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We introduce a new exponential family of probability distributions,
which can be viewed as a multivariate generalization of the inverse Gaus-
sian distribution. Considered as the potential of a random Schrödinger oper-
ator, this exponential family is related to the random field that gives the mix-
ing measure of the Vertex Reinforced Jump Process (VRJP), and hence to
the mixing measure of the Edge Reinforced Random Walk (ERRW), the so-
called magic formula. In particular, it yields by direct computation the value
of the normalizing constants of these mixing measures, which solves a ques-
tion raised by Diaconis. The results of this paper are instrumental in [Sabot
and Zeng (2015)], where several properties of the VRJP and the ERRW are
proved, in particular a functional central limit theorem in transient regimes,
and recurrence of the 2-dimensional ERRW.

1. Introduction. In this paper, we introduce a new multivariate exponential
family, which is a multivariate generalization of the inverse Gaussian law. This
exponential family is associated to a network of conductances and provides a ran-
dom field on the vertices of the network, the latter having the remarkable property
that the marginals have inverse Gaussian law and that the field is decorrelated at
distance two.

This exponential family is mainly motivated by the study of two self-interacting
processes, namely the Edge Reinforced Random Walk (ERRW) and the closely
related Vertex Reinforced Jump Process (VRJP), but it could also find some ap-
plications in other topics, such as Bayesian statistics for instance. Note that Dia-
conis and Rolles [8] introduced in 2006 a family of Bayesian priors for reversible
Markov chains, similarly associated to the limit measure of the ERRW.

More precisely, we consider a nondirected finite graph G = (V ,E) with strictly
positive conductances Wi,j = Wj,i on the edges. Denote by �W the discrete
Laplace operator associated to the conductance network (Wi,j ) and write Wi =
∑

j :{i,j}∈E Wi,j . The exponential family provides a random vector of positive reals
(βj )j∈V such that

Hβ := −�W + V
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is a.s. a positive operator, where V = 2β − W is the operator of multiplication
by (2βi − Wi) and 2β − W is considered as a random potential. We prove in
Theorem 3 that if the Green function is defined by G = (Hβ)−1, then the field
(euj ) giving the mixing measure of the VRJP starting from i0, cf. [14], is equal in
law to (G(i0, j)/G(i0, i0)).

This has several consequences. First, it relates the VRJP to a random Schrö-
dinger operator with an explicit random potential with decorrelation at distance 2.
Note that Anderson localization was the main motivation in the papers of Disertori,
Spencer, Zirnbauer ([10, 11]): in these works, the supersymmetric field related to
the mixing measure of the VRJP (cf. [14]) is viewed as a toy model for some super-
symmetric fields that appears in the physics literature in connection with random
band matrices. Second, it enables one to couple the mixing fields of the VRJP start-
ing from different points. Finally, using the link between VRJP and ERRW [14,
17], it yields an answer to an old question of Diaconis about the direct computa-
tion of the normalizing constant of the “magic formula” for the mixing measure of
ERRW.

Results of this paper are instrumental in [16], where the representation in terms
of a random Schrödinger operator is extended to infinite graphs. Interesting new
phenomena appear in the transient case, where a generalized eigenfunction of the
Schrödinger operator is involved in the representation. Several consequences fol-
low on the behavior of the VRJP and the ERRW in [16]: in particular, a functional
central limit theorem is proved for the VRJP and the ERRW in dimension d ≥ 3 at
weak reinforcement, and recurrence of the 2-dimensional ERRW is shown, giving
a full answer to an old question of Diaconis.

The paper is organized as follows. In Section 2, we define the new exponential
family of distributions and give its first properties. In Section 3, we discuss the
link between the exponential family and the Vertex reinforced jump processes. In
Section 4, we consider the ERRW and answer the question of Diaconis. Sections 5
and 6 provide the proof of the two main results, namely Theorem 1 and Theorem 3.

2. A new exponential family. Let V = {1, . . . , n} be a finite set, and let
(Wi,j )i �=j be a set of nonnegative reals with Wi,j = Wj,i ≥ 0. Denote by E the
edges associated to the positive Wi,j , that is, consider the graph G = (V ,E) with
{i, j} ∈ E if and only if Wi,j > 0, and write i ∼ j if {i, j} ∈ E. Let dG be the graph
distance on G.

When A is a symmetric operator on R
V (also be considered as a V ×V matrix),

write A > 0 if A is positive definite, and |A| for its determinant.

THEOREM 1. Let P = (Pi,j )1≤i,j≤n be the symmetric matrix given by

Pi,j =
{

0, i = j,

Wi,j , i �= j.
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For any θ ∈ R
n
+, we have

(1)

(

2

π

)n/2 ∫

1{2β−P>0}e
−〈θ,β〉 dβ√

|2β − P |

= exp
(

−
∑

{i,j}∈E

Wi,j

√

θiθj

)

·
n
∏

i=1

1√
θi

,

where dβ = dβ1 · · ·dβn, and 2β − P is the operator on R
V defined by

[

(2β − P)f
]

(i) = 2βif (i) −
∑

j :j∼i

Wi,jf (j).

