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1 Introduction

Work in string theory has traditionally focussed on the study of Calabi-Yau threefolds,

as they are relevant to compactification of strings theories to four dimensions. From a

mathematical point of view, it is very natural to ask about the properties of Calabi-Yau

manifolds in (complex) dimensions other than three. Besides the omnipresent torus, two-

and four-dimensional Calabi-Yau manifolds have subsequently acquired a central position

within string theory.1

Two-dimensional Calabi-Yau manifolds, more commonly called K3 surfaces, form a

single connected family and have a long history in mathematics (see e.g. the classic [2]).

As the simplest non-trivial Calabi-Yau manifolds, they also have long been used to com-

pactify string and supergravity theories. Their full relevance to string theory has only been

appreciated with the advent of string dualities [3]. Besides appearing in relation to mirror

symmetry [4], it was also in the context of string dualities, and in particular compactifica-

tions of F- and M-theory, that Calabi-Yau fourfolds became an intense object of interest.

Refs. [5–12] form a partial list of early papers on the subject.

What is common to all Calabi-Yau n-folds is that their Kähler and complex struc-

tures are measured by integrating two special harmonic differential forms, the Kähler form

J ∈ H1,1 and the holomorphic top-form Ω ∈ Hn,0, over appropriate cycles. However, we

may already point out a crucial difference between Calabi-Yau threefolds on one side and

K3 surfaces and Calabi-Yau fourfolds on the other side: whereas (powers of) J and Ω3,0

live in different cohomology groups in the case of Calabi-Yau manifolds of odd complex

dimensions, Ωn,0 and Jn/2 share the middle cohomology for Calabi-Yau manifolds of even

complex dimensions. For K3 surfaces this observation is tightly connected with the concept

of polarization, where both J and Ω2,0 are confined to lie in mutually orthogonal subspaces

of H2. The Torelli theorem for lattice-polarized K3 surfaces states that the complex struc-

ture of a K3 surface with a lattice W ⊂ H2 generated by algebraic cycles is parametrized

by the period domain M∗ = P
[{

Ω ∈ [W⊥ ⊂ H2 ⊗ C] | Ω ∧ Ω = 0,Ω ∧ Ω > 0
}]
.

1See [1] for a discussion of M-theory compactifications on Calabi-Yau fivefolds.
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For Calabi-Yau fourfolds, however, there is no such convenient Torelli theorem. Con-

sider a family of Calabi-Yau fourfolds π : Z −→ M∗ (i.e., Ẑp := π−1(p) for p ∈ M∗ is

a Calabi-Yau fourfold); Pic(Ẑp) for a generic choice of p ∈ M∗ plays a role similar to

the lattice polarization in the case of K3 surfaces. For any two classes in Pic(Ẑp) with

representatives η1 and η2, we may form a vertical cycle η1 ∧ η2, which defines a class in

H2,2(Ẑp;R)∩H
4(Ẑ;Z). The subspace generated by such cycles (for p not in any one of the

Noether-Lefschetz loci within M∗) is called the primary vertical component of H2,2, and is

denoted by H2,2
V (Ẑp). It is identified within H4(Ẑ;Z) defined in topology, independently of

the choice of the “generic” p ∈ M∗. The period integral
∫
ΩẐp

takes its value in H4(Ẑ;C)

and satisfies the obvious constraints Ω ∧ Ω = 0 and Ω ∧ Ω > 0–(*), but the image of the

period map does NOT occupy all of the complement of the primary vertical component.

That is, the period domain satisfying (*) may be contained in a space much smaller than

[
(H2,2

V ⊗ C)⊥ ⊂ H4(Ẑ;C)
]
. (1.1)

References [4, 13] introduced another subspace H4
H(Ẑ;C) ⊂ H4(Ẑ;C) called the pri-

mary horizontal component (see section 2 for a brief review). The period map is lo-

cally injective for Calabi-Yau fourfolds and maps M∗ into an m := h3,1(Ẑp) = dimCM∗-
dimensional subvariety of P[H4(Ẑ;C)]; as we will elaborate on in the next section, M∗ is

in fact mapped into the projectivization of the horizontal component, P
[
H4

H(Ẑ;C)
]
. The

middle cohomology H4(Ẑ;C) of a Calabi-Yau fourfold is then decomposed into

H4(Ẑ;C) = H4
H(Ẑ;C)⊕H2,2

RM (Ẑ;C)⊕H2,2
V (Ẑ;C), (1.2)

where the decomposition is orthogonal under the intersection pairing. Unless the

H4
RM (Ẑ;C) component vanishes, the primary horizontal subspace H4

H(Ẑ;C) is smaller in

dimension than the non-vertical subspace (1.1).

There is another context — flux compactification of F-theory — where one is interested

in the decomposition (1.2) of the middle cohomology above. An ensemble of flux vacua is

specified by specifying a subspace of

[
H4(Ẑ;Z)

]

shift
:= H4(Ẑ;Z) +

c2(T Ẑ)

2
; (1.3)

when this subspace is affine, the vacuum index distribution over the moduli space M∗ is

given by a concise analytic formula [14, 15]. As discussed already in [16], and refined further

in section 2 in this article, we can see that any pair of topological four-form fluxes whose

difference belongs to the real part of the primary horizontal subspace H4
H(Ẑ;R) shares the

same symmetry group from 7-branes in their effective theories below the Kaluza-Klein scale.

This motivates us to choose the affine subspace as some form of shift of H4
H(Ẑ;R). Because

the analytic formula of vacuum index density involves the dimension of the affine subspace,

it is of interest in physics application of F-theory to know the dimension of H4
H(Ẑ;R).

Another question of interest is concerns how the space H2,2
RM (Ẑ;R) arises geometrically,

and which role it plays in phenomenology applications.

– 2 –
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Mirror symmetry indicates that [4, 13]
[
H4

H(Ẑ;C) ∩H2,2(Ẑp;C)
]
=: H2,2

H (Ẑp;C) and H2,2
V (Ẑm;C) (1.4)

have the same dimensions for a mirror pair (Ẑ, Ẑm). This article shares the idea of using

the dimension h2,2V of the mirror Ẑm to find the dimension h2,2H of the original geometry Ẑ

with [17, 18]. References [17, 18] used the intersection ring of the vertical subspace of the

mirror Ẑm not just to determine the dimension h2,2H (Ẑ) = h2,2V (Ẑm), but also to compute

period integrals of Ẑ.

We combine this intersection ring in the mirror Ẑm with a stratification of Ẑm and a

long exact sequence of morphisms of mixed Hodge structure, a combination of techniques

that ref. [19] used in order to derive the formula for h1,1 and hk−1,1 of a toric-hypersurface

Calabi-Yau k-fold. With this approach, we are not only able to determine the dimensions

h2,2V (Ẑm) = h2,2H (Ẑ), h2,2V (Ẑ) = h2,2H (Ẑm) and h2,2RM (Ẑ) = h2,2RM (Ẑm), but also to construct

the cycles representing the remaining component, study their geometry, and discuss their

different roles in physics applications.

