to compare the
solutions and to tune the quality of the pool during the computation.

Pool Update

Every offspring is first of all improved by means of the Tabu Search algorithm and then
inserted in the pool, substituting the worst parent. It can occur that the offspring is similar
to one of the parents or to a solution yet present in the pool (i.e. it has the same score and the
same number of uncolored vertices). In this case, with a probability pgreedy proportional to the
percentage number of colored vertices in the population (see Table 2.3), we do not insert the
offspring in the population but we insert a completely new greedy solution, avoiding premature
convergence. This new solution is built by using a sequential greedy algorithm which gives
priority to the vertices that, during the computation, were more often left uncolored (i.e.
inserted in class k + 1). We call this algorithm Priority Greedy. More in detail we order the
vertices according to decreasing values of the number of times they were left uncolored in the
pool. We locally perturb this ordering: with a probability p = 0.5 we swap every vertex with
the next one in the ordering and then apply the SEQ algorithm. This perturbation prevents
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the generation of the same coloring at different calls of the SEQ algorithm. In this way we
build different solutions where vertices that were more often left uncolored are in color classes
of low order, while in class k + 1 we have vertices more often colored during the computation
(see how SEQ works).

To summarize, the Evolutionary Algorithm takes in input:

• graph G(V, E);

• the target value k for the coloring;

• the maximum number L of Tabu Search iterations between the application of two con-
secutive crossover operators;

• the cardinality of the pool poolsize;

• the tabu tenure T ;

• the timelimit.

and it works as follows:

begin
1. generate the initial pool of solutions;
2. if ∃Sh ∈ pool : V h

k+1 = ∅ then stop;
3. while (not timelimit)
4. randomly select 2 solutions S1 and S2 from the pool;
5. generate S3 := Crossover(S1, S2);
6. if V 3

k+1 = ∅ then stop;
7. [Improve the offspring] S3 := TabuSearch(S3);
8. if V 3

k+1 = ∅ then stop;
9. [Update the pool:] if S3 is similar to a solution Sj in the pool then

with probability pgreedy S3 := PriorityGreedy();
10 if V 3

k+1 = ∅ then stop;
11. insert S3 in the pool, delete the worst parent
12. end while
end.

2.2.3 Evolutionary Algorithm as part of the Overall Algorithm

As anticipated in the previous section we apply the Evolutionary Algorithm in the first phase
of the overall algorithm MMT. It must be noted that the Evolutionary Algorithm works in
decision version, while we are approaching the problem from the optimization point of view.
In other words the Evolutionary Algorithm requires as input the value k (the number of
colors to be used) while we are trying to minimize this value. To solve this problem we use
the information obtained from the initial greedy heuristics: if the current upper bound UB for
the problem is k + 1, we apply the Evolutionary Algorithm with k as input parameter. If the
Evolutionary Algorithm solves the problem for the target value k within the given timelimit,
we apply it again with k − 1 as input parameter, and we iterate until the Evolutionary
Algorithm is unable to solve the problem.
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The Evolutionary Algorithm is very effective but largely dependent on the input param-
eters, i.e. L (number of tabu search iterations between two crossover steps) and poolsize.
Computational esperiments show that difficult instances require a longer Tabu Search phase
and the use of a wider population. In general, high density graphs with many vertices tend
to be difficult to solve, but it seems to exist no explicit correlation between effective input
parameters and some intrinsic property of the graph.

Thus, we implemented a procedure that dynamically modifies these input parameters for
every execution of the Evolutionary Algorithm, based on the results obtained in the previous
execution. Suppose we are solving an instance using k colors: if the algorithm finds a solution
within UpdateLimit applications of the crossover operator, we consider the instance to be easy
and we do not update the input parameters when trying to solve the same instance using
k − 1 colors; otherwise we increase the values of L and poolsize of DeltaTabuIterations and
DeltaPoolSize, respectively. UpdateLimit is a parameter dependent on the graph properties
(see computational analysis in Section 2.4).

2.3 PHASE 2: Set Covering Formulation

If the incumbent solution found in Phase 1 (i.e. during the execution of the Evolutionary
Algorithm) is not proved to be optimal, a further optimization phase is executed in order to
improve the value of the solution. This phase is based on an Integer Linear Programming
(ILP) formulation of VCP and uses a subset of the independent sets found by the Evolutionary
Algorithm during Phase 1.

A natural ILP model for VCP is the one having a binary variable for each independent set
and a constraint for each vertex. This model is often referred to as the Set Covering (or Set
Partitioning) formulation. The relevance of this model lays in the fact that it can describe all
those problems in which one is required to partition a given set of items into subsets having
special features and minimizing the sum of the costs associated with the subsets. This can
be done not only for VCP (see Merhotra and Trick [90]) but, for instance, for Bin Packing
Problems [91], Vehicle Routing Problems [75], Crew Scheduling Problems [87, 16, 111, 23] as
well.

We present a post-optimization phase based on the Set Covering formulation for VCP.
Let S be the family of all the Independent Sets of G. Each independent set (column)

s ∈ S has associated a binary variable xs having value 1 iff all the vertices of s receive the
same color. VCP can be formulated as follows:

min
∑

s∈S

xs(2.2)

∑

s:i∈s

xs ≥ 1 i ∈ V(2.3)

xs ∈ {0, 1} s ∈ S(2.4)

The objective function (2.2) asks to minimize the total number of independent sets (and
hence of colors) used. Constraints (2.3) state that every vertex i in the graph must belong
to at least one independent set (i.e., must receive at least one color). Indeed, if a vertex i
is assigned to more than one independent set in a feasible solution, it can be removed from
all the independent sets but one (in other words if a vertex is assigned more than one color,
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a feasible solution of the same value can be obtained using any one of these colors for the
vertex). Finally, constraint (2.4) impose variables xs to be binary.

The advantage of the Set Covering formulation, w.r.t. alternative descriptive formulations,
is that it avoids symmetries in the solution and its continuous relaxation leads to tighter lower
bounds. The main drawbacks are that the number of variables can grow exponentially with
the cardinality of vertex set V (even if one is allowed to consider only the maximal independent
sets in the definition of S) and that SCP is an NP-hard problem, whose exact solution could
require very large computing times. Our approach to the problem is heuristic in the sense
that during Phase 1 we store only a subfamily S ′ ⊆ S of all the independent sets of graph
G, and that in Phase 2 we solve model (2.2)–(2.4) corresponding to subfamily S ′ through a
heuristic algorithm from the literature.

In particular, subfamily S ′ is defined during the execution of the Evolutionary Algorithm
of Section 2.2.2 in the following way. For each (partial or complete) feasible k coloring found
in Phase 1, we can generate k independent sets (columns) for Phase 2. Every independent
set (not necessary maximal) is first of all completed to a maximal independent set by using
a greedy procedure that simply tries to insert in the set vertices that are currently not in
it, following the input order of the vertices. This ordering is perturbed at every call of the
procedure, thus if the procedure is called on the same set different times, it is generally able
to complete the set by introducing different vertices and hence obtaining different columns.

Generally the global number of independent sets (columns) generated in Phase 1 is very
large and could ask for excessive memory requirements. Hence we decided to insert in S ′ only
the independent sets generated by the initial greedy algorithms and those corresponding to
the feasible solutions found by the Evolutionary Algorithm, and to the solutions contained in
the pool at the beginning and at the end of each Evolutionary Algorithm iteration. We also
insert all the independent sets corresponding to solutions built to preserve diversity during
the computation. An hashing technique is used to remove identical columns (see [91] for
further details).

Computational experiments showed that this choice, that privileges independent sets cor-
responding to solutions which tend to have high diversity each other, did not affect the effec-
tiveness of Phase 2 while reducing considerably the computation time and avoiding memory
problems.

As to the solution of the corresponding Set Covering instance, we use the Lagrangian
heuristic algorithm CFT proposed by Caprara, Fischetti and Toth [23]. This iterative al-
gorithm can handle very large Set Covering instances, producing good (possibly optimal)
solutions within a reasonable amount of computing time. Moreover, algorithm CFT com-
putes an “internal” lower bound (not valid for VCP) on the value of the optimal solution
of the corresponding Set Covering instance and its execution can be stopped as soon as this
lower bound equals the value of the best incumbent solution for VCP. Of course, optimality
for SCP does not imply optimality for the original problem, because we do not enumerate all
the independent sets of G.

A similar approach has been used to derive effective heuristic algorithms for bin packing
problems in [91], the main difference with respect to that approach being the aim of Phase
1. While in [91] the first phase (Column Generation Phase) was mainly aimed at generating
“good” columns for the second phase and the effectiveness of the approach was essentially due
to the second phase (Column Optimization Phase), in the current algorithm the first phase is
crucial for its effectiveness. This aspect is stressed by the computational results (see Section
2.4), showing that the Evolutionary Algorithm of Phase 1 is very effective on the instances
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of our test bed and that Phase 2 can be considered as a post-optimization tool which turned
out to improve the upper bound on a subset of instances for which Phase 1 fails in proving
optimality of the solution.

2.3.1 The General Structure of the Algorithm

begin
Initialization
1. compute lower bound LB ;
2. compute upper bound UB by means of greedy heuristics;
3. if UB = LB stop;
4. insert the columns corresponding to the greedy solutions in S ′;
Phase 1: Evolutionary Algorithm
5. k := UB − 1:
6. while k ≥ LB
7. call EvolutionaryAlgorithm(k, poolsize, L, T imeLimit):
8. generate the initial pool of solutions;
9. insert the columns corresponding to the pool in S ′;
10. if ∃ Sh ∈ pool : V h

k+1 = ∅ then k := k − 1 goto 24;
11. while (not timelimit)
12. randomly select 2 parent solutions S1 and S2 from the pool;
13. generate S3 := Crossover(S1, S2);
14. improve S3 := TabuSearch(S3);
15. if V 3

k+1 = ∅ then goto 22;
16. [update the pool:] if S3 is similar to a solution Sj in the pool then
17. with probability pgreedy S3 := PriorityGreedy();
18. insert columns corresponding to S3 in S ′;
19. if V 3

k+1 = ∅ then goto 22
20. insert S3 in the pool, delete the worst parent solution
21. end while;
22. insert the columns corresponding to the final pool in S ′;
23. if no feasible solution of value k has been found then break;
24. update UB;
25. if LB = UB stop;
26. insert the columns corresponding to the feasible solution in S ′;
27. dynamically modify L, poolsize;
28. k := k − 1
29. endwhile;
Phase 2: Column Optimization
30. apply heuristic algorithm CFT (with a given time limit) to the Set Covering

instance corresponding to subfamily S ′;
31. update UB
end.



Computational Analysis 25

2.4 Computational Analysis

The Evolutionary Algorithm described in Section 2.2.2 was coded in ANSI C and compiled
with full optimization option; all other procedures, including algorithm CFT [23], were coded
in ANSI FORTRAN77 and compiled with full optimization option. The programs were run on
a PIV 2.4MHz with 512MB RAM under Windows XP and tested on the DIMACS benchmark
graph instances [1],[73]. These instances correspond to different graph types used for evaluat-
ing the performance of VCP algorithms. In particular this set of instances contains random
graphs (DSJCn.x), geometric random graphs (DSJRn.x and Rn.x[c]), “quasi-random” graphs
(flatn x 0), artificial graphs (len x and latin square 10), graphs from real life applications
(school1 and school1 nsh). All the computing times reported in this section are expressed
in seconds of a PIV 2.4GHz. To allow a meaningful - although approximate - comparison
on results obtained with different machines a benchmark program (dfmax), together with a
benchmark instance (r500.5), are available. Computing times obtained on different machines
can be scaled w.r.t. the performance obtained on this program (our machine spent 7 seconds
user time). To perform our computational experiments we selected the subset of DIMACS
instances considered by the papers describing the most effective heuristic algorithms for VCP.

2.4.1 Performance of the Tabu Search Algorithm

In this section we report the experimental results obtained with the Tabu Search algorithm
described in Section 2.2.1. Since our algorithm uses random numbers, for each instance we
performed 4 runs with 4 different seeds for the random number generator. We try to solve
every instance starting from a value of k equal to the chromatic number χ or trying to improve
on the best known solution value in the literature when χ is unknown. We report experimental
results starting from the value of k for which we have at least one successful run and ending
with the value of k for which we have 4 successful runs. The Tabu Search algorithm always
uses a fixed tabu tenure of 45 and is initialized with a partial feasible solution built by the
SEQ algorithm (the ordering of the vertices given in input to SEQ , and hence the initial
solution, depends on the seed). In Table 2.1 we report, for every considered instance, the
best known solution value ever found in the literature (in bold when in is the proven optimal
value), the number of successful runs within a limit of 100 millions iterations (no information
is given if all the 4 runs were successful), the target value k, the average computing time
(we report 0 when the time is lower than 1 second) and the average number of iterations
for the successful runs. The main aspect turning out from these experiments is that the
Tabu Search algorithm is quite fast in finding good solutions but, when this does not happen
within a short number of iterations, rarely the algorithm is able to solve the problem even
if a bigger number of iterations is allowed. This behavior is particulary true for geometric
random instances (DSJRx.y and Rx.y[c]); in some cases the same instance is solved in few
iterations with one seed and not solved within the iteration limit with a different seed. As
discussed in Section 2.2.1, this is mainly due to the aggressive strategy adopted, which makes
the final solution much dependent on the starting one.

We compare our algorithm with the Local Search algorithm HCD, inspired by Tabu Search
techniques, proposed by Caramia and Dell’Olmo [25]. Both algorithms are fast and simple,
thus they can be used as subroutines in real-time systems or as part of more complex pro-
cedures. HCD works in optimization version and stops when a given number of iterations is
reached. Since we have access to the C source code of HCD we performed the computational
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experiments on our machine. There are 5 slightly different versions of the code, in the last two
columns of Table 2.1 we report the best value of k obtained performing one run with every
one of these versions, with an iteration limit of 10 millions. We also report the computing
time of the last improvement corresponding to the best solution found. Although HCD has
a good performance w.r.t. other Tabu Search approaches proposed for the problem [25], our
Tabu Search algorithm is able to find better solutions for all the instances but DSJR500.5,
confirming the effectiveness of our approach.

2.4.2 Performance of the Evolutionary Algorithm

In this section we report the experimental results obtained with the Evolutionary Algorithm
described in Section 2.2.2. We fix a common set of parameters working for most of the
instances, but we have to adjust parameters poolsize and L (number of Tabu Search iterations
between two crossover steps) to obtain good results on hard instances, while we use a fixed
tabu tenure T of 45 for all instances. Since our algorithm uses random numbers, for each
instance we performed 4 runs with 4 different seeds for the random number generator. The
Evolutionary Algorithm works in decision version, and it requires as input the target value k
of the coloring. We try to solve every instance starting from a value of k equal to the chromatic
number χ or trying to improve on the best known solution value in the literature when χ is
unknown. We report experimental results starting from the value of k for which we have at
least one successful run and ending with the value of k for which we have 4 successful runs. In
Table 2.2 we report, for every considered instance, the best known solution value ever found
in the literature (in bold when it is the proven optimal value), the input parameters (poolsize
and L), the number of successful runs with a time limit of 6000 seconds (with the exception
of instance DSJC1000.5, where we tried a big population with a time limit of 40000 seconds,
and instance flat1000 76 0, for which we experimented a long computation with a time limit
of 40000 seconds), the target value k and the average computing time for the successful runs.

It is clear from the experimentation that the evolutionary diversification is effective, and
able to bring the Tabu Search algorithm to the exploration of regions of the solution space
containing high quality solutions. More in detail, we solved for the first time, to proven
optimality, instances le450 25c and le450 25d and improved the best solution known in the
literature for instance flat1000 76 0. In synthesis the Evolutionary Algorithm, on the complete
set of the 42 considered instances, 3 times improves on the best known solution, 36 times finds
the best known solution and for only 3 instances finds a worse solution.

2.4.3 Performance of the Overall Algorithm

As was observed by Morgenstern [92], reporting timings for algorithms that require the value
of k and other parameters as input does not reflect the real effort required to find the corre-
sponding values, and this hidden cost can increase substantially the actual computing time.
When we built the overall algorithm MMT (Evolutionary Algorithm and Column Optimiza-
tion) our objective was actually to solve the problem in optimization version with a unique
setting of the parameters (with the exception of the time limits of the Evolutionary Algorithm
and of CFT), able to solve any instance. The idea is that a robust algorithm should have a
good performance not only on well studied instances from the literature (for which the best
bounds, the structure, etc. are known) but also on “unknown” ones.

As described in Section (2.2.3) we implemented a procedure that, starting from a common
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Table 2.1: Performance of the Tabu Search Algorithm.
Instance name n m best (χ) succ./runs k avg time avg iter HCD time

DSJC125.1 125 736 5 5 0 21055 6 0
DSJC125.5 125 3891 17 17 1 1433498 19 0
DSJC125.9 125 6961 44 44 0 5270 44 0
DSJC250.1 250 3218 8 8 0 157652 9 2
DSJC250.5 250 15668 28 29 1 343024 31 1
DSJC250.9 250 27897 72 72 100 31826164 75 3
DSJC500.1 500 12458 12 1/4 12 22 21218513 14 3

13 0 42751
DSJC500.5 500 62624 48 51 14 4157673 53 141
DSJC500.9 500 112437 127 130 88 14672257 132 73
DSJC1000.1 1000 49629 20 21 4 2588732 22 140
DSJC1000.5 1000 249826 83 2/4 91 252 37474963 95 531

92 165 24775243
DSJC1000.9 1000 449449 224 2/4 235 404 33939239 241 857

3/4 236 294 24738984
237 350 29558204

DSJR500.1 500 3555 12 12 0 208 12 2
DSJR500.1C 500 121275 85 85 196 30826284 85 7
DSJR500.5 500 58862 122 3/4 130 21 6798990 129 269

2/4 131 0 85
2/4 132 0 198
3/4 133 0 383

134 0 60
le450 15a 450 8168 15 15 0 46035 16 42
le450 15b 450 8169 15 15 0 34561 16 19
le450 15c 450 16680 15 15 0 86865 17 213
le450 15d 450 16750 15 15 0 259805 18 68
le450 25c 450 17343 26 26 0 65662 27 59
le450 25d 450 17425 26 26 0 35547 27 74
le450 5a 450 5714 5 5 0 20597 8 6
le450 5b 450 5734 5 5 0 55677 8 0
le450 5d 450 9757 5 5 0 3196 7 0
r125.1 125 209 5 5 0 2 5 0
r125.1c 125 7501 46 3/4 46 0 908 46 0

3/4 47 0 64
48 0 39

r125.5 125 3838 36 2/4 36 0 649 36 17
3/4 37 0 162
3/4 38 0 70

39 0 18
r250.1 250 867 8 8 0 2 8 0
r250.1c 250 30227 64 3/4 64 0 15321 64 0

3/4 65 0 6671
3/4 66 0 7872
3/4 67 0 1838
3/4 68 0 975
3/4 69 0 246

70 0 464
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Instance name n m best (χ) succ./runs k avg time avg iter HCD time

r250.5 250 14849 65 2/4 68 0 19888 68 5
2/4 69 0 639

70 0 6424
r1000.1 1000 14378 20 20 0 13297 20 13
r1000.1c 1000 485090 98 98 96 8005753 99 173
r1000.5 1000 238267 237 1/4 250 0 268 256 727

1/4 251 0 1078
252 0 438

school1 385 19095 14 14 0 75247 14 0
school1 nsh 352 14612 14 14 0 1601 14 1

latin square 10 900 307350 99 1/4 107 136 15763447 107 687
2/4 108 310 35541496

109 108 12320495
flat300 20 0 300 21375 20 20 0 6655.25 20 2
flat300 26 0 300 21633 26 26 1 364307 35 1
flat300 28 0 300 21695 28 31 6 2552809 33 38
flat1000 50 0 1000 245000 50 50 7 709627 92
flat1000 60 0 1000 245830 60 60 26 2775283 93
flat1000 76 0 1000 246708 83 1/4 90 198 59319600 94 293

91 50 7429507

set of parameters, dynamically modifies the parameters poolsize and L for every call of the
Evolutionary Algorithm, based on the results obtained in the previous calls. In Table 2.3,
where dens denotes the density of graph G, we report the values found during the experimental
set-up of this procedure.

For each considered instance, 4 runs, with different seeds for the random number generator,
were performed. The corresponding computational results are reported in Table 2.4. Since
the overall algorithm MMT works in optimization version, it always gives on output a feasible
solution and it does not require a target value k as input. For every considered instance, we
report the best known solution value ever found in the literature (in bold when it corresponds
to the optimal value), the lower bound LB computed during the initialization step, the average
solution value after phase 1, the average solution value after phase 2 (this value is reported
only if it is better than the corresponding value obtained at the end of phase 1), the best
solution value found during the overall computation, the average total computing time, the
time limit of the Evolutionary Algorithm.

Comparing these results with those of the previous section the reader should remember
that in this case the only input parameters are the time limits and that the problem is
approached from the optimization point of view, so, in some way, the problem is much more
“difficult”, because the algorithm does not take advantage of all the information available for
the well known instances from the literature. When optimality is not proven in phase 1 (i.e.
when the solution value after phase 1 is greater than LB) and phase 2 does not improve the
incumbent solution, the Evolutionary Algorithm has performed one useless iteration up to
the time limit, spending an important amount of computing time, after the last successful
iteration; e.g. for instance DSJC125.1 the final solution is found on average after 1 second,
but optimality is not proven and 20 seconds are spent trying to improve on this solution. On
the contrary, when phase 2 improves the solution or optimality is proven in phase 1 (which
happens for all the le450 x instances and for school1), the time of the last improvement
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Table 2.2: Performance of the Evolutionary Algorithm.
Instance name n m best (χ) poolsize L succ./runs k avg time

DSJC125.1 125 736 5 10 10000 5 0
DSJC125.5 125 3891 17 10 10000 17 1
DSJC125.9 125 6961 44 10 10000 44 0
DSJC250.1 250 3218 8 10 10000 8 1
DSJC250.5 250 15668 28 10 10000 28 28
DSJC250.9 250 27897 72 10 10000 72 193
DSJC500.1 500 12458 12 10 20000 12 78
DSJC500.5 500 62624 48 10 20000 3/4 48 84

10 20000 49 27
DSJC500.9 500 112437 127 30 40000 127 967
DSJC1000.1 1000 49629 20 10 20000 20 303
DSJC1000.5 1000 249826 83 100 300000 2/4 83 22573

40 50000 3/4 84 1632
40 50000 85 845

DSJC1000.9 1000 449449 224 50 50000 2/4 226 3340
50 50000 1/4 227 1734
50 50000 228 3235

DSJR500.1 500 3555 12 10 10000 12 0
DSJR500.1C 500 121275 85 20 20000 85 142
DSJR500.5 500 58862 122 20 10000 122 30
le450 15a 450 8168 15 10 10000 15 0
le450 15b 450 8169 15 10 10000 15 0
le450 15c 450 16680 15 10 10000 15 0
le450 15d 450 16750 15 10 10000 15 1
le450 25c 450 17343 26 10 10000 25 1321
le450 25d 450 17425 26 10 10000 25 424
le450 5a 450 5714 5 10 10000 5 0
le450 5b 450 5734 5 10 10000 5 0
le450 5d 450 9757 5 10 10000 5 0
r125.1 125 209 5 10 10000 5 0
r125.1c 125 7501 46 10 10000 46 0
r125.5 125 3838 36 10 10000 36 0
r250.1 250 867 8 10 10000 8 0
r250.1c 250 30227 64 10 10000 64 0
r250.5 250 14849 65 10 10000 65 8
r1000.1 1000 14378 20 10 10000 20 0
r1000.1c 1000 485090 98 20 20000 98 101
r1000.5 1000 238267 237 30 10000 3/4 237 168

30 10000 238 4
school1 385 19095 14 10 10000 14 0

school1 nsh 352 14612 14 10 10000 14 0
latin square 10 900 307350 99 50 50000 3/4 103 3263

50 50000 104 1820
flat300 20 0 300 21375 20 10 10000 20 0
flat300 26 0 300 21633 26 10 10000 26 4
flat300 28 0 300 21695 28 10 10000 31 54
flat1000 50 0 1000 245000 50 10 100000 50 33
flat1000 60 0 1000 245830 60 10 200000 60 73
flat1000 76 0 1000 246708 83 10 250000 1/4 82 34056

10 200000 3/4 83 2226
10 200000 84 1387
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Table 2.3: Parameters of Algorithm MMT.
tabu tenure T (fixed) 45
initial poolsize 10
initial L 10000
UpdateLimit 40000/n
DeltaTabuIterations initial L x dens x 0.55
DeltaPoolSize initial poolsize x dens
time limit of CFT (s) 150
pgreedy poolsize/n. of uncolored vertices in the pool

corresponds to the total computing time.
Table 2.4 shows that, for large size instances like DSJC1000.9, latin square 10 and flat1000 76 0,

giving a larger time limit to phase 1 leads to slightly better solutions. Of course, working
in the optimization version of the problem leads to longer computing times, although the
solution quality is slightly better than that obtained by the Evolutionary Algorithm. More
in detail, the dynamic set up of the parameters is not always able to bring the Evolutionary
Algorithm, executed during phase 1, to high quality solutions as done by the ad hoc tuning
reported in Table 2.2. This is true in particular for instances flat1000 50 0 and flat1000 60 0
where the performance is quite poor. But for these instances phase 2 is able to improve
on the incumbent solution up to the solution reported in Table 2.2, and in three instances,
namely DSJC1000.9, r1000.5 and latin square 10, the solution is better than that found by
the Evolutionary Algorithm stand alone. In particular, the complete MMT algorithm solved
for the first time, to proven optimality, instance r1000.5. In synthesis, algorithm MMT, on the
complete set of the 42 considered instances, 3 times improves on the best known solution in
the literature, 35 times finds the best known solution in the literature and for only 4 instances
(DSJC1000.5, DSJC1000.9, latin square 10, flat300 28 0) finds a worse solution.

2.4.4 Comparison with the most effective heuristic algorithms

In Tables 2.5 and 2.6 we compare the approaches described in Sections 2.2.2 and 2.3, respec-
tively, with the heuristic algorithms that, to the best of our knowledge, represent the state of
the art for VCP. For every considered instance we report the value of the best known solution
found in the literature (in bold when it is the proven optimal value). All these solutions were
found by the algorithms considered in our comparison. For the VCP in decision version, we
report in Table 2.5 the computational results of:

• The Impasse algorithm by Morgenstern [92], which is actually composed by three differ-
ent algorithms based on the idea of Impasse Class Neighborhood. These algorithms work
in decision version and require as input the target value k for the coloring and a couple
of other parameters that are tuned for every instance. For each instance considered in
[92] we report the smallest value of k for which no failure occurred over 5 runs and the
average running time to solve the instance, scaled w.r.t the benchmark problem.

• The HCA (Hybrid Coloring Algorithm) by Galinier and Hao [51]. HCA requires as input
the target value k for the coloring and a couple of others parameters that are tuned
for every instance. For each instance considered in [51] we report the smallest value of
k for which there was at least one successful run over 10 (or 5) runs (succ.), and an
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Table 2.4: Performance of the Algorithm MMT.
Instance name n m best (χ) LB avg value of k avg value of k best k avg total time limit

phase 1 phase 2 time Evol. Alg.