DEFINITION 1. The exponential family of random probability measures
νW,θ (dβ) is defined by

νW,θ (dβ) = 12β−P>0

(

2

π

)n/2
exp
(

−〈θ,β〉 +
∑

{i,j}∈E

Wi,j

√

θiθj

)

∏

i

√
θi√

|2β − P |
dβ,

where 〈θ,β〉 =∑

i∈V θiβi . We will simply write νW for νW,1 in the case where
θi = 1 for all i ∈ V .

The proof of Theorem 1 is given in Section 5. We deduce the following simple
but important properties of the measure νW,θ .

PROPOSITION 1. The Laplace transform of νW,θ is
∫

e−〈λ,β〉νW,θ (dβ)

= exp
(

−
∑

{i,j}∈E

Wi,j (
√

λi + θi

√

λj + θj −
√

θiθj )

)

·
n
∏

i=1

√

θi

λi + θi

.

Moreover, if β is a random vector with distribution νW,θ , then:

• The marginals βi are such that 1
2βiθi

is an Inverse Gaussian distribution with

parameters ( 1
∑

j∼i Wi,j

√
θiθj

,1).

• If V1 ⊂ V , V2 ⊂ V are two subsets of V such that dG(V1,V2) ≥ 2, then (βi)i∈V1

and (βj )j∈V2 are independent.

PROOF. The Laplace transform of νW,θ can be computed directly from The-
orem 1, from which we deduce independence at distance at least 2. We can also
deduce, by identification of the Laplace transforms, that the marginals of this law
are reciprocal inverse gaussian up to a multiplicative constant. �

The family can be reduced to the case θ = 1 by changing W , as shown in the
next corollary.
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COROLLARY 1. Let (βj )j∈V be distributed according to νW,θ . Then (θβ) is

distributed according to νW θ
, where W θ

i,j = Wi,j

√

θiθj .

It is clear from the expression of the Laplace transform that if the graph has sev-
eral connected components then the random field (βj )j∈V splits accordingly into
independent random subvectors. Therefore, we will always assume in the sequel
that the graph G is connected.

3. Link with the vertex reinforced jump process.

3.1. Vertex reinforced jump process: Definition and main properties. In this
section, we explain the link between the exponential family of Section 2 and the
Vertex reinforced Jump Process (VRJP), which is a linearly reinforced process in
continuous time, defined in [6], investigated on trees in [3], and on general graphs
by the first two authors in [14]. Consider as in the previous section a conductance
network (Wi,j ) and the associated graph G = (V ,E). Fix also some positive pa-
rameters (φi)i∈V on the vertices. Assume that the graph G is connected.

We call VRJP with conductances (Wi,j ) and initial local time (φi) the
continuous-time process (Yt )t≥0 on V , starting at time 0 at some vertex i0 ∈ V

and such that, if Y is at a vertex i ∈ V at time t , then, conditionally on (Ys, s ≤ t),
the process jumps to a neighbour j of i at rate

Wi,jLj (t),

where

Lj (t) := φj +
∫ t

0
1{Ys=j } ds.

The following time change, introduced in [14], plays a central role. Let

(2) D(t) =
∑

i∈V

(

L2
i (t) − φ2

i

)

,

define Zt as the time changed process

Zt = YD−1(t).

Let (ℓj (t)) be the local time of Z at time t [i.e., ℓj (t) =
∫ t

0 1Zs=j ds]. Condition-
ally on the past, at time t , the process Z jumps from Zt = i to a neighbour j at
rate (cf. [15], Lemma 3)

Wi,j

2

√

√

√

√

φ2
j + ℓj (t)

φ2
i + ℓi(t)

.

We state below one of the main results of [14], Proposition 1 and Theorem 2. The
theorem was stated in [14] in the case φ = 1, this version of the theorem can be
deduced by a simple change of time, details are given in Appendix B.
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THEOREM 2. Assume that G is finite. Suppose that the VRJP starts at i0. The

limit

Ui =
1

2
lim

t→∞

(

log
(

ℓi(t) + φ2
i

ℓi0(t) + φ2
i0

)

− log
(

φ2
i

φ2
i0

))

exists a.s. and, conditionally on U , Z is a Markov jump processes with jump rate

from i to j :
1

2
Wi,je

Uj−Ui .

Moreover, (Uj ) has the following distribution on {(ui), ui0 = 0} :

(3)
Q

W,φ
i0

(du) =
∏

j �=i0
φj

√
2π

|V |−1 e−
∑

j∈V uj e
− 1

2
∑

{i,j}∈E Wi,j (e
ui−uj φ2

j +e
uj −ui φ2

i −2φiφj )

×
√

D(W,u)du,

with du =∏

j∈V \{i0} duj and

D(W,u) =
∑

T

∏

{i,j}∈T

Wi,je
ui+uj ,

where the sum runs on the set of spanning trees T of G. We simply write QW
i0

for

Q
W,1
i0

.