We start with an introductory discussion in section 2, which motivates the study of

the space of non-vertical four-cycles (primary horizontal cycles in particular) in the context

of the landscape of flux vacua in F-theory compactifications. Using mirror symmetry, we

derive a combinatorial formula for h2,2V , h2,2H , and h2,2RM , the dimensions of the space of

vertical, horizontal and remaining (i.e. non-vertical and non-horizontal) cycles for Calabi-

Yau fourfolds obtained as hypersurfaces of toric varieties in section 3. Already in this

simple class of Calabi-Yau fourfolds, the remaining component is found to be non-zero in

general. We provide several examples in section 4.

A non-zero H2,2
RM (Ẑ;C) already occurs for the family of Calabi-Yau fourfolds Ẑ =

K3×K3 = S1×S2 with a lattice polarization W1 ⊂ H2(S1;Z) and W2 ⊂ H2(S2;Z). Here,

h2,2V = ρ1ρ2 +2, h2,2RM = ρ1(22− ρ2) + (22− ρ1)ρ2, 2+ 2h3,1 + h2,2H = (22− ρ1)(22− ρ2),

(1.5)

where ρi = rank(Wi) [16]. In this example, the Poincaré duals of H2,2
RM (Ẑ) are not repre-

sented by algebraic four-cycles.

Section 5 shows another example of a family π : Z −→ M∗ where h2,2RM 6= 0 and

provides some more intuition for the geometry relevant to cycles in h2,2RM . This family is

a simple example within the class of Calabi-Yau fourfolds motivated by [20, 21] for F-

theory compactification where SU(5) unification symmetry is broken down to that of the

Standard Model SU(3)c × SU(2)L × U(1)Y without the hypercharge U(1)Y vector field

becoming massive. The remaining component H2,2
RM (Ẑ) in this family contains forms that

are Poincaré dual to four-cycles which are non-vertical, but still algebraic over generic points

in moduli space. This observation plays an important role in the discussion of section 2,

which discusses the relevance of the real primary horizontal subspace H4
R(Ẑ;R) ⊂ H4(Ẑ;R)

in the context of the landscape of flux vacua in F-theory compactification.

In section 6, we discuss how the abundance of flux vacua depends on the unification

group, and the number of generations. Under rather general assumptions, the dependence

on the number of generations is found to factor from the distribution and to be given by a

– 3 –
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Gaussian quite generically for any choice of base manifold. We also develop an estimate for

the dependence of the number of flux vacua on the gauge (unification) group, generalizing

earlier attempts in [16]. We estimate that the abundance of flux vacua with e.g. gauge group

SU(5) is suppressed by a factor of roughly eO(1000) when compared to models with no non-

abelian gauge group. One can think of this surpression as a fine-tuning wildly surpassing

the fine-tuning of 10−120 needed to explain the smallness of the cosmological constant.

Appendix B contains a further elaboration of how such estimates may be obtained. Finally,

we discuss several open problems reserved for future investigation in section 7.

The appendices A and C mostly contain supplementary material and applications.

Appendix A reviews details of the geometry of F-theory GUTs with gauge group SU(5)

relevant for section 5. Appendix A.3 explains how to compute the Hodge diamond of

exceptional divisors in such a geometry by using stratification. Appendix C reviews the

construction of chirality-inducing four-form flux, and computation of the D3-tadpole from

the geometry and this flux. The numerical results in the appendices B and C are used as

input for the discussion in section 6.

A letter [22] by the same authors is focused on a subset of the subjects discussed in

this article, and is addressed to a broader spectrum of readers. It covers the subjects of

sections 2 and 6 and uses the results of section 4.4.1 and the appendices B and C, while

omitting the (mostly technical) material of sections 3 and 5.

2 Ensembles of F-theory flux vacua and the primary horizontal subspace

Supersymmetric compactification of F-theory to 3+1-dimensions is specified by a set

of data (X,B3, J,G
(4)), where πX : X −→ B3 is an elliptic fibration with a section,

J ∈ H1,1(B3;R) a Kähler form on B3 and a G4 a four-form flux in [H4(X;Z)]shift. Once

G(4) is given topologically, the superpotential W ∝
∫
X ΩX ∧ G(4) determines the vacuum

expectation value of the complex structure of X, B3, πX etc. For an ensemble of fluxes

in [H4(X;Z)]shift, therefore, we obtain an ensemble of low-energy effective theories in

3+1-dimensions, called a landscape.

Flux compactification not only determines the values of low-energy coupling constants,

but also the gauge group. Once the complex structure of the elliptic fibration πX : X −→

B3 is determined by the mechanism above, we know the configuration of 7-branes (i.e. the

discriminant locus of πX). Now, remember that we usually classify low-energy effective

theories in their algebraic information such as gauge group, matter representations and

unbroken symmetry first, in their topological information such as the number of generations

next, and then finally in their values of the coupling constants. It is thus desirable to be

able to classify flux vacua in a landscape also in the same way, sorting out first in the

algebraic information, secondly in the topological data and finally in the moduli data [16].

This requires to work out what kind of topological flux G(4) results in an effective theory

with a given algebraic and topological information.

In order to address this problem, it is useful to consider a family of elliptically fibred

Calabi-Yau fourfolds characterized as follows [16]. First, let us choose (B3, [S]) and an

algebra R. We specify only the topology of an algebraic three-fold B3, and let [S] be a

– 4 –
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divisor class in Pic(B3). R is an algebra in the A-D-E series, to be used for a unification

group of one’s interest. The family π : X −→ MR
∗ is that of smooth Calabi-Yau fourfolds

X with an elliptic fibration πX : X −→ B3 with a section, so that there is a locus of

singular fibres of type2 R along a divisor S of B3 that belongs to the class [S]. The

restricted moduli space MR
∗ parametrizes the complex structure of such fourfolds X. For

a generic point p ∈ MR
∗ , the corresponding fourfold Xp := π−1(p) has the property that[

H1,1(Xp;Q) ∩H2(X;Q)
]
is generated by divisors in the base, the zero-section σ, and

{Ĉi}i=1,··· ,rank(R) called Cartan divisors. Such a family over the restricted moduli space

MR
∗ is a useful notion to express the flux vacua distribution, as we see in eqs. (2.8), (2.9).