DSJC125.1 125 736 5 3 5.00 5 21 20
DSJC125.5 125 3891 17 8 17.00 17 122 20
DSJC125.9 125 6961 44 28 44.00 44 121 20
DSJC250.1 250 3218 8 3 8.00 8 21 20
DSJC250.5 250 15668 28 9 28.00 28 117 80
DSJC250.9 250 27897 72 34 72.50 72.00 72 89 80
DSJC500.1 500 12458 12 4 12.25 12 210 200
DSJC500.5 500 62624 48 9 48.25 48 388 200
DSJC500.9 500 112437 127 42 128.75 127.75 127 433 200
DSJC1000.1 1000 49629 20 4 20.25 20 260 200
DSJC1000.5 1000 249826 83 11 84.25 84 8407 3000
DSJC1000.9 1000 449449 224 47 233.75 226.00 225 3234 800

229.75 225.50 225 9476 3000
DSJR500.1 500 3555 12 11 12.00 12 25 20

DSJR500.1C 500 121275 85 67 86.00 85.00 85 88 60
DSJR500.5 500 58862 122 111 122.00 122 163 100
le450 15a 450 8168 15 15 15.00 15 0 20
le450 15b 450 8169 15 15 15.00 15 0 20
le450 15c 450 16680 15 15 15.00 15 3 20
le450 15d 450 16750 15 15 15.00 15 4 20
le450 25c 450 17343 26 25 25.00 25 1321 4000
le450 25d 450 17425 26 25 25.00 25 436 4000
le450 5a 450 5714 5 5 5.00 5 0 20
le450 5b 450 5734 5 5 5.00 5 0 20
le450 5d 450 9757 5 5 5.00 5 0 20
r125.1 125 209 5 5 5.00 5 0 20
r125.1c 125 7501 46 44 46.00 46 21 20
r125.5 125 3838 36 33 36.00 36 21 20
r250.1 250 867 8 8 8.00 8 26 20
r250.1c 250 30227 64 55 64.00 64 21 20
r250.5 250 14849 65 61 65.00 65 64 50
r1000.1 1000 14378 20 17 20.00 20 37 20
r1000.1c 1000 485090 98 68 98.25 98.00 98 518 200
r1000.5 1000 238267 237 225 238.75 234.00 234 753 400
school1 385 19095 14 14 14.00 14 0 20

school1 nsh 352 14612 14 13 14.00 14 21 20
latin square 10 900 307350 99 90 103.50 102.00 101 5156 2000

103.50 101.75 101 6346 3000
flat300 20 0 300 21375 20 9 20.00 20 21 20
flat300 26 0 300 21633 26 9 26.00 26 36 20
flat300 28 0 300 21695 28 9 31.00 31 212 150
flat1000 50 0 1000 245000 50 11 78.50 50.00 50 1417 150
flat1000 60 0 1000 245830 60 11 74.50 60.00 60 3645 300
flat1000 76 0 1000 246708 83 10 84.50 84 3709 1000

83.50 83 7325 3000
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approximate average running time for the successful runs (we divided the reported time,
obtained on an UltraSPARC-IIi 333MHz with 128MB RAM, for which the authors do
not report the performance on the benchmark problem, by 6, following the performance
ratio reported by Dongarra [42] for machines similar to those used in [51] and in our
experiments). We report also the best solution values found during the complete set of
computational experiments performed on the algorithm (for which the computing times
and the number of successful runs are not given).

• The PC (Partialcol) and RPC (React-Partialcol) algorithms by Blöchliger and Zufferey
[15] are Tabu search algorithms, based on the idea of Impasse Class Neighborhood [92],
which implement a dynamic and reactive tabu tenure, respectively, and require as input
parameter only the target value k for the coloring. For each instance considered in [15]
we report the smallest value of k for which there was at least one successful run over 10
runs (succ.) of each of the two algorithms, and an approximate average running time
for the successful runs of the best algoritmh (considering as best the algorithm which
finds the best solution value, breaking ties by considering first the number of successful
runs and then the computing time). The computational experiments were carried out
on different Linux systems mostly running on a PIV 2GHz with 512MB RAM, whose
performance is similar (and directly comparable) to that of the machine used in our
experiments.

• The Evolutionary Algorithm, whose performance is summarized reporting the smallest
value of k for which there was at least one successful run over 4, the corresponding
number of successful runs (succ.), and the average running time for the successful runs.

The Evolutionary Algorithm clearly outperforms Impasse, this should not surprise since it
uses the same neighborhood structure in a more complex procedure. The comparison with
HCA is harder due to the scarcity of instances reported in [51]; the Evolutionary algorithm
finds 2 better solutions (le450 25c and flat1000 76 0) vs 1 better solution found by HCA
(DSJC1000.9 for which the computing time is not reported) and shows a more robust be-
havior. The computing times, when reported, are comparable for equivalent values of the
coloring; in particular the Evolutionary Algorithm spends less than 1 second to color instance
le450 25c with 26 colors and, as reported in Table 2.2, it spends 2226 seconds to color instance
flat1000 76 0 with 83 colors. The Evolutionary algorithm spends on average 22573 seconds
to color instance DSJC1000.5 with 2 successful runs over 4. This time is 10 times longer than
the one spent by HCA, but for this instance the number of attempts and successful runs are
not reported in [51]. The Evolutionary Algorithm almost always finds solution values that
are better or equal to those found by PC and RPC, in the latter case with computing times
that are generally shorter. The only exception is instance flat300 28 0 which is solved to
optimality (k = 28) for the first time by [15], improving the previous best known solution of
value 31.

For the problem in optimization version we report in Table 2.6 the computational results
of:

• The MIPS-CLR (MInimal-state Processing Search algorithm for the graph CoLoRing
problem) by Funabiki and Higashino [50]. This algorithm works in optimization version
but requires as input the target value kinit for the coloring, together with some other
parameters whose values are tuned for hard instances. If the algorithm is not able to
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solve the problem with kinit colors, it dynamically modifies this target value. In the
first 4 columns we report the results obtained giving the target value kinit as external
input, the best value (bestk) found over the 5 runs, the average solution value (avgk)
and the average running time approximately scaled w.r.t the benchmark problem (we
run the benchmark problem on a machine similar to the one used in [50], which spent
17 seconds user time to solve the benchmark problem). In the following 4 columns we
report the results obtained by setting the target value kinit equal to the cardinality
of a maximal clique in the graph, computed during the initialization of the algorithm:
the best value (bestk) found over the 5 runs, the average value of k (avgk) and the
average running time approximately scaled w.r.t the benchmark problem. The solution
quality is slightly worse than that of the previous initialization of the target value (kinit),
whereas the computing time is larger when kinit is far from the final solution value.

• The MMT algorithm, whose performance is summarized reporting the best value (bestk)
over 4 runs, the average value of k (avgk) and the average computing time up to the time
limit or to proven optimality, to allow a comparison with the timings of MIPS-CLR.
Since when we use the MMT algorithm we do not take advantage of any information
from the literature (such as the expected value of the coloring), we think that a fair
timing comparison with MIPS-CLR should be done with the values obtained by setting
the target value kinit equal to the cardinality of a maximal clique, i.e. with the values
reported in the last 4 columns of MIPS-CLR.

Algorithm MMT always finds solutions that are better or equal to those found by MIPS-
CLR, considering both the best value (bestk) or the average solution value (avgk), with the
exception of instance latin square 10 where MIPS-CLR finds the best known solution. In the
last line of Table 2.6 we report the sum of the times on the common subset of instances; it
can be concluded that these times are practically the same, by considering the approximation
introduced by scaling the time w.r.t the performance obtained on the benchmark problem.

To compare with a single index the performance of the different algorithms considered
in this paper, we compute the average ratio between the solution value and the best known
solution value from the literature k/best. This ratio always refers to the best results reported,
for the corresponding instance, in the associated paper (i.e. k for Impasse [92], HCA [51] and
PC-RPC [15], bestk for MIPS-CLR [50]) and the best solution value found by the Tabu Search
algorithm, the Evolutionary algorithm and algorithm MMT. Since Morgenstern [92], Galinier
and Hao [51] and Blöchliger and Zufferey [15] did not consider the entire set of instances, in
Table 2.7 we compare our results with those of the other algorithms on the common subset
of instances.

Table 2.7 shows the improvements obtained on the simple Tabu Search algorithm by
the evolutionary diversification and the post optimization procedures, and confirms that the
proposed approaches outperform the others algorithms w.r.t. the solution quality, with com-
parable computing times.

2.5 Conclusions

In this paper we presented the two phase metaheuristic algorithm MMT for the Vertex Color-
ing Problem. The first phase of MMT is based on an Evolutionary Algorithm which combines
an effective Tabu Search with a diversification procedure based on a specialized crossover op-
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Table 2.5: Performance of the most effective heuristics in decision version.

Impasse [92] HCA [51] PC-RPC [15] Evolutionary Alg.
Instance name best k time succ. k time succ k time succ k time

DSJC125.1 5 5 0
DSJC125.5 17 17 1 17 1
DSJC125.9 44 44 0
DSJC250.1 8 8 1
DSJC250.5 28 28 22 9/10 28 13 28 28
DSJC250.9 72 72 193
DSJC500.1 12 10/10 12 120 12 78
DSJC500.5 48 49 660 5/10 48 268 1/10 49 720 3/4 48 84
DSJC500.9 127 2/10 127 1560 127 967
DSJC1000.1 20 ?/? 20 ? 1/10 20 2640 20 303
DSJC1000.5 83 89 1148 ?/? 83 2258 2/10 88 14400 2/4 83 22573
DSJC1000.9 224 ?/? 224 ? 4/10 226 18000 2/4 226 3340
DSJR500.1 12 12 0 12 0

DSJR500.1C 85 85 5 85 142
DSJR500.5 122 123 14 122 30
le450 15a 15 15 0 15 0
le450 15b 15 15 0 15 0
le450 15c 15 15 5 6/10 15 8 10/10 15 2 15 0
le450 15d 15 15 3 10/10 15 8 15 1
le450 25c 26 10/10 26 55 10/10 27 1 25 1321
le450 25d 26 10/10 27 1 25 424
le450 5a 5 5 0
le450 5b 5 5 0
le450 5d 5 5 0
r125.1 5 5 0 5 0
r125.1c 46 46 0 46 0
r125.5 36 36 0 36 0
r250.1 8 8 0 8 0
r250.1c 64 64 0 64 0
r250.5 65 65 7 65 8
r1000.1 20 20 1 20 0
r1000.1c 98 98 46 98 101
r1000.5 237 241 77 3/4 237 168
school1 14 14 0

school1 nsh 14 14 0
latin square 10 99 3/4 103 3263

flat300 20 0 20 20 0 10/10 20 0 20 0
flat300 26 0 26 26 1 10/10 26 0 26 4
flat300 28 0 28 31 156 6/10 31 20 3/10 28 420 31 54
flat1000 50 0 50 50 0 10/10 50 18 50 33
flat1000 60 0 60 60 0 10/10 60 90 60 73
flat1000 76 0 83 89 897 4/5 83 1471 5/10 87 18000 1/4 82 34056

erator; the second phase is a post optimization phase based on the Set Covering formulation
of the problem.

Extensive computational experiments performed on 42 hard instances from the well known
DIMACS benchmark graph instances show that the Evolutionary Algorithm is very effective
and has a robust behavior on all the considered instances, still requiring the experimental set-
up of a couple of input parameters. This Evolutionary Algorithm is subsequently combined,
in the overall MMT Algorithm, with a procedure which performs the dynamic set-up of the
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Table 2.6: Performance of the most effective heuristics in optimization version.
MIPS CLR [50] MMT

Instance name best kinit bestk avgk time kinit bestk avgk time bestk avgk time

DSJC125.1 5 5 5 5.0 0 4.0 5 5.0 1 5 5.00 21
DSJC125.5 17 17 17 17.0 1 9.6 17 17.2 15 17 17.00 122
DSJC125.9 44 44 44 44.0 0 32.8 44 44.0 22 44 44.00 121
DSJC250.1 8 7 8 8.0 5 4.0 8 8.0 30 8 8.00 21
DSJC250.5 28 28 28 28.4 14 11.0 28 28.6 80 28 28.00 117
DSJC250.9 72 72 72 72.4 31 41.6 72 72.4 148 72 72.00 89
DSJC500.1 12 10 12 12.4 84 5.0 12 12.8 137 12 12.25 210
DSJC500.5 48 47 49 49.4 349 12.2 49 50.0 454 48 48.25 388
DSJC500.9 127 125 127 127.8 480 53.2 128 128.8 999 127 127.75 433
DSJC1000.1 20 20 21 21.0 90 5.2 21 21.0 776 20 20.25 260
DSJC1000.5 83 82 88 89.0 4658 14.2 89 89.6 2634 84 84.25 8407
DSJC1000.9 224 228 228 229.6 1565 62.0 228 229.8 7087 225 226.00 3234
DSJR500.1 12 12 12 12.0 0 12.0 12 12.0 0 12 12.00 25

DSJR500.1C 85 85 85 85.0 6 85 85.00 88
DSJR500.5 122 122 122 123.4 276 122.0 122 123.4 276 122 122.00 163
le450 15a 15 15 15 15.0 1 15.0 15 15.0 1 15 15.00 0
le450 15b 15 15 15 15.0 1 15.0 15 15.0 1 15 15.00 0
le450 15c 15 15 15 15.2 11 15.0 15 15.2 11 15 15.00 3
le450 15d 15 15 15 15.0 5 15.0 15 15.0 5 15 15.00 4
le450 25c 26 26 26 26.0 7 25 25.00 1321
le450 25d 26 26 26 26.4 1 25 25.00 436
le450 5a 5 5 5 5.0 1 5.0 5 5.0 1 5 5.00 0
le450 5b 5 5 5 5.0 2 5.0 5 5.0 2 5 5.00 0
le450 5d 5 5 5 5.0 3 5.0 5 5.0 3 5 5.00 0
r125.1 5 5 5 5.0 0 5.0 5 5.0 0 5 5.00 0
r125.1c 46 46 46 46.0 0 46.0 46 46.0 0 46 46.00 20
r125.5 36 36 36 36.0 0 36.0 36 36.0 0 36 36.00 21
r250.1 8 8 8 8.0 0 8.0 8 8.0 0 8 8.00 26
r250.1c 64 64 64 64.0 2 64 64.00 21
r250.5 65 65 65 65.8 16 65.0 65 65.8 16 65 65.00 64
r1000.1 20 20 20 20.0 0 20.0 20 20.0 0 20 20.00 37
r1000.1c 98 98 98 98.8 557 98 98.00 518
r1000.5 237 234 237 238.6 1345 234 234.00 753
school1 14 14 14 14.0 0 14.0 14 14.0 0 14 14.00 0

school1 nsh 14 14 14 14.0 1 14.0 14 14.0 1 14 14.00 21
latin square 10 99 90 99 100.2 938 90.0 99 100.2 938 101 102.00 5156

flat300 20 0 20 20 20 20.0 2 10.2 20 20.0 114 20 20.00 21
flat300 26 0 26 26 26 26.0 1 11.0 26 26.0 104 26 26.00 36
flat300 28 0 28 30 31 31.0 133 11.4 31 31.2 1355 31 31.00 212
flat1000 50 0 50 50 50 50.0 14 13.0 50 50.0 2351 50 50.00 1417
flat1000 60 0 60 60 60 60.0 59 13.6 60 60.0 2436 60 60.00 3645
flat1000 76 0 83 84 87 87.8 2499 13.6 87 88.2 7087 83 83.50 7325

Σ =27085 Σ =31619

parameters during the computation. A post optimization phase is finally performed. The
overall MMT Algorithm approaches the problem in optimization version, requiring no input
parameter, with the exception of the time limits of the 2 phases. Computational experiments
show that the quality of the solutions found by Algorithm MMT (with the dynamic set-
up of the parameters and the post optimization phase), is slightly better than that of the
Evolutionary Algorithm (with the ad hoc set-up of the parameters), leading the proposed
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Table 2.7: Average gap on the common subset of instances.

Instance set from [92] Instance set from [51] Instance set from [15] Full instance set [50]

Impasse 1.0114

HCA 1.0163

PC-RPC 1.0086

MIPS CLR 1.0072

Tabu Search Algorithm 1.0226 1.0579 1.0296 1.0189

Evolutionary Algorithm 1.0041 1.0086 1.0017 1.0018

MMT Algorithm 1.0046 1.0095 1.0029 1.0013

approach to be the state of the art heuristic algorithm for the problem. More in detail, 3
instances from the literature (namely le450 25c, le450 25d and r1000.5.) were solved, for
the first time, to proven optimality, the best known solution for instance flat1000 76 0 was
improved, and the best known solution values are still found on 35 of the remaining 38
instances.

The main deficiency of our approach is that, when optimality is not proven, the compu-
tation continues up to the time limit, even if the problem is yet solved or the diversity of
the population of the Evolutionary Algorithm is low and unlikely it will find new improved
solutions . Thus, future work should deal with the development of a procedure to stop the
computation when the probability of improving the best incumbent solution becomes too low,
and with the search for improved lower bounds for the problem.



Chapter 3

An Evolutionary Approach for
Bandwidth Multicoloring Problems

1

In this paper we consider some generalizations of the Vertex Coloring Problem, where
distance constraints are imposed between adjacent vertices (Bandwidth Coloring Problem)
and each vertex has to be colored with more than one color (Bandwidth Multicoloring Prob-
lem). We propose an Evolutionary metaheuristic approach for the first problem, combining
an effective Tabu Search Algorithm with Population Management procedures. The approach
can be applied to the second problem as well, after a simple transformation. Computational
results on instances from the literature show that the overall algorithm is able to produce high
quality solutions in a reasonable amount of time, outperforming the most effective algorithms
proposed for the Bandwidth Coloring Problem, and improving the best known solution of
many instances of the Bandwidth Multicoloring Problem.

Keywords: Combinatorial Optimization, Bandwidth Coloring Problem, Bandwidth Multicol-
oring Problem, Evolutionary Algorithm, Tabu Search.

3.1 Introduction

Given an undirected graph G = (V, E), where V is the vertex set and E is the edge set, the
classical Vertex Coloring Problem (VCP) requires to assign a color to each vertex (i.e. to
label each vertex i ∈ V with an integer c(i) corresponding to a color) in such a way that
colors on adjacent vertices are different and the maximum color used is minimized.

In the Bandwidth Coloring Problem (BCP) distance constraints are imposed between
adjacent vertices, replacing the difference constraints. A distance d(i, j) is defined for each
edge (i, j) ∈ E, and the absolute value of the difference between the colors assigned to i and
j must be at least equal to this distance: |c(i)− c(j)| ≥ d(i, j).

In the Multicoloring Problem (MCP) a positive weight w(i) is defined for each vertex
i ∈ V , representing the number of colors that must be assigned to vertex i, so that for each
(i, j) ∈ E the intersection of the color sets assigned to vertices i and j is empty.

The Bandwidth Multicoloring Problem (BMCP) is the combination of the two problems

1The results of this chapter appear in [86].
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above. Each vertex i must be assigned w(i) colors, and each of these colors must respect the
distance d(i, j) with all the colors assigned to any adjacent vertex j. In this case, loop d(i, i)
represents the minimum distance between different colors assigned to the same vertex i.

Some definitions will be useful in the following: let n and m be the cardinalities of vertex
set V and edge set E, respectively; let δ(i) be the degree of a given vertex i. A subset of
V is called an independent set if no two adjacent vertices belong to it. A clique of a graph
G is a complete subgraph of G. A k coloring of G is a coloring in which all the constraints
concerning colored vertices are satisfied and the maximum color used is k. A k coloring of
a graph G can be represented as a vector c of n components where, for each colored vertex
i ∈ V , the corresponding color c(i) ∈ {1, . . . , k} is indicated, and where c(i) = 0 denotes that
vertex i is uncolored. A feasible k coloring is a k coloring with all the vertices colored, while
in a partial k coloring some vertices can be uncolored. An optimal coloring of G is a feasible
k coloring with the smallest possible value of k (the chromatic number χ(G) of G). A color
class is a set of vertices of the same color. The chromatic degree of a vertex is the number
of different colors of its adjacent vertices.

BCP, MCP and BMCP are NP-hard because they generalize VCP, that is known to be
NP-hard (see Garey and Johnson [53]). Clearly, a VCP instance is a BMCP instance where
all the distances are equal to 1 and each vertex must receive only one color. The BCP where
the distances between adjacent vertices are the same (i.e. d(i, j) = T for any edge (i, j) ∈ E)
is also known as T −Coloring, see e.g. Roberts [100]. BCP, MCP and BMCP allow complex
situations to be modelled, like for example the assignment of frequencies to different cells in
a mobile network.

More in detail, the Frequency Assignment Problems (FAP) concern the allocation of fre-
quencies to transmitters, with the aim of avoiding or minimizing interference (see the survey
by Aardal et al. [4] for an overview of the models and exact or heuristic methods proposed in
the literature; see the web page [2] for an updated bibliography and a collection of FAP test
instances). In FAP, either the radio spectrum used should be minimized with an interference
not larger than a given threshold, or the interference should be minimized for a fixed alloca-
tion of frequency channels. The BMCP models the first situation, where vertices correspond
to transmitters which have to receive a given number of frequencies, and distances correspond
to the minimum distance between frequencies that can be re-used by adjacent (i.e. possibly
interfering) transmitters. Different objective functions can be considered in FAP, the BMCP
corresponding to the Minimum Span Frequency Assignment Problem (MS-FAP), the prob-
lem where the span, i.e. the range of frequencies, has to be minimized. Different heuristic
approaches were proposed for MS-FAP, like greedy algorithms (see Zoellner and Beall [114],
describing and comparing various greedy algorithms), Local Search (Wang and Rushforth
[110], Tsang and Voudouris [107]), Tabu Search (Costa [36], Hao et al. [61]), Simulated
Annealing [36], Genetic Algorithm (Velanzuela et al. [108]) and Constraint Programming ap-
proaches (Walser [109]). Most of these papers describe algorithms designed to solve instances
with a special structure, representing real MS-FAP cases arising in telecommunications, like
e.g. the well studied Philadelphia instances, firstly proposed by Anderson [9] in 1973. In all
these instances n is equal to 21 and each transmitter (i.e. vertex) must receive a large number
of frequencies (i.e. colors), so they correspond to the Multicoloring version of the problem we
consider.

In 2002 a Computational Symposium on Graph Coloring and its Generalizations was
organized in order to promote computational research on these problems [106]. Different
computational approaches for VCP and its generalizations were presented during the sympo-
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sium, and a set of instances of VCP, BCP, MCP and BMCP was proposed. The published
results on this set of instances allow a direct comparison with the state of the art algorithms
proposed for the problems. At the computational symposium, Phan and Skiena [93] proposed
to solve VCP and BCP by means of a general heuristic, called Discropt (designed for ”black
box optimization”), adapted to the specific coloring problems. During the same symposium,
Prestwich [95] proposed a combination of local search and constraint propagation in a method
called FCNS to solve generalized graph coloring problems. In a successive work, the same
author proposed a hybrid local search for VCP and BMCP [96]. In [82], Lim et al. pro-
posed a method for solving VCP, BCP, MCP and BMCP combining hill-climbing techniques
and Squeaky Wheel Optimization, a general heuristic approach for optimization, originally
proposed by Joslin and Clements [74]. In a recent work Lim et al. [81] studied the perfor-
mance of different heuristic methods, including Squeaky Wheel and Tabu Search and their
hybridization, for the solution of BCP, MCP and BMCP.

Although the approaches we propose are explicitly designed for BCP, they can be applied
to BMCP instances as well. Indeed, in BMCP each vertex i ∈ V must be assigned a number
of colors corresponding to its weight w(i). To deal with these constraints, we transform each
instance of BMCP to the corresponding instance of BCP, as suggested for example in [81].
In particular, we split each vertex i into a clique of cardinality w(i), with each edge of the
clique having distance d(i, i), corresponding to the distance of the loop edge of vertex i in the
original graph. The new graph will then have

∑
i=1,...,n w(i) vertices. This transformation

introduces extra symmetry, and hence our approaches are effective only when the number of
colors to be assigned to any vertex is ”small” (which is the case for the instances proposed in
[106], but not for the MS-FAP instances).

The paper is organized as follows: Section 3.2 describes a possible Integer Linear Program
BCP, Section 3.3 describes fast constructive heuristics for BCP and Section 3.4 proposes a
Tabu Search approach for BCP. Section 3.5 describes how this approach can be integrated
in a more complex Evolutionary algorithm, where a pool of solutions is managed. Extensive
computational experiments on BCP and BMCP instances from the literature are presented
in Section 3.6. Concluding remarks are discussed in Section 3.7.

3.2 An ILP Model for the Bandwidth Coloring Problem

A possible ILP for BCP is the following. Let H = {1, 2, ..., t} be the set of available colors
(where t represents an upper bound on the value of the maximum color used). Consider the
binary variables xi,h having value 1 iff vertex i is colored with color h ∈ H, and the binary
variables yh having value 1 iff color h is used. Then the model reads:

min k(3.1)
k ≥ yhh h ∈ H(3.2) ∑

h∈H

xih = 1 i ∈ V(3.3)

xih + xjl ≤ 1 (i, j) ∈ E, h ∈ H, l ∈ {h− d(i, j) + 1, ..., h + d(i, j)− 1}(3.4)
xih ≤ yh i ∈ V, h ∈ H(3.5)

xi,h ∈ {0, 1} i ∈ V, h ∈ H(3.6)
yh ∈ {0, 1} h ∈ H(3.7)
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The objective function (3.1) (in conjunction with constraints (3.2)) asks for minimizing
the maximum color used. Note that in BCP the number of colors assigned to the vertices
can be smaller than maximum color used; consider for example an edge (i, j) with d(i, j) > 1:
two different colors are assigned to vertices i and j but the maximum color used is larger
than two. Constraints (3.3) state that every vertex i in the graph must receive one color.
Constraints (3.4) state that the absolute value of the difference between the colors assigned
to vertices i and j must be at least equal to d(i, j). Constraints (3.5) assure that if a vertex
i uses a color h, the color h results as used.

It is known that models based on the Set Covering formulation for the classical VCP
(see e.g. [90]) lead to stronger lower bounds when the integrality constraints are relaxed.
However they cannot easily be extended to BCP, where constraints are not only imposed on
vertices having the same color, but also on the relations between vertices having different
colors (Constraints (3.4)).

3.3 Constructive Heuristics

In order to fast compute feasible solutions of BCP, different greedy algorithms proposed for
VCP can be adapted to this generalization of the problem.

SEQ is a sequential greedy algorithm. Assume that the vertices are labelled 1, . . . , n.
Vertex 1 is assigned to the first color class, and thereafter, vertex v (v = 2, . . . , n) is assigned
to the lowest indexed color class such that, for every adjacent vertex w: |c(v)−c(w)| ≥ d(v, w).

DSATUR [20, 72] is similar to SEQ, but dynamically chooses the vertex to color next,
by picking the first vertex, in the given input ordering, that maximizes a given score. In the
classical VCP the score of each vertex v is given by the number of distinctly colored adjacent
vertices (i.e. the chromatic degree of v). This should force ”difficult” vertices to be colored
at the beginning. In BCP the ”difficulty” of a vertex is given not only by the number of
distinctly colored adjacent vertices but also by the distance to be respected between the color
of the vertex and the colors of its adjacent vertices. Thus we consider as score s(v) of vertex
v the sum of the maximum distances between the vertex and each adjacent color:

s(v) =
∑

h=1,...,k

max
w:(v,w)∈E and c(w)=h

d(v, w)(3.8)

where k denotes the maximum color currently used.

3.4 Tabu Search Algorithm

Tabu Search is a local search technique that showed a very good experimental behavior on
hard combinatorial optimization problems. The basic idea of the local search procedures is
to start from a solution S and iteratively move to the best improving solution S′ in a given
neighborhood N(S), until a local optimum is reached. The quality of different solutions is
measured by means of a solution evaluating function f(S). Tabu Search is a local search
procedure that, in order to avoid local optimum traps, allows moves to the best solution S′

in the neighborhood, even if it is not improving the current solution. To avoid cycling, some
attributes of solution S′ are stored in a Tabu List ; for a specified number of iterations (the
so called tabu tenure) a solution which presents tabu attributes is declared tabu and is not
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considered, except in the case it would improve on the best incumbent solution (aspiration
criterion).

The Tabu Search Algorithm proposed for BCP applies iteratively a Tabu Search Procedure
(TS-P) for BCP working in decision version, i.e. requiring as input parameter the maximum
color k available to color graph G, and returning, if successful, a feasible k coloring. The
Tabu Search Algorithm computes an upper bound UB by means of a fast greedy procedure
(described in the previous Section), and then calls the Tabu Search Procedure setting the
maximum available color k equal to UB − 1, and starting the search from an initial solution.
If the problem is solved within a given time limit, k is decreased to k− 1, the time counter is
set to zero, and the process is iterated, starting from a new initial solution, until a value of
k is reached for which the procedure is not able to solve the problem within the given time
limit. If one prefers to perform multiple restarts of the Tabu Search Procedure, instead of
using all the computing time in a single long run, an iteration limit can be used to control
the execution of the procedure. When the iteration limit is reached and the problem is not
yet solved for the given value of k, the Tabu Search Procedure is restarted from scratch, for
the same value of k, starting from a different initial solution. The new initial solution is
obtained by means of the constructive heuristics described in the previous Section, which can
be executed with perturbed orderings of the vertices, so as to obtain different solutions.