The fact that the total mass of the measure Q
W,φ
i0

is 1 is both a nontrivial and a
useful fact: in particular, it plays a central role in the delocalization and localization
results of [10, 11]. In [14], it is a consequence of the fact that it is the probability
distribution of the limit random variables U . In [11], it is proved using a sophis-
ticated supersymmetric argument, the so-called localization principle. Theorem 3
below provides a direct “computational” proof of that result, based on the identity
(1) and on the change of variable in Proposition 2 that relates the field (uj ) to the
random vector (βj ) in Definition 1.

3.2. Link with the random potential β . The second main result of this paper
enables us to construct the mixing field eu defined in the previous subsection from
the random potential (βj ) defined in Definition 1. It gives also a natural way to
couple the mixing measure of VRJP starting from different points.

Let us first state the following Proposition 2, which provides some elementary
observations on the Green function.

Define

D =
{

(βi)i∈V ∈
(

R+ \ {0}
)V

,2β − P > 0
}

.
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PROPOSITION 2. Let β ∈ D, and let G be the inverse of (2β − P). Then

(G(i, j)) has positive coefficients. Define (u(i, j))i,j∈V by

eu(i,j) = G(i, j)

G(i, i)
.

Then for i0 ∈ V , the function j → u(i0, j) is the unique solution j �→ uj of the

equation

(4)

⎧

⎪

⎨

⎪

⎩

∑

j∼i

1

2
Wi,je

uj−ui = βi, i �= i0,

ui0 = 0.

In particular, (u(i0, j))j∈V is (βj )j∈V \{i0} measurable. Moreover, at the site i0 we

have

βi0 =
1

2G(i0, i0)
+

∑

j :j∼i0

1

2
Wi0,je

u(i0,j).

THEOREM 3. Let β be a random potential with distribution νW,φ2
(dβ) as

in Definition 1, and let (u(i, j))i,j∈V be defined as in Proposition 2. Then the

following properties hold:

(i) The random field (u(i0, j))j∈V has the distribution of the mixing measure

Q
W,φ
i0

(du) of the VRJP starting from i0 with initial local time (φi)i∈V .
(ii) The random variable G(i0, i0) has the distribution of 1/(2γ ), where γ is

a gamma random variable with parameters (1/2,1/φ2
i0
). Moreover, G(i0, i0) is

independent of (βj )j �=i0 , and thus also of the field (u(i0, j))j∈V .

The proofs of Proposition 2 and Theorem 3 are given in Section 6. The next
Corollary 2 describes how to construct the random potential β from the field u of
Theorem 2.

COROLLARY 2. Consider a VRJP with edge weight (Wi,j ) and initial local

time (φi)i∈V , starting at i0. Let (ui)i∈V be distributed according to Q
W,φ
i0

of The-

orem 2. Let

(5) β̃i =
1

2

∑

j :j∼i

Wi,je
uj−ui .

Let γ be a Gamma distributed random variable with parameters (1
2 ,1/φ2

i0
),

independent of (uj ), and let

(6) βi = β̃i + 1i0γ.

Then β has the law νW,φ2
of Definition 1.
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Corollary 2 indeed follows directly from Theorem 3 and Proposition 2: the law
of β in (6) is uniquely determined by the laws of (ui)i∈V and γ independent from
(βi)i �=i0 . Hence it is sufficient to show that, if β has distribution νW,φ2

(dβ) and u

is defined from (4) by Proposition 2, then (ui)i∈V indeed has distribution Q
W,φ
i0

,

and γ = βi0 − β̃i0 = 1/(2G(i0, i0)) has distribution Ŵ(1/2,1/φ2
i0
), which follows

from Theorem 3.
As mentioned in the Introduction, Theorem 3 has several consequences. First, it

explicitly relates the VRJP to the random Schrödinger operator −�W + V , where
V is the random potential Vi = 2βi − Wi . Second, it yields a natural coupling be-
tween the random fields (uj )j∈V associated with the VRJP starting from different
sites, since the exponential family (βi)i∈V gives the same role to each vertex of
the graph, and (u(i, j))i,j∈V arises from these random variables (βi)i∈V . Finally,
it also gives a computational proof of the identity

∫

Q
W,θ
i0

(du) = 1, for any θ , as a

consequence of Theorem 1 that allows to define νW,φ2
(dβ) as a probability mea-

sure.

4. Link with the edge reinforced random walk and a question of Diaconis.

4.1. Definition and magic formula. The Edge Reinforced Random Walk
(ERRW) is a famous discrete time process introduced in 1986 by Coppersmith
and Diaconis [5].

Let (ai,j ){i,j}∈E be a set of positive weights on the edges of the graph G. Let
(Xn)n∈N be a random process that takes values in V , and let Fn = σ(X0, . . . ,Xn)

be the filtration of its past. For any e ∈ E, n ∈ N, let

(7) Zn(e) = ae +
n
∑

k=1

1{{Xk−1,Xk}=e}

be the number of crosses of the (nondirected) edge e up to time n plus the initial
weight ae.

Then (Xn)n∈N is called Edge Reinforced Random Walk (ERRW) with starting
point i0 ∈ V and weights (ae)e∈E , if X0 = i0 and, for all n ∈ N,

(8) P(Xn+1 = j | Fn) = 1{j∼Xn}
Zn({Xn, j})

∑

k∼Xn
Zn({Xn, k})

.