There are a couple of physical conditions to be imposed on the fluxes. First of all, the

flux preserves the SO(3, 1) symmetry in the effective theory on 3+1-dimensions if and only

if the flux G(4) does not have a component that has either “two legs in the T 2 fibre” or

“no legs in the T 2 fibre” [23]. This condition is best paraphrased as

σ ∧ η ∧G(4) = 0, η1 ∧ η2 ∧G
(4) = 0, (2.1)

where σ is (the differential form Poincaré dual to) the zero section, and η, η1,2 are divisors

on B3, see [24–28]. The D-term condition (equivalently N = 1 supersymmetry condition,

primitiveness condition) is that

J ∧G(4) = 0 ∈ H6(X;R). (2.2)

The subspace of [H4(X;Z)]shift satisfying the two conditions above, (2.1), (2.2), is denoted

by [H4(X;Z)]Lor.prim.
shift . The subspace of H4(X;Z) without the shift by c2(TX)/2 satisfying

the condition (2.1), (2.2) is denoted by [H4(X;Z)]Lor.prim..

For a pair of fluxes G
(4)
1 and G

(4)
2 in [H4(X;Z)]Lor.prim.

shift to preserve the same symmetry

group within the 7-brane gauge group R, their difference needs to satisfy

i∗Ĉi

(
G

(4)
1 −G

(4)
2

)
= 0 ∈ H4(Ĉi;Z), (2.3)

where iĈi : Ĉi →֒ X is the embedding of the Cartan divisors (generators) {Ĉi}i=1,··· ,rank(R).

Thus, we formulate an ensemble of fluxes leading to effective theories with a common

unbroken symmetry group as
{
G

(4)
tot = G(4)

scan +G
(4)
fix | G(4)

scan ∈ Hscan

}
; (2.4)

we choose G
(4)
fix and Hscan such that G

(4)
scan = 0 is contained in Hscan. G

(4)
fix must be in

[H4(X;Z)]Lor.prim.
shift , while Hscan needs to be a sub-set of the cohomology group H4(X;Z)

satisfying all the conditions (2.1), (2.2), (2.3). Because all of these conditions3 are linear

in G(4), we always take Hscan to be a sub-group of H4(X;Z).

We now argue that the real primary horizontal subspace H4
H(X;R) ⊂ H4(X;R) sat-

isfies all of the conditions (2.1), (2.2), (2.3) modulo ⊗R, and we can hence take Hscan to

2Here, ‘type R’ singular fibre means that at a generic point in S, the dual graph of the fibre is given by

the extended Dynkin diagram of R.
3The condition from D3-brane tadpole is treated separately from the conditions discussed above.

– 5 –
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contain all of H4
H(X;R)∩H4(X;Z). To see this, we take a little moment to provide a brief

review on the definition of H4(X;C), and to make clear what we mean by the real primary

horizontal subspace. For any point p ∈ MR
∗ , we can define a subspace

SpanC
{
ΩXp , DΩXp , D

2ΩXp , D
3ΩXp , D

4ΩXp

}
(2.5)

= H4,0(Xp,C)⊕H3,1(Xp;C)⊕H2,2
H (Xp;C)⊕H1,3(Xp;C)⊕H0,4(Xp;C) ⊂ H4(X;C).

The cohomology group H4(X;C) = C ⊗ H4(X;Z) is topological; there is a canonical

identification between H4(Xp;C) and H4(Xp′ ;C) for p, p′ in a small neighbourhood

in M∗ — called flat structure — and the reference to p ∈ M∗ is suppressed in the

expression above. The (p, q)-Hodge components with the canonical identification relative

to H4(X;C), however, vary over p ∈ MR
∗ . The fact that the Picard-Fuchs equations on

the period integral are closed in the subspace specified above, however, implies that the

space (2.5) remains the same in H4(X;C) for every p ∈ M∗ (at least locally) under the

canonical identification (flat structure). A reference to p ∈ MR
∗ is hence suppressed and

the invariant subspace is called the primary horizontal subspace H4
H(X;C). The remaining

component in the decomposition (1.2), H2,2(Xp;C), should therefore be independent of

p ∈ M∗ under the canonical identification. This is why reference to p ∈ M∗ is completely

dropped in (1.2); the decomposition (1.2) is topological.

The four-form flux in M-theory/F-theory compactification is real-valued, while the pri-

mary horizontal subspace H4
H(X;C) is complex-valued. Noting, however, that the complex

conjugation operation is compatible with the canonical identification (topological tracking)

of H4(Xp;C) for p ∈ M∗, we also have a decomposition of the real part H4(X;R):

H4(X;R) = H4
H(X;R)⊕H2,2

RM (X;R)⊕H2,2
V (X;R), (2.6)

just like in (1.2). The “primary horizontal subspace” component of H4(X;R) is what we

call the real primary horizontal subspace H4
H(X;R).

Now, let us see that the four-forms in the real primary horizontal subspace H4
R(X;R)

satisfy all the conditions (2.1), (2.2), (2.3) modulo ⊗R. First, noting that σ · η and η1 · η2
in (2.1) form only a subset of generators of the vertical four-cycles, and that all of the

elements of the horizontal component are orthogonal to those in the vertical component

in (1.2), it is straightforward to see that the four-forms in H4
H(X;R) satisfy (2.1).

In order to verify the primitiveness condition, consider the (h3,1 + 1) = (m + 1)-

dimensional variety occupied by the complex line C[ΩXp ] (this is a C×-cone over the period
domain). Any four-form G in this variety satisfies the condition (2.2), because G is a (4, 0)-

form for some choice p ∈ M∗ of complex structure on X, and J ∧ G would have become

a (5, 1)-form under that complex structure, if it were non-zero. The absence of such a

Hodge component in a Calabi-Yau fourfold X implies that J ∧ G = 0. Since all kinds of

four-forms in H4
H(X;C) are obtained by taking derivatives of such G with respect to the

local coordinates in M∗, we find that all the four-forms in the (real) horizontal primary

subspace satisfy the primitiveness condition (2.2).

Finally, we can make a similar argument to show that the four-forms in H4
H(X;R)

satisfy the condition (2.3). Consider again the set of four-forms realized in the form of ΩXp

– 6 –
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for some p ∈ M∗. Its pull-back to any one of Cartan divisors Ĉi must be a (4, 0)-form on a

complex three-fold Ĉi under the complex structure of p ∈ M∗ induced on Ĉi ⊂ Xp. Thus, the

pull-back of such a four-form vanishes in H4(Ĉi;C). Taking derivatives with respect to the

local coordinates ofM∗, we find that the four-forms inH4
H(X;R) satisfy the condition (2.3).