The Tabu Search Procedure we propose moves between partial k colorings, i.e. solutions
in which the maximum color used is k, all the distance constraints are satisfied, but not all the
vertices are colored. For each value of k, the starting partial k coloring is obtained from the
initial solution by ”uncoloring” all the vertices having a color exceeding k. Note that also a
dummy solution (i.e. a solution in which all the vertices are uncolored) is a partial k coloring
which can be used as starting k coloring. When all the vertices of G are colored with the
available k colors (i.e. a feasible k coloring is found), the problem is solved for the given value
of k. The first idea of partial coloring neighborhood was proposed by Morgenstern [92] and
was implemented in Tabu Search procedures for the classical VCP by Blöchliger and Zufferey
[15] and by Malaguti et al. [84]. In particular, the Tabu Search procedure we propose in this
paper is a generalization of the Tabu Search procedure proposed in [84] for the VCP.

To move from a solution S to a new solution S′ ∈ N(S) one can randomly choose an
uncolored vertex v (c(v) = 0), assign v to a color class, say h, and uncolor (i.e. assign to class
0) all the vertices w that are adjacent to v and such that |c(w)− h| < d(v, w). This ensures
that the new solution S′ is still a partial k coloring. Class h is chosen by comparing different
target classes, and choosing the class leading to a solution S that minimizes the corresponding
value of the evaluating function f(S). We do not simply minimize | {v : c(v) = 0} |, because
this does not consider that some vertices, having an higher degree and larger distances to be
maintained with the adjacent vertices, are more difficult to color. To take into consideration
both aspects we propose the following evaluating function for solution S:

f(S) =
∑

v:c(v)=0

∑

w:(v,w)∈E

d(v, w)(3.9)

To avoid cycling, we use the same tabu rule used in [84]: a vertex v cannot take the same
color h it took in at least one of the last T iterations (where T represents the tabu tenure); for
this purpose we store in a tabu list the pair (v, h) for T iterations. While the move remains
tabu, vertex v cannot be assigned to color class h. We also use an Aspiration Criterion: a
tabu move can be performed if it improves on the best solution encountered so far.

Tabu Search Procedure TS-P takes in input:
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• a graph G(V, E) with distances on edges;

• the target value k for the maximum color used;

• an initial partial k coloring S := {c(v1), . . . , c(vn)} (obtained by applying a greedy
procedure, see Section 3.3);

• the maximum number L of iterations to be performed;

• the tabu tenure T .

If the procedure solves the problem within L iterations then it gives on output a feasible
k coloring.

Let S be the current solution and S∗ the best incumbent solution. The Tabu Search
Procedure TS-P works as follows:

begin
1. S∗ := S;
2. tabulist := ∅;
3. for ( iterations = 1 to L )
4. randomly select an uncolored vertex v (c(v) = 0);
5. for each j ∈ {1, . . . , k} (explore the neighborhood of S)
6. Sj = (cj(v1), . . . , cj(vn)) := S;
7. cj(v) := j;
8. for each w : (v, w) ∈ E and |cj(v)− cj(w)| < d(v, w)
9. cj(w) := 0
10. end for
11. end for;
12. h := arg minj∈{1,...,k}:(v,j)/∈tabulist or f(Sj)<f(S∗) f(Sj);
13. if no such h exists then h := arg minj∈{1,...,k} f(Sj);
14. S := (c(v1), . . . , c(vn)) := Sh;
15. insert (v, h) in tabulist ((v, h) is tabu for T iterations);
16. if f(S) < f(S∗) then S∗ := S;
17. if {v : c(v) = 0} = ∅ then return S∗

18. end for
19. return S∗

end.

At line 12 we try to select the best color class which improves on the best solution so far
or does not represent a tabu move. If all moves are tabu, at line 13 we simply select the best
color class. In both cases (line 12 and 13), ties are broken by selecting the first best color
class.

The computational experiments presented in Section 3.6 show that the proposed Tabu
Search Algorithm is able to find high quality solutions. However we observed that when, for
a given value of k, the Tabu Search Procedure TS-P is not able to solve the problem within
the given number of iterations L, rarely it is able to find a feasible k coloring, even if more
iterations are allowed. In this case a restart from a different initial solution is usually more
effective than continuing the search from the current solution. This behavior shows that the
search strategy is quite aggressive, and able to obtain fast descent of the objective function
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in short computing time, but, when the starting solution is in a poor region of the search
space, the Tabu Search Procedure is not able to escape from this region. More in detail, it
can happen that a vertex v is assigned to a color at the very beginning of the computation,
and this choice is never changed during the Tabu Search iterations. These considerations
suggest that a procedure able to extend the search to the whole solution space would be of
great efficacy. This procedure is described in the next Section.

3.5 The Evolutionary Algorithm

The Tabu Search Procedure TS-P described in the previous Section can be combined with a
population management procedure, obtaining a more complex population based Evolutionary
Procedure E-P for BCP. This procedure still works in decision version, and handles a pool
of solutions composed by partial k colorings. Like the Tabu Search Procedure TS-P, the
Evolutionary Procedure E-P as well can be called iteratively starting from an upper bound, in
order to solve the optimization version of the problem, thus leading to an overall Evolutionary
Algorithm.

The Evolutionary Procedure E-P works as follows: first an initial pool is defined, i.e. a
population of solutions (partial k colorings) is initialized by means of fast greedy heuristic
algorithms (see Section 3.3). Then two solutions (parents) are randomly selected from the
population and combined through a crossover operator in order to obtain a new solution
(offspring). Every offspring solution is improved by means of the Tabu Search Procedure TS-P
before to be introduced into the population, replacing the worst parent, i.e. the parent having
the worst fitness (the fitness of each solution being computed by means of the evaluating
function (3.9)). This algorithm can solve both BCP and BMCP, after the transformation
of the instances of the latter problem to BCP instances. The algorithm can of course solve
also classical VCP instances, that are a special case of BMCP, arising when all the distances
and weights are equal to 1. However, specialized metaheuristic algorithms designed for the
classical VCP (see e.g. Galinier and Hao [51], Funabiki and Higashino [50], Malaguti et al.
[84] for classical metaheuristic approaches; see Barbosa et al. [12] for two novel evolutionary
formulations of the problem and for effective heuristics based on these formulations) have a
better performance, since the crossover operator we propose is based on the tight satisfaction
of the distance constraints, and hence it would perform poorly on VCP.

The Evolutionary Procedure E-P takes in input:

• a graph G(V, E) with distances on edges;

• the target value k for the maximum color used;

• the number L of iterations to be performed by procedure TS-P between two calls of the
crossover operator;

• the dimension poolsize of the pool;

• the tabu tenure T ;

• the maximum computing time (timelimit) allowed for the execution of the procedure.

The Evolutionary Procedure E-P is structured as follows:
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begin
1. generate the initial pool containing poolsize solutions (partial k colorings);
2. if the problem is solved (i.e. a feasible k coloring is found) during the initialization

then stop;
3. while (not timelimit)
4. randomly select 2 solutions S1 and S2 from the pool;
5. generate S3 := Crossover(S1, S2);
6. if the problem is solved then stop;
7. [Improve the offspring] S3 := TabuSearch(S3);
8. if the problem is solved then stop;
9. insert S3 in the pool and delete its worst parent
10. end while
end.

3.5.1 Pool Management

We use the Tabu Search Procedure described in Section 3.4 as a component of the more
complex Evolutionary Procedure, where a pool of different solutions is managed, and solutions
are combined, by means of a crossover operator, in order to generate new solutions. These
new solutions can be used as starting points to extend the Tabu Search to different regions of
the whole solution space. In this framework, the Tabu Search Procedure is used to improve
on the quality of the different solutions of the pool.

The use of Pool Management procedures is justified by the experimental observation that,
given a fixed number of Tabu Search iterations to be executed, it is better to perform multiple
restarts from different initial solutions than to spend all the available iterations in a single
run. Indeed, the Tabu Search Procedure seems unable to move away from a limited region
of the solution space, and the final solution is usually close to the initial one. At the same
time, a naive multiple restart strategy does not intensify the search in more promising regions
of the solution space. Thus we use a specialized crossover operator to generate new starting
solutions, sharing interesting properties with their parents, and we improve these solutions by
means of the Tabu Search Procedure. It is known that generic crossover operators perform
poorly on VCP (see, e.g., Davis [38]), while it was experimentally shown that specialized
crossover operators can be effective in the case of the classical VCP (see [51, 84]), and the
computational experiments presented in Section 3.6 show that this is true in the case of VCP
generalizations as well. The main idea behind the use of a specialized crossover operator is that
”good” solutions share part of their structure with the optimal ones, and that a specialized
crossover is generally able to identify properties that are meaningful for the problem.

Initialization

During the initialization phase of the Evolutionary Procedure E-P, we generate poolsize initial
solutions (partial k colorings) that will be handled by the Pool Management procedures and
improved by means of the Tabu Search Procedure. For the success of the overall search it is
crucial to start with solutions having different structures, thus allowing the Pool Management
procedures to access the whole solution space, by recombining solutions through the crossover
operator.

To diversify as much as possible the solutions contained in the initial pool, during the
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initialization phase we use three different algorithms: two thirds of the solutions are generated
by applying the two greedy algorithms SEQ and DSATUR described in Section 3.3; the last
third is generated by the Tabu Search Procedure TS-P applied starting from a dummy solution
(all vertices uncolored) and maximum number k of colors. The three algorithms are applied
with different random orderings of the vertices, so as to generate different solutions. To obtain
partial k colorings, all the vertices colored by the greedy algorithms with colors greater than
k are uncolored before to insert the corresponding solution in the pool.

Every initial solution generated by SEQ or DSATUR is improved by means of the Tabu
Search Procedure before to be inserted in the pool.

Solutions Selection

Once the pool of solutions is initialized, two solutions must be selected and combined to
extend the search. The solutions to be combined through the crossover operator are randomly
chosen among the solutions of the pool. The new offspring solution, improved by means of the
Tabu Search Procedure, is then introduced into the population, replacing the parent which
results to have the worst fitness with respect to the solution evaluating function (3.9) used in
the Tabu Search Procedure.

Crossover Operators

An effective crossover operator must take in input two parent solutions S1 and S2 and
transmit to the offspring solution S3 the parents’s properties that are meaningful for the
problem. In the case of the classical VCP, the structure of a solution is given by the partition
of the vertices into independent sets (each corresponding to a different color). The color that
is given to a set is completely arbitrary. This leads to very effective crossover operators where
new solutions are built by combining the independent sets of the corresponding parents (see
[51, 84]).

In the case of BCP, the color that is assigned to each set of vertices, with respect to the
other sets, becomes important for the feasibility of the solution, as imposed by the distance
constraints. Thus the structure of a solution is given not only by the partition of the vertices
into independent sets, but by the mutual distances between colored vertices as well.

We computationally experimented different crossover operators that, given two parent
solutions S1 and S2 represented by partial k colorings, output as offspring a partial k coloring
S3. The characteristics of these crossovers are summarized in the following:

• Crossover #1: Given two parents S1 and S2, the color classes of the offspring S3 are built
by iteratively picking the color class of maximum cardinality from one parent (in turn
S1 or S2) and assigning the corresponding vertices to the offspring. These vertices are
inserted in the first free color class of S3, starting from color 1, if they do not violate the
distance constraints. Every vertex violating the distance constraints, as well as vertices
uncolored in both parents, are left uncolored. The inserted vertices are then deleted
from the other parent. The process is iterated from the other parent while there are
available colors in the offspring. This crossover was designed for VCP (see [51, 84] for
more details) and gives poor performance in the case of BCP, due to the fact that many
vertices cannot be colored in the offspring without violating the distance constraints.
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• Crossover #2: This crossover is similar to crossover #1, but, in this case, the color
classes of the offspring are filled in the following order: 1, k, 2, k − 1, etc. This way of
filling the color classes generally reduces the number of vertices that cannot be colored
in the offspring because of the distance constraints.

• Crossover #3: This crossover as well is similar to crossover #1, but, in this case, the
maximum cardinality color class picked from the parent is forced to keep the same
position (color) when copied to S3. This choice generally avoids the infeasibilities be-
tween color classes picked from the same parent, thus reducing the number of uncolored
vertices in the offspring.

• Crossover #4: Fixed a value p, a given percentage p of the vertices of the offspring
S3, randomly selected, are colored with the same color they have in S1, the remaining
percentage 1 − p is colored with the color they have in S2, if this does not violate the
distance constraints.

• Crossover #5: Fixed a value h, the first h color classes of parent S1 are copied to the
offspring S3, the last k − h color classes of S2 (with the exception of already colored
vertices) are copied to S3, leaving uncolored the vertices that would violate the distance
constraints.

By considering the test instances described in Section 3.6, we observed that the last two
crossovers perform better than the previous ones, but their performance is not comparable
with that of the crossover we finally included in our algorithm and that was extensively tested
as reported in Section 3.6.2. We call it distance crossover because it is based on the idea
that the important structure to be transferred from the parents to the offspring is the relative
color distance between the vertices, in particular when the distance constraints are satisfied
tightly. The distance crossover works as follows (let c1(v), c2(v) and c3(v) denote the color
assigned to vertex v ∈ V in solution S1, S2 and S3, respectively; initially all the vertices in
S3 are uncolored):

begin
1. E1 := {(v, w) ∈ E : v < w, |c1(v)− c1(w)| = d(v, w)};
2. for each (v, w) ∈ E1 : c3(v) := c1(v), c3(w) := c1(w);
3. E2 := {(v, w) ∈ E : v < w, |c2(v)− c2(w)| = d(v, w)};
4. for each (v, w) ∈ E2:
5. if both v and w are currently uncolored in S3:
6. if feasible, set c3(v) = c2(v); c3(w) = c2(w) ;
7. else try to color v and w with any color, starting from 1,

still maintaining |c3(v)− c3(w)| = d(v, w)
8. else if one vertex of the pair (v,w)(say v) is already colored:
9. if feasible, set c3(w) := c3(v) + d(v, w)
10. else if feasible, set c3(w) := c3(v)− d(v, w)
11. end for
end.

We copy all the ”tight distance” pairs from S1 to the offspring, keeping the same color
assignment. Then we try to do the same with ”tight distance” pairs from S2, keeping the
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same color assignment, when this does not violate the distance constraints with respect to
the already colored vertices of the offspring. As in the other crossovers that we experimented,
when a vertex cannot feasibly be colored, or it was uncolored in both parents, we leave it
uncolored.

After the crossover, that is mainly aimed at generating new solutions, sharing important
structures with their parents (and not simply at generating an offspring with many colored
vertices), we could use a greedy algorithm in order to color uncolored vertices. We prefer to
leave these vertices uncolored and directly apply the Tabu Search Procedure to the offspring
S3, which will insert the uncolored vertices in the first color class where they can be inserted
without moving other vertices (if any).

3.6 Computational Analysis

The Tabu Search Algorithm and the Evolutionary Algorithm described, respectively, in Sec-
tions 3.4 and 3.5 were coded in ANSI C and compiled with full optimization option. The
programs were run on a PIV 2.4MHz computer, with 512MB RAM, under Windows XP,
and tested on the instances proposed during the Computational Symposium on Graph Col-
oring and its Generalizations, held in 2002. These instances (which can be found at [106])
correspond to different graph types used for evaluating the performance of VCP algorithms.
To perform our computational experiments, we considered the instance sets GEOMn, GE-
OMna and GEOMnb (where n represents the number of vertices of the graph), proposed for
BCP and BMCP. In these geometric graphs, the vertices are uniformly randomly generated
in a 10,000 by 10,000 grid, and are connected by an edge if they are close enough. Edge
distances are inversely proportional to the Euclidean distance between the corresponding ver-
tices. Vertex weights are uniformly randomly generated, between 1 and 10 for sets GEOMn
and GEOMna, and between 1 and 3 for set GEOMnb. GEOMn instances correspond to sparse
graphs; GEOMna and GEOMnb instances correspond to denser graphs. We also considered
the Philadelphia instances [9], that were extensively studied in the MS-FAP literature (see,
e.g., [4]). In these BMCP instances, each of the 21 vertices of the graph must receive a large
number of colors (32.2 on average).

All the computing times reported in this section are expressed in seconds of our machine.
To allow a meaningful - although approximate - comparison on results obtained with different
machines, a benchmark program (dfmax), together with a benchmark instance (r500.5), are
available. Computing times obtained on different machines can be scaled with respect to the
performance obtained on this program (our machine spent 7 seconds ”user time”).

3.6.1 Performance of the Tabu Search Algorithm

In this section we report the experimental results obtained by the Tabu Search Algorithm
(described in Section 3.4) on the BCP and BMCP instances presented in [106]. In order to
fast compute an initial upper bound UB, we perform 20 runs of the greedy algorithm SEQ
(described in Section 3.3), with perturbed input orderings of the vertices, and set UB equal
to the best solution value found. As explained in Section 3.4, we run the Algorithm with
multiple restarts of the Tabu Search Procedure TS-P. The maximum number of iterations L
of the Tabu Search Procedure TS-P is set to 100,000 in the case of BCP, and to 400,000 in
the case of BMCP. After L iterations, if the problem is not solved for the current value of k,
we restart procedure TS-P from a new solution (partial k coloring). Every partial k coloring
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is obtained in turn by applying the SEQ or DSATUR algorithms, where we uncolor all the
vertices whose current color exceeds the given k value, or starting from a dummy solution (all
vertices uncolored). If we are able to solve the problem, for the current value of k, within the
time limit (which is set to 500 seconds in the case of BCP and to 3000 seconds in the case
of BMCP), we decrease the value of k and set to zero the time counter. We iterate until, for
the current value of k, the problem cannot be solved within the time limit.

In Table 3.1 we report, for every considered BCP instance from [106], the name of the
instance, the number of vertices (n) and edges (m) of the considered graph, the best known
solution value ever published in the literature [93, 95, 82, 96, 81] (”best”), the initial upper
bound found by the SEQ algorithm (”UB”), the solution value (”k”), the number of iter-
ations needed to find the last improving solution starting from the initial UB (”iter”), the
total computing time (including the initial UB computation) corresponding to the last im-
provement (”time”, we report 0 when the time is lower than 1 second). The tabu tenure T is
fixed to a value of 50 for the BCP instances, while better results can be obtained in the case
of the BMCP instances with a tabu tenure T equal to the number of vertices of the graph,
after the transformation described in Section 3.1. In Table 3.2 we report the results obtained
on the BMCP instances. The last two rows of Tables 3.1 and 3.2 report the average ratio
between the solution value and the best known solution value from the literature (k/best)
and the average computing time.

For the set-up of the parameters T and L, we selected the values that, on different com-
putational tests performed, lead on average to the best results in terms of solution value and
time. Of course, better results can be obtained by using an ad hoc set up tuned on each
instance, but our opinion is that the robustness of the algorithm, i.e. the capacity of solving
different instances without requiring a special set-up on each instance, has to be preferred.

The Tabu Search Algorithm we propose has a very good experimental behavior in the
case of BCP (Table 3.1). The quality of the solutions found is comparable with that of the
solutions found by the state of the art algorithms. Over 33 considered instances, the Tabu
Search Algorithm is able to improve on the best published solution in the literature 4 times,
in 21 cases it finds a solution whose value equals the best published one and in the remaining
8 cases it is worse, but always using only one more color. Also in the case of BMCP (Table
3.2) the quality of the solutions found is comparable with that of the solutions found by the
state of the art algorithms. Over 33 considered instances, the Tabu Search Algorithm is able
to improve on the best published solution in the literature 8 times, in 11 cases it finds a
solution whose value equals the best published one, and in the remaining 14 cases it is worse.

We tested the Tabu Search Algorithm also on the 9 Philadelphia instances [9], representing
BMCP instances corresponding to the Minimum Span Frequency Assignment Problem (MS-
FAP), where 21 vertices must receive a large number of colors (32.2 on average). As it could
be expected, our algorithm performs very poorly on these instances, obtaining solutions values
that are on average 6.5% larger than the optimal ones (which are known, and can be found by
specialized metaheuristics approaches, see [4]). This is due to the extra symmetry introduced
in the problem by transforming BCMP instances to BCP ones, i.e. by transforming each
vertex i which must receive w(i) colors to a clique of cardinality w(i). This transformation
leads to BCP instances where our approach is completely ineffective, because large cliques
are built, and our Tabu Search approach risks to spend all the iterations by moving vertices
of the same clique (representing originally a single vertex) to different color classes, without
really changing the solution.
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Table 3.1: Tabu Search Algorithm: Bandwidth Coloring Instances.
Instance name n m best UB k iter time

GEOM20 20 40 20 21 21 0 0
GEOM20a 20 57 20 22 20 1613 0
GEOM20b 20 52 13 15 13 10 0
GEOM30 30 80 27 28 28 0 0
GEOM30a 30 111 27 31 27 13051 0
GEOM30b 30 111 26 26 26 0 0
GEOM40 40 118 27 29 28 15 0
GEOM40a 40 186 37 41 37 24753 0
GEOM40b 40 197 33 40 33 3745 0
GEOM50 50 177 28 29 28 697 0
GEOM50a 50 288 50 55 50 32125 0
GEOM50b 50 299 35 44 35 500360 0
GEOM60 60 245 33 35 33 3038 0
GEOM60a 60 339 50 57 50 24038 0
GEOM60b 60 426 43 54 41 96611523 147
GEOM70 70 337 38 42 38 2021 0
GEOM70a 70 529 62 70 61 15810658 29
GEOM70b 70 558 48 62 48 44923788 76
GEOM80 80 429 41 46 41 76460 0
GEOM80a 80 692 63 77 63 4474619 9
GEOM80b 80 743 61 78 61 14347412 30
GEOM90 90 531 46 50 46 10594 0
GEOM90a 90 879 64 77 63 32340177 73
GEOM90b 90 950 72 89 72 17708445 47
GEOM100 100 647 50 58 50 1184211 2
GEOM100a 100 1092 68 89 69 33992244 73
GEOM100b 100 1150 73 96 74 45945300 114
GEOM110 110 748 50 60 50 371993 1
GEOM110a 110 1317 73 94 74 570556 1
GEOM110b 110 1366 79 105 79 129462538 338
GEOM120 120 893 60 70 59 1975913 3
GEOM120a 120 1554 84 103 85 202323831 470
GEOM120b 120 1611 86 116 87 18180399 50

avg. gap (k/best) 1.0029
avg. time 44
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Table 3.2: Tabu Search Algorithm: Bandwidth Multicoloring Instances.
Instance name n m best UB k iter time

GEOM20 20 40 149 155 149 939426 3
GEOM20a 20 57 169 176 169 123721114 405
GEOM20b 20 52 44 46 44 10552157 13
GEOM30 30 80 160 172 160 195505 1
GEOM30a 30 111 209 242 211 767838021 3684
GEOM30b 30 111 77 79 77 121319 0
GEOM40 40 118 167 180 167 4416693 18
GEOM40a 40 186 213 230 215 302864957 1639
GEOM40b 40 197 74 87 74 160164 1
GEOM50 50 177 224 235 225 24019956 130
GEOM50a 50 288 318 359 320 102725774 792
GEOM50b 50 299 86 103 83 118972111 304
GEOM60 60 245 258 266 258 40375817 202
GEOM60a 60 339 358 404 363 764735785 5632
GEOM60b 60 426 116 139 114 878357241 2969
GEOM70 70 337 273 312 270 251841925 1487
GEOM70a 70 529 469 509 473 106820588 1084
GEOM70b 70 558 119 142 119 62714747 208
GEOM80 80 429 383 422 388 269267418 2088
GEOM80a 80 692 379 406 370 154315259 1530
GEOM80b 80 743 141 164 141 95766220 330
GEOM90 90 531 332 354 334 197265420 1460
GEOM90a 90 879 377 416 384 352269766 3024
GEOM90b 90 950 147 178 146 36450728 153
GEOM100 100 647 404 424 412 439473614 3425
GEOM100a 100 1092 453 507 452 437615679 4471
GEOM100b 100 1150 159 201 160 163576744 804
GEOM110 110 748 383 421 382 748917011 7325
GEOM110a 110 1317 494 535 492 40969388 455
GEOM110b 110 1366 206 240 207 108643060 645
GEOM120 120 893 402 430 405 333840804 2718
GEOM120a 120 1554 556 611 559 257342109 3149
GEOM120b 120 1611 195 224 195 176508745 951

avg. gap (k/best) 1.0009
avg. time 1548



Computational Analysis 51

3.6.2 Performance of the Evolutionary Algorithm

In this section we describe the experiments performed with the Evolutionary Algorithm (de-
scribed in Section 3.5) and compare it with the most effective algorithms proposed in the
literature on the BCP and BMCP instances presented in [106]. The corresponding computa-
tional results are reported, respectively, in Tables 3.3 and 3.4. The first two columns of the
tables report the instance name and the corresponding best published solution value (”best”).

The solution values (”k”) and the corresponding computing times obtained by Lim et al.
[82], with an algorithm combining hill-climbing techniques and Squeaky Wheel Optimization,
are reported in the third and forth columns of Tables 3.3 and 3.4. The algorithm works in
optimization version (i.e. it does not require as input the maximum color k to be used). We
report the best solution value found over a single run and the computing time needed to get
this result, scaled with respect to the time obtained on the benchmark problem (25.32 seconds
”user time”), and thus directly comparable with the other reported times.

The fifth column of Table 3.3 reports the solution values (”k”) obtained by Phan and
Skiena by means of the Discropt general heuristic [93] in the case of BCP (they report
no results for BMCP). The algorithm works in optimization version. The reported results
represent the best value obtained over 3 runs, using 3 different versions of the algorithm.
The total computing time was 300 seconds (100 seconds for each run), on a Athlon K7 AMD
processor with 768 MB of RAM under RedHat 7.2.

The solution values (”k”) and the corresponding computing times obtained by Lim et
al. [81], with an algorithm combining Squeaky Wheel Optimization with Tabu Search, are
reported in the fifth and sixth columns of Table 3.4 in the case of BMCP (results for BCP are
not competitive and were not reported in detail in [81]). The algorithm works in optimization
version. We report, for each instance, the best solution value found over a run with 10 restarts
and the computing time needed to get this result, scaled with respect to the time obtained
on the benchmark problem (74.12 seconds ”user time”).

The solution values (”k”) and the corresponding computing times obtained by Prestwich
with an algorithm which hybridizes Local Search and Constraint Programming [96] are re-
ported in the sixth and seventh columns of Table 3.3 in the case of BCP, and in the seventh
and eighth columns of Table 3.4 in the case of BMCP. The times are scaled with respect to
the time obtained on the benchmark problem (27.43 seconds ”user time”). The algorithm,
working in optimization version, requires some input parameters, whose values are tuned,
among a limited set of possibilities, for each instance.

Finally we report the results obtained by means of the Evolutionary Algorithm, used to
solve the optimization version of the problem. Like we did with the Tabu Search Algorithm,
we compute an initial upper bound UB by performing 20 runs of the greedy algorithm SEQ
(described in Section 3.3), with perturbed input orderings of the vertices, and set UB equal
to the best solution value found.

Then, like in the case of the Tabu Search Algorithm, we run the Evolutionary Algorithm,
trying to improve on this UB. We use a time limit, for every value of k, of 500 seconds in
the case of BCP and of 3000 seconds in the case of BMCP. If the problem is solved, for the
current value of k, we decrease it to k − 1 and set to zero the time counter. We iterate until,
for the current value of k, the problem cannot be solved within the time limit.