We denote by P
ERRW,(a)
i0

the law of the ERRW starting from the initial vertex i0
and initial weights (a).

A fundamental property of the ERRW, stated in the next theorem, is that on fi-
nite graphs the ERRW is a mixture of reversible Markov chains, and the mixing
measure can be determined explicitly (the so-called Coppersmith–Diaconis mea-
sure, or “magic formula”). It is a consequence of a de Finetti theorem for Markov
chains due to Diaconis and Freedman [7], and the explicit determination of the law
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is due to Diaconis and Coppersmith [5, 12, 13]. It has also applications in Bayesian
statistics [1, 2, 8].

THEOREM 4 ([5, 12]). Assume that G = (V ,E) is a finite graph and set

ai =
∑

j :{i,j}∈E ai,j for all i ∈ V . Fix an edge e0 incident to i0, and define

He0 = {y : ∀e ∈ E,ye > 0, ye0 = 1} (similarly let yi =∑

i∈e ye). Consider the fol-

lowing positive measure defined on He0 defined by its density:

M
(a)
i0

(dy) = C(a, i0)

√
yi0

∏

e∈E y
ae
e

∏

i∈V y
1
2 (ai+1)

i

√

D(y)
∏

e �=e0

dye

ye

,(9)

with

D(y) =
∑

T

∏

e∈T

ye,

where the sum runs on the set of spanning trees T of G, and with

C(a, i0) =
21−|V |+

∑

e∈E ae

√
π

|V |−1 ·
∏

i∈V Ŵ(1
2(ai + 1 − 1i=i0))
∏

e∈E Ŵ(ae)
.

Then M
(a)
i0

is a probability measure on He0 , and it is the mixing measure of the

ERRW starting from i0, more precisely

P
ERRW,(a)
i0

(·) =
∫

Hi0

P
(y)
i0

(·) dM
(a)
i0

(y),

where P
(y)
i0

denotes the reversible Markov chain starting at i0 with conductances

(y).

4.2. The question of Diaconis. The fact that M(a)
i0

(dy) is a probability mea-
sure is a consequence of the fact that it is the mixing measure of the ERRW. In
fact, it is obtained as the limit distribution of the normalized occupation time of
the edges [12]:

(

Zn(e)

Zn(e0)

)

e∈E

law−→ M
(a)
i0

.

One question raised by Diaconis is the following:

(10) (Q) Prove by direct computation that
∫

M
(a)
i0

(dy) = 1.

An answer was proposed by Diaconis and Stong [9] in the case of the triangle,
using a subtle change of variables. Also note that Merkl and Rolles offered in
[13] analytic tools for the computation of the ratio of the normalizing constants of
the magic formula for two initial weights differing by integer values, which may
possibly be extended to provide the normalizing constant.

We provide below an answer to that question. A first simplification comes from
[14, 17], where an explicit link was made between the VRJP and the ERRW.
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THEOREM 5 (Theorem 1, [14]). Consider (Yn) the discrete time process as-

sociated with the VRJP (Yt ) (i.e., taken at jump times) with conductances (Wi,j )

and φ = 1. Take now the conductances (We)e∈E as independent random variables

with gamma distribution with parameters (ae)e∈E . Then the “annealed” law of Yn

[i.e., the law after taking expectation with respect to the random (We)] is the law

of the ERRW (Xn) with initial weights (ae)e∈E .

This immediately implies an identity between the mixing measures M
(a)
i0

and

QW
i0

: indeed, by Theorem 2, (Yn) is a mixture of Markov jump processes with
conductances Wi,je

ui+uj , which implies that for all 0-homogeneous bounded test
functions φ (i.e., φ[λy) = φ(y), ∀λ > 0], we have

(11)

∫

He0

φ
(

(ye)
)

M
(a)
i0

(dy)

=
∫

RE

∏

e∈E

W
ae−1
e e−We

Ŵ(ae)

(∫

φ
((

Wi,je
ui+uj

))

QW
i0

(du)

)

dW

with dW =
∏

e∈E dWe. This identity was checked by direct computation in Sec-
tion 5 of [14].

Now, the fact that
∫

QW
i0

(du) = 1 is a consequence of the computation of the
integral (1) in Theorem 1 and the change of variables in Theorem 3, as explained
at the end of Section 3. Therefore,

∫

ye0=1
dMa

i0
(y) = 1.

Note that this fact can be used to prove directly that Ma
i0
(dy) is the mixing mea-

sure of the ERRW starting from initial condition (a) and initial vertex i0. Indeed,
for any finite path σ : i0 → i1 → ·· · → in, let N(i) [resp. N(e)] be the number of
times vertex i (resp., edge e ) is visited (resp., crossed):

N(i) =
∣

∣{k;0 ≤ k ≤ n − 1, ik = i}
∣

∣,

N(e) =
∣

∣

{

k;0 ≤ k ≤ n − 1, {ik, ik+1} = e
}∣

∣.

The probability of σ for the reversible Markov chain of conductance y is

p
y
i0
(σ ) =

∏

e∈E y
N(e)
e

∏

i∈V y
N(i)
i

.