References [14, 15, 29] studied how the flux vacua are distributed in the complex

structure moduli space for ensembles of fluxes of the form (2.4). One of the two key ideas

is to replace the vacuum distribution by the vacuum index distribution

dµI := d2mz
∑

G
(4)
scan∈Hscan

δ2m(DW,DW )det

[
DDW DDW

DDW DDW

]

2m×2m

Θ

(
L∗ −

1

2
(G

(4)
tot)

2

)
,

(2.7)

so that the problem becomes easier. (z, z̄) are local coordinates of M∗, W ∝
∫
X ΩXp ∧G

(4)

and L∗ is the upper bound of the D3-brane charge allowed for the fluxes G
(4)
tot. The other

idea is to make a continuous approximation to Hscan, which is to treat the subgroup

Hscan ⊂ H4(X;Z) as a vector space Hscan ⊗ R, and to replace the sum by an integral

over the vector space Hscan ⊗ R. Under the continuous approximation, the vacuum index

density dµI is of the form [14, 15] (L∗ ≫ K)

dµI ≃
(2πL∗)K/2

Γ(K/2)
ρI , K := dimR (Hscan ⊗ R) , (2.8)

where ρI is an (m,m) form on M∗. It is given as the Euler class of some real rankR = 2m

vector bundle on M∗ [29], and can be put in the explicit form

ρI = cm(TM∗ ⊗ L−1) = det

[
−
R

2πi
+

ω

2π
1m×m

]
, (2.9)

where ω is the Kähler form on M∗ derived from K = − ln[
∫
Ω ∧ Ω], and L a line bundle

satisfying c1(L
−1) = ω/(2π), whenever the vector space Hscan⊗R contains the real primary

horizontal subspace H4
H(X;R) [14–16, 29].

Having reminded ourselves of how Hscan is used, let us return to the question of how

we should take G
(4)
fix and Hscan. The problem we set in this article (and also in [16, 22])

is to classify the fluxes in [H4(X;Z)]Lor.prim.
shift into sub-ensembles of the form (2.4) so that

each subensemble corresponds to the ensemble of low-energy effective theories with a given

set of algebraic (or algebraic and topological) information. G
(4)
fix is used as a tag of the

subensemble. Apart from [16], the H2,2
RM (X;R) component has not been carefully discussed

(at least from the perspective of the geometry of Calabi-Yau fourfolds) in the context of F-

theory phenomenology to our knowledge. In order to address this problem, therefore, it is

necessary to reopen the case and understand carefully how the low-energy effective theories

are controlled by the fluxes in each one of the components of the decomposition (2.6).

First of all, it is already known that h2,2RM can be non-zero in a family of X = K3 ×

K3 [16], as we have already reviewed in the introduction. We will prove in section 5 that

the class of families of elliptic fibred Calabi-Yau fourfolds for F-theory compactification

with SU(5) unification results in h2,2RM 6= 0 precisely in the cases that are well-motivated
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for a mechanism of SU(5) symmetry breaking in [20, 21]. Despite the presence of the

H2,2
RM (X;R) component in the middle cohomology, however, we have confirmed (see also

the detailed discussion in the appendix A.4 of this article) that the matter surfaces for

10+10 representations and also 5̄+5 representations of SU(5) belong to topological classes

of H2,2
V (X;Q), confirming [25]. This means that the net chirality of these representations

is controlled by the flux in the H2,2
V (X;R) component.

It has also been indicated that fluxes in H2,2
RM (X;R) may break the symmetry of the

7-brane gauge group R based on the family X = K3 × K3 [16]. Certainly this family is

not suitable for realistic compactifications of F-theory in that all the matter fields in the

relatively light spectrum are in the adjoint representation of R; this family may also be

somehow special in that h2,0(X) 6= 0. However, we have confirmed that the flux in the

H2,2
RM (X;R) component may indeed break the symmetry R; the hypercharge flux of [20, 21]

turns out to be precisely in this category.

Given all the observations above we conclude that Hscan⊗R should be chosen such that

it contains all of the horizontal component H4
H(X;R) and possibly a part of H2,2

RM (X;R).

Clearly, Hscan⊗R should not contain the entire H2,2
RM (X;R) for sub-ensemble of fluxes (2.4)

to correspond to an ensemble of effective theories with a given set of algebraic and topo-

logical information. An example of the family of X = K3 × K3 suggests strongly that we

should choose (Hscan ⊗ R) to be precisely the horizontal component, because any flux in

H2,2
RM (X;R) breaks some of the 7-brane gauge group and Higgses away vector bosons from

the low-energy spectrum in this example. We remain inconclusive about the case of families

for realistic F-theory compactification with (B3, [S], R) (with R = A4, D5 etc.), however,

because the discussion in sections 3 and 5 provides only a partial understanding of the

geometry of the H2,2
RM (X;R) component. This material is enough, however, to conclude

that the formula (2.8), (2.9) of [14, 15] can be used for the ensemble of effective theories

with a given algebraic and topological information. In the examples of elliptic fourfolds for

F-theory compactification studied in section 4.4 of this paper, the remaining component

H2,2
RM (X;R) is absent, so that the horizontal component can be identified with Hscan ⊗ R.

We have so far assumed that smooth Calabi-Yau fourfolds X with flat elliptic fibration

are used for F-theory compactifications with fluxes; it should be rememebered, however,

that it is a belief rather than a fact that such smooth models X should be used instead

of the Weierstrass models Xs, which are singular for compactifications leading to effective

theories with unbroken non-Abelian gauge groups. There may be alternative and/or

equivalent formulations of fluxes that lead to the same physics end results. Even when

we pursue the direction of using smooth models X, there can be more than one choice

of such a smooth model X. All of those different resolutions, however, should describe

the low-energy physics of the same vacuum with an unbroken unified symmetry. Thus,

no matter how fluxes in F-theory are formulated, all the observable physics consequences

should not depend on the choice of resolutions. The dimension of the primary horizontal

component ((Hscan ⊗ R) to be more precise) should be regarded as one of such physical

consequences of F-theory, and hence K = dimR[H
4
H(X;R)] must not depend on the choice

of the smooth model X for a singular Xs.
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There is a general argument that is good enough to make us consider that the di-

mensions of h2,2V (X;R), h2,2H (X;R) and h2,2RM (X;R) are resolution independent. It seems

reasonable to assume that, for a singular Calabi-Yau fourfold (Xs), any crepant resolution

(X) gives rise to the same complex structure moduli space. If this holds, the dimension of

the space of primary horizontal (2, 2) cycles, h2,2H (X;R), as well as h3,1(X) cannot depend

on the resolution. By mirror symmetry, the same statement must be true also for the space

of primary vertical (2, 2) cycles h2,2V (X;R) = h2,2H (Xm;R), and h1,1(X) = h3,1(Xm), where

we assume that all the different resolutions X for Xs share some mirror geometries Xm

with a common complex structure moduli space. If furthermore the Euler characteristic

is invariant under which resolution is used, it follows that also h2,2 cannot be resolution

dependent. This is because h2,2 is not an independent Hodge number but related to all

others by (3.62). From the independence of h2,2H (X;R) and h2,2V (X;R) on which resolution

is used, it then follows that also h2,2RM (X;R) is independent of the resolution.