The last columns of Table 3.3 and Table 3.4 report the results obtained by the Evolutionary
Algorithm in the case of BCP and BMCP, respectively. We report the solution value (”k”),
the number of iterations needed to find the last improving solution starting from the initial
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UB (”iter”), the total computing time (including the initial UB computation) corresponding
to the last improvement, and the difference between the solution value (”k”) and the best
solution value (”best”) published in the literature on instances from [106]. The value of the
initial upper bound UB and the setting of the tabu tenure T are equal to those used for
the Tabu Search Algorithm. The poolsize was fixed to a value of 40 for both BCP and
BMCP. Instead of performing multiple restarts, the Evolutionary Algorithm calls the cross
over operator. The number of iterations (L) of the Tabu Search Procedure, between two
consecutive calls of the cross over operator, is equal to that used when testing multiple restarts
for the Tabu Search Algorithm, i.e. 100,000 in the case of BCP and 400,000 in the case of
BMCP. The use of the same set-up of the parameters T and L and of the same time limit
should ensure a fair comparison between the Tabu Search Algorithm and the Evolutionary
Algorithm.

The last two rows of Tables 3.3 and 3.4 report, for each considered algorithm, the aver-
age ratio between the solution value and the best known solution value from the literature
(k/best), and the average computing time.

Over the 33 considered instances of BCP, the Evolutionary Algorithm is able to improve on
the best published solution in the literature 9 times, in 21 cases it finds a solution whose value
equals the best published one, and in the remaining 3 cases it is worse. It clearly outperforms
the other proposed algorithms, singularly considered, from the point of view of the solution
quality. The computing times are much longer, but, in our opinion, acceptable, since they
improve on the best known solutions. The Evolutionary Algorithm improves 8 times on the
best solution found by using the Tabu Search Algorithm, thus showing the efficacy of the
overall diversification approach with respect to a simple multiple restart strategy.

Over the 33 considered instances of BMCP, the Evolutionary Algorithm is able to improve
on the best published solution in the literature 13 times, in 13 cases it finds a solution whose
value equals the best published one, and in the remaining 7 cases it is worse. Its performance,
from the solution quality point of view, is better than that of the best considered algorithm,
namely the one proposed by Lim et al. [81]. The latter finds 7 times a better solution than
the one found by the Evolutionary Algorithm, while 13 times the proposed algorithm finds
a better solution. Our computing times are in general larger on bigger instances, but still
acceptable. The Evolutionary Algorithm improves 17 times on the best solution found by
using the Tabu Search Algorithm, while the latter finds 3 times a better solution. This shows
again the efficacy of the overall diversification approach with respect to a simple multiple
restart strategy.

In our experiments, we used time limits which lead to long computational times with
respect to other algorithms proposed in the literature: we think that this choice is justified,
since we are able to improve some of the best know solution values published in the literature.
It must be observed that the hard part of the computation very often corresponds to those
improvements. In other words, when we spend a long time to improve the best known solution
value of only few colors, a large part of the computation is devoted to solve the problem for the
last values of k. This means that, when shorter computing times are imposed, our algorithm
is still able to find feasible solutions of good quality. During our experiments, we observed
that allowing even longer time limits would lead to better solutions on some instances, but
with an average computational cost exceeding the acceptable threshold.

We tested the Evolutionary Algorithm also on the 9 Philadelphia (MS-FAP) instances,
obtaining solution values that are on average 6.6% far from the optimal ones. This behavior,
due to the transformation of BMCP instances to BCP instances, should not surprise, as
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discussed in the previous Section.

3.7 Conclusions

In this paper we present an Evolutionary heuristic algorithm for two generalizations of the
well known VCP, namely the Bandwidth Coloring (BCP) and the Bandwidth Multicoloring
(BMCP) Problems. The Algorithm was designed for BCP, and applied to BMCP instances as
well (after their transformation to BCP instances by means of a simple procedure). The Evo-
lutionary Algorithm proposed to solve the BCP combines an effective Tabu Search approach
with a specialized crossover operator.

Extensive computational experiments on 66 BCP and BMCP instances from literature
benchmark graphs were performed with the Tabu Search approach and the overall Evolu-
tionary Algorithm. The first is able to produce very good solutions in acceptable computing
times. Improved solutions can be obtained by using the overall Evolutionary Algorithm. The
comparison of the latter with the most effective algorithms from the literature shows that
the proposed approach represents, on the considered set of instances, the new state of the art
heuristic algorithm for BCP, and equals the most effective algorithm for BMCP.

Instances of BMCP corresponding to Frequency Assignment problems were also consid-
ered, where our approach performed very poorly. This behavior can be explained by consid-
ering the structure of these instances, where the transformation of BMCP to BCP was very
ineffective, because it introduced much extra symmetry into the model.

Thus, in order to overcome this limit of our approach, in future work we intend to tackle
the Multicoloring Problems solving directly a Multicoloring model.
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Table 3.3: Performance of the Evolutionary Algorithm and comparison with the most effective
heuristic algorithms for the Bandwidth Coloring Problem.

Lim et al. Phan and Skiena Prestwich Evolutionary
2003 [82] 2002 [93] 2005 [96]

Instance name best k time k k time k iter time diff.

GEOM20 20 21 0 20 21 0 21 0 0 1
GEOM20a 20 22 0 20 20 0 20 1730 0 0
GEOM20b 13 14 0 13 13 0 13 6 0 0
GEOM30 27 29 0 27 28 0 28 0 0 1
GEOM30a 27 32 0 27 27 0 27 13064 0 0
GEOM30b 26 26 0 26 26 0 26 0 0 0
GEOM40 27 28 1 27 28 0 28 479 0 1
GEOM40a 37 38 1 38 37 0 37 24428 0 0
GEOM40b 33 34 1 36 33 0 33 3750 0 0
GEOM50 28 28 1 29 28 0 28 214 0 0
GEOM50a 50 52 1 54 50 2 50 36707 0 0
GEOM50b 35 38 2 40 35 0 35 326548 0 0
GEOM60 33 34 0 34 33 0 33 3364 0 0
GEOM60a 50 53 2 54 50 1 50 23812 0 0
GEOM60b 43 46 1 47 43 0 41 18739807 29 -2
GEOM70 38 38 0 40 38 0 38 2036 0 0
GEOM70a 62 63 0 64 62 2 61 6746180 12 -1
GEOM70b 48 54 0 54 48 1 48 30608071 52 0
GEOM80 41 42 2 44 41 0 41 76891 0 0
GEOM80a 63 66 0 69 63 12 63 75341752 150 0
GEOM80b 61 65 8 70 61 0 60 69418472 145 -1
GEOM90 46 46 0 48 46 3 46 10755 0 0
GEOM90a 64 69 2 74 64 2 63 66256099 150 -1
GEOM90b 72 77 6 83 72 2 70 376194388 1031 -2
GEOM100 50 51 9 55 50 0 50 1296142 2 0
GEOM100a 68 76 6 84 68 9 68 125814038 273 0
GEOM100b 73 83 2 87 73 15 73 235521605 597 0
GEOM110 50 53 1 59 50 4 50 1824578 3 0
GEOM110a 73 82 11 88 73 7 72 72749430 171 -1
GEOM110b 79 88 5 87 79 2 78 246378762 676 -1
GEOM120 60 62 0 67 60 4 59 293669 0 -1
GEOM120a 84 92 1 101 84 4 84 263039830 614 0
GEOM120b 86 98 1 103 86 9 84 304671189 857 -2

avg. ratio (k/best) 1.0646 1.0906 1.0054 0.9980
avg. time 2 2.5 144
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Table 3.4: Performance of the Evolutionary Algorithm and comparison with the most effective
heuristic algorithms for the Bandwidth Multicoloring Problem.

Lim et al. Lim et al. Prestwich Evolutionary
2003[82] 2005[81] 2005[96]

Instance name best k time k time k time k iter time diff.

GEOM20 149 149 0 149 17 149 4 149 5293853 18 0
GEOM20a 169 169 4 169 16 170 2 169 2400000 9 0
GEOM20b 44 44 0 44 2 44 0 44 3203748 5 0
GEOM30 160 160 0 160 23 160 0 160 195203 1 0
GEOM30a 209 211 3 209 40 214 11 210 166234965 954 1
GEOM30b 77 77 0 77 7 77 0 77 112224 0 0
GEOM40 167 167 1 167 47 167 1 167 4969719 20 0
GEOM40a 213 214 99 213 54 217 299 214 75188430 393 1
GEOM40b 74 76 2 74 10 74 4 74 160125 1 0
GEOM50 224 224 11 224 77 224 1 224 247423944 1197 0
GEOM50a 318 326 27 318 12 323 51 316 600574823 4675 -2
GEOM50b 86 87 15 87 15 86 1 83 72424865 197 -3
GEOM60 258 258 13 258 96 258 77 258 27935150 139 0
GEOM60a 358 368 1037 358 162 373 10 357 1161910138 8706 -1
GEOM60b 116 119 83 116 23 116 12 115 134011555 460 -1
GEOM70 273 279 7 273 138 277 641 272 220981847 1413 -1
GEOM70a 469 478 115 469 188 482 315 473 97340773 988 4
GEOM70b 119 124 38 121 30 119 55 117 222025798 897 -2
GEOM80 383 394 1118 383 204 398 361 388 16559905 132 5
GEOM80a 379 379 187 379 190 380 109 363 1042840998 8583 -16
GEOM80b 141 145 894 141 39 141 37 141 443911693 1856 0
GEOM90 332 335 1133 332 248 339 44 332 579637236 4160 0
GEOM90a 377 382 2879 377 245 382 13 382 631825295 5334 5
GEOM90b 147 157 179 157 46 147 303 144 417466073 1750 -3
GEOM100 404 413 175 404 311 424 7 410 422527570 3283 6
GEOM100a 453 462 48 459 334 461 26 444 1259264110 12526 -9
GEOM100b 159 172 1354 170 55 159 367 156 755603823 3699 -3
GEOM110 383 389 160 383 368 392 43 383 240024033 2344 0
GEOM110a 494 501 1292 494 441 500 29 490 186931545 2318 -4
GEOM110b 206 210 3 206 68 208 5 206 82617492 480 0
GEOM120 402 409 505 402 408 417 9 396 349961343 2867 -6
GEOM120a 556 564 1476 556 633 565 41 559 327849778 3873 3
GEOM120b 195 201 240 199 97 196 3 191 613183196 3292 -4

avg. ratio (k/best) 1.0181 1.0060 1.0120 0.9954
avg. time 397 141 87 2320
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Chapter 4

Models and Algorithms for a
Weighted Vertex Coloring Problem

1

We consider a weighted version of the well-known Vertex Coloring Problem (VCP) in
which each vertex i of a graph G has associated a positive weight wi. Like in VCP, one
is required to assign a color to each vertex in such a way that colors on adjacent vertices
are different, and the objective is to minimize the sum of the costs of the colors used. The
difference with respect to VCP is that the cost of each color is given by the maximum weight
of the vertices assigned to that color. The corresponding problem is known to be NP-hard and
arises in practical scheduling applications, where it is also known as Scheduling on a Batch
Machine with Job Compatibilities. We propose a straightforward formulation for WVCP, and
two alternative Integer Linear Programming (ILP) models: the first one is used to derive,
dropping integrality requirement for the variables, a tight lower bound on the solution value,
while the second one is used to derive a 2-phase heuristic algorithm, also embedding fast
refinement procedures aimed at improving the quality of the solutions found. Computational
results on a large set of instances from the literature are reported.

4.1 Introduction

We approach a weighted version of the well known Vertex Coloring Problem (VCP), where
an undirected graph G = (V,E) is given (with V denoting the vertex set, and E the edge
set) and each vertex i ∈ V has associated a positive weight wi. Like in the classical VCP,
one has to assign a color to each vertex i in such a way that colors on adjacent vertices are
different. The objective of this Weighted Vertex Coloring Problem (WVCP) is to minimize
the sum of the costs of the colors used, where the cost of each color is the maximum weight
of the vertices assigned to the color (while in the classical VCP the cost of each color is equal
to one, thus the total number of colors has to be minimized).

WVCP is known to be strongly NP-hard since it generalizes VCP (see Garey and Johnson
[53] for complexity results on VCP). De Werra, Demange, Monnot and Paschos [40] ana-
lyzed some properties of the optimal solutions and discussed complexity and approximability
results for this problem, Escoffier, Monnot and Paschos [45] continued the investigation of

1Preliminary results of this chapter appear in [85].
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the complexity and the approximability of WVCP, while Boudhar and Finke [19] studied its
complexity for several classes of graphs. These results were extended to different classes of
graphs by Finke, Jost, Queyranne and Sebö [48].

WVCP has many real world applications in different industrial fields. In the scheduling
literature it is also known as Scheduling on a Batch Machine with Job Compatibilities, and
it generalizes some applications where a compatibility graph limits the simultaneous access
to a resource by the users. A typical case, concerning thermic treatment or mechanical
processing, arises when some jobs cannot be processed within the same time slot because of
geometric constraints (see Gavranovich and Finke [54]), and the duration of each time slot
corresponds to the maximum processing time of the associated jobs. This kind of temporal
constraint was studied by Hochbaum and Landy [63], who considered an application dealing
with semiconductor burn-in operations in which the capacity of the oven limits the number
of jobs that can be processed within the same time slot.

WVCP is also a generalization of the Matrix Decomposition Problem in Time Division
Multiple Access Traffic Assignment (see Ribeiro, Minoux and Penna [99] and Prais and Ribeiro
[94]), where a traffic matrix has to be decomposed into mode matrices (i.e., matrices such that
no more than a non zero element is present in each row and column), and the transmission
time of each mode matrix equals the maximum of its non zero elements. An exact approach
to the Matrix Decomposition Problem, based on column generation, was proposed in [99],
while in [94] a heuristic approach based on a Greedy Randomized Adaptive Search Procedure
(GRASP) is presented.

Some definitions will be used in the following: let n and m be the cardinalities of vertex
set V and edge set E, respectively.A clique of a graph G is a complete subgraph of G. A
subset of V is called an independent set if no two adjacent vertices belong to it. The stability
number α is the cardinality of the largest independent set of the graph. Note that each
coloring of a graph is a partition of the vertex set into independent sets; we will call these
sets color classes. An independent set (resp. clique) is maximal if no vertex can be added
still having an independent set (resp. clique). Given an independent set s ⊆ V of weighted
vertices, we define its cost cs as the maximum weight of its vertices. We say that independent
set s dominates independent set t if t ⊂ s and cs = ct. An independent set t is said to be non
dominated if no independent set s exists that dominates t. Given a (possible partial) coloring
of G, the chromatic degree δχ(i) of a vertex i ∈ V is the number of different colors assigned
to its adjacent vertices.

In the following we will assume, without loss of generality, that all weights wi are positive
integers, and that vertices are numbered in such a way that

w1 ≥ w2 ≥ . . . ≥ wn.(4.1)

The paper is organized as follows: in the next Section we propose different Integer Linear
Programming (ILP) models for the problem: Section 4.2.1 presents a straightforward ILP
model, while Section 4.2.2 introduces a new ILP formulation, whose LP relaxation dominates
the LP relaxation of the first model (see Section 4.2.3). Finally, Section 4.2.4 presents a third
ILP model, involving an exponential number of variables, which is used to derive a 2-phase
heuristic approach, outlined in Section 4.3: constructive heuristics used in the first phase
are described in Section 4.3.1, Section 4.3.2 describes the second phase of the algorithm,
and Section 4.4 presents post-optimization procedures aimed at improving the quality of the
solutions found. Computational experiments on a wide set of instances from the literature
are reported in Section 4.5. Concluding remarks are discussed in Section 4.6.
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4.2 ILP models

We first describe two alternative ILP formulations for WVCP, involving a polynomial number
of variables and constraints, and analyze the relation between the optimal solution values of
the LP relaxations of the models, since such values are valid lower bounds for WVCP. Further,
we present another ILP formulation that involves an exponential number of variables, and
that is used for designing a heuristic algorithm.

4.2.1 Model M1

Noting that the number of colors in any feasible solution cannot be larger than n, we can
restrict our attention to solutions involving up to n colors. Hence, a straightforward ILP
model for WVCP can be obtained by defining the following two sets of variables: binary
variables xih (i ∈ V, h = 1, . . . , n), with xih = 1 iff vertex i is assigned to color h, and
(continuous) variables zh (h = 1, . . . , n) denoting the cost of color h in the solution.

The corresponding model for WVCP is:

(M1) min
n∑

h=1

zh(4.2)

zh ≥ wi xih, i ∈ V, h = 1, . . . , n,(4.3)
n∑

h=1

xih = 1, i ∈ V,(4.4)

xih + xjh ≤ 1, (i, j) ∈ E, h = 1, . . . , n,(4.5)
xih ∈ {0, 1}, i ∈ V, h = 1, . . . , n.(4.6)

Objective function (4.2) minimizes the sum of the costs of the colors, which are defined
by constraints (4.3). Constraints (4.4) require that every vertex is given a color, while (4.5)
impose that adjacent vertices cannot receive the same color. Finally, constraints (4.6) require
x variables to be binary.

This formulation is the most natural way to model problems in which one is required to
partition a given set of items into subsets, the feasibility and cost of each subset depending
only on the items assigned to the subset itself. However, this formulation tends to perform
poorly in practice, mainly for two reasons. The first drawback of this model arises when
one wants to solve the ILP above, since the solution space contains many optimal solutions
due to symmetries. Indeed, given a feasible solution to (4.2)–(4.6), another feasible solution
having the same cost is obtained by permuting the selected color classes. This drawback
can be eliminated by imposing additional constraints and by adopting appropriate branching
rules in the branch-and-bound exploration. The second drawback is that the LP relaxation
of the model usually produces weak lower bounds, and this is true even if constraints (4.5)
are strengthened by writing the corresponding clique constraints (see below).

In the next section we present a more sophisticated ILP model, which overcomes both the
drawbacks above, and turns out to be effective in practice.

4.2.2 Model M2

Model M2 is based on the simple observation that, for any solution to WVCP, an equivalent
solution exists in which each independent set s = {vi1 , vi2 , . . . , vip} having p vertices is associ-
ated to color i1, i.e., the color corresponding to the first (lowest index) vertex belonging to s.
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Hence, we consider only feasible solutions in which each color h, if used, is initialized by vertex
h, has cost equal to wh and can be assigned to vertices i ≥ h. A similar idea was proposed
by Lodi, Martello and Vigo [83] to model a class of two dimensional packing problems.

Moving from the observation above, we can introduce binary variables yih taking value 1
iff vertex i is assigned to color h (i ∈ V, h ≤ i). Hence, model M2 is as follows:

(M2) min
n∑

h=1

wh yhh(4.7)

i∑

h=1

yih = 1, i = 1, . . . , n,(4.8)

yih + yjh ≤ yhh, (i, j) ∈ E, h = 1, . . . , min{i, j},(4.9)
yih ≤ yhh, h = 1, . . . , n, i > h,(4.10)

yih ∈ {0, 1}, h = 1, . . . , n, i ≥ h.(4.11)

Objective function (4.7) minimizes the sum of the costs of the colors used. Constraints (4.8)
and (4.9) are the counterpart of (4.4) and (4.5), respectively. Constraints (4.10) impose that
a vertex i can receive a color h 6= i, among those available for the vertex, only if color h is
used. Finally, constraints (4.11) require y to be binary.

A first observation is that, given a color h and a vertex i > h, the corresponding constraint
(4.10) is not imposed if at least one vertex j > h such that (i, j) ∈ E exists (since (4.10) would
be dominated by the corresponding constraint (4.9)).

A second observation is that the model above can be strengthened as follows. For each
h = 1, . . . , n, let K(h) be the family of the (exponentially many) maximal cliques of vertices
having index larger or equal to h. Then, we can replace constraints (4.9) and (4.10) by:

∑

i∈K

yih ≤ yhh, h = 1, . . . , n, K ∈ K(h),(4.12)

imposing that, for each maximal clique K ∈ K(h), at most one vertex i ∈ K can receive color
h, if such color is used.

4.2.3 Comparing Models M1 and M2

First note that model M2, defined by (4.7)-(4.11), involves a smaller number of variables than
that required by model M1, defined by (4.2)-(4.6). Moreover, since each color is associated
with a vertex, M2 implicitly distinguishes between different colors, breaking most of the
symmetries which deteriorate M1. Hence, we may expect an enumerative algorithm based on
model M2 to perform better than an enumerative algorithm based on model M1.

The main result of this section is given by the following theorem, motivating the fact that,
when facing with WVCP, it is better to use model M2 than model M1, even if only a lower
bound has to be computed.

Theorem 4.1. Let z1 be the value of optimal solution of the continuous relaxation C(M1)
of model M1 and z2 the value of the optimal solution of the continuous relaxation C(M2) of
model M2. Then, z2 ≥ z1.

Proof. The proof will be given in two steps:
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(a) given any optimal solution y to C(M2) we derive a feasible solution (x, z) to C(M1)
having the same cost;

(b) given the solution (x, z) found in step (a) we show that in certain situations such a
solution is not optimal for C(M1).

Step (a)
Let y be an optimal solution to C(M2), and define a feasible solution (x, z) for C(M1) as
follows:

for i ∈ V
for h := 1 to i

xih := yih

endfor
for h := i + 1 to n

xih := 0
endfor

endfor
for h := 1 to n

zh := max{wi xih, i ∈ V }
endfor

Such a solution (x, z) satisfies constraints (4.3) by construction, and constraints (4.4) and
(4.5) because the corresponding constraints (4.8) and (4.9) were satisfied by y as well. As to
the solution value, note that, for a given color h, constraints (4.10) imply that wh yhh ≥ wh yih

for each i ≥ h. Moreover, since vertices are sorted by non increasing weights, we have that
wh yih ≥ wi yih for each i ≥ h, thus wh yhh = max{wi yih, i ≥ h}. Finally, noting that
xih = yih if i ≥ h and xih = 0 otherwise, we have that

wh yhh = max{wi xih, i ∈ V } = zh(4.13)

i.e., the contribution of color h to the objective function in C(M1) and C(M2) is the same,
i.e., the cost z2 of solution y for C(M2) is equal to the cost of solution (x, z) for C(M1).

Note that (4.13) implies that, in any feasible solution to C(M1) derived from an optimal
solution to C(M2) using the procedure above, the cost of color h is due only to vertex h and,
vice-versa, vertex h gives a contribution to the objective function which is equal to wh yhh.
Step (b)
Given a solution (x, z) to C(M1) derived from an optimal solution to C(M2), let j and k be
two distinct colors used in this solution, i.e., such that xjj > 0 and xkk > 0. According to
(4.13), the contributions of the two vertices to the objective function are equal to zj = wj xjj

and to zk = wk xkk, respectively.
Suppose that zj > wk xkj i.e., constraint (4.3) associated with vertex k and color j is not

tight, and that all constraints (4.5) involving variable xkj are not tight as well. In this case
there exists ε > 0 such that the new solution

x̃ih =





xkj + ε for i = k and h = j
xkk − ε for i = h = k
xih otherwise

(i ∈ V ; h = 1, . . . , n)
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and
z̃h = max{wi x̃ih, i ∈ V } (h = 1, . . . , n)

is feasible for C(M1). Noting that z̃j = zj and that x̃kk < xkk we have that the cost of
solution (x̃, z̃) is smaller than the cost of solution (x, z), when zk > wixik ∀i 6= k. 2

The following example shows an instance for which z2 > z1.

Example 1.
We are given the simple graph of Figure 4.1 in which the weight of each vertex is indicated
in the circle after the vertex index.

1, 4

3, 2

4, 2

2, 3

Figure 4.1: Simple graph for which the LP relaxations of M1 and M2 have different values.

The optimal solution to C(M2) is given by y11 = 1, y21 = y22 = y32 = y33 = y42 = y43 =
1/2 (the remaining variables being equal to 0), and this solution has cost equal to 13/2.

However, the optimal solution for C(M1) is x11 = 1/2, x12 = x31 = x32 = x41 = x42 =
1/2, x21 = 1/3, x22 = 2/3, z1 = z2 = 2, and has value 4.

Note that model M1 can be strengthened by additional constraints imposing that each
color h, if used, can be assigned only to vertices i ≥ h. Even adding such constraints, the
LP relaxation of M1 produces a lower bound that cannot be better than the one obtained
solving the LP relaxation of M2. Indeed, for the graph of Figure 4.1 the optimal solution to
the strengthened LP relaxation of M1 is x11 = x21 = 1, x32 = x33 = x42 = x43 = 1/2, z1 =
4, z2 = 1, z3 = 1, and has value 6, which is better than 4 but still lower than 13/2. 2

In our algorithm (see Section 4.3) we use the value of the LP relaxation of model M2, as
a lower bound on the optimal solution value for a WVCP instance. The computation of this
lower bound can usually be carried out in short computing time and, in many instances, allows
us to prove optimality of the best solution found (see Section 4.5), stopping the execution of
the heuristic.

In the next section we present another ILP model for WVCP. Since this formulation has
an exponential number of variables, even the computation of its LP relaxation can require
large computing times. Hence, we use such model only as a basis to derive our heuristic
algorithm.

4.2.4 Model M3

Effective models for partitioning-like problems are inspired to the famous ILP formulation
proposed by Gilmore and Gomory [56, 57] for the cutting stock problem, extended to the
classical VCP by Mehrotra and Trick [90].
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Let S denote the family of all the independent sets of G and introduce, for each indepen-
dent set s ∈ S, a binary variable σs taking value 1 iff all the vertices of s receive the same
color. Moreover, for each s ∈ S, let cs = max{wi : i ∈ s} be the maximum weight of the
vertices belonging to s, i.e., the cost to be paid if independent set s is assigned a color. We
obtain the following ILP model for WVCP

min
∑

s∈S

csσs(4.14)

∑

s:i∈s

σs ≥ 1, i ∈ V,(4.15)

σs ∈ {0, 1}, s ∈ S.(4.16)

Objective function (4.14) minimizes the sum of the costs of the selected independent sets,
while constraints (4.15) impose that each vertex is assigned to (at least) one independent set
(i.e., at least to one color). Note that WVCP requires that each vertex is assigned exactly
to one color; however, given an independent set s and a vertex i ∈ s, also t := s \ {i} is an
independent set (if t 6= ∅) and ct ≤ cs. Thus, given a feasible solution to (4.14)–(4.16) which
selects two or more independent sets containing a given vertex i ∈ V , a feasible solution
to WVCP can be obtained by removing vertex i from all the selected independent sets but
one; the cost of such new solution is not bigger than the cost of the original solution. This
property allows us to consider in S all the non dominated independent sets of G (instead of
all independent sets of G), thus reducing the number of variables.

Model (4.14)–(4.16) is a Set Covering Problem (SCP) having a constraint for each vertex
i ∈ V ; hence it is often referred to in the literature as a Set Covering Formulation. This
formulation requires to define a set of binary variables whose number is exponential in n,
hence both defining all the variables (i.e., generating all the independent sets of G) and
solving the associated SCP can be very large time consuming, even when column generation
techniques are used. In order to produce high quality solutions to WVCP in a reasonable
amount of time, we prefer not to solve exactly the model, but we use it to derive an effective
heuristic algorithm. Our approach is heuristic in nature since: (i) we do not consider all the
independent sets of family S but only those belonging to a subfamily S ′ ⊂ S, and (ii) we do
not solve the associated SCP formulation exactly but through a Lagrangian-based heuristic
algorithm from the literature. In the next section we present the general structure of the
algorithm and provide some details of its implementation.

4.3 The 2-phase Heuristic Algorithm

We propose a 2-phase algorithm for WVCP, where a general framework of column generation
(Phase 1) and column optimization (Phase 2), designed for problems with a Set Covering
formulation, is integrated with fast post-optimization procedures applicable to any solution
generated during the computation.

As initialization, we compute a valid lower bound for the WVCP by solving the continuous
relaxation of model M2. In the first phase of the algorithm, a very large number of independent
sets (columns) is produced. We do not use an explicit algorithm to generate the columns,
but we apply in sequence some fast greedy heuristics designed for the problem, possibly
considering different parameter sets. Indeed, each independent set in any heuristic solution
of the original problem corresponds to a column of S. When optimality of the incumbent
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solution is not proved, such columns are stored in the family S ′, which represents a subfamily
of the family S of all the independent sets of the graph. The second phase considers the SCP
instance associated with the columns in S ′ and heuristically solves it through the Lagrangian
heuristic algorithm CFT proposed by Caprara, Fischetti and Toth [23], improving many times
the best incumbent solution.