The integration of p
y
i0
(σ ) w.r.t. dMa

i0
(y) can be computed by changing the con-

stant Ŵ(ae) to Ŵ(ae + Ne) and Ŵ(1
2(ai + 1)) to Ŵ(1

2(ai + 1) + Ni). Using the

property Ŵ(x + 1) = xŴ(x) and the notation (a, n) =∏n−1
k=0(a + k), we deduce

∫

p
y
i0
(σ ) dMa

i0
(y) =

∏

e(ae,N(e))
∏

i(ai,N(i))

which is the probability of an ERRW to follow the path σ .



3976 C. SABOT, P. TARRÈS AND X. ZENG

5. Proof of Theorem 1.

LEMMA 1. Let P = (Pi,j )1≤i,j≤n be a symmetric matrix with

Pi,j =
{

0, i = j,

Wi,j ∈ R
+, i �= j,

and let β be a diagonal matrix with entries βi, i = 1, . . . , n, such that M = 2β −P

is positive definite.
Let L be the lower triangular n × n matrix and U be the upper unitary (with 1

on the diagonal) upper triangular matrix such that M = LU (i.e., the LU decom-

position of M), which exist and are unique.
Then

U =

⎛

⎜

⎜

⎝

x1 −H1,2 · · · −H1,n

0 x2 · · · −H2,n

· · · −Hn−1,n

0 · · · 0 xn

⎞

⎟

⎟

⎠

,

where (xi)1≤i≤n and (Hi,j )1≤i<j≤n are defined recursively by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H1,j = W1,j , j > 1,

Hi,j = Wi,j +
i−1
∑

k=1

Hk,iHk,j

xk

, i ≥ 2, j > i,

xi = 2βi −
i−1
∑

k=1

H 2
k,i

xk

, i ≥ 1.

Furthermore,

xi =
M(1, . . . , i | 1, . . . , i)

M(1, . . . , i − 1 | 1, . . . , i − 1)
,

where M(I | J ) is the minor of matrix M that corresponds to the rows with index

in I and columns with index in J .

The result follows directly from (2.6) of [18], but we prove it in Appendix A for
completeness’ sake.

CLAIM 1. For any θ1 > 0, θ2≥0,

∫ ∞

0
exp
(

−
θ1x

2
−

θ2

2x

)

1√
x

dx = exp(−
√

θ1θ2)

√

2π

θ1
.
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PROOF. The case θ2 = 0 corresponds to the normalisation of the Ŵ(1
2) vari-

able. The case θ2 > 0 corresponds to the normalization of the Inverse Gaussian
law IG( θ1

θ2
, 1

θ2
). �

Let us now prove Theorem 1. In the sequel, we take the convention, given any
real sequence (ak)k∈N, that

∑m
k=n ak = 0 if n > m.

By Lemma 1,

n
∑

k=1

θlβl =
n
∑

k=1

θk

(

xk

2
+

k−1
∑

l=1

H 2
l,k

2xl

)

=
n
∑

l=1

[

θlxl

2
+

1

2xl

(

n
∑

k=l+1

θkH
2
l,k

)]

.

Define

 :
(

R+ \ {0}
)n −→ D,

(xi)1≤i≤n �−→ (βi)1≤i≤n =
(

xi

2
+

i−1
∑

k=1

H 2
k,i

xk

)

1≤i≤n

.

Then  is a bijection, since a symmetric matrix is positive definite if and only
if all of its diagonal minors are positive. Its Jacobian is 2−n, hence it is a diffeo-
morphism.

Therefore,

I :=
∫

1{2β−P>0}
exp(−θβ)√
|2β − P |

dβ

=
∫

R
n
+

exp

(

−
n
∑

l=1

[

θlxl

2
+

1

2xl

(

n
∑

k=l+1

θkH
2
l,k

)])

1
√

x1 · · ·xn

1

2n
dx.

Let, for all 1 ≤ l ≤ m ≤ n,

Rl,m =
(

n
∑

j=m+1

Hl,j

√

θj

)2

+
m
∑

k=l+1

θkH
2
l,k,

Sl,m =
θlxl

2
+

Rl,m

2xl

.

Note that Rl,m (resp., Sl,m) only depends on x1, . . . , xl−1 (resp., x1, . . . , xl).
Let, for all 1 ≤ m ≤ n,

Im :=
∫

R
m
+

exp

(

−
m
∑

l=1

Sl,m

)

dx1 · · ·dxm√
x1 · · ·xm

.

We will take the convention that, if m = 0, the integral of dx1 · · ·dxm is 1, so that
I0 = 1.

Note that I = In/2n. We also have the following lemma.



3978 C. SABOT, P. TARRÈS AND X. ZENG

LEMMA 2. For all 1 ≤ m ≤ n, we have

Im =
√

2π

θm

exp

(

−
n
∑

j=m+1

Wm,j

√

θmθj

)

Im−1.

PROOF. Using Claim 1, we deduce

(12)

Im =
∫

R
m
+

exp

(

−
[

θmxm

2
+

Rm,m

2xm

+
m−1
∑

l=1

Sl,m

])

dx1 · · ·dxm√
x1 · · ·xm

=
∫

R
m−1
+

exp

(

−
√

Rm,mθm −
m−1
∑

l=1

Sl,m

)

dx1 · · ·dxm−1√
x1 · · ·xm−1

.