The two assumptions we have made are obvious for a Calabi-Yau manifold X given

as a hypersurface (or, more generally, complete intersection) in a toric ambient space: for

a fixed singular Calabi-Yau manifold, different crepant resolutions correspond to different

triangulations of the N-lattice polytope whereas all Hodge numbers, and, in particular

the complex structure moduli space depend on the combinatorics of the N - and M -lattice

polytopes, but not on triangulations. We will give a more specific proof of this for the

expressions we derive in the hypersurface case in section 3.6.3.

More generally, our assumptions follow if different resolutions correspond to different

cones in the extended Kähler moduli space, so that they are connected by flop transitions,

which are known to leave both the complex structure moduli space and the Euler

characteristic invariant. This state of affairs is realized in the geometries which are the

main motivation for the present work: F-theory on Calabi-Yau fourfolds supporting

non-abelian gauge groups [30–35].

Let us leave a few remarks at the end of this section in order to clarify what the vacuum

index density distribution dµI is for, as well as what it is not (yet) for. These are more or

less known things, and we include this discussion in this article only as reminder.

The first remark is that a family π : X −→ MR
∗ for some choice of symmetry R and

topology of (B3, [S]) is used to describe the distribution of a subensemble of flux vacua that

is inclusive in nature. Even though the scanning component of the flux, G
(4)
scan, is chosen

from the real primary horizontal component H4
H(Ẑ;R) ⊂ H4(Ẑ;R), it may eventually end

up with the Poincaré dual of a algebraic cycle as a result of dynamical relaxation of the

complex structure moduli due to the superpotential W ∝
∫
Ω ∧ G(4). The delta function

δ2m(DW,DW ) for a given G
(4)
scan eventually has a support on a point p in a Noether-

Lefschetz locus of MR
∗ ; see [16, 18, 24] and references therein. For some choice of G

(4)
scan

(and its corresponding p ∈ MR
∗ ) not only the rank of H2,2(Xp;R)∩H

4(Xp;Z), but even the

rank of H1,1(Xp;R)∩H
2(Xp;Z) may be enhanced.4 For the effective theory corresponding

4Depending on what conditions to impose mathematically on behaviour of the family X −→ MR
∗ at spe-

cial loci, the enhancement of the rank of Pic(Xp) may be phrased differently. The mathematical conditions

to impose should ultimately be determined by the (yet unknown) microscopic formulation of F-theory.
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to such a choice of G
(4)
scan, this can result in an enhanced gauge symmetry forming a hidden

sector in addition to the gauge group R, or the symmetry R is enhanced to another R′

containing R. Such a subensemble of fluxes with (Hscan ⊗ R) = H4
H(X;R) for (B3, [S], R)

therefore contains not just effective theories with the 7-brane gauge group being precisely

R, but also those with an extra factor of gauge group, or those with the 7-brane gauge

group larger than R. In this sense, the subensemble (and the distribution dµI) captured

on the moduli space MR
∗ is an inclusive ensemble. With the expectation that only a very

small fraction of such an inclusive ensemble has a hidden sector or enhanced symmetry,

however, we will refer to vacua in such an ensemble as those with symmetry R; the fraction

of such vacua can be estimated by using the discussion in section 6 and the appendix B,

and we see the fraction is exponentially small indeed.

Secondly, let us record our understanding of the issue of potential instabilities. Given

a topological flux G
(4)
tot = G

(4)
scan + G

(4)
fix , we may not be able to find a solution to DW = 0

within the restricted moduli space MR
∗ . Such a flux, if there is any, has been removed

automatically from the ensemble by the time the continuous approximation Hscan −→

Hscan ⊗ R is introduced and the distribution dµI is cast into the form of (2.8). When the

flux space integral is carried out, the delta-function picks up contributions only from fluxes

that satisfy DW = 0 somewhere in MR
∗ . This argument may be, however, only about

the instability issue associated with DW = 0 for moduli along MR
∗ , i.e., R-singlet moduli.

Instability associated with physical “moduli” transverse to MR
∗ may be captured by the

effective superpotential W =
∫
S tr[ϕ ∧ F ] of [36, 37].

Thirdly and finally, the Kähler moduli have been (and will be) treated in this work

as if they were given by hand, but their stabilization of course also has to be studied

separately. The distribution (2.8), (2.9) on the moduli space of complex structureM∗ needs
to be convoluted with other data, including stabilization of Kähler moduli and dynamical

evolution of cosmology in the early universe. There is nothing to add in this article to

this well-known zoom-out picture, aside from reminding ourselves that it may make sense

to study the distribution over the complex structure moduli space separately from Kähler

moduli stabilization when there is a separation of scales between the stabilization of two

distinct sets of moduli. In this case the two problems can be treated separately and then

be combined, rather than facing the mixed problem.

3 H2,2 of a Calabi-Yau fourfold hypersurface of a toric variety

Suppose that Ẑ is a smooth variety and {Ŷi} a set of its divisors. We can introduce the

following stratification to Ẑ:

Ẑ = (Ẑ \ ∪iŶi)∐
(
∪iŶi \ (∪kj Ŷk ∩ Ŷj)

)
∐ · · · . (3.1)

The first stratum, Z := Ẑ\∪iŶi, is the only one that has the same dimension as Ẑ; we call it

the primary stratum. For the pair Ẑ and Y := Ẑ\Z, there is the long exact sequence (3.11).

It was with this exact sequence in combination with the mixed Hodge structure on these co-

homology groups that ref. [19] derived a formula of h1,1(Ẑ) and hn−2,1(Ẑ) for a Calabi-Yau

(n−1)-fold hypersurface of a toric n-fold and showed the beautiful mirror correspondence.
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We find that the same combination of methods — stratification (3.1) and mixed Hodge

structure — is also very useful in studying various properties of algebraic cycles in Ẑ even

when Ẑ is not necessarily realized as a hypersurface of a toric variety. Section 5 of this arti-

cle uses this combination to study the space of vertical cycles of general fourfolds Ẑ, whereas

we can derive stronger results in the case Ẑ is a Calabi-Yau (n− 1)-fold hypersurface of a

toric n-fold. In the latter case, which is discussed in the present section, the Hodge-Deligne

numbers of the cohomology of the primary stratum can be easily computed by following [38].

By carefully examining the contributions toH2,2(Ẑ) and using mirror symmetry, we are

able to isolate the pieces h2,2V (Ẑ) = h2,2H (Ẑm), h2,2H (Ẑ) = h2,2V (Ẑm) and h2,2RM (Ẑ) = h2,2RM (Ẑm).

The results are given in section 3.6.

3.1 General setup and known results

Let us start by fixing our notation and reviewing some helpful facts; subtleties associ-

ated with singularity resolution are summarized in section 3.1.1. Helpful reviews on toric

geometry may be found in [39, 40].

A toric variety Pn
Σ can be constructed from a fan Σ, which is composed of strictly

convex polyhedral cones in Rn for a lattice N := Z⊕n. The dual lattice is denoted by

M = Z⊕n and the pairing between them for ν ∈ N and ν̃ ∈ M is denoted by 〈ν, ν̃〉 ∈ Z.