This approach was successfully used by Monaci and Toth [91] to solve Bin Packing Prob-
lems, while the second phase was used as a post-optimization procedure by Malaguti, Monaci
and Toth [84] in a metaheuristic approach for the classical VCP, where columns from solutions
explored during the search were stored in S ′.

Clearly, the solution using the minimum number of colors (i.e., the optimal solution of
VCP) is not necessarily optimal for WVCP. This suggests that, when generating columns
for WVCP, we do not have to take care only of the number of vertices belonging to the
associated independent sets. Indeed, we would like to generate “balanced” independent sets,
i.e., we would like that vertices having high weights belong to the same independent set,
provided this is feasible. Since the solution found by a greedy algorithm for WVCP depends
on the order in which the vertices are given in input, to obtain a balanced structure in
the columns we generate, the vertices are initially sorted according to decreasing values of
the corresponding weight, thus helping the greedy heuristics to build balanced columns. In
addition, the column generation phase is aimed at generating a large family of different
columns. So, in our approach, the greedy procedures are applied several times, in an iterative
way, locally perturbing the initial order of the vertices, so that different columns are generated.
Every time a new greedy solution is generated, it can be improved by means of two fast post-
optimization procedures described in Section 4.4.

Two drawbacks are evident in this approach: i) a lot of independent sets which are
dominated are generated, and ii) the same independent set can be generated more than once,
thus producing redundant columns. The first problem depends on the fact that we extract
independent sets from feasible colorings. This drawback is solved by using a greedy procedure
that, given an independent set, “completes” it so as to obtain a not dominated independent
set. As to the second problem, a hashing technique is used in order to avoid to store identical
columns (see Monaci and Toth [91] for more details).

Both phases can be stopped as soon as a solution which is proven to be optimal is found,
i.e., if the cost of the best solution found so far is equal to a lower bound for the original
problem.

The overall 2-phase algorithm is structured as follows, where maxiter is a parameter
denoting the maximum number of executions of the greedy algorithms:

begin
Initialization Step
1. Compute a lower bound LB by solving the continuous relaxation of model M2;
2. Set UB = ∞; iter = 0;
3. Set S ′ = ∅;
Phase 1: Column Generation
4. while (iter < maxiter)
5. Apply the greedy heuristics, possibly updating UB;
6. Apply the post-optimization procedures to each generated solution,

possibly enlarging S ′ and updating UB;
7. if LB = UB stop;
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8. Locally perturb the order of the vertices;
9. iter = iter + 1
10. end while;
Phase 2: Column Optimization
11. apply heuristic algorithm CFT to the Set Covering instance corresponding to

subfamily S ′ with a given time limit (possibly updating UB);
12. apply post-optimization procedures (possibly updating UB)
end.

Every new solution that is generated (step 5), is used as starting solution for the post-
optimization procedures (described in section 4.4). The associated solutions are used to
enlarge family S ′ (step 6). The final solution, obtained by Phase 2 in step 11, can be improved
as well through the post-optimization procedures.

4.3.1 Constructive heuristics

This first phase is aimed at generating different (and possibly high quality) solutions for the
problem. We use 7 different algorithms designed for WVCP, inspired from greedy algorithms
proposed for VCP. As mentioned before, in order to reduce the number of high cost indepen-
dent sets in the solution, it is useful to assign the vertices with high weight to the same color
class. Thus, since the greedy algorithms we implemented fill each color class in sequential
order of the vertices, we sort the vertices according to decreasing values of the corresponding
weight. The same ordering is used for one iteration of all the greedy algorithms. Before
performing a new iteration, this ordering is locally perturbed (see Section 4.5 for details). In
this way the greedy algorithms are able to produce different solutions (and hence different
columns) still maintaining a global ordering of the vertices.

In the generation we use a sequential coloring algorithm called SEQ and 6 versions of the
DSATUR algorithm, originally proposed for the classical VCP.

The simplest greedy algorithm proposed for VCP is the SEQ algorithm [72]. It works
according to a first-fit policy: vertex 1 is assigned to the first color class and each remaining
vertex is assigned to the first color class where it fits. If the vertices are sorted according to
decreasing weights, the color classes are filled by vertices having similar weight.

DSATUR [20, 72] is similar to SEQ, with the difference that each vertex i has associated
a score k(i) and, at each iteration, the vertex having the maximum score is selected and
assigned to the lowest indexed color class where it fits. Ties are broken according to the order
in which the vertices are considered. In the classical VCP, the score of each vertex i is given
by the number of distinctly colored adjacent vertices (i.e., the chromatic degree δχ(i)), thus
at the beginning of the computation, when δχ(i) = 0 for every vertex i (no vertex is colored),
the first vertex in the order is considered. This rule should force “difficult” vertices to be
colored at the beginning. In the generation phase, we use the original DSATUR algorithm
and 4 variants giving an increasing importance to the weight wi of vertex i in the computation
of the score k(i):

• k(i) = δχ(i);

• k(i) = δχ(i) ln(1 + wi);

• k(i) = δχ(i)
√

wi;
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• k(i) = δχ(i)wi;

• k(i) = δχ(i)w2
i .

The last considered variant of the DSATUR algorithm implements the original score, but
it is based on the consideration that assigning vertex i to the first indexed color class where i
fits is not always the best choice. Therefore, in this variant of DSATUR, vertex i is assigned
to the best color class where it fits according to the following greedy rule:

• If no color class is available with a cost greater than wi, the algorithm selects color class
h such that wi − ch is minimal;

• If one or more color classes are available with a cost greater than wi, the algorithm
selects color class h such that ch − wi is minimal.

Every solution generated is this phase can be improved by means of the post optimization
procedures described in Section 4.4.

Columns (independent sets) can then be extracted from each greedy solution. From each
column, the algorithm generates two not dominated (possibly) different columns to be inserted
in S ′:

• the first one with no cost increase;

• the second one with a maximum cost increase proportional to the original cost of the
column.

In both cases, fixed the cost threshold, the completion to a not dominated column is performed
greedily, picking vertices according to the input ordering and trying to insert them into the
column, if this is feasible and if their weight does not exceed the cost threshold on the column.

As anticipated, in order to avoid the insertion in S ′ of identical columns, all the columns
are checked by means of a hashing technique.

4.3.2 Column Optimization

The second phase of the algorithm is executed when the best solution found in Phase 1 is not
proved to be optimal. This phase consists of the heuristic solution of the Set Covering instance
corresponding to the columns stored in S ′ through the heuristic algorithm CFT [23]. This
Lagrangian algorithm can handle very large Set Covering instances, producing good (possibly
optimal) solutions within short computing time. In addition, algorithm CFT computes an
“internal” lower bound (not valid for WVCP) on the value of the optimal solution of the
corresponding Set Covering instance and its execution can be stopped as soon as this lower
bound equals the value of the best incumbent solution for WVCP. It must be noted that in
our approach, even when we are able to solve the Set Covering instance to optimality, this
does not imply optimality for the original problem, since we do not consider the complete
family S of all the not dominated independent sets of G, but only a subfamily S′.

4.4 Post-optimization procedures

We propose two different post-optimization procedures, which can be applied to any binary
matrix corresponding to the columns of a feasible solution of the Set Covering Model (4.14)–
(4.16). In these matrices row i corresponds to vertex i of weight wi, and column j corresponds
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to the j− th color class, whose cost cj equals the maximum weight of the vertices assigned to
that color class, i.e., to the maximum weight of the rows “covered” by column j (i.e., of the
rows having an entry of value 1 in column j).

4.4.1 An ILP model for matrix post-optimization

Since the (possibly optimal) solution found by solving the Set Covering instance associated
with family S ′ can cover some row more than once (i.e., can associate more than one color to
some vertex i ∈ V ), while WVCP requires to assign one color to each vertex, the first post-
optimization procedure is aimed at determining the best way to remove the “overcovered”
vertices (i.e., the vertices covered more than once) from some color classes, if this reduces the
corresponding cost.

More formally, given a binary matrix where some rows are covered more than once, each
row i has associated a weight wi and the cost of column j equals the maximum weight of the
rows covered by column j, the problem is to delete a set of 1-entries from the overcovered
rows in such a way that the cost reduction is maximized and each row is still covered. This
problem is NP-complete, as discussed in the next Section.

We propose an ILP model for the solution of the problem above. The cost of a column j
can be reduced only by iteratively deleting the “heaviest” 1-entry from j. Let M = {1, . . . , m}
be the set of the overcovered rows and N = {1, . . . , n} be the set of the columns covering at
least one overcovered row, and such that the first row covered by the column is overcovered in
the original matrix (these are the only columns whose cost can be reduced). In the following
we will use indices i ∈ M, j ∈ N and k = 1, . . . , qj , where qj denotes the number of 1-entries
of column j (i.e., the number of rows covered by column j). Let Rk

j be the saving that can
be obtained by deleting the first k 1-entries from column j, ηi the number of times row i is
covered, and aj

ik a coefficient equal to 1 if row i is among the first k rows covered by column
j and 0 otherwise. We consider binary variables βj

k having value 1 if the first k 1-entries are
deleted from column j and 0 otherwise, obtaining the following ILP:

max
∑

j∈N

qj∑

k=1

Rj
kβ

j
k(4.17)

∑

j∈N

qj∑

k=1

aj
ikβ

j
k ≤ ηi − 1, i ∈ M,(4.18)

qj∑

k=1

βj
k ≤ 1, j ∈ N,(4.19)

βj
k ∈ {0, 1}, j ∈ N ; k = 1, . . . , qj .(4.20)

Objective function (4.17) maximizes the reduction of the matrix cost, constraints (4.18)
impose that each row remains covered at least once, and constraints (4.19) impose that for
each column j at most one variable βj

k is set to 1, and hence that each 1-entry can be deleted
at most once. Constraints (4.20) impose β variables to be integer.

This model can be used to improve the solution obtained by Phase 2, where usually some
rows are covered more than once. In the matrices representing solutions obtained by the
greedy algorithms considered in Phase 1, where each vertex receives exactly one color, each
row is covered exactly once. These matrices can however contain dominated columns, which
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can be “completed” (i.e., additional 1-entries can be inserted in the columns with no cost
increase) in order to possibly re-optimize the resulting matrix. We complete columns in the
following greedy way: for each row i such that its weight is the heaviest of the corresponding
column j (i.e., this 1-entry determines the cost of column j), we try to insert an additional
1-entry for row i, on a column h with ch ≥ wi. The post-optimization procedure could then
delete the 1-entry from column j, thus reducing its cost.

Complexity

We prove that the post-optimization problem is NP-complete by polynomial reduction to the
VCP. The proof holds on the fact that the VCP of a graph with stability number α < 4
remains NP-complete. We prove in Theorem 4.2. that reducing a covering of the vertices of
G to a minimal covering is NP-complete, even if the number of columns is O(|V |P ), with
P ≥ 3. In Theorem 4.3. we prove that this is NP-complete even if the the number of columns
is O(|V |), and finally, in Theorem 4.4., we prove that the problem corresponding to the post-
optimization procedure we propose is a generalization of the reduction of a cover of cardinality
O(|V |) to a minimal cover.

Theorem 4.2. Let G=(V,E) be a graph and S a collection of independent sets of G, such
that |S| = O(|V |P ), with P ≥ 3, and

⋃
S∈S S = V . The problem of finding S ′ ⊆ S of minimum

cardinality, such that
⋃

S∈S′ S = V , is NP-Complete.

Proof. Consider a graph G with α < 4 and S the collection of all the independent sets of
G. Then |S| = O(|V |3), and the problem of finding S ′ is the VCP of G. 2

In the binary matrices we consider, we have at most O(V ) columns, thus we need the
following:

Theorem 4.3. Let G=(V,E) be a graph and S a collection of independent sets of G, such
that |S| = O(|V |) and

⋃
S∈S S = V . The problem of finding S ′ ⊆ S of minimum cardinality,

such that
⋃

S∈S′ S = V , is NP-Complete.

Proof. Consider the same graph G of the proof of Theorem 4.2., and add |S| isolated vertices
to V , thus obtaining a new vertex set V ∗ and a new graph G∗. Add each isolated vertex to
each set in S, thus obtaining S∗, which is a collection of independent sets of G∗ such that
|S∗| < |V ∗| and

⋃
S∈S∗ S = V ∗. The problem of finding S ′ of G∗ is the VCP of G∗ and of G. 2

Theorem 4.4. Let G=(V,E) be a graph with positive weights ci associated to the vertices and
S = {S1, ..., Sk} a collection of independent sets of G, such that

⋃
S∈S S = V and, ∀Sj ∈ S,⋃

S∈S\{Sj} S ⊂ V (thus, k ≤ |V |). The problem of finding a collection S ′ = {Ŝ1, ..., Ŝk}, such
that Ŝj ⊆ Sj, j = 1, ..., k,

⋃
Ŝ∈S′ Ŝ = V and

∑k
j=1 maxi∈Ŝj

{wi} is minimum, is NP-complete.

Proof. Consider the same graph G∗ of the proof of Theorem 4.3., and set wi = 1 for i ∈ V ∗.
Add a clique of |S∗| vertices {v1, . . . , v|S∗|}, not connected to vertices of G∗, and set ci = 0
for i ∈ {v1, . . . , v|S∗|}, thus obtaining G∗∗. Starting from S∗ = {S∗1 , . . . , S∗|S∗|}, define the
collection S∗∗ = {S∗1 ∪ {v1}, . . . , S∗|S∗| ∪ {v|S∗|}}. Collection S∗∗, for graph G∗∗, satisfies the
conditions of Theorem 4.4. for S. Moreover, finding S ′ is the VCP of G∗ and G. 2
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4.4.2 An Assignment based procedure for matrix post-optimization

The second post-optimization procedure is designed for matrices (having n rows and n
columns) corresponding to feasible solutions of WVCP, where each row is covered exactly
once. The idea is to randomly delete a 1-entry from each of the n columns, thus uncovering n
rows. Each uncovered row s can be covered again by using the original column j or a different
column h (if column h still represents an independent set of graph G after the insertion of a
1-entry in row s).

More in detail, after having deleted a 1-entry from each column, let M = {r1, . . . , rs, . . . ,
rn} be the set of the uncovered rows, and cj be the cost of column j after the deletion. We
can minimize the cost of covering the rows in M by solving an Assignment Problem (AP) on
a cost matrix ksj . The cost ksj of covering the uncovered row rs (s = 1, . . . , n) with column
j (j = 1, . . . , n), i.e., the cost of coloring vertex rs with color j, can be computed as follows:

• ksj = ∞ if, with the insertion of a 1-entry in row rs, column j does not represent an
independent set of graph G;

• ksj = max{0, wrs − cj} otherwise (note that this value represents also the insertion cost
of row rs into an empty column, whose cost is 0 by definition).

The post-optimization procedure can reduce the matrix cost only when, at least in one column,
the 1-entry of maximum weight is deleted, and the new maximum weight 1-entry in that
column has a strictly lower weight (otherwise the cost of the column will remain unchanged).
When each column has more than 1-entry of maximum weight, the matrix cost cannot be
reduced by means of post-optimization procedures which remove at most one vertex at a time.

The post-optimization procedure takes in input graph G = (V, E), the vertex weights (wi)
and a (nxn) binary matrix (Mij), corresponding to a feasible solution of WVCP, and works
as follows:

begin
1. randomly delete a 1-entry rj from each column j (j = 1, . . . , n) of matrix Mij

(let cj be the cost of column j after the deletion);
2. compute the cost reduction c red of the new matrix with respect to the original one;
3. for s = 1, . . . , n
4. for j = 1, . . . , n
5. if ∃l ∈ V : Mlj = 1 and (rs, l) ∈ E then ksj := ∞
6. else ksj := max{0, wrs − cj}
7. end for
8. end for
9. for j = 1, . . . , n + 1
10. kn+1,j := 0
11. end for
12. for s = 1, . . . , n
13. ks,n+1 := wrs

14. end for
15. solve the Assignment Problem AP (K) corresponding to the (n + 1)x(n + 1) cost

matrix ksj ;
16. if c red− cost(AP (K)) > 0 then update the solution matrix according to

the solution of AP (K)
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end

On line 5 we set the cost ksj to ∞ when the assignment of row rs to column j cannot be
performed without violating any adjacency constraint on G (i.e., a constraint imposing that
the columns must represent independent sets of G), otherwise we compute the correct cost
on line 6. We wish to allow a 1-entry to move to a new empty column having current cost 0,
when this can reduce the global cost of the solution matrix, so we consider an AP associated
with an (n + 1)x(n + 1) cost matrix where the last column of the cost matrix equals the row
weights (cost to be paid for the use of a new empty column) and the last row contains values
equal to 0 (cost corresponding to the assignment of no 1-entry to a column, line 10). The
AP has always a trivial solution of value c red, consisting of the reassignment of the deleted
1-entries to their original columns, but it can have better optimal solutions.

This post-optimization procedure can be used to improve all the greedy solutions generated
in Phase 1, where each row is covered exactly once. It can also be applied to the solution
matrix found by Phase 2, after the application of the post-optimization procedure described
in Section 4.4.1.

4.5 Computational Analysis

The post-optimization procedures were coded in ANSI C and compiled with full optimization
option; all the other procedures, including algorithm CFT [23], were coded in ANSI FOR-
TRAN77 and compiled with full optimization option. The LP relaxation of the ILP model
M2 proposed in Section 4.2.2 was solved with CPLEX 9.0. The programs were run on a PIV
2.4MHz with 512MB RAM under Windows XP.

We tested our codes on two different sets of instances: the first set was proposed during a
computational symposium on VCP and its generalizations [106], held in 2002, when weights
were added to vertices of the original DIMACS benchmark graph instances [73]. These in-
stances correspond to different graph types and have been used for evaluating the performance
of VCP algorithms. In our experiments we considered all the random graphs (DSJCn.x), a
subset of geometric random graphs (Geomn) (the smallest ones were disregarded) and all the
“quasi-random” graphs (Rn x), where n denotes the number of vertices and x/10 is the den-
sity of the graph. Our second set of instances is composed by problems from Traffic Matrices
associated to TDMA Traffic Assignment, proposed by Ribeiro, Minoux and Penna [99] and
by Prais and Ribeiro [94], and available for download at [3].

All the computing times of the experiments reported in this Section are expressed in
seconds of a PIV 2.4GHz. To allow a meaningful - although approximate - comparison of
the computing times obtained on coloring problems with different machines, a benchmark
program (dfmax), together with a benchmark instance (r500.5), are available. Computing
times obtained on different machines can be scaled w.r.t. the performance obtained on this
program (our machine spent 7 seconds “user time”).

4.5.1 Weighted Vertex Coloring Instances

In this Section we report the results obtained on 46 instances from [106]. No computational
experience on these instances is reported in the literature.
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In order to derive a lower bound on the optimal value of each instance, we solve the
LP relaxation of ILP model M2 proposed in Section 4.2.2. We strengthen the model by
replacing the incompatibility constraints (4.9) between adjacent vertices with a set of clique
constraints (4.12), detecting cliques K ∈ K(h) in the following heuristic way: for each color
h and for each edge (i, j) such that i, j ≥ h, we compute a maximal clique K containing
i, j and vertices having index larger or equal to h. This clique is initialized with vertices i
and j, and then enlarged by iteratively adding new vertices, at each iteration considering the
remaining vertices according to a non increasing degree ordering, and adding to the clique
the first vertex which can fit (this simple greedy algorithm for the computation of a maximal
clique is derived from the algorithm proposed by Johnson in [71]). The LP relaxation of the
resulting model, involving O(n.m) clique constraints, was solved with CPLEX 9.0 by using
the barrier algorithm with a time limit of 30 seconds. The choice of the barrier algorithm is
due to its performance on the set of instances considered, outperforming the primal and dual
simplex algorithms. For 44 instances over 46 (see above) the LP relaxation could be solved
within the time limit, providing a valid lower bound for the problem; for the remaining two
instances, the LP relaxation was not solved to optimality within the time limit, hence no
lower bound is available for these instances.

This lower bound LB, when successfully computed, is passed to the subsequent 2-phase
heuristic algorithm of Section 4.3, whose execution is stopped as soon as an incumbent solution
of value LB (i.e., an optimal solution) is found. All the results concerning the heuristic
algorithm are obtained by applying in sequence the ILP based post-optimization and the
Assignment based post-optimization procedures to all the greedy solutions generated during
Phase 1, and to the final solution obtained by Phase 2. Due to the small size of the associated
problems, the ILPs (4.17)-(4.20) can be solved to optimality within short computing times
by CPLEX 9.0. Since the solutions found by the Assignment based procedure depend on the
vertices (rows) randomly deleted from the columns corresponding to the current solution, we
apply, for 10 times, the procedure to all the solutions generated during the computation, after
the ILP-based procedure, by increasing at every iteration the probability that the first vertex
of each column is deleted. At the first iteration the Assignment based procedure takes in
input the output of the ILP-based procedure. The solution produced is then used as input for
its next iteration, according to a local search paradigm. Considering the nj vertices covered
by a given column j according to non increasing weights, the probability pi of the i−th vertex
to be deleted from column j is given by:

p1 = (iter + 1)/(iter + nj)(4.21)
pi = 1/(iter + nj) for i = 2, . . . , nj(4.22)

where iter = 1, . . . , 10 represents the current iteration of the procedure. The Assignment
Problem is solved at every iteration by means of the Hungarian Algorithm, with the imple-
mentation described by Carpaneto, Martello and Toth [28].

During Phase 1, several executions of each greedy algorithm are performed: at each
execution, a small perturbation of the input ordering of the vertices is performed. The
algorithm is able to generate different columns, and it is stopped as soon as 50 iterations are
performed without generating new columns. Our experiments showed that using a stronger
perturbation of the input order would allow the algorithm to generate many more different
columns, but the quality of the final solution (i.e., the solution after phases 1 and 2) would be
worse. The reason is that too many “bad” (i.e., not balanced) columns would be generated,
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thus leading to large Set Covering instances, where it would be difficult, during Phase 2, to
find a good solution. This suggests that it is better to generate few good columns than a large
number of columns of low quality. The perturbation is obtained by swapping two vertices in
the current ordering with a probability p = 40%. As for the completion of the columns to not
dominated columns, the algorithm generates, from each column, two not dominated (possibly)
different columns: the first one with no cost increase, the second one with a maximum cost
increase ∆c, with ∆c = 1.5σ, where σ represents the standard deviation of the weights of the
vertices of graph G.

Table 4.1 reports the computational results obtained by stopping Phase 1 after 500 iter-
ations and Phase 2 after 75 seconds. For each instance, the following information are given:

• the instance name, number of vertices (n) and of edges (m);

• the lower bound (LB), corresponding to the rounded up solution value of the LP re-
laxation described above, and the total time (TLB) required for the computation of this
lower bound, including the heuristic generation of the maximal cliques for constraints
(4.12) - for this reason the time limit of 30 seconds can be exceeded;

• the number of different columns (#col) generated during Phase 1;

• the best solution value found during Phase 1 (z1) and after Phase 2 (z2), respectively
(the latter is reported only when improved with respect to the former);

• the computing time of Phase 1 (T1), corresponding to the column generation and the
post-optimization of every generated solution, and the computing time of Phase 2 (T2),
including the post-optimization of the final solution;

• the improvements on the best solution values, obtained by applying the post-optimization
procedures, with respect to the best solution values which can be obtained without the
post-optimization procedures, after Phase 1 (∆1), and at the end of the computation
(∆2).

Finally, the last row of the table (
∑

) reports the sum of the corresponding computing
times.

The table shows that, over the 46 instances of our test bed, 12 can be solved to proven
optimality during Phase 1, confirming the effectiveness of the constructive heuristics proposed
in Section 4.3.1 (optimal solutions are reported in bold). On the remaining 34 instances, the
second phase of the algorithm was able to improve the incumbent solution 17 times, finding
a proven optimal solution for 10 additional instances. In addition, we ran the ILP model
M2 with a very long time limit on the 24 instances for which optimality was not proven,
finding that 6 additional solutions (marked with a ∗ in Table 4.1) are actually optimal, even
if the algorithm is not able to prove it. The post optimization procedures are quite effective,
improving 8 times the incumbent solution after Phase 1 and 7 times the final solution after
the two phases. E.g., for instance R50 9gb, ∆1 = 7 and ∆2 = 1 means that without the post
optimization procedures, the output of Phase 1 would have been 269 (instead of 262), and
that the output after Phase 2 would have been 263 (instead of 262). In other words, Phase
2 would have improved the solution from 269 to 263, while the use of the post optimizations
leads to a solution of 262 after Phase 1, without further improvement on Phase 2. The only
instance for which the post-optimization procedures worsen the solution is DSJC125 5gb,
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Table 4.1: Results on instances derived from DIMACS instances.
Instance n m LB TLB #col z1 z2 T1 T2 ∆1 ∆2

DSJC125 1g 125 736 19 27 27471 24 82 70
DSJC125 1gb 125 736 74 26 15381 95 100 70
DSJC125 5g 125 3891 34 19540 76 110 70
DSJC125 5gb 125 3891 35 14540 260 251 112 70 -1
DSJC125 9g 125 6961 152 55 665 173 *169 157 5 1
DSJC125 9gb 125 6961 568 42 744 628 605 167 70 5
GEOM30b 30 111 12 6 12 12 0 0
GEOM40b 40 197 16 0 166 16 1 0
GEOM50b 50 299 18 0 26 18 0 0
GEOM60b 60 426 23 0 52 23 0 0
GEOM70 70 337 47 1 11502 48 47 96 0
GEOM70a 70 529 73 0 1325 73 3 0
GEOM70b 70 558 24 1 2459 24 6 0
GEOM80 80 429 66 2 75 66 0 0
GEOM80a 80 692 76 3 16232 78 76 100 2
GEOM80b 80 743 27 3 24005 28 27 88 2
GEOM90 90 531 61 3 18009 62 61 97 69
GEOM90a 90 879 73 4 17094 75 73 101 56 1
GEOM90b 90 950 30 5 5424 30 11 0
GEOM100 100 647 65 4 20907 66 65 100 31
GEOM100a 100 1092 89 7 23982 91 89 104 8
GEOM100b 100 1150 32 7 7767 32 15 0
GEOM110 110 748 66 7 23641 69 102 70
GEOM110a 110 1317 97 12 25172 102 97 106 5 2
GEOM110b 110 1366 37 19 3024 37 5 0
GEOM120 120 893 72 8 32198 73 72 104 53 1
GEOM120a 120 1554 105 10 34597 107 105 108 28
GEOM120b 120 1611 35 28 9615 35 14 0 1

R50 1g 50 108 14 0 49 14 0 0
R50 1gb 50 108 52 0 759 54 *53 94 1
R50 5g 50 612 35 1 984 *37 97 70
R50 5gb 50 612 126 1 922 137 75 70 1
R50 9g 50 1092 73 1 134 *74 36 0 1
R50 9gb 50 1092 257 1 148 *262 33 0 7 1
R75 1g 70 251 17 4 10800 19 84 70
R75 1gb 75 251 63 4 6509 72 96 70 1 1
R75 5g 75 1407 43 6 4024 53 102 70
R75 5gb 75 1407 160 6 3653 199 190 103 70 6
R75 9g 75 2513 108 3 249 *110 79 0
R75 9gb 75 2513 393 3 295 399 50 0 12 1
R100 1g 100 509 18 13 19957 22 85 70
R100 1gb 100 509 70 16 9135 84 101 70
R100 5g 100 2456 48 28 11270 62 109 70
R100 5gb 100 2456 182 32 9332 234 109 70
R100 9g 100 4438 138 11 408 143 142 53 70
R100 9gb 100 4438 499 11 501 529 520 120 7∑

490 3322 1458
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where the final solution after Phase 2 is 251, while it could be 250 without the use of the
procedures. This can be explained by the different columns that are considered for the Set
Covering instance, leading the heuristic search of algorithm CFT to a slightly worse solution.

4.5.2 Traffic Decomposition Matrix Instances

In this Section we report the results obtained on instances of the Matrix Decomposition
Problem in TDMA Traffic Assignment.