Now Rm,m = (
∑n

j=m+1 Hl,j

√

θj )
2 and

Hm,j = Wm,j +
m−1
∑

l=1

Hl,mHl,j

xl

,

so that

√

Rm,mθm =
n
∑

j=m+1

Wm,j

√

θmθj +
m−1
∑

l=1

Hl,m

√
θm

xl

n
∑

j=m+1

Hl,j

√

θj .

On the other hand, for all 1 ≤ l ≤ m − 1,

Sl,m − Sl,m−1 = −Hl,m

√
θm

xl

n
∑

j=m+1

Hl,j

√

θj .

Therefore,

√

Rm,mθm +
m−1
∑

l=1

Sl,m =
n
∑

j=m+1

Wm,j

√

θmθj +
m−1
∑

l=1

Sl,m−1,

which enables to conclude by (12). �

We deduce from Lemma 2, by induction, that

I =
In

2n
=

1

2n

√

(2π)n

θn · · · θ1
exp
(

−
∑

{i,j}∈E

Wi,j

√

θiθj

)

,

which enables us to conclude.
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6. Proofs of Proposition 2 and Theorem 3.

6.1. Useful results on M-matrices. We start by stating some useful results on
M-matrices. We follow reference [4], Chapter 6, which provides a detailed account
on the subject. We adopt the following definition which is equivalent to the more
classical definition (1.2) of [4], using Theorem 2.3, property (G20) of [4].

DEFINITION 2. A real n × n matrix A is called a nonsingular M-matrix if it
has nonpositive off-diagonal coefficients, that is,

ai,j ≤ 0 ∀i �= j,

and if the real parts of all of its eigenvalues are positive.

It is clear from this definition that when β is distributed according to νW,θ (dβ)

in Definition 1, then the matrix 2β − P is a.s a symmetric nonsingular M-matrix.
We will need the following properties.

PROPOSITION 3 (Theorem 2.3, Chapter 6, [4]). Assume that A is a real n × n

matrix with nonpositive off-diagonal coefficients, that is, A ∈ Zn×n in the notation

of [4], that is,

ai,j ≤ 0 ∀i �= j.

The assertion “A is a nonsingular M-matrix” is equivalent to each of the fol-

lowing assertions:

(1) (Property (N38) in [4]) A is invertible and A−1 has nonnegative coefficients.
If moreover A is irreducible, this implies that A−1 has positive coefficients by

Theorem 2.7 [4].
(2) (Property (L32) in [4]) there exists a vector x with positive coefficients such

that y := Ax has nonnegative coefficients and such that if yj0 = 0 for some j0, then

there exists a sequence of indices j1, . . . , jk with yjk
> 0 such that ajl ,jl+1 �= 0 for

all l = 0, . . . , k − 1.

6.2. Proof of Proposition 2. Fix i0 ∈ V , and let β ∈ D. Let us first justify the
existence and uniqueness of u(i0, i) defined by the linear system (4). Clearly, from
Definition 2, (2β − P) is a symmetric nonsingular M-matrix since β ∈ D. It is ob-
viously irreducible since the graph is connected, we deduce from Proposition 3(1)
that its inverse G satisfies G(i, j) > 0 for any i, j ∈ V . A solution (uj ) of equa-
tion (4) is necessarily of the form euj = 2γG(i0, j) for some constant γ ∈ R. The
normalization ui0 = 0 implies γ = (2G(i0, i0))

−1. Hence, the unique solution of
the system (4) is given by uj = u(i0, j) defined in Proposition 2.
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6.3. Proof of Theorem 3. We start by a simple lemma.

LEMMA 3. The following map:

(13)
� : D →

{

(uj )j∈V ∈ R
V , ui0 = 0

}

×
(

R+ \ {0}
)

,

(β) �→
(

(uj ), γ
)

,

where (uj ) is the unique solution of the system (4) and γ = (2G(i0, i0))
−1, is a

diffeomorphism.

PROOF. By Proposition 2 the map is well defined and injective. Conversely,
starting from ((uj ), γ ) on the right hand side, we define (βi) by

(14) βi =
∑

j∼i

1

2
Wi,je

uj−ui + 1i=i0γ.

It is clear that with that definition, (uj ) is the solution of (4) with (βj ) and γ =
(2G(i0, i0))

−1. It remains to prove that A = 2β − P > 0 or equivalently that A

is a nonsingular M-matrix (cf. Definition 2). Now x = eu and y = 2γ (1i=i0)i∈V

satisfy assumption (2) of Proposition 3 since G is connected and, using eui0 = 1,

Aeu = (2β − P)
(

eu)= 2γ (1i=i0)i∈V = y. �

We give two proofs of Theorem 3.

FIRST PROOF OF THEOREM 3. We make the change of variable given by �,
in (13) and we now prove that if β has distribution νW,φ2

, then (u, γ ) = �(β) has
distribution Q

W,φ
i0

⊗ Ŵ(1
2 , 1

φ2
i0

).