We also use the notation NR := N ⊗ R and MR := M ⊗ R. For a given fan Σ, Σ(k)

stands for the collection of all the k-dimensional cones. Σ(0) = {~0 ∈ N}. We denote the

k-skeleton ∪k
i=0Σ(i) by Σ[k].

By definition, an n-dimensional toric variety contains an open algebraic torus (C∗)n =

Tn. From this perspective, a fan Σ gives information on how Tn is compactified. In partic-

ular, the fan determines a stratification into algebraic tori of lower dimension: simplicial

cones of Σ are in one-to-one correspondence with strata of Pn
Σ such that a k-dimensional

cone σ ∈ Σ(k) corresponds to a stratum of Pn
Σ isomorphic to (T)n−k. For cone σ, we denote

the corresponding stratum by Tσ.

A lattice polytope is the convex hull in NR (or MR) of a number of lattice points of

the lattice N (or M). For a lattice polytope ∆ in M the polar (or dual) polytope ∆̃ (in

N) is defined as

∆̃ := {v ∈ NR|〈v, w〉 ≥ −1 ∀w ∈ ∆} . (3.2)

If ∆̃ is a lattice polytope as well, it follows that ∆ is also the polar of ∆̃ and the two are

called a reflexive pair. An elementary property which follows from reflexivity is that the

origin is the only integral point which is internal to the polytope. Faces of an n-dimensional

polytope ∆ are denoted by their dimensions5 as Θ[n−k]. For a pair of reflexive polytopes ∆

in MR and ∆̃ in NR, there is a one-to-one correspondence between faces Θ[n−k] of ∆ and

faces Θ̃[k−1] of ∆̃. We frequently use (Θ̃[n−k],Θ[k−1]) to indicate such a pair of dual faces.

Note that an n-dimensional polytope can be considered as its own n-dimensional face. We

indicate that a face Θa is on a face Θb by writing Θa ≤ Θb. We let ℓ(Θ) stand for the

5Faces of a polytope ∆ are often referred to in the literature by their codimensions. Codimension-1

faces of ∆ are called facets, for example. So, we reserve a notation Θ(k) = Θ[n−k] for codimension-k faces,

although we are not using this notation in the present article.
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number of integral points on a face Θ and ℓ∗(Θ) for the number of integral points interior

to Θ. The p-skeleton of ∆, i.e. the union of all faces of ∆ which have dimension p or less

is denoted by ∆≤p.

Given a reflexive polytope ∆̃ we can easily construct a fan Σ by forming the cones over

all faces of ∆̃. The one-to-one correspondence between (k − 1)-dimensional faces {Θ̃[k−1]}

and k-dimensional cones Σ(k) in NR (resp. between {Θ[k−1]} and Σ̃(k) in MR) is described

in the form of a map σ : {Θ̃[k−1]} −→ Σ(k) (resp. σ̃ : {Θ[k−1]} −→ Σ̃(k)).

Well-known formulae [19, 41, 42] for the Hodge numbers of a Calabi-Yau (n− 1)-fold

hypersurface Ẑ are recorded here in the notation adopted above:

h1,1(Ẑ) = ℓ(∆̃)− (n+ 1)−
∑

Θ̃[n−1]

ℓ∗(Θ̃[1]) +
∑

(Θ̃[n−2],Θ[1])

ℓ∗(Θ̃[n−2])ℓ∗(Θ[1]) , (3.3)

hn−2,1(Ẑ) = ℓ(∆)− (n+ 1)−
∑

Θ[n−1]

ℓ∗(Θ[n−1]) +
∑

(Θ[n−2],Θ̃[1])

ℓ∗(Θ[n−2])ℓ∗(Θ̃[1]) , (3.4)

hm,1(Ẑ) =
∑

(Θ̃[n−m−1],Θ[m])

ℓ∗(Θ̃[n−m−1])ℓ∗(Θ[m]) for n− 2 > m > 1. (3.5)

3.1.1 Triangulations, smoothness and projectivity

The polytope ∆ in MR is regarded as the Newton polyhedron of the defining equation of a

Calabi-Yau hypersurface Zs in Pn
Σ. Because Zs is not smooth, in general, we are interested

in its projective crepant resolution; Ẑ in (3.3)–(3.5) stands for such a resolution. Such

resolutions may always be constructed from the data of the polytope for n ≤ 4 [19]. For

Calabi-Yau hypersurfaces of complex dimension 4 (or dimensions larger than that), this is

not the case, so that we need to explicitly check in each example.

Constructing a fan Σ over the faces of a polytope ∆̃, the resulting cones may be non-

simplicial or have (lattice-) volume6 greater than one. Consequently, the toric variety Pn
Σ

has singularities. We may, however, subdivide the fan Σ to cure such singularities. We

denote the corresponding map between fans by φ : Σ′ −→ Σ. For σ′ ∈ Σ′, φ(σ′) is given by

the σ′-containing cone σ ∈ Σ with the smallest dimension. The map φ (resp. φ̃) induces a

toric morphism Pn
Σ′ −→ Pn

Σ of (partial) singularity resolution.

Such a morphism will preserve the Calabi-Yau condition of a hypersurface if all of the

one-dimensional cones introduced are generated by points on the polytope ∆̃ (remember

that the origin is the only internal point for a reflexive polytope). A (partial) crepant desin-

gularization of Zs is hence equivalent to finding a triangulation of the polytope ∆̃ in which

every n-simplex contains the origin. This is called a star triangulation and the origin is the

star point. A maximal desingularization of Pn
Σ keeping Zs Calabi-Yau is found by using all

points7 on ∆̃. A triangulation using all points of a polytope is called a fine triangulation.

6The “lattice volume” of a cone in ∂∆ is defined by multiplying k! to the volume of a k-dimensional

cone cut-off at ∂∆. The smallest lattice k-simplex has the lattice volume 1.
7In fact, it makes sense to relax this requirement, as points which lie in the interior of facets of ∆̃ do not

lead to divisors intersecting a Calabi-Yau hypersurface. This can be seen as follows: for any facet F we can

find a normal vector nF such that < nF , νi >= 1 for all vectors νi on F . This means that the intersection
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When subdividing cones in Σ, we want the ambient space Pn
Σ′ to be a projective variety

(i.e. it should be a Kähler manifold), which implies projectivity of the Calabi-Yau hypersur-

face; the Kählerian nature combined with the trivial canonical bundle implies Ricci-flatness.

For an n-dimensional toric variety Pn
Σ given in terms of a fan Σ, a Weil divisor D =

∑
i aiDi

is also Cartier iff we can find a support function ψD with the following properties:

• ψD is linear on each cone

• For a given cone of maximal dimension, σ ∈ Σ(n), ψD can be described by an element

mσ of M satisfying

ψD|σ =< mσ, νi >= −ai (3.9)

for all one-dimensional cones (determined by the primitive vectors νi) in σ.