These traffic matrices have to be decomposed into mode matrices (i.e., matrices where
no more than one non zero element is present in each row and column), in such a way that
the sum of the costs of all the mode matrices is minimized, where the cost of each mode
matrix equals the maximum of its non zero elements. We can transform each instance of the
problem into a WVCP instance, by constructing the corresponding graph G, where every non
zero element corresponds to a vertex of the same weight and vertices in each row and column
are grouped into cliques of G. We take no advantage from the knowledge of the particular
structure of the corresponding graph, and apply the general 2-phase algorithm to these special
structured graphs, with a proper tuning of the parameters.

Two subsets of instances were proposed in the literature: the p.n instances (having up to
138 vertices and 1186 edges) that were solved to optimality by Ribeiro, Minoux and Penna
[99], and heuristically by means of a GRASP algorithm by Prais and Ribeiro [94], and the
R.n instances (having up to 301 vertices and 4122 edges) that were heuristically solved by
means of the GRASP algorithm [94].

For each of the 35 p.n instances, Table 4.2 reports information similar to those given
in Table 4.1; in addition, the last two columns of the table give the solution value (zPR)
found by Prais and Ribeiro [94] and the corresponding computing time (TPR) on a IBM
9672 model R34 mainframe computer (note that instances p37 and p39 are missing from the
instance set). The results of Table 4.2 have been obtained without imposing a time limit in
the computation of the LP relaxation of model M2 (the corresponding computing time was
always negligible), using no post optimization procedures, performing at most 50 iterations
of each greedy algorithm and stopping Phase 2 after a time limit of 1 second.

Further, we applied the Assignment based post optimization procedure, as explained in
the previous Section, to the two instances not solved to optimality, namely instances p13 and
p42. The last two rows of Table 4.2 report the corresponding results. The optimal solution
of instance p13 was obtained by using the standard set up of the parameters for this set
of instances, while the optimal solution of instance p42 was obtained by performing, during
Phase 1, 500 iterations of the greedy algorithms with a different perturbation of the vertices,
and a longer time limit (6 sec.) in Phase 2, thus it is marked with a star ?.

The 2-phase Algorithm without the post-optimization procedures is able to find the op-
timal solution on 33 over 35 instances, outperforming on this set of instances the approach
proposed in [94], that finds the optimal solution on 31 instances over 35. The computing
times are roughly comparable if we consider that our machine is from 40 to 60 times faster
[42]. In addition, our approach is more general since it was not designed by considering the
special structure of the p.n instances. When we add the Assignment based post-optimization
procedure, the 2-phase Algorithm is able to find the optimal solution on 34 instances over 35,
and on all the 35 with an ad hoc setting of the parameters for instance p42.

We also considered the 30 R.n instances, proposed in [94]. These instances have the same
structure as the p.n instances, but are larger. On these instances our approach does not
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Table 4.2: Results on Traffic Decomposition Matrix Instances.
Instance n m LB TLB #col z1 z2 T zPR TPR

p06 16 38 565 0.0 61 565 0.4 565 1.1
p07 24 92 3771 0.0 79 3771 0.1 3771 4.0
p08 24 92 4049 0.0 179 4074 4049 1.3 4049 1.3
p09 25 100 3388 0.0 36 3388 0.1 3388 3.0
p10 16 32 3983 0.0 0 3983 0.1 3983 4.5
p11 18 48 3380 0.0 0 3380 0.1 3380 4.7
p12 26 90 657 0.0 0 657 0.1 657 3.8
p13 34 160 3220 0.1 673 3255 3225 2.3 3230 7.8
p14 31 110 3157 0.0 85 3157 0.1 3157 10.1
p15 34 136 341 0.1 101 341 0.1 341 4.7
p16 34 134 2343 0.1 414 2343 0.5 2343 14.5
p17 37 161 3281 0.1 876 3334 3281 1.4 3281 5.5
p18 35 143 3228 0.1 160 3228 0.2 3228 10.4
p19 36 156 3710 0.1 0 3710 0.1 3710 14.6
p20 37 142 1830 0.1 914 1860 1830 1.3 1860 20.0
p21 38 155 3660 0.1 164 3660 0.2 3660 18.4
p22 38 154 1912 0.1 232 1912 0.2 1912 20.0
p23 44 204 3770 0.1 1357 3790 3770 1.4 3810 21.4
p24 34 104 661 0.1 0 661 0.1 661 27.9
p25 36 120 504 0.1 0 504 0.1 504 23.9
p26 37 131 520 0.1 0 520 0.1 520 28.3
p27 44 174 216 0.1 259 216 0.2 216 7.8
p28 44 164 1729 0.1 0 1729 0.1 1729 44.5
p29 53 254 3470 0.1 0 3470 0.1 3470 65.7
p30 60 317 4891 0.2 2594 4902 4891 2.1 4891 56.6
p31 47 179 620 0.1 0 620 0.1 620 70.9
p32 51 211 2480 0.1 0 2480 0.0 2480 70.9
p33 56 258 3018 0.2 0 3018 0.1 3018 62.3
p34 74 421 1980 0.3 171 1980 0.1 1980 131.9
p35 86 566 2140 0.5 183 2140 0.1 2140 135.0
p36 101 798 7210 0.9 48 7210 0.1 7210 163.1
p38 94 537 2130 0.6 972 2130 0.4 2130 70.5
p40 86 497 4879 0.5 439 4984 0.2 4984 224.2
p41 116 900 2688 1.3 351 2688 0.1 2688 313.7
p42 138 1186 2466 2.1 5314 2509 2.8 2480 405.8

p13.col 34 160 3220 0.1 664 3255 3220 8.7 3230 7.8
?p42.col 138 1186 2466 2.1 20191 2503 2466 99.8 2480 405.8
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work well, because too many columns must be generated during Phase 1 in order to set up
a “good” subfamily S ′. In addition, Phase 2 is able to improve on the best greedy solutions
only in 3 cases over 30 (the Assignment based post-optimization procedure being used). So
we were able to find (in comparable computing times) only 3 times a solution better than
the one reported in [94] (and two of these improvements correspond to the instances where
Phase 2 is effective), 9 times a solution of the same value and in the remaining 18 cases a
worse solution.

4.6 Conclusions

This paper presents 3 ILP models and a 2-phase heuristic algorithm for a Weighted Vertex
Coloring Problem, for which there is theoretical interest but lack of computational work. In
particular, the second model is aimed at breaking symmetries appearing into classical VCP
models, and its continuous relaxation yields a good lower bound on the optimal solution of the
problem. The heuristic algorithm is based on the Set Covering formulation of the problem, in
which variables correspond to independent sets. In the first phase a large number of feasible
solutions is generated by means of fast greedy heuristics designed for the problem; every
generated solution can be improved by using two post optimization procedures, the first based
on the optimal solution of an ILP model, the second on the solution of an Assignment Problem.
In the second phase an associated set-covering instance is solved by using a Lagrangian-based
heuristic algorithm from the literature.

Extensive computational results on two sets of instances from the literature are reported,
the first set being composed of general graphs and the second set of graphs obtained from
Traffic Matrices from TDMA Traffic Assignment. The reported computational experiments
show the effectiveness of the approach, where each component of the Algorithm is able to
improve the best incumbent solution, and the lower bound is able to prove the optimality of
many solutions. On a class of the second set of instances, the 2-phase algorithm outperforms
a specialized algorithm, that was specifically designed by considering the particular structure
of the instances.

The two main contributions of this paper are represented by the definition of model M2
and by the two post optimization procedures. In particular, these procedures, as well as the
overall 2-phase approach, can be applied to combinatorial optimization problems that can be
formulated as a Set Covering Problem, and where the costs have the special structure of the
considered problem, see e.g. the Level Strip Packing Problem with Shelves (Lodi, Martello
and Vigo [83]).

In future work, we plan to better explore the properties of model M2, and to implement
the LP relaxation of the Set Covering model M3 in a column generation framework, in order to
design effective exact algorithms. In addition, we would like to apply the 2-phase algorithm
to different problems with a Set Covering formulation and the same cost structure of the
columns. It would be also interesting to solve the second phase (column optimization) by
using a different approach to the Set Covering Problem, in order to improve the results on
some instances where the Lagrangian heuristic algorithm we have used has a not satisfactory
performance.



Chapter 5

Lower and Upper Bounds for the
Bounded Vertex Coloring Problem

1

We address a particular Vertex Coloring Problem, where each vertex i has associated a
positive weight wi, and the sum of the weights of the vertices assigned to the same color cannot
exceed a given capacity C. The problem, known as the Bounded Vertex Coloring Problem
or Bin Packing Problem with Conflicts, is of practical and theoretical interest, because of its
many real-world applications and because it generalizes both the Bin Packing Problem and
the Vertex Coloring Problem. We present new lower and upper bounds and investigate their
behavior by means of computational results on benchmark instances.

5.1 Introduction

This paper considers a Bounded Vertex Coloring Problem, where, given a graph G = (V, E),
each vertex i has associated a positive weight wi. As in VCP, one is required to assign a
color to each vertex in such a way that adjacent vertices have different colors, and the total
number of colors is minimized. The problem asks to satisfy an additional constraint: the
total capacity of colors is bounded, i.e. the sum of the weights of the vertices assigned to the
same color cannot exceed a given capacity C, which is the same for all colors.

The same problem can be interpreted as a Bin Packing Problem with Conflicts (BPPC),
in which we are given n items i with weight wi and an infinite number of identical bins of
capacity c. Two items i and j are said to be conflicting if and only if they cannot be assigned
to the same bin. The aim of the problem is to assign all items in the minimum number of bins,
while ensuring that the total weight of all items assigned to a bin does not exceed the weight
capacity and that no bin contains conflicting items. Since in the following we will use and
extend some results from the Bin Packing literature, we will use the Bin Packing terminology,
thus considering ”items and bins”, and V will be the set of items. However, this terms are
perfectly interchangeable with ”vertices and colors”, if the reader is more comfortable in a
VCP setting.

Thus, the problem we tackle is a BPP with incompatibilities described by a conflicting
graph G = (V,E), where each item corresponds to a vertex, and two vertices are connected

1Preliminary results of this chapter appear in [47].
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by an edge when the corresponding items are pairwise incompatible. Note that this graph
does describe the incompatibilities due to the capacity constraints. In other words, if two
items, when considered together, exceed the bin capacity, there is not necessarily an edge
connecting them in G. In addition to graph G, we consider graph G′ = (V, E′), with E′ =
E ∪ {(i, j) ∈ E : wi + wj > C}. Incompatibility graph G′ describes all the incompatibilities
of the problem.

This problem generalizes both the classical VCP, which is a special case of BPPC where
wj = 0 for j = 1, . . . , n; as well as the Bin Packing Problem (BPP, see Martello and Toth
[88]), which is a special case of the BPPC where no item is in conflict with another item, i.e.,
E = ∅;

Some well-known applications of the problem concern examination scheduling (see, La-
porte and Desroches [78]), the assignment of processes to processors and the load balancing
of tasks in parallel computing (see Jansen [66]), and particular delivery problems where some
substances cannot be placed in the same vehicle (see Christofides, Mingozzi and Toth [31]).
A similar problem, where a number of conflicting examinations have to be scheduled in the
smallest number of periods, under capacity restrictions, was considered by Carter, Laporte
and Lee in [29], where greedy heuristics are reported.

The Bounded Vertex Coloring Problem with all weights equal to 1 was considered by
Hansen, Hertz and Kuplinsky in [60], where upper and lower bounds, as well as complexity
results are given. Jansen and Oehring [67] and Jansen [66] have shown that, for general graph,
no polynomial time approximation schemes can be derived, while they derive polynomial time
approximation schemes for special classes of graphs. Baker and Coffman [11] derived similar
results for the problem where vertices weights can be larger that one, while Bodlaender and
Jansen [17] considered the complexity of the problem for different conflict graph classes.

The most relevant computational work on BPPC was provided by Gendreau, Laporte and
Semet [55]. In [55] the authors survey the previous results in the literature of the BPPC,
present new lower and upper bounds and introduce benchmark instances used to test the
behavior of the algorithms.

This paper is aimed at providing new lower and upper bounds for the BPPC and to provide
their efficacy be extensive computational results. In Section 5.3 we survey lower bounds from
the literature and introduce new ones. In Section 5.4 we present several upper bounds, both
new and from the literature, and adapt to the BPPC the metaheuristic developed for the
VCP by Malaguti, Monaci and Toth [84]. In Section 5.5 we give the computational results
obtained.

5.2 ILP model

The BPPC can be modelled (see Gendreau, Laporte and Semet [55]) by introducing the
following variables:

yh =

{
1 if bin h is used
0 otherwise

(5.1)

for h = 1, . . . , n, and

xih =

{
1 if item i is assigned to bin h
0 otherwise

(5.2)
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for i = 1, . . . , n, h = 1, . . . , n. We obtain the following model:

min
n∑

h=1

yh(5.3)

n∑

h=1

xih = 1 i = 1, . . . , n(5.4)

n∑

i=1

wixih ≤ Cyh h = 1, . . . , n(5.5)

xih + xjh ≤ 1 ∀(i, j) ∈ E, h = 1, . . . , n(5.6)
yh ∈ {0, 1} h = 1, . . . , n(5.7)

xih ∈ {0, 1} i = 1, . . . , n, h = 1, . . . , n(5.8)

Objective function (5.3) minimized the number of bins (resp. colors) used. Constraints
(5.4) require that each item is assigned to a bin (resp., each vertex is colored). Constraint
(5.5) are the classical capacity constraints of Bin Packing, while (5.6) are the classical in-
compatibility constraints of VCP, which are here reported as edge constraints, but can be
strengthened to clique constraints, like discussed, e.g., in [85]. Finally, (5.7) and (5.8) impose
the integrality of used variables.

5.3 Lower Bounds

We first note that any lower bound for the BPP is a valid lower bound also for BPPC.
Analogously, any lower bound for the VCP is also a lower bound for the BPPC. We thus
implemented the following procedures derived from the BPP literature:

• L0
BPP : continuous lower bound for the BPP, computed as the rounding up of the sum

of the weights divided by the bin capacity:

L0
BPP = d

n∑

i=1

wi/Ce(5.9)

• L1
BPP : improved bound on the BPP, denoted as L2 in Martello and Toth [88], based on

the partitioning of items into sets according to weight thresholds: given 0 < α < C/2
and I1 = {i : wi > C − α}, I2 = {i : C/2 < wi ≤ C − α}, I3 = {i : α < wi ≤ C/2},

L1
BPP = |I1|+ |I2|+ max(0, d

∑
i∈I3 wi − (C|I2| −

∑
i∈I2 wi)

C
e)(5.10)

In addition, since the problem is a generalization of the VCP, we implemented the following
lower bound based on the computation of a maximal clique:
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• LMC : compute a maximal clique on the incompatibility graph G = (V, E) through the
greedy heuristic of Johnson [71]. Initialize the clique with the vertex i of maximum
cardinality. Then enlarge it by iteratively adding new vertices, at each iteration consid-
ering remaining vertices according to a non increasing degree ordering, and adding to
the clique the first which can fit. In [55] Gendreau et al. propose to compute the clique
on graph G′ instead of graph G. Even if any maximum clique of G is by construction
included in a maximum clique of G′, computing a maximal clique of G′ by means of
the Johnson’s algorithm can result in disappointing results. Actually, the drawback of
this strategy is that vertices of high weight result systematically in high degree vertices,
even when they are not included in large cliques of G′.

We propose the following improvement to the computation of LMC , and call it L′MC :
compute a maximal clique K on G by means of Johnson’s algorithm, and then add to
E all edges (i, j) such that wi + wj > C, thus obtaining graph G′. Then, expand K
to K ′, which is a maximal clique of G′. By construction, cardinality of K ′ is larger or
equal than cardinality of K, and, on average, (see Section 5.5), this strategy leads to
larger cliques than the use of Johnson’s algorithm directly on graph G′.

Now let us consider a lower bound explicitly developed for the BPPC.

• The constrained packing lower bound (LCP ) was introduced by Gendreau, Laporte and
Semet in [55]. A maximal clique of graph G′ is computed by means of Johnson’s
algorithm. A bin is used for each of the clique vertices, and then items that can fit
in these bins are inserted, possibly in a fractional way, but by satisfying compatibility
constraints (this requires the solution of a transportation problem, see [55] for further
details). All items (integer or fractional) than can not fit in the clique bins are stored
in a different set N2, on which a continuous relaxation based bound L0

BPP is computed.
A valid lower bound for the problem is then LBCP = |K|+ L0

BPP (N2).

We improved this bound in the maximal clique computation, computing L′MC instead
of LMC , and obtaining bound L′CP .

In the next Sections we present new lower bounds for the BPPC.

5.3.1 A surrogate relaxation

Let us consider model (5.3)–(5.8). We first note that constraints (5.6) can be lifted in the
following way:

xih + xjh ≤ yh ∀(i, j) ∈ E, h = 1, . . . , n(5.11)

since if bin h is not used, then both variables take value 0. We now study a possible
surrogate relaxation of constraints (5.11). We sum the original n|E| constraints over the
edges, with all multipliers equal to 1, and we obtain the following n constraints, where δi

denotes the degree of vertex i:
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n∑

i=1

δixih ≤ |E|yh ∀h = 1, . . . , n(5.12)

Now note that model (5.3), (5.4), (5.5), (5.12), (5.7) and (5.8) represents what is known
in the literature as Two-Vector Packing Problem (TVPP), which is a generalization of the
BPP in which two dimensions and two capacity constraints are present. The TVPP is NP-
complete, and was solved to optimality, with Branch and Bound techniques by Spieksma
[104]. However, it is not our objective to solve it to optimality, but refer to lower bounds
from the literature. We thus obtain the following procedure:

• LTV PP : relax in a surrogate way the constraints of the BPPC so as to obtain a TVPP.
Apply procedure Lc defined in Caprara and Toth [24] to the TVPP instance obtained
so as to get to a valid BPPC lower bound.

5.3.2 A Lower Bound based on Matching

Consider an instance of BPPC with 5 items, having the following weights: {1, 1, 5, 5, 5}, and
bins of capacity 10. The only edge of the incompatibility graph G′ connects the two items of
weight 1. For this instance, L0

BPP = L1
BPP = LBCP = LB′

CP = LTV PP = 2, when clearly
3 bins are needed. Actually this is a set of items that are pairwise compatible (with the
exception of the two items of weight 1), but no subset of cardinality tree of the items can fit
in one bin. We say that these items are incompatible 3 by 3. In general, given a set S of
items with the property that at most two of them can fit in one bin, the best way to solve
the corresponding BPPC is actually to match as many items as possible, by satisfying the
incompatibilities of graph G′, and use 1 bin for all matched pairs, and 1 bin for items that
could not be matched. In other words, we can compute a valid lower bound as the cardinality
of a maximum cardinality matching M on the complement graph G′ of G′, plus the number
of unmatched items, as follows:

Lmatch = |M |+ (|S| − 2|M |) = |S| − |M |(5.13)

The computation of the set S, which is in general a subset of the n items, having the
property that its elements are incompatible 3 by 3, is far from trivial. We want the set S
to be inclusion maximal, i.e. such that, ∀ item j /∈ S, the property does not hold for j ∪ S.
In addition, we may want S to be the maximum cardinality set of items incompatible 3 by
3. The computation of the maximum cardinality set with the desired property, on a general
graph, is NP-hard, and however there is not guarantee that the maximum cardinality set S
would lead to the largest value of the bound Lmatch, which depends on the cardinality of the
matching.

Thus, we compute set S by combining items of large weight and items which are included
in a maximal clique K in a greedy way. We define a parameter β such that 0 ≤ β ≤ 1/2C and
it exists at least one item having weight β, and for each value of β we compute a corresponding
set Sβ. Then, we compute the lower bound Lmatch for each Sβ and we keep the largest:

1. Lmatch = 0;
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2. order items i according to not increasing weight;
3. for each β such that: ∃i : wi = β, 0 ≤ β ≤ 1/2
4. Sβ := {i ∈ K, wi ≥ β};
5. for i = 1, . . . , n, i /∈ Sβ

6. if Sβ is a set of items incompatible 3 by 3 after the insertion of i
7. Sβ := Sβ ∪ {i}.
8. end for
9. if Lmatch < |Sβ| − |Mβ|
10. Lmatch := |Sβ| − |Mβ|;
11. end for

5.4 Upper Bounds

We first adapt to the BPPC heuristic algorithms originally proposed for the BPP. Let us
order the items according to non-increasing weight. We obtain:

• First-Fit Decreasing with Conflicts (FFC), adaptation of the FFD algorithm for Bin
Packing: consider each item in turn and assign it to the first bin in which there is
sufficient residual capacity and for which there is no conflict with the already assigned
items;

• Best-Fit Decreasing with Conflicts (BFC): as in FFDC, but the items is assigned to the
bin for which there is enough residual capacity, no conflicts, and for which the resulting
total sum of the weight is maximum;

• Worst-Fit Decreasing with Conflicts (WFC): as in BFDC, but resulting total sum of
the weight must be minimum.

Obviously the previous algorithms are direct adaptation to the BPPC of the well-known
heuristics by Johnson [70] (see also Coffman, Garey and Johnson [33] for heuristic algorithms
for the BPP). Let us define FD as the best solution value found by the previous three algo-
rithms.

An improved class of heuristics can be obtained by considering the following surrogate
weight:

ws
i = α

wi

C
+ (1− α)

δi

|E|(5.14)

for i = 1, . . . , n, with 0 ≤ α ≤ 1 and δi is equal to the number of incident edges in G′ (i.e., the
number of incompatibilities of i). Now we can order the items according to non-increasing
ws

i and execute the three previous heuristics. According to computational evidence we set
α = 0, 0.1, . . . , 1, running 11 times each heuristic. Let us define FFC-α, BFC-α, WFC-α the
solutions obtained by running respectively FFC, BFC and WFC. Let us also define FD-α as
the best solution among these three.

So far we implemented six different heuristics. We finally include in the list the heuristic
H6, which is the best among the upper bounds proposed by Gendreau, Laporte and Semet
[55].
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We refer to Section 5.5 for the computational results obtained by these heuristics. If the
solution found is not equal to the lower bound of the previous section, then it is possibly
improved by means of the following metaheuristic procedure.

5.4.1 Evolutionary Algorithm

To find high quality solutions on difficult instances, we use a variation of the metaheuristic
Evolutionary Algorithm described in [84], which combines an effective tabu search with a
specialized diversification strategy.

Tabu Search Algorithm

In [84] a Tabu Search procedure is proposed which moves between partial feasible solutions,
i.e., in a VCP framework, colorings where all incompatibility and capacity constraints are
satisfied, but not all vertices are colored, or, with regards to a BPPC framework, solutions
in which each bin satisfies capacity and incompatibility constraints, but not all items are
assigned to a bin. We modify this procedure in order to solve the BPPC. In [92] Morgenstern
defines the Impasse Class Neighborhood, a structure used to improve a partial solution of cost
k to a complete solution of the same value. The Impasse Class requires a target value k for
the number of bins (resp. colors in the VCP) to be used. A solution S is a partition of V
in k + 1 bins {V1, ..., Vk, Vk+1} in which all bins, but possibly the last one, are feasible bins.
This means that the first k bins constitute what we define as a partial feasible k partitioning,
while all items that do not fit in the first k bins are in the last one. Making this last bin
empty gives a complete feasible k partitioning. To move from a solution S to a new solution
S′ ∈ N(S) one can randomly choose an unassigned item i ∈ Vk+1, assign i to a different bin,
say h, and move to bin k +1 all items j in bin h that are incompatible to i. This assures that
bin h remains feasible with respect to incompatibility constraints. If the capacity constraint
is not satisfied, extra items have to be moved from bin h to k + 1, till the capacity of bin h
is exceeded. We considered four possibilities:

• move items according to decreasing weight ordering;

• move items according to increasing weight ordering;

• move items according to a random ordering;

• move items by minimizing the score (defined below) of moved items. If B is the actual
bin weight and C the capacity, we want to select a subset of the items in bin h, to
be moved to bin k + 1, such that the sum of the corresponding scores is minimized
and the total weight is larger than B − C. This is equivalent to maximize the sum of
the scores of items that are kept in h, without exceeding the bin capacity, i.e. it is a
Knapsack Problem or a Subset Sum Problem if the score of each item equals its weight
(see Martello and Toth [88]).

The Class h is chosen by comparing different target classes by means of a function f(S)
for evaluating the corresponding solutions S. Rather than simply minimizing | Vk+1 | it seems
a better idea to minimize the value:

f(S) =
∑

j∈Vk+1

δj(5.15)
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if we want to give more importance to the compatibility constraints, and

f(S) =
∑

j∈Vk+1

wj(5.16)

if we want to give more importance to the capacity constraints. Moreover, we can use the
surrogate weight ws

j to combine weight and degree of the vertices:

f(S) =
∑

j∈Vk+1

ws
j(5.17)

At every iteration we move from a solution S to the best solution S′ ∈ N(S) (even if
f(S) < f(S′)). To avoid cycling, we use the following tabu rule: an item i cannot enter the
same bin h it entered during one of the last T iterations; for this purpose we store in a tabu
list the pair (i, h). While pair (i, h) remains in the tabu list, item i cannot be assigned to bin
h. We also use an Aspiration Criterion: a tabu move can be performed if it improves on the
best solution encountered so far. To summarize, the Tabu Search algorithm takes in input:

• graph G(V, E);

• the weights of the items and the bin capacity C;

• the target value k for the number of bins;

• a feasible partial k partitioning;

• the maximum number L of iterations to be performed ;

• the tabu tenure T .

If the algorithm solves the problem within L iterations it gives on output a feasible solution
of value k, otherwise it gives on output the best scored infeasible solution found during the
search.

The Tabu Search algorithm is very simple and requires as parameter to be experimentally
tuned only the tabu tenure T . At the same time it has a good experimental behavior, since
it is often able to find good solutions in very short computing times. The main drawback
of this approach is that it seems unable to efficiently explore the whole solution space, thus
suggesting the integrations of the Tabu Search with a suitable diversification strategy.

Evolutionary Diversification

To improve its performance, the Tabu Search can be used together with a diversification
operator, as in the Evolutionary algorithm proposed in [84].

In our algorithm we start with an initial pool of partial feasible solutions of value k (in
the following simply solutions) obtained by using the Tabu Search procedure initialized with
different random seeds. Then we apply the Tabu Search algorithm to improve these solutions
during the local search phase. We use a crossover operator similar to the one used in [84],
which is a variation of the specialized crossover operator Greedy Partition Crossover proposed
by Galinier and Hao [51] for Vertex Coloring Problems. Our purpose is to extend a feasible
partial k partitioning to a complete partitioning. The general procedure is summarized as
follows: given a pool of solutions, we randomly choose two parents from the pool and generate
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an offspring, which is improved by means of the Tabu Search algorithm and finally inserted
in the pool, deleting the worst parent. After the initialization, the generation-improvement-
insertion procedure is iterated until the problem is solved (i.e. a partial feasible solution is
extended to a complete solution) or a time limit is reached.

The crossover operator has the same structure as the one described in [84] for the classical
VCP: given two parents S1 = {V 1

1 , ..., V 1
k , V 1

k+1} and S2 = {V 2
1 , ..., V 2

k , V 2
k+1} the crossover

operator outputs the offspring S3 = {V 3
1 , ..., V 3

k , V 3
k+1} by considering iteratively parent S1

and S2, picking up the bin maximizing a given score in the actual parent, copying it to
the offspring, and deleting items contained in the chosen bin from both parents. The only
difference concerning the operator is that we consider different possible scores, when picking
up the next bin to be copied to the offspring:

• the cardinality of the bin;

• the total weight of the bin;

• the sum of the degrees of the items in the bin;

• the total surrogate weight of the bin.

Solution evaluation

The quality (fitness) of every solution S in the pool is evaluated through the function f(S)
defined by (5.15) or (5.16) or (5.17) and used during the Tabu Search algorithm. This allows
us to compare the solutions and to tune the quality of the pool during the computation. The
offspring is then inserted in the pool, substituting the worst parent.