Let J be the Jacobian matrix of �−1 (i.e., Ji,j = ∂βi

∂uj
, j �= i0, Ji,i0 = ∂βi

∂γ
), then

Ji,j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δi,i0 if j = i0,
1

2
Wi,je

uj−ui if i �= j, j �= i0,

−βi if i = j �= i0.

We can factorize the ith row of J by e−2ui for each i, then expand the resulting
matrix according to the i0th column, and we find that

|J | =
1

2|V |−1 e−2
∑

i uiD(W,u).

On the other hand, by (14) we deduce

|2β − P | = 2γ e−2
∑

i uiD(W,u).
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Let ψ be a positive test function. We have
∫

ψ(u,γ )νW,φ2
(dβ)

=
∫

ψ(u,γ )2|V |/2
∏

i φi

π |V |/2

exp(−
∑

i βiφ
2
i +

∑

{i,j}∈E Wi,jφiφj )
√

2γ e−2
∑

i uiD(W,u)

×
1

2|V |−1
e−2

∑

i uiD(W,u)dudγ

=
∫

ψ(u,γ )

∏

i φi

(2π)(|V |−1)/2 e−
∑

i u(i0,i)e
− 1

2
∑

i∼j Wi,j (e
ui−uj φ2

j +e
uj −ui φ2

i −2φiφj )

×
√

D(W,u) ·
e
−φ2

i0
γ

√
πγ

dudγ

=
∫

ψ(u,γ )Q
W,φ
i0

(du)
φi0e

−φ2
i0

γ

√
πγ

dγ.

This concludes the proof of Theorem 3 and of Corollary 2. �

SECOND PROOF OF THEOREM 3. This proof does not make use of the explicit
expression of law Q

W,φ
i0

of U in (3), but rather deduces its Laplace transform from
direct computation of the probability of a loop. Note that compared to the first
proof, this one uses the representation of the VRJP as a mixture of Markov jump
processes (cf. Theorem 2 of [14] or Theorem 2 in Section 3), and hence it uses
implicitly that the measure Q

W,φ
i0

is a probability measure.

We will show that, if (u, γ ) has distribution Q
W,φ
i0

⊗ Ŵ(1
2 , 1

φ2
i0

), then β =
�−1(u, γ ) has distribution νW,φ2

, which clearly implies the result.
It follows by direct computation (see [15], proof of Theorem 3) that the proba-

bility that, at time t , the VRJP Z has followed a loop Z0 = x0, x1, . . . ,Zt = xn =
x0 with jump times respectively in [ti, ti + dti], i = 1, . . . , n, where t0 = 0 < t1 <

· · · < tn < t = tn+1, is pt dt , where

pt = exp
(

−
∑

{i,j}∈E

Wi,j

(

√

φ2
i + ℓi

√

φ2
j + ℓj − φiφj

)

)

∏

i �=i0

φi
√

φ2
i + ℓi

,

dt =
n
∏

i=1

1

2
Wxi−1xi

dti,

with (ℓi)i∈V = (ℓi(t))i∈V local time at time t .
On the other hand, using that, conditionally on U = (Ui)i∈V in Theorem 2, Z is

a Markov jump process with jump rate Wije
Uj−Ui/2 from i to j , this probability
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of a loop is also qt dt , where

qt =
∫

e−
∑

i∈V β̃iℓiQ
W,φ
i0

(du)

and β̃ is defined in (5).
Let Ŵ = Ŵ(1

2 , 1
φ2

i0

). By identification of pt and qt we deduce that
∫

e−
∑

i∈V βiℓiQ
W,φ
i0

(du)Ŵ(dγ )

=
∫

e−∑i∈V β̃iℓiQ
W,φ
i0

(du)

∫

e−ℓi0γ Ŵ(dγ )

= exp
(

−
∑

{i,j}∈E

Wi,j

(

√

φ2
i + ℓi

√

φ2
j + ℓj − φiφj

)

)

×
(

∏

i �=i0

φi
√

φ2
i + ℓi

)

1
√

1 + ℓi0/φ
2
i0

,

which shows that the distribution Q
W,φ
i0

⊗ Ŵ(1
2 , 1

φ2
i0

) has the same Laplace trans-

form as νW,φ2
in Proposition 1. �

APPENDIX A: PROOF OF LEMMA 1

We perform successive Gauss elimination on M to make it upper triangular.
Denote by l1, . . . , ln the n rows of any n × n matrix. First, let

M(1) = M =

⎛

⎜

⎜

⎜

⎜

⎝

x
(1)
1 −H

(1)
1,2 · · · −H

(1)
1,n

−H
(1)
1,2 x

(1)
2 · · · −H

(1)
2,n

· · · · · · · · · · · ·
−H

(1)
1,n −H

(1)
n,2 · · · x(1)

n

⎞

⎟

⎟

⎟

⎟

⎠

,

where we set, for any 1 ≤ i, j ≤ n, x
(1)
i = 2βi and H

(1)
i,j = Wi,j .

We define a sequence of matrices M(k) recursively, such that

M(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x
(1)
1 −H

(1)
1,2 · · · · · · · · · · · · · · · −H

(1)
1,n

0 x
(2)
2 −H

(2)
2,3 −H

(2)
2,n

... 0
. . .