In this language, the cone of ample curves (or, equivalently, the Kähler cone) is de-

scribed as the set of divisors for which ψD is strongly convex. This means that ψD|σ > −aj
for all one-dimensional cones not in σ and implies that mσ 6= mσ′ for two different cones σ

and σ′ in Σ(n). If this cone of ample curves is non-empty, we can find a line bundle which

is very ample, i.e. it defines an embedding of the toric variety Pn
Σ into Pm for some m.

Conversely, if no strongly convex support function exists, the corresponding toric variety

cannot be projective.

A strongly convex support function ψD defines a ‘lift’ of ∆̃ into Rn+1 by assigning the

value of ψD to each point on ∆̃. The triangulation can then be seen as the upper facets

of the resulting polyhedron in Rn+1. Note that strong convexity means that no n + 2

points of ∆̃ are mapped to a hyperplane in Rn+1, i.e. faces of ∆̃ which are subdivided into

more than one simplex by a triangulation are not coplanar after this lift. Conversely, any

triangulation which descends from a triangulation of a lift of ∆̃ (with the property that

no n + 2 points are on a common non-vertical plane) to Rn+1 can be used to construct a

projective toric variety. Triangulations with this property are called regular triangulations.

ring contains a linear relation of the form

∑

νi∈F

Di +
∑

j not∈F

ajDj = 0 , (3.6)

with includes some contribution of divisors whose corresponding primitive vectors νj are not in F but lie

on other facets. Let us now assume we have refined Σ such that there is a point νp interior to the facet F .

The associated divisor Dp can only have a non-zero intersection with divisors Dk for which νk also lies in

F , as all others necessarily lie in different cones of the fan Σ. This means that the above relation implies

Dp ·
∑

νi∈F

Di = 0 , (3.7)

where we sum over all toric divisors coming from points on F . The Calabi-Yau hypersurface is given as the

zero-locus of a section of −KPnΣ
=

∑
j
Dj , where we sum over all toric divisors. We now find

Dp ·
∑

j

Dj = Dp ·
∑

νi∈F

Di = 0 , (3.8)

by using the same argument again. Hence Dp does not meet a generic Calabi-Yau hypersurface. Corre-

spondingly, a refinement of Σ introducing νp does not have any influence.
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Figure 1. Two fine regular triangulations of a three-dimensional cube. The ‘central’ 3-simplex

of the triangulation on the left has lattice volume 2. As there are no extra lattice points, this

triangulation cannot be further refined to become unimodular. Of course the cube shown above

does have a unimodular triangulation, as shown on the right. It may happen, however, that the

central simplex of the triangulation shown on the left arises as a face of a polytope, in which case

no unimodular triangulation can exist.

A maximal projective crepant desingularization (referred to as an MPCP of Zs in [19])

is hence achieved by finding a fine regular star triangulation of ∆̃. If all cones of such

a triangulation have lattice volume unity the ambient space, and hence the Calabi-Yau

hypersurface, become completely smooth and the map φ : Σ′ → Σ can rightfully be called

a resolution. Triangulations of this type are called unimodular. We will also call simplices

of volume unity and cones over such simplices unimodular.

It turns out that unimodular triangulations do not necessarily exist for polytopes of di-

mension n ≥ 4. This is only relevant for Calabi-Yau manifolds of dimension ≥ 4 though, as

one may always find a triangulation which is ‘good enough’ in the case of Calabi-Yau three-

folds [19]. While any fine triangulation is also unimodular in two dimensions, a simplex can

fail to be unimodular in three dimensions or more, even if it does not contain any points

besides its vertices. A standard example for this is given in figure 1. For a star triangula-

tion of a reflexive polytope, the lattice volume8 of any simplex is given by the volume of its

‘outward’ face, i.e. the face which lies on a facet of ∆̃. For a polytope of dimension three or

less, the facets are at most two-dimensional, so that any fine triangulation is automatically

unimodular and the ambient space is smooth. For a Calabi-Yau threefold, the facets of ∆̃

are three-dimensional. Hence even for a fine triangulation we are not guaranteed a smooth

ambient space, as there might be a simplex S with volume greater than unity. However, the

singularities which are induced by such cones are point-like: they are located at the inter-

section of the four divisors spanning S. These points do not meet a generic hypersurface,

so that a fine triangulation is still enough to ensure smoothness for Calabi-Yau threefolds.

In the case of Calabi-Yau fourfolds, there can be singularities along curves of Pn
Σ′ which

are induced by faces which are not unimodular in a fine triangulation. These generically

meet a hypersurface in points, so that smoothness is no longer automatic. For Calabi-Yau

fourfolds, we thus need to check explicitly if a triangulation giving a resolution exists.

8This is commonly expressed by saying that facets of reflexive polyhedra are at lattice distance one from

the origin.
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In the following, we will assume that we have found a fine regular star triangulation

which makes Pn
Σ′ a smooth projective toric variety and leads to a smooth Calabi-Yau

fourfold hypersurface Ẑ. This means we fix a fan Σ′ and a map φ : Σ′ → Σ. We will come

back to the issues discussed in this section, when we look at examples in section 4.

3.2 Computing h2,2 via decomposition

Let Ẑ be a non-singular compact Calabi-Yau (n − 1)-fold defined as a hypersurface of a

smooth toric ambient space Pn
Σ′ . Let {νi}i=1,··· ,|Σ′(1)| be the primitive vectors for all the

1-dimensional cones of the toric fan Σ′. For each one of them, there is a toric divisor Di

given by {Xi = 0} ⊂ Pn
Σ′ . The restriction of Di to the hypersurface Ẑ is denoted by Ŷi.

This set of toric divisors
{
Ŷi

}
is used to introduce a stratification (3.1). The primary

stratum can be regarded as a hypersurface of Tn,

Z := Ẑ\Y = Ẑ ∩ (Pn
Σ\ ∪i Di) = Ẑ ∩ (Tn ⊂ Pn

Σ′) , (3.10)

and its complement is denoted by Y := ∪iŶi.

For a compact non-singular irreducible algebraic variety Ẑ and a divisor Y with normal

crossings in Ẑ (such that Z = Ẑ\Y is non-singular), we can write a long exact sequence

· · · // Hk−1
c (Z) // Hk−1

c (Ẑ) // Hk−1
c (Y )

// Hk
c (Z) // Hk

c (Ẑ) // Hk
c (Y ) // · · ·

(3.11)

for the cohomology groups with compact support. Since Ẑ and Y are both compact, Hk(Ẑ)

and Hk(Y ) are the same as Hk
c (Ẑ) and H

k
c (Y ). All the morphisms in this exact sequence

are morphisms of mixed Hodge structure9 of type (0, 0).