Parameter Setting

The Evolutionary Algorithm uses different parameters, whose set-up is important in order
to obtain good quality solutions. Moreover, the strategy adopted when emptying bins, in order
to satisfy the capacity constraints, the solutions evaluating function and the score function
used by the crossover operator must be specified. Our experiments on the set of instances
proposed by Gendreau et al. [55] suggested to consider two different kind of instances: low
density instances (with graph density up to 0.3) and hight density instances (with graph
density larger than 0.3). For low density instances, we set L = 5000, poolsize = 10, T = 90
and we use the solution evaluating function (5.16). For high density instances, we set L =
5000, poolsize = 10, T = 60 and we use the solution evaluating function (5.15). In both
cases, when emptying a bin, we consider items in a random ordering and we remove them till
the bin exceeds the capacity. This introduces more randomness in the algorithm than other
strategies, and leads to better results on the considered instances. We initialize the algorithm
with a dummy solution (all bins are empty) and a very large number of bins available. We
compute then the actual number of used bins, say k, and we iterate reducing k to k − 1
until the algorithm in able to solve the problem within a given time limit, which is set to 50
seconds. In the crossover operator, we use as score for the bin to be copied from the parent
to the offspring, the cardinality of the bin.
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5.5 Computational Experiments

The algorithms were coded in C and run on a Pentium IV 3 GHz. Their behavior was tested
on the instances proposed by Gendreau, Laporte and Semet [55]. They considered 8 classes
of instances from Falkenauer [46], each class containing 10 bin packing instances. By adding,
for the instances of each class, random incompatibility graphs G, with densities varying from
0 to 0.9, they obtained 800 instances (100 for each class). We refer the reader to the original
publication for more details.

The results of the upper bounds are summarized in Tables 5.1 and 5.2, where Ev. stands
for the metaheuristic of Subsection 5.4.1. In each column we report the average value found
by each algorithm on the ten instances of each class, for different values of the density dens.
of the associated graph G. It can be seen as Ev., whose computing times are comparable with
those of GLS6, clearly outperforms previous techniques.

The results of the lower bounds are summarized in Tables 5.3 and 5.4. We report results
on the bounding procedures presented on this paper, with the exception of LTV PP and Lmatch,
for which the interest is only theoretical since they have a non satisfactory performance from
the computational viewpoint. L1

BPP , by definition, cannot perform worse than L0
BPP , hence

the results of the latter are not reported. Also in this case we can see that there is a lower
bound that clearly outperforms the others, namely L1

BPPC .
Finally in Table 5.5 we compare upper and lower bounds. In the table, #opt stands for

the number of proven optimal solutions, and %gap to the percentage gap between lower and
upper bound. 487 instances over 800 were solved to optimality, with a very small percentage
gap between lower and upper bound, being 0.5% on average.

5.6 Conclusions

We considered a bounded version of the Vertex Coloring Problem (BVCP), combining both
VCP and the Bin Packing Problem. We report lower bounds from the VCP and BPP lit-
erature, which are valid for the considered problem as well, we improve a lower bound from
the literature and present new lower bounds, exploiting the double nature of the problem.
Similarly, we report from the literature upper bounds for the BVCP problem, we propose
new heuristic upper bounds adapted from the BPP literature, and we adapt an effective
metaheuristic approach, proposed for VCP, to the problem.

We implemented and compared original and literature algorithm on a set of 800 instances
from a benchmark set. By using a combination of heuristic and metaheuristic approaches,
we are able to solve to proven optimality 383 out of 800 instances, while previous approaches
could solve to optimality only 179 out of 800, with comparable computational effort.
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Table 5.1: Upper bounds results for classes 1–4.
Class dens. FFC BFC WFC FFCα BFCα WFCα H6 Ev. min

1 0 49.1 49.1 49.5 49.1 49.1 49.5 49.4 48.3 48.3
1 49.3 49.3 49.6 49.1 49.1 49.3 49.7 48.3 48.3
2 51.1 51.1 51.0 49.1 49.1 49.7 50.4 48.3 48.3
3 55.4 55.7 54.6 49.3 49.3 50.3 50.6 48.5 48.5
4 63.2 63.4 59.4 53.5 53.6 54.1 54.9 53.0 53.0
5 72.8 72.8 69.5 64.6 65.1 64.6 65.3 64.3 64.3
6 83.0 83.1 79.8 76.0 76.5 76.3 76.9 75.8 75.8
7 93.2 93.5 91.1 87.8 88.1 88.0 87.9 87.5 87.5
8 102.2 102.3 100.4 98.5 98.6 98.5 99.0 98.3 98.3
9 110.9 110.9 110.6 109.8 109.8 109.8 110.0 109.8 109.8

2 0 102.9 102.9 103.2 102.9 102.9 103.2 103.8 101.7 101.7
1 103.6 103.6 103.4 103.0 102.9 103.1 104.0 101.7 101.7
2 105.6 105.6 105.0 103.0 103.0 103.8 105.1 101.7 101.7
3 114.3 114.5 110.4 103.4 103.2 104.7 106.1 101.7 101.7
4 129.6 130.2 119.7 106.4 106.2 108.3 109.4 105.3 105.3
5 148.1 148.3 138.0 126.7 127.5 127.5 129.2 126.0 126.0
6 168.2 168.6 162.1 153.0 153.4 153.6 154.3 152.3 152.3
7 188.1 188.5 184.5 177.4 178.3 178.1 179.2 177.1 177.1
8 209.2 209.4 207.4 202.8 203.2 203.1 203.9 202.7 202.7
9 230.3 230.3 229.2 226.8 227.0 227.2 227.9 226.8 226.8

3 0 205.3 205.3 205.7 205.3 205.3 205.7 206.5 204.0 204.0
1 205.9 206.0 205.9 205.4 205.4 205.6 207.8 204.0 204.0
2 211.2 211.4 210.0 205.7 205.4 206.9 209.4 203.9 203.9
3 225.6 226.7 222.8 206.1 205.7 210.1 211.4 203.8 203.8
4 256.3 256.8 241.5 211.7 212.3 216.1 216.4 212.1 210.8
5 294.2 295.0 275.4 254.1 255.0 255.5 257.6 252.5 252.5
6 335.6 336.3 320.4 305.2 306.0 305.2 307.1 304.1 304.1
7 374.6 374.9 363.8 351.8 352.5 352.9 354.2 350.4 350.4
8 416.7 416.9 409.9 399.9 400.4 400.6 402.2 399.1 399.1
9 460.8 460.9 458.4 452.8 453.0 453.5 454.0 452.4 452.4

4 0 406.7 406.7 407.1 406.7 406.7 407.1 408.4 406.5 406.2
1 407.4 407.5 407.6 406.5 406.5 407.1 411.1 406.3 406.1
2 418.2 418.7 414.3 407.1 407.0 409.6 413.6 405.7 405.7
3 444.6 446.4 441.0 407.7 407.6 416.8 416.0 405.5 405.5
4 498.9 501.0 475.1 415.6 416.8 424.3 424.4 423.8 414.9
5 579.8 580.8 543.3 509.3 511.0 510.8 513.3 505.3 505.3
6 665.9 666.9 637.5 610.0 611.8 610.8 613.2 607.5 607.5
7 752.5 753.0 731.3 710.2 710.9 710.9 712.9 707.6 707.6
8 837.8 838.5 825.1 808.5 809.6 809.7 810.3 807.3 807.3
9 922.3 922.4 916.2 906.4 906.8 907.2 908.1 905.7 905.7

Average 278.8 279.1 272.3 262.0 262.3 263.2 264.4 261.2 260.9
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Table 5.2: Upper bounds results for classes 5–8.
Class dens. FFC BFC WFC FFCα BFCα WFCα H6 Ev. min

5 0 23.1 23.1 23.1 23.1 23.1 23.1 20.0 21.0 20.0
1 23.1 23.1 23.1 22.0 21.9 22.5 22.1 21.0 21.0
2 24.0 24.0 23.7 22.2 22.1 22.3 22.5 21.0 21.0
3 25.8 25.9 25.5 22.9 22.9 22.9 23.2 21.7 21.4
4 29.2 29.4 28.8 26.2 26.2 26.2 26.4 24.8 24.4
5 33.3 33.6 33.5 30.9 30.9 30.8 31.0 30.7 29.6
6 39.0 39.3 39.1 37.2 37.2 37.2 37.1 36.3 35.7
7 44.5 44.5 44.3 42.5 42.5 42.5 42.5 42.6 41.6
8 50.5 50.7 50.5 49.6 49.6 49.6 49.5 49.0 48.0
9 55.0 55.0 55.1 54.6 54.6 54.5 54.7 54.4 53.2

6 0 45.5 45.5 45.5 45.5 45.5 45.5 40.0 41.0 40.0
1 45.8 45.8 45.7 44.5 44.0 44.2 44.5 41.0 41.0
2 47.1 47.1 46.7 44.1 44.2 44.2 44.4 41.0 41.0
3 50.7 50.9 49.6 44.1 44.1 43.8 44.6 41.2 41.2
4 57.7 58.2 57.6 50.8 50.8 50.9 50.9 48.3 47.7
5 67.9 68.3 67.6 62.6 62.6 62.5 62.6 60.9 59.2
6 78.2 78.6 78.3 73.3 73.2 73.3 73.4 74.4 70.7
7 89.1 89.4 89.2 85.9 85.8 85.9 86.0 84.9 82.9
8 101.1 101.2 100.9 98.3 98.3 98.3 98.4 96.6 95.3
9 112.7 112.8 112.7 111.8 111.8 111.8 111.8 109.0 109.0

7 0 94.9 94.9 94.9 94.9 94.9 94.9 83.0 84.0 83.0
1 95.0 95.0 95.0 90.5 90.3 91.4 90.3 84.0 84.0
2 95.1 95.1 95.1 91.3 91.5 91.6 91.5 84.0 84.0
3 98.8 99.3 99.1 91.8 92.5 90.4 92.7 84.2 84.2
4 112.1 113.1 113.3 101.9 101.9 102.0 101.9 98.4 97.4
5 132.3 133.8 135.0 125.3 125.2 125.3 125.3 124.8 122.1
6 155.5 156.4 156.5 148.8 148.8 148.9 148.8 150.1 146.2
7 178.7 179.2 180.6 173.1 173.2 173.2 173.1 174.7 169.6
8 204.3 204.6 204.2 200.1 200.1 200.1 200.1 200.2 197.7
9 227.3 227.4 227.4 224.4 224.3 224.5 224.3 225.1 223.0

8 0 190.2 190.2 190.2 190.2 190.2 190.2 167.0 169.0 167.0
1 190.3 190.3 190.3 181.1 180.5 183.2 180.9 168.8 168.8
2 191.1 191.1 191.0 183.8 183.3 183.1 184.1 168.4 168.4
3 197.1 198.4 196.7 183.4 183.4 179.3 184.7 169.3 169.3
4 226.8 229.0 228.6 204.9 204.9 205.1 204.9 204.9 204.9
5 268.2 270.5 274.5 255.6 255.4 255.8 255.5 255.3 255.3
6 316.8 318.2 320.5 305.4 305.3 305.6 305.4 305.3 305.3
7 364.9 366.4 367.4 355.3 355.2 355.7 355.4 355.1 355.1
8 412.3 413.4 413.8 405.4 405.3 405.6 405.5 405.3 405.3
9 458.5 459.0 458.7 454.1 454.0 454.2 454.1 453.8 453.8

Average 131.3 131.8 131.8 126.3 126.3 126.3 125.4 123.1 122.2
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Table 5.3: Lower bounds results for classes 1–4.
Class dens. L1

BPP L′MC L′CP max
1 0 48.3 36.7 48.3 48.3

1 48.3 12.7 48.3 48.3
2 48.3 25.1 48.3 48.3
3 48.3 37.8 48.3 48.3
4 48.3 51.5 52.8 52.8
5 48.3 63.3 64.3 64.3
6 48.3 74.0 75.6 75.6
7 48.3 87.0 87.4 87.4
8 48.3 97.3 98.0 98.0
9 48.3 109.0 109.5 109.5

2 0 101.4 79.6 101.4 101.4
1 101.4 26.6 101.4 101.4
2 101.4 50.6 101.4 101.4
3 101.4 75.9 101.4 101.4
4 101.4 99.3 104.5 104.5
5 101.4 124.9 125.8 125.8
6 101.4 150.8 151.8 151.8
7 101.4 174.5 176.1 176.1
8 101.4 201.4 202.2 202.2
9 101.4 225.5 226.6 226.6

3 0 202.6 158.2 202.6 202.6
1 202.6 50.4 202.6 202.6
2 202.6 101.5 202.6 202.6
3 202.6 155.0 202.6 202.6
4 202.6 204.3 208.5 208.5
5 202.6 250.8 251.9 251.9
6 202.6 302.7 303.8 303.8
7 202.6 347.9 349.6 349.6
8 202.6 397.0 398.7 398.7
9 202.6 451.9 452.2 452.2

4 0 401.8 311.0 401.8 401.8
1 401.8 102.5 401.8 401.8
2 401.8 204.9 401.8 401.8
3 401.8 307.1 401.8 401.8
4 401.8 403.0 409.2 409.2
5 401.8 503.4 504.5 504.5
6 401.8 606.3 606.9 606.9
7 401.8 705.6 706.8 706.8
8 401.8 805.6 806.7 806.7
9 401.8 904.7 905.2 905.2

Average 188.5 226.9 259.9 259.9
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Table 5.4: Lower bounds results for classes 5–8.
Class dens. L1

BPP L′MC L′CP max
5 0 20.0 1.0 20.0 20.0

1 20.0 6.8 20.0 20.0
2 20.0 13.3 20.0 20.0
3 20.0 19.9 21.8 21.8
4 20.0 25.4 26.0 26.0
5 20.0 30.3 30.7 30.7
6 20.0 36.8 36.9 36.9
7 20.0 41.9 42.4 42.4
8 20.0 49.0 49.4 49.4
9 20.0 54.2 54.5 54.5

6 0 40.0 1.0 40.0 40.0
1 40.0 13.3 40.0 40.0
2 40.0 25.9 40.0 40.0
3 40.0 37.7 40.9 40.9
4 40.0 50.2 50.7 50.7
5 40.0 61.6 62.4 62.4
6 40.0 72.4 72.9 72.9
7 40.0 85.2 85.6 85.6
8 40.0 97.4 98.1 98.1
9 40.0 111.5 111.5 111.5

7 0 83.0 1.0 83.0 83.0
1 83.0 25.8 83.0 83.0
2 83.0 51.5 83.0 83.0
3 83.0 75.8 83.5 83.5
4 83.0 100.2 100.7 100.7
5 83.0 124.3 125.0 125.0
6 83.0 148.2 148.5 148.5
7 83.0 172.9 173.0 173.0
8 83.0 199.9 200.0 200.0
9 83.0 223.9 224.2 224.2

8 0 167.0 1.0 167.0 167.0
1 167.0 51.1 167.0 167.0
2 167.0 100.4 167.0 167.0
3 167.0 152.2 169.9 169.9
4 167.0 204.1 205.6 205.6
5 167.0 254.7 255.1 255.1
6 167.0 304.8 305.1 305.1
7 167.0 354.5 355.0 355.0
8 167.0 404.8 405.2 405.2
9 167.0 453.5 453.8 453.8

Average 77.5 106.0 123.0 123.0
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Table 5.5: Comparison between lower and upper bounds.
Class max LB min UB #opt %gap

1 68.1 68.2 87 0.2
2 139.3 139.7 61 0.3
3 255.0 255.9 36 0.4
4 554.7 557.2 30 0.6
5 32.2 32.6 74 1.2
6 64.2 64.1 66 0.8
7 130.4 131.1 64 0.5
8 265.1 265.3 69 0.2

Average 188.6 189.4 487 0.5
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Chapter 6

On the Fairness of ad-hoc
Telecommunication Networks

We consider a network of nodes communicating through wireless connections, which are feed
by a node owned energy source. The problem of routing packets through the network should
consider both the efficiency of the routing and its fairness, i.e. the contribution that each node
gives to the network with respect to the benefit it obtains from being in the network. This
requires the definition of the fairness of a routing, and leads us to the design of centralized
and decentralized fair routing protocols.

6.1 Introduction

We consider the problems of nodes communicating through a wireless ad hoc network, i.e. a
network formed by a set of (possibly mobile) nodes not making use of any preexisting infras-
tructure (see Tonguz and Ferrari [105] for an introduction to ad-hoc networks). Examples
are temporary networks present during meeting or happenings, or installed for disaster re-
covery or created for geographic surveys. In such kind of networks, nodes communicate by
using wireless radio connections, which are feed by a node owned energy source, normally a
battery. Nodes can communicate and perform their internal operations (measure, computing,
etc.) since they have enough energy in their batteries. Each node can participate to the net-
work by sending or receiving information it is interested in, and, in addition, it can forward
packets for other nodes, in order to ensure the connectivity and improve the efficiency of the
network. This is without a tangible benefit for the node; of course, the node has a benefit if
other nodes forward too. Since sending and receiving packets has a cost in terms of energy
consumption, a trade-off can exist between a routing of the packets which is efficient for the
system as a whole, and a routing which is fair for the single node.

The absence of immediate benefit for nodes contributing to the network, raises the problem
of nodes that take advantage from the network but, acting selfishly, do not forward other
node’s packets. The problem has encountered a large interest in the literature, and has been
considered mainly from the game theoretical point of view.

A topic widely considered in the literature is the study of the efficiency of equilibria found
by ad-hoc networks, where nodes act selfishly, when there is no centralized control. Kesselman,
Kowalski and Segal [76] study the efficiency of equilibria found by nodes with respect to the
efficiency of a centralized solution, in a network where the transmitting cost is shared among
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sender and receiver nodes. Ji and Huang [68] consider the problem of many nodes who want
to communicate with a single destination node, and can adjust their transmitting power in
a non cooperative way. A similar problem, but with different utility functions for the nodes,
is considered by Lee, Mazumdar and Shroff [79]. Another problem of ransmitting power
selection, where nodes want to ensure a desired connectivity to the network, is considered
by Eidenbenz, Kumar and Zust in [44]. Chun, Fonseca, Stoica, Kubiatowicz [32] study the
structure of routing networks generated by selfishly nodes. In the different domain of routing
in a capacitated network, Correa, Schulz and Stier Moses considered the efficiency of equilibria
where users choose their own routing by acting selfishly [35].

When the equilibria found by nodes acting selfishly are close to the system optimum,
i.e. the equilibrium which could be imposed by a central control, there is no need to act on
the system. However, the nodes’ equilibria can be very inefficient, in this case the design of
mechanisms to increase cooperation and to impose desired behaviors are needed. Anderegg
and Eidenbenz [8] consider routing in ad-hoc networks, and design a mechanism where the
best strategy for each node leads to the system optimum. Marti, Giuli, Lai and Baker [89]
design a protocol to improve the routing of an ad-hoc network where some nodes misbehave,
because they are broken, overloaded or selfish. Alvin [7] considers a punishment mechanism
in order to impose a desired behavior to nodes. Buchegger and Le Boudec [22, 21] propose
protocols aimed at detecting and isolating misbehaving nodes, thus making unattractive to
deny cooperation. A similar ides is studied by Mahajan, Rodrig, Wetherall and Zahorjan in
[97]. Differently, Zhong,Yang and Chen [113] propose a credit base system for stimulating
cooperation.

Even if a wide literature is available on ad-hoc networks, all previous works are devoted
to the study of the efficiency of networks, and to the study of mechanism to obtain a desired
behavior. The study of the fairness of ad hoc networks, and the study of fair routing protocols
in such networks, have been rarely considered in the literature, and, to the best of our
knowledge, never in a deep way. Conversely, the fairness of routing problems have been
studied by Kleinberg, Rabani and Tardos in [77] and by Goel, Meyerson and Plotkin in [58];
Afek, Mansour and Ostfeld considered fair bandwidth allocation in [6, 5]; Goel, Meyerson and
Plotkin in [59] consider the problem of fair balancing.

This work is intended as a first step in the study of fairness in ad-hoc networks. More in
detail, we aim at studying the relation existing between an efficient packet routing protocol
and a fair one, in term of battery consumption and contribution given to the network by each
node. This requires, first of all, the definition of a measure of fairness and a study of how this
affects the desired behavior of the system. We suppose that nodes participate to the network
because the network is fair, i.e. the routing protocol will charge nodes proportionally to their
activity in the network. It is not in the scope of this paper to discuss in detail why fairness
is desirable.

In order to keep the analysis general enough to be application or protocol independent,
the problem is considered from a network flow/optimization perspective, by avoiding strong
application related assumptions.

This paper is structured as follows: the next Section introduces some preliminary assump-
tions, and proposes a fair routing model and two alternative measure of fairness for wireless
ad hoc networks. Computational experiments on randomly generated networks are reported
in Section 6.3. A distributed fair routing algorithm, and related computational experiments
are reported in Section 6.4.
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6.2 A Model for Fair Routing

6.2.1 Preliminaries

We assume that all nodes know, in every time slot, the position of the other nodes in the
network (for example, because they are equipped with GPS, or because the routing protocol
returns this information), or at least the set of nodes in visibility for each terminal in the
network.

The energy available for each node (battery), that is used for routing the traffic originating
or going to the node, is a scarce resource. This energy is also used for retransmitting others
nodes’ traffic, and thus a local cost increase can result in a benefit (connectivity or efficiency)
at system level. The energy consumed by a node in communication activities is given by
the sum of three main contributes: energy used during transmission (TX), during reception
(RX) and during IDLE. Furthermore, some protocols put the terminals in a sleep state when
possible to save energy: in this state the energy consumed is not involving antenna activities
but only processing ones. In our approach we simplify the behavior by considering only the
energy consumed during transmission and reception: if nodes with high traffic generation and
forwarding are considered, we can assume it as a major contribute. Regarding the transmit
power, it can be fixed or can be tunable by following a power control technique.

• There are OD pairs that want to communicate by exchanging information (multi-
commodity flow), and an origin/destination (OD) matrix represents, at each entry,
the quantity of information to be transmitted between pairs of nodes. The OD matrix
is referred to a single period, and the routing of the information through the network
is computed period by period.

The first assumptions for the demand matrix is that all nodes have a non zero amount
of traffic to send or receive (which is a realistic assumption if a sensor network, e.g. for
geographical survey, is considered; but can be acceptably realistic even for individuals
using laptops during a meeting, that are likely to switch on their wireless connections
only if they have something to transmit or receive).

However, it could be the case that some nodes participate to the network only by
forwarding other node’s traffic, and thus being, by definition (regardless how fairness is
defined), in a unfair condition.

• for any OD pair, the information to be routed can be split into multiple paths (split-
table),

• the routing is constrained by the capacities given by the residual battery life associated
with the nodes (constrained).

In other words, possible routings are given by the feasible solution to a capacity-constrained
splittable multi-commodity flow problem.

A routing protocol should consider two conflicting objectives: fairness and efficiency.
Fairness: We assume that nodes have a utility from participating in the network, because

they can reach other nodes, which can be too far or to expensive to be reached directly, through
the network. They contribute their power to forward packets, because without contributing
nodes the ad-hoc network doesn’t exist. There must be a balance between the utility nodes get
by participating in the network, and the cost they incur when they contribute their power to
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the network itself, otherwise nodes could decide to leave the network. This means, generally
speaking, that the network should not route all the flow through the same nodes and drain
their batteries, while other nodes do not contribute their energy.

Efficiency: The routing protocol must be efficient, which means that a global cost func-
tion should be minimized. Different efficiency measures can be considered in wireless net-
works; in this paper we consider a routing to be efficient if the total energy consumption is
minimized. We approximate the energy consumption by considering the energies spent when
receiving packets (independent from the origin of the packets) and the energies spent when
sending packets, which depend on the distance of the receiver and on the length of the packet.

The system can optimize one and use the other as a constraint, or the problem can be
formulated as multicriteria and all the Pareto optimal solutions can be computed.

From a feasibility viewpoint, the capacity-constrained splittable multi-commodity flow
problem, whose solutions represent possible routings, is an LP. But it becomes strongly NP-
hard if the simultaneous maximization of both efficiency and fairness is considered. If instead
one of the objective functions is used as a constraint, the two problems remain tractable (can
be LPs depending on how the fairness is defined). In this paper the problem is approached
in the latter way, i.e. we study how the cost of the best routing, in terms of efficiency, varies
when different levels of fairness are imposed. This leads us compute how fairness affects
efficiency in different network configurations.

The relation between efficiency and fairness in routing problems have been studied, in
a multi-commodity flow framework, by Jahn, Möhring, Schulz and Stier Moses in [65], by
Schulz and Stier Moses [102] and by Correa, Schulz, and Stier Moses in [34].

6.2.2 A Proposed Model

We would like our analysis to be independent from the specific adopted transmitting protocol,
and then we use a fluid model representation, i.e. we describe the traffic in the network as a
flow (of bits). Bits will be grouped into packets, but how will depend on the chosen protocol.
The problem can be formulated as a routing problem in which the graph is fixed (determined
by the maximum transmitting power) and the transmitting power can be either independent
on the two nodes that are communicating, or the minimum needed to reach the receiving
node (power control). In the following we will call bit the elementary ”piece” of information.
If the transmission time is assumed to be the same for every bit, the energy spent can be
linked directly to the transmit power.

Given two nodes i and j at distance p(i, j), it is a common assumption in telecommuni-
cations [98] that the power they need to communicate directly is p(i, j)α, where α ∈ [2, 8] is
a constant depending on the channel. Thus, if pMax is the maximum transmitting power,
they can communicate directly if p(i, j)α ≤ pMax. In this case (i, j) is an arc in the graph
underlying the network. The network is then fixed and given by a weighted graph G = (V, A),
where the weight δij of arc ij ∈ A represents the energy needed to send a bit on ij, i.e. the
power p(i, j)α needed to connect i and j multiplied by the transmission time for a bit (let
set this time equal to 1). When power control is not performed δij = const.(= 1 w.l.o.g.)
∀ij ∈ A.

The demand between every pair of nodes s and t, corresponding to a commodity st, is
given by dst. The set of all commodities is K. The paths between those nodes are denoted
by Pst and the set of all simple paths is P. The decision variables are represented by the flow
variables xst

ij , i.e. the flow on arc ij ∈ A due to commodity st, and xP , i.e. the flow along
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path P . A node i ∈ V has a battery life pi which bounds the maximum energy it can use to
transmit to (and receive from) other nodes. If ρ is defined as the relative power needed to
receive, the set of feasible flows is given by

∑

P :ij∈P ;P∈Pst

xP = xst
ij ∀st ∈ K, ∀ij ∈ A(6.1)

∑

st∈K

xst
ij = xij ∀ij ∈ A(6.2)

∑

P∈Pst

xP = dst ∀st ∈ K(6.3)

ρ
∑

j∈V : ij∈A

xji +
∑

j∈V : ij∈A

δijxij ≤ pi ∀i ∈ V(6.4)

xP ≥ 0 ∀P ∈ P(6.5)

To measure efficiency, the total energy cost of the system is considered, which is given by

ρ
∑

ij∈A

xij +
∑

ij∈A

δijxij(6.6)

and reduces to the total number of hops performed by bits when power control is not
used.

To measure fairness, two alternative definitions are proposed and discussed in the next
Sections.

I Measure of Fairness

A first possibility to measure the fairness of a node is to distinguish between the energy a
node is spending to send (and receive) traffic that is “useful” for itself (the traffic that it is
originating or is addressed to it) and the energy it is spending for forwarding others nodes’
traffic. Let 0 ≤ ri ≤ 1 be the proportion of energy that is useful. This can be computed as
the following ratio:

ri :=
ρ

∑
st:t=i

∑
j∈V :ji∈A xst

ji +
∑

st:s=i

∑
j∈V :ij∈A δijx

st
ij

ρ
∑

j∈V : ij∈A xji +
∑

j∈V : ij∈A δijxij
(6.7)

which reduces, when power control is not performed, to

ri :=
∑

j∈V (ρdji + dij)
ρ

∑
j∈V : ij∈A xji +

∑
j∈V : ij∈A xij

(6.8)

A node with a high value of ri is using its power for its benefit while a node with a low
value is contributing its energy to the system benefit.

E.g., consider a node i spending a quantity 0.9 of its energy to send or receive its own
traffic, i.e. traffic corresponding to a commodity st such that i is origin (i = s) or destination
(i = t) of the commodity, and suppose the total energy spent by i to be equal to 1. In this
case, ri = 0.9, and i is spending only 0.1 of its energy to the ”common good”.