. . .
...

...
. . . x

(k−1)
k−1 −H

(k−1)
k−1,k · · · · · · −H

(k−1)
k−1,n

... 0 x
(k)
k −H

(k)
k,k+1 · · · −H

(k)
k,n

...
... −H

(k)
k,k+1

. . .
. . .

...

...
...

...
. . . −H

(k)
n−1,n

0 0 · · · 0 −H
(k)
k,n · · · −H

(k)
n−1,n −x(k)

n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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by the following rule: M(k+1) is constructed from M(k) by addition of columns

lk+1 ← lk+1 + H
(k)
k,k+1

x
(k)
k

lk, . . . , ln ← ln + H
(k)
k,n

x
(k)
k

lk in M(k). In other words,

TkM
(k) = M(k+1) where [Tk]i,j =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1, i = j,

H
(k)
k,i

x
(k)
k

, i > j = k,

0, otherwise.

It is easy to check that (x
(k)
i )i≥k , (H

(k)
i,j )i,j≥k satisfy the following induction

rule:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H
(k+1)
i,j = H

(k)
i,j +

H
(k)
k,i H

(k)
k,j

x
(k)
k

, i, j ≥ k + 1,

x
(k+1)
i = x

(k)
i −

(H
(k)
k,i )2

x
(k)
k

, i ≥ k + 1.

At step n, we have

Tn−1 · · ·T1M = M(n) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x
(1)
1 −H

(1)
1,2 · · · −H

(1)
1,n

0 x
(2)
2 · · · −H

(2)
2,n

...
. . .

. . . −H
(n−1)
n−1,n

0 · · · 0 x(n)
n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence, it gives the LU-decomposition of M where L−1 = T = Tn−1Tn−2 · · ·T1

and U = M(n). It is easy to check that
{

xi = x
(i)
i , i = 1, . . . , n

Hi,j = H
(i)
i,j , i < j,

satisfy the recursion in the statement, and that xi = M(1, . . . , i | 1, . . . , i)/M(1,

. . . , i − 1 | 1, . . . , i − 1).

APPENDIX B: TIME RESCALING

Let Ys be the VRJP with conductances (W) and initial local time (φi)i∈V de-
fined in Section 3. Recall that Li(t) = φi +

∫ t
0 1Ys=i ds. Consider the increasing

functional A(s) =∑

i(
Li(s)
φi

− 1), and the time-changed process Ỹs̃ = YA−1(s̃). Let

L̃i(s̃) = 1 +
∫ t

0
1{Ỹs̃=i} ds̃.
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We always denote by s̃ the time scale of Ỹ , we can write

s̃ = A(s), ds̃ =
ds

φYs

, Li(s̃) =
1

φi

Li(s).

Obviously, Ỹ is a VRJP with edge weight Wi,jφiφj and initial local local time 1;
that is, conditionally on F Ỹ

s̃
, Ỹ jumps from i to j at rate

Wi,jφiφj L̃j (s̃).

Note for simplicity

W
φ
i,j = Wi,jφiφj .

We can apply [14], Theorem 2 to Ỹ . Let

D̃(s̃) =
∑

i

L̃i(s̃)
2 − 1,

and set Z̃t̃ = Ỹ
D̃−1(t̃)

, with local time ℓ̃i(t̃) =
∫ t̃

0 1
X̃u=i

du. By Proposition 1
of [14] translated in time scale L [cf. relation (2.1) of [14]], we have that
log L̃i(s̃) − 1

N

∑

j∈V log L̃j (s̃) converges a.s. when s̃ → ∞ to a random vector
with distribution given by (3.1) of Theorem 1 of [14], where the weights (Wi,j )

are replaced by (W
φ
i,j ). Changing to variables ui → ui − ui0 , we deduce

lim
s̃→∞

log L̃i(s̃) − log L̃i0(s̃) = Ui

exists and has distribution

QWφ

i0
(du) =

1
√

2π
N−1 e−

∑

j∈V uj e
− 1

2
∑

i∼j W
φ
i,j (cosh(ui−uj )−1)

√

D
(

Wφ, u
)

du,

and that Z̃ is a mixture of Markov Jump Process with jumping rates 1
2W

φ
i,je

Uj−Ui .
We now come back to (Zt ). Recall that Zt = YD−1(t), where D(t) is defined in (2).
From this, we have

t̃ = D̃
(

A
(

D−1(t)
))

,

and

dt̃ = 1

φ
Ỹs̃

L̃
Ỹs̃

(s̃)

LYs (s)
dt =

1

φ2
Zt

dt.

This implies that (Zt ) is a mixture of Markov Jump processes with jumping rates
1
2Wi,je

Uj+logφj−Ui−logφi . By simple change of variables, Ui + logφi − logφi0 has
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distribution

Q
W,φ
i0

(du) =
∏

j �=i0
φj

√
2π

N−1 e−
∑

j∈V uj e
− 1

2
∑

i∼j Wi,j (e
ui−uj φ2

j +e
uj −ui φ2

i −2φiφj )

×
√

D(W,u)du.
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