Consider a second example: 5 equidistant nodes are on a segment, namely nodes 1, 2, 3, 4, 5,
and the following OD traffic matrix has to be transmitted: d3,1 = 1, d3,5 = 1, d2,4 = 1, d4,2 =



100 On the Fairness of ad-hoc Telecommunication Networks

Figure 6.1: An example with fairness 1/2.

1 43 52

1. Let us simplify the example by considering that only transmitting has a cost (φ = 0), and
α > 1.

The optimal solution (w.r.t. the energy cost), as represented in the picture above, is
x3,1

3,2 = 1, x3,1
2,1 = 1, x3,5

3,4 = 1, x3,5
4,5 = 1, x4,2

4,3 = 1, x4,2
3,2 = 1, x2,4

2,3 = 1, x2,4
3,4 = 1 (xs,t

i,j is the flow
on arc i, j due to the commodity originated in s and with destination t). In this solution,
the lowest fairness experienced by a node, when computed with definition (6.7), is 1/2, since
only half of energy spent by nodes 2,3 and 4 is used to send their how traffic.

II Measure of Fairness

But is this solution really unfair? The amount of energy that nodes 2,3 and 4 are using for
forwarding other node’s traffic equals the amount of energy that other nodes are using to
forward 2,3 and 4’s traffic. Formally, if we define ei,j as the energy that node i is spending to
forward j’s traffic, in this solution ei,j = ej,i ∀i, j ∈ V . In addition, this is not only the less
expensive solution for the system, but it is also the solution minimizing the maximum energy
spent by a node (and thus it not clear why a more expensive solution should be more fair, or
at least more desirable). This example suggests that an alternative measure of fairness can
be considered, assessing the unbalance of the energy that each node i is spending to forward
other nodes’ traffic, and the energy that other nodes are spending to forward i’s traffic.

Consider a commodity k originating at node s and having as destination node t. Let
l, m ∈ A be an arc of the network. When a flow xs,t

l,m > 0 is routed on arc (l,m), node l is
spending δl,mxs,t

l,m of its energy to send the flow and node m is spending ρxs,t
l,m of its energy

to receive the flow. They are working for the origin node s and the destination node t, who
are the ones having an interest in the flow. Thus, if we define as Sq ∈ [0, 1] the quota of the
energy cost that is imputed to the origin s and Rc = 1 − Sq the quota of the energy cost
that is imputed to the destination t, and we define the unbalance of a node i, unb(i), as the
difference between the energy it is spending for other nodes and the energy other nodes are
spending for i, a flow xl,m > 0 has the following effect on the unbalance of nodes s, t, l, m:

• unb(s) = −Sq(δl,m + ρ)xs,t
l,m,

• unb(t) = −Rq(δl,m + ρ)xs,t
l,m,

• unb(l) = +δl,mxs,t
l,m,

• unb(m) = +ρxs,t
l,m,
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The higher the unbalance of a node, the less fair its condition is, because it is spending its
energy for other nodes without advantage. Thus a possible way to measure the normalized
unfairness of node i is to compute the ratio between unb(i) and the total energy en(i) that node
i is spending for other nodes, including the receiver quota Rq when i is sender, and viceversa
(which is better then simply normalizing over the total energy i is spending, otherwise i could
reduce its unfairness - i.e. the ratio - by routing its packets through a more expensive arc).
Briefly, given:

en(i) =
∑

st:i6=s,t

∑

j∈V :ij∈A

δijx
st
ij+

∑

st:i 6=s,t

∑

j∈V :ji∈A

ρxst
ji+

∑

st:i=s

∑

j∈V :ij∈A

Rqδijx
st
ij+

∑

st:i=t

∑

j∈V :ji∈A

Sqρxst
ji

(6.9)

we can measure the fairness (i.e. 1 - unfairness) experienced by node i as:

ri := 1− unb(i)
en(i)

(6.10)

Note that this definition normalizes to 0 the lowest fairness experienced by a node in the
network, and that the fairness of a node can have any value in the interval [0,∞[ (actually
this is not a problem if we care of nodes that are in an unfair condition).

An alternative normalization (still in the interval [0,∞[) could compute the ratio between
unb(i) and the maximum energy spent for other nodes by a node in the network 1.

6.2.3 Formulation

The network’s efficiency and fairness are studied as follows: the energy cost of the system
(6.11) is minimized, and a minimum fairness φ is imposed as a constraint (6.12) (φ is a
constant). The idea of considering the minimum fairness as a measure of the fairness of
the system was proposed by Jaffe [64] and is present Bertsekas and Gallager [13] and in the
work of Afek, et al. [6, 5]. Alternative measures and a unifying framework are discussed
by Bhargava, Goel and Meyerson in [14]. By proceeding with a constraint on the minimal
fairness of a node, we can compute the routing maximizing system efficiency (by imposing
φ = 0), and we can evaluate how the routing cost increases when fairness is imposed, i.e. we
can asses the cost of a fair solution in terms of efficiency.

With respect to the notation defined in 6.2.2, this requires the solution of the following
LP:

min ρ
∑

ij∈A

xij +
∑

ij∈A

δijxij(6.11)

ri > φ ∀i ∈ V(6.12) ∑

P :ij∈P ;P∈Pst

xP = xst
ij ∀st ∈ K, ∀ij ∈ A(6.13)

∑

k∈K

xst
ij = xij ∀ij ∈ A(6.14)

∑

P∈Pst

xP = dst ∀st ∈ K(6.15)

1This requires, in the next Section, the solution of an ILP, but the problem seems to be easy for general
purpose ILP solvers



102 On the Fairness of ad-hoc Telecommunication Networks

ρ
∑

j∈V : ij∈A

xji +
∑

j∈V : ij∈A

δijxij ≤ pi ∀i ∈ V(6.16)

xst
ij ≥ 0 ∀st ∈ K, ∀ij ∈ A(6.17)

the fairness ri in constraint (6.12) can be measured by means of the first definition:

ri :=
ρ

∑
st:t=i

∑
j∈V :ji∈A xst

ji +
∑

st:s=i

∑
j∈V :ij∈A δijx

k
ij

ρ
∑

j∈V : ij∈A xji +
∑

j∈V : ij∈A δijxij
(6.18)

or by means of the second definition:

ri := 1− unb(i)
en(i)

(6.19)

In this formulation, the decision variables are represented by the flow variables xst
ij , i.e. the

flow on arc ij ∈ A due to commodity st. We do not consider explicitly variables corresponding
to paths xP , which can be exponentially many w.r.t. the number of arcs in the graph.

By varying the value of φ (i.e., by solving the LP with different values of φ), the curve
representing the energy cost of the system, as function of the minimum fairness, can be
computed.

Cyclic Solutions

When the second definition of fairness (6.10) is used, the solution of model (6.11)–(6.17) can
have cycles. Actually, suppose node i has a low fairness, i.e., ri < φ, or, in other words, unb(i)
is too large. The unbalance of i can be reduced (its fairness increased) if nodes forwarding a
commodity it originated in i (or si with destination i) spend more energy with this commodity.
This happens, for example, if i’s flow is routed through a cycle in the path from i to t.

To avoid this situation it can be imposed that, for every commodity st, only arcs having
a positive component is the direction defined by st can be used, thus making the ”feasible”
graph different for each commodity and acyclic. This has a cost in terms of efficiency, because
less arcs are available for each commodity (discussed in 6.3).

6.3 Computational Experiments

This Section reports computational experiments on randomly generated networks. Nodes
are randomly generated with a given probability distribution on a surface. With a given
probability pt, a node i is a transmitter. For every node j 6= i, there is a probability pr that
i is transmitting to j. The quantity of bits transmitted has uniform distribution between 0
and a maximum value (actually it is normalized to 1). When power control is used, the power
needed to transmit from i to j is d(i, j)α, where d(i, j) is the Euclidean distance between the
nodes and α ∈ [2, 8] is a constant depending on the channel. The maximum transmitting
power and the Euclidean distances between nodes define the graph underlying the network,
in terms of connectivity and cost of the arcs. When power control is not used, the cost for
transmitting on any (existing) arc is set to 1.

For each considered instance, we solve problem (6.11)- (6.17); i.e., we solve the LP model
minimizing the energy cost of the system, with the constraint that a minimum level of fairness
φ is assured to all nodes in the network (i.e. mini∈V r(i) ≥ φ). By solving the model for
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Figure 6.2: Total energy consumption (log) and fairness. First definition of fairness.
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different values of parameter φ, the behavior of the system for different values of imposed
minimum fairness can be analyzed.

In particular, the feasibility and energy cost of the solution as function of the minimum
fairness φ, and the corresponding routing configuration will be object of the analysis.

6.3.1 Computational Experiments with the First Fairness Measure

In this Section the first measure of fairness (6.7) is used. The first example considers a network
of 20 nodes, generated with uniform probability on a 10X10 square, each one participating
to the network (i.e. transmitting or receiving some traffic). The probabilities pt and pr are
set to 0.6 and 0.7, respectively. The battery of nodes is not a constraint (i.e. every node has
enough capacity), and the maximum transmitting power pMax is large enough to let every
node reach all other nodes in the network (i.e. the graph underlying the network is complete).

The graph of Figure 6.2 represents the total energy cost of the network (y axis, in log-
arithmic scale) as function of the imposed minimum value of fairness (x axis), when power
control is used. Each curve corresponds to a different value of the constant α.

In order to have a correct comparison with the second definition of fairness, for every
commodity k we allow only to use arcs having no negative component with respect to the
direction defined by the commodity (i.e. we do not allow back arcs, see Section 6.2.3). This
can be inefficient, in particular when α is large. However, experimentally the inefficiency
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results quite small. In this example, any level of fairness can be obtained, however, the
corresponding energy cost is very large, especially when high fairness is required.

The same network can be considered without the use of power control. In this case we
have to reduce the maximum transmitting power (otherwise each node could talk directly to
its destination, at minimum cost for the system and maximum fairness). In this case, levels
of fairness up to 0.35 can be obtained, with very small energy cost increase. This means that,
among the many equivalent solution of low energetic cost, there are some that are more fair.
When a larger fairness is imposed, the problem (6.11)- (6.17) becomes infeasible.

It is interesting to analyze how, when increasing fairness is imposed, the flow over arcs
changes. We consider the case of power control, (with α = 4 in this example). In every one
of the pictures in Figure 6.3, colored lines represent the flow between nodes due to a given
commodity (i.e. OD pair in the traffic matrix). The width of each line is proportional to the
amount of flow. Given two nodes i, j, a line over the segment connecting i, j is a flow from i
to j, and viceversa.

Every picture corresponds to an increased minimum fairness, starting from 0 at the top
left up to 1 at the bottom right. By imposing the minimum fairness to be equal to 1.0 (picture
on the bottom right), every transmitter is forced to talk directly to its destination, thus this
picture also gives a graphic representation of the OD matrix. If a lower levels of fairness is
accepted, the flow can be routed through intermediate nodes, thus saving energy. The total
cost for the system is lower and nodes have to forward other’s flow. When no fairness at all
is imposed (picture on the top left), the configuration of flow minimizing the energy cost of
the system is obtained.

6.3.2 Computational Experiments with the Second Fairness Measure

We consider the same network discussed above (α = 4, 20 nodes, pt = 0.6 and pr = 0.7), but
now the minimum fairness φ is imposed by using the second definition (6.10).

The graph of Figure 6.4 considers the case with power control, and compares, for different
levels of imposed minimum fairness, and for the two alternative measures of fairness proposed,
the energetic cost of the corresponding solutions. If no fairness is imposed the solution
obtained has φ = 0.11 and corresponds to the one obtained by imposing φ ≥ 0.1. The graph
shows that, when measuring the fairness experienced by each node by means of the second
definition, it is possible to obtain fair solutions with acceptable energy cost increase.

Figure 6.5 represents the flow over the network, when an increasing minimum fairness is
imposed, starting from 0.1 at the top left up to 1 at the bottom right. Even when a minimal
fairness equal to 1.0 is imposed, part of the flow can be routed through intermediate nodes
of the network, obtaining a globally less expensive solution.

It is important to point out that, when imposing fairness, we should not only consider
the total energy spent by the system, but also the energies locally spent by single nodes.
Actually, a fair routing has always a cost (total energy of the system) larger or equal than
a less fair one. However, it is meaningful if there is at least a node which is spending less
energy than in the less fair routing. The two graphs reported in Figures 6.6 and 6.7 show
that this is the case in the examples previously discussed in this Section (second definition of
fairness, traffic between all nodes). The graph of Figure 6.6 considers the case when power
control is used (α = 4 in this example), and reports the energies spent by the 20 nodes of the
network as function of a minimum level of imposed fairness. The dashed red line describes
the average energy. It can be noticed than, even if the average energy cost is increasing when
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Figure 6.3: Flow distribution for minimal fairness of 0, 0.025, 0.5, 0.1, 0.3, 0.5, 0.8, 0.9, 1.0.
First definition of fairness.
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Figure 6.4: Total energy consumption and fairness. Comparison between first and second
definition of fairness.
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larger fairness is imposed, there are always nodes whose energy cost is decreasing, i.e. that
have a real benefit when larger fairness is imposed.

The graph of Figure 6.7 considers the same network, but now the transmitting distance
equals 4/10 of the 10X10 square, and power control is not used. Thus, all existing links
have the same cost (= 1 in our experiment). It is very interesting to node that a fairness of
approximately 0.4 can be obtained ”for free” (i.e., without energy cost increase for the system
as a whole, but simply distributing the flow in a different way). This means that, among the
many feasible routing of minimum cost, there is one that is quite fair.

6.3.3 Access Point Configuration

In this Section a different traffic configuration is considered, representing a network where
the nodes talk only to a server, i.e. all commodities are originated from or directed to a
server. This configuration can describe laptops accessing the Internet via a wireless connection
through an Access Point (server). Since α ∈ [2, 8], even if a node can communicate directly
to the server, it can be less expensive to forward the flow through an intermediate node. We
consider a centralized control approach of this network.

Nodes are generated with a specified distribution on a surface; with a given probability pt,
node i transmits to the server, with a probability pr, node i receives from the server (a node
can both transmit and receive). The quantity of bits transmitted or received has uniform
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Figure 6.5: Flow distribution for minimal fairness of 0.1, 0.3, 0.5, 0.8 and 1.0. Second
definition of fairness.

distribution between 0 and a maximum value (actually it is normalized to 1). We consider
the case when power control is used.

We can assume that the server is connected to a power supply system, and than the energy
it spends does not represent a cost for the system. For the same reason (and because the
server is always transmitting its own traffic), fairness of the server is disregarded (which is
always equal to 1 when measured according to the first definition (6.7)).

In this kind of network, the second measure of fairness (6.10) is useless, actually, in no
efficient solution nodes close to the server can be in a fair condition, unless they simply do not
forward other node’s traffic. Imposing such kind of fairness would produce useless solution,
where flows having as destination nodes close to the server (which could be directly sent with
no cost) would take long routes only to reduce the unbalance of such nodes.

The first definition seems more meaningful, since this configuration is unbalanced by
definition (unlucky nodes is the middle have to forward). Imposing a minimum fairness would
affect the quantity of flow that is routed through long arcs instead of using short connection
with overloaded neighbors, and would balance the flow among forwarding nodes.

The numerical example considered has 30 nodes: 1 server in the center and 29 users with
uniform distribution on a 10X10 square. The server transmits to all nodes (pr = 1), while 60%
of the nodes transmit to the server (pt = 0.6). No constraint is imposed on the battery of the
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Figure 6.6: Energy consumption of the single nodes and fairness, power control. Second
definition of fairness.
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nodes, and power control is used. In the graph of Figure 6.8 we consider 3 different values of α,
namely α = 2, 3, 4. The maximum transmitting power is set in such a way that the maximum
transmitting distance equals 3/10, 4/10 and 10/10 of the 10X10 square. The total energy cost
of the solution (log) is reported for different values of fairness. In this configuration, imposing
fairness has a large cost in terms of energy spent by the system, however, moderate levels of
fairness can be obtained with acceptable energy cost. Not surprisingly, for a given value of α
and φ, reducing the maximum transmitting power increases the energy cost, because less arcs
are available on the network. When a high level of fairness is required, the problem becomes
infeasible (and the corresponding curve is interrupted in the graph of Figure 6.8).

The pictures of Figure 6.9 represent the flow on the network, in the case of α = 4 and
maximum transmitting distance equal to 4/10 of the 10X10 square, when increasing values of
fairness are imposed. The last picture (α = 1.0), which does not represent a feasible solution
because arcs that are not available in the network are used, is reported to visualize the OD
pairs. It can be noticed that the flows tend to be routed on few efficient paths when fairness
is disregarded, while it is split on many path when a more fair solution is imposed.
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Figure 6.7: Energy consumption of the single nodes and fairness, no power control. Second
definition of fairness.
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6.4 A Distributed Routing Algorithm

The model described in the previous Sections can be used to compute the most efficient
solution for the system, under fairness constraint. It considers a static system, and requires
some kind of centralized control. Moreover, it requires that all the traffic to be transmitted
during a given time interval is known in advance. Conversely, ad hoc network are decentralized
networks where:

• there is no centralized system control;

• only local information is available at node level;

• decisions are taken ”on line”, without knowledge of the future traffic.

This means that decentralized algorithms, using only local information, must be considered
when routing packets through these networks. These algorithms, using only local information
and decentralize control, won’t possibly reach the maximal theoretical efficiency, which should
be considered as a benchmark on the system performance.

In absence of node capacity (battery) and fairness constraints, the best routing for each
commodity is the one using the shortest path. Our proposal is to continue using shortest path
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Figure 6.8: Total energy consumption (log) and fairness. Access point configuration, first
definition of fairness.
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connections between origins and destinations, by changing the cost of each arc according to
the unbalance and remaining batteries of its endpoints. Shortest path routing protocols are
quite common in telecommunications (see, e.g., the routing protocol for ad hoc networks
defined by Johnson, Maltz and Broch [69]), and we can use any of them in a transparent way,
the only difference being the cost for the use of each arc.

In a dynamic setting, the flow changes over time and thus the routing should be updated at
periodic intervals. When a node receives a packet to be routed to a destination, it will decide
”on line”, according to the actual costs of the arcs, which path to use. At the update, each
node computes its current unbalance and remaining battery, and the costs of its connections
are updated accordingly. Let i, j be an edge of the network, and define the original cost of this
edge as the unitary energy cost: cij = ρ + δij , or cij = ρ + 1 when power control is not used.
If remaining batteries and fairness are disregarded, these are the costs to be used to compute
the shortest path routing. If we want to take into consideration also remaining capacities
and fairness, the cost of each arc can be defined as: c̃ij = cij/f(ri, rj , p(i), p0(i), p(j), p0(j)),
where ri is the fairness of node i, and p(i) and p0(i) represent the remaining and starting (or
maximum) batteries of node i, respectively.

The function f(ri, rj , p(i), p0(i), p(j), p0(j)) should have the following properties:

• f() ≥ 0, in order to avoid the use of long inefficient paths, only to reduce the solution’s
cost;



A Distributed Routing Algorithm 111

Figure 6.9: Flow distribution for minimal fairness of 0.0, 0.1, 0.3, 0.5, 0.8 and 1.0. Access
point configuration.

• f(ri, rj , p0(i), p0(i), p0(j), p0(j)) = 1, because we imagine the fairness to be an issue only
for nodes with scarce battery;

• increasing w.r.t. ri (a large value of ri means that i is not contributing to the network);

• increasing w.r.t. p();

Using this kind of routing protocol requires each node to be able to know its unbalance,
in order to compute its fairness and the transmitting cost of its connections. While each node
knows its remaining battery and how much energy it is spending to forward other node’s
packets (the negative components of its unbalance), a mechanism has to be designed in order
to let the node know how much energy other nodes are spending for it. Consider a commodity
st: in Section 6.2.2 we defined Sq and Rq as the quota of the energy cost which are imputed
to the origin s and the destination t, respectively. When all the energy cost is imputed to
the receiver, forwarding nodes can simply add a ”receipt” to forwarded packets (or update a
string storing the total transmission cost of the packet, up to the actual node), in order to
let the receiver know how much they worked for it (the receiver must know only the total
amount of energy spent). When the sender too has to pay for the transmission (i.e. Sq > 0),
the receipt can be sent back from the receiver to the sender.
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6.4.1 Experimental Results

The static setting considered in this paper, where all the demand matrix is optimized at once
and the traffic is sent on the less expensive paths, satisfying a required fairness level and
optimizing the global cost, is the best solution for the system. It needs a central control,
and in addition it requires that all the traffic to be transmitted is known in advance, which
is possibly a stronger assumption. Conversely, the distributed routing algorithm that we
sketched in the previous Section requires only local information, and the routing decision
can be taken ”on line”, by considering the actual cost of the arcs (depending on the history
of the system). A way to compare the performance of the decentralized algorithm with the
benchmark, is to consider an OD matrix and transmit it by using the decentralized routing
algorithm. However, the question is how one can imagine the transmission to be scheduled: in
the static centralized setting, everything is optimized simultaneously, while the decentralized
routing algorithm works ”on line”, the actual routing depending on the actual arcs costs, i.e.
on the previous history.

Concerning the scheduling of the transmission, we can imagine to route a given fraction
of all the OD matrix (the same fraction for all commodities), then update the arcs’ costs,
and route the next fraction, until the whole OD matrix has been routed. The advantage
of this procedure is that the final routing does not depend on the order the commodities
are considered, but only depends on the fraction that is routed between two consecutive
updates (or, in other words, depends on the frequency of update). This procedure gives the
performance of the decentralized algorithm when the traffic between each OD pair does not
change over time, which is the static situation solved by the centralized approach, thus being
a fair comparison. We can imagine that the OD matrix represents the traffic of a long time
interval, and many updates of the arcs’ cost are be performed during the transmission of the
matrix.

Some numerical examples are discussed in the following. To keep the analysis simple,
we do not consider the remaining batteries of the nodes. The OD matrix has to be sent in
one time period, and let freq be the frequency we update the arcs’ costs in the time period;
update = 1/freq is the number of updates performed in the period. The decentralized
algorithm is applied in the following way:

begin
1. iter=1;
2. while (iter ≤ update)
3. for all commodities st ∈ K
4. p := shortest path(s, t);
4. send dst/update on p;
5. endfor;
6. update arcs’ costs;
7. endwhile;

In order to compute the arcs’ costs c̃ij = cij/f(ri, rj , p(i), p0(i), p(j), p0(j)), we define
f(ri, rj , ., ., ., .) = (δij ri + ρ rj)β (δij = 1 when power control is not used), where β is
a parameter to be experimentally tuned, which represents the importance that is given to
fairness in the solution.
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In the following examples, we consider the same network of Section 6.3.2 and we run the
decentralized algorithms with increasing values of β. We report curves describing the cost
of the solutions as function of the corresponding fairness. It’s worth noting that, while in
model (6.11)- (6.17) the fairness is imposed as a constraint, and thus it is know a priori, when
using the decentralized algorithm we can set only the value of β, obtaining the cost and the
fairness of the corresponding solution as an output. In other words, there is no guarantee on
the minimum fairness of the network, but only a parameter to increase the importance given
to fairness in the routing. In our experiments, we start by setting β = 0 (i.e. we route every
commodity on the shortest path) and we iteratively increase it by 0.1 steps until β ∈ [0, 1] ,
and of 1.0 steps when β > 1.

In the first example, we consider the usual network of 20 nodes, generated with uniform
probability on a 10X10 square, each one participating in the network (i.e. transmitting or
receiving some traffic). The probabilities pt and pr are set to 0.6 and 0.7, respectively. The
quantity of bits transmitted between each OD pair has uniform distribution between 0 and a
maximum value (actually it is normalized to 1). The battery of nodes is not a constraint (i.e.
every node has enough capacity), power control is used. We perform 50 updates of the arcs’
cost during the transmission.

The graph of Figure 6.10 reports in purple the curve representing the total energy cost
of solutions found by the decentralized algorithm, with respect to the minimal fairness ex-
perienced by a node of the network (the second definition of fairness 6.10 being used), for
increasing values of the parameter β. The curve can be compared with the benchmark curve
(blue), representing the solutions of model (6.11)- (6.17) when different levels of fairness are
imposed (note that in this case back arcs are allowed, because they can be used by the de-
centralized algorithm). Even if the decentralized algorithm curve is in general monotone (by
increasing β the corresponding fairness and cost are increased), this is not always true, espe-
cially for large values of β. The performance of the decentralized algorithm is close, at least
for values of fairness up to 0.7, to the benchmark, showing the effectiveness of the proposed
routing algorithm.

The graph of Figure 6.11 reports the distribution of energy costs among the 20 nodes
of the network, with respect to the minimal fairness experienced by a node of the network.
The red dashed curve reports the average cost. For quite high levels of fairness, there are
still nodes whose energy is decreasing. This means that the solution is really useful, i.e. the
fairness is not only obtained by making some nodes perform useless extra work, but it is really
obtained by reducing the cost for nodes working too much. When β is very large, we can get
solutions close to 0.9% fair. However, in this case all nodes are spending more energy that
they would in less fair solutions, which are actually more desirable.

We then consider the same network, without using power control, i.e. all existing arcs
have cost 1. The maximum transmitting power pMax is set large enough to let every node
reach all nodes within a distance equal to 4/10 of the diagonal of the square.

In the graph of Figure 6.12 the performance of the decentralized algorithm (purple curve)
is compared with the benchmark. It is very interesting to node that a fairness of approximately
40% can be obtained ”for free” in this example. This means that, among the many feasible
routing of minimum cost, there is one that is quite fair, and the decentralized algorithm is
able to find it. When we search for larger fairness, this has a cost, but the performance of
the algorithm is still comparable with the benchmark.

The graph of figure 6.13 reports the distribution of energy costs among the 20 nodes of
the network. The red dashed curve reports the average cost. The first ”gap” in the graph,
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Figure 6.10: Total energy consumption and fairness, power control. Decentralized Algorithm
and Benchmark.
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corresponding to an increase of the value β from 0 to 0.1, shows that this is enough to lead
the algorithm to a fair solution, among the many equivalent solution of minimum cost.

6.5 Conclusions

Wireless ad hoc networks, where nodes communicate without making use of any preexisting
infrastructure and centralized control, will be highly pervasive in the next future. A wide
literature is available on ad-hoc networks, mainly devoted to the study of the efficiency of
networks, and to the design of mechanisms to obtain a desired behavior from the network
nodes. The efficiency of ad hoc network is highly related to the routing protocols that the
network uses. However, the study of the fairness of routing protocols in ad hoc network have
been rarely considered in the literature, and, to the best of our knowledge, never in a deep
way.

In this paper we propose a possible model for the routing of information packets in wireless
ad hoc networks, where the objective is the design of the most efficient routing, i.e. the one
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Figure 6.11: Energy consumption of the single nodes and fairness, power control. Decentral-
ized Algorithm.
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of minimum energy cost. We define two alternative measures for the fairness of a routing in
such networks, and discuss how an efficient routing can be computed by satisfying a minimum
fairness constraint, basically through the solution of a Linear Programming Model. The
computation of this routing, however, requires a set of information which is normally not
available at single node level, where the routing decisions are taken. Thus, it can be considered
as a benchmark on the best possible routing, and could be implemented only by a centralized
control of the system, which is impossible for the intrinsic decentralized nature of ad hoc
network.

So, we propose also a distributed routing algorithm, which uses only local information,
available at node level. The algorithm is aimed at computing an efficient routing, while taking
into consideration the fairness experienced by the nodes in the network.

Extensive computational experiments on randomly generated networks show that the
measure of fairness we propose are meaningful, leading a true reduction on the energy con-
sumption of some nodes of the network, with an acceptable loss in the network efficiency. In
addition, the distributed fair routing algorithm that we propose is able to find fair routings,
by using only locally available information, with a performance which is comparable to the
benchmark, i.e. to the routing which could be computed by a centralized control algorithm,
by solving a Linear Program.
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Figure 6.12: Total energy consumption and fairness, no power control. Decentralized Algo-
rithm and Benchmark.
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Figure 6.13: Energy consumption of the single nodes and fairness, no power control. Decen-
tralized Algorithm.
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