In order to use the exact sequence (3.11), we first note [38] that H i
c(Z) vanishes for

i = 0, · · · , n− 2, and

hp,q
[
Hk>(n−1)

c (Z)
]
= hp+1,q+1

[
Hk+2

c (Tn)
]
=

{(
n

k+2−n

)
p = q = k + 1− n ,

0 otherwise
.(3.12)

hp,q
[
Hn−1

c (Z)
]
= 0 if p+ q > n− 1 .

More information about the non-vanishing parts of Hn−1
c (Z) will be provided later.

The main focus in this article is to study H4(Ẑ) for a Calabi-Yau fourfold Ẑ in a toric

ambient space of dimension n = 5. In this case, only the weight-4 components of H4
c (Z),

H4
c (Ẑ) and H

4
c (Y ) are relevant to determining H4(Ẑ), and we learn from (3.11) that they

satisfy

0 −→
[
H4

c (Z)
]4,0

−→
[
H4

c (Ẑ)
]4,0

−→ 0, (3.13)

9For mixed Hodge structure and Hodge-Deligne numbers, see [43] or an easy example discussed in [44].

For an algorithm of computing the Hodge-Deligne numbers, see [38]. We do not intend to provide a

systematic exposition on this (well-understood) issue; we just focus on deriving new results such as (3.50)

and (3.61). The example presented in section 4.1, however, is best suited to getting accustomed to such

concepts.
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0 −→
[
H4

c (Z)
]3,1

−→
[
H4

c (Ẑ)
]3,1

−→
[
H4

c (Y )
]3,1

−→ 0, (3.14)

0 −→
[
H4

c (Z)
]2,2

−→
[
H4

c (Ẑ)
]2,2

−→
[
H4

c (Y )
]2,2

−→ 0, . (3.15)

Let us first focus on
(
H4

c (Y )
)
. Y is not necessarily non-singular, but it can be written

as Y = ∪iŶi where each Ŷi is a non-singular divisor of Ẑ. Note that each Ŷi is not necessarily

irreducible. This can happen when νi is in a codimension-2 face of ∆̃. The (co)homology

groups of such geometries can be computed by using the Mayer-Vietoris spectral sequence,

and one finds that

H4(Y ) = Kernel
([

⊕iH
4(Ŷi)

]
−→

[
⊕i<jH

4(Ŷi ∩ Ŷj)
])
. (3.16)

As each Ŷi is a smooth hypersurface of a toric variety, its h1,0 = h3,1 vanishes (see e.g. [38]).

Hence H4(Y ) contributes only to the (H4
c (Ẑ))

2,2 component in (3.13)–(3.15). Furthermore,

keeping in mind that all divisors of Ẑ occur as components of toric divisors, it is obvious

from (3.16) that all vertical (2, 2)-forms of Ẑ are contained in the H4(Y ) quotient of H4(Ẑ).

We will discuss later how to compute h2,2(Ŷi) = h1,1(Ŷi) and h
2,2(Ŷi∩Ŷj) = h0,0(Ŷi∩Ŷj)

by using toric data. In order to determine h4(Y ) = h2,2[H4(Y )] from (3.16), we further

need to know the dimension of the cokernel of the homomorphisms in (3.16). We claim

that the homomorphism in (3.16) has a cokernel of dimension n(n− 1)/2.

In order to verify the claim, one needs to note that the kernel of (3.16) is E0,4
∞ =

E0,4
2 = Ker[d0,41 : E0,4

1 −→ E1,4
1 ] in the Mayer-Vietoris sequence calculation of H•(Y ). The

cokernel of the same homomorphism therefore corresponds to

Coker[d0,41 : E0,4
1 −→ E1,4

1 ] = E1,4
2 = E1,4

∞ , (3.17)

which gives rise to the [H5(Y )]2,2 component. It can be determined by exploiting other

parts of the long exact sequence (3.11). Focusing on the weight-4 components, we find that

the following is exact:

0 −→
[
H5

(c)(Y )
]2,2

−→
[
H6

c (Z)
]2,2

−→ 0. (3.18)

Using (3.12), h2,2[Hn+1
c (Z)] = hn−3,n−3[Hn−3(Z)] = n(n− 1)/2, so we find that

dim
(
Coker

[
⊕iH

4(Ŷi) −→ ⊕i<jH
4(Ŷi ∩ Ŷj)

])
= h2,2

[
H5

(c)(Y )
]
=
n(n− 1)

2
. (3.19)

as stated before.

3.3 Stratification and geometry of divisors

For the purpose of capturing H4
c (Y ) and H4(Z) in terms of combinatorial data of the toric

ambient space, we take a moment to digress. To start off, we describe stratifications of

Calabi-Yau hypersurfaces Ẑ of a toric ambient space Pn
Σ′ . There are two distinct stratifi-

cations to which we pay attention: one is associated with the toric fan Σ, and the other

with its refinement10 Σ′.
10Remember that by assumption, Σ′ is determined by a regular star triangulation turning Ẑ into a smooth

hypersurface, whereas Σ is a fan over faces of the polytope ∆̃.
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The stratification induced by Σ′ is easier to describe, it descends from that on Pn
Σ′

straightforwardly: each stratum of Ẑ is of the form Zσ = Ẑ ∩ Tσ for σ ∈ Σ′.
The stratification corresponding to Σ is

Ẑ = (Z∆)∐
(
∐Θ[n−1]≤∆ZΘ[n−1]

)
∐∐2≤k≤n−1

(
∐

(Θ̃[k−1],Θ[n−k])
[E

Θ̃[k−1] × ZΘ[n−k] ]
)
; (3.20)

here, the strata are labelled by the faces of ∆, namely, ∆ itself, codimension-1 faces Θ[n−1]’s,

and all other faces Θ[n−k]’s of codimension 2 ≤ k ≤ n−1. It is understood in the expression

above, and also in expressions later, that (Θ̃[k−1],Θ[n−k]) is a dual pair of faces. Due to

the one-to-one correspondence between faces of ∆, the faces of ∆̃ and the cones in Σ,

the strata in (3.20) are in one-to-one correspondence with the cones of the fan Σ. The

primary stratum, Z∆, corresponds to the 0-dimensional cone ~0 ∈ Σ, and the ZΘ[n−1] to the

individual 1-dimensional cones in Σ(1).

The geometry of E
Θ̃[k−1] can be read out from the (k − 1)-dimensional face Θ̃[k−1] of

∆̃. E
Θ̃[k−1] has a stratification associated with the maximal simplicial subdivision Σ′,

E
Θ̃[k−1] =

[
(Tk−1’s)∐ (Tk−2’s)∐ · · · ∐ points

]
, (3.21)

where the number of Tk−1−p in this decomposition is equal to the number of p-simplices

in Θ̃[k−1] which are not contained in the boundary of Θ̃[k−1].

The geometries of Z∆ (k = 0) and all the other of ZΘ[n−k] are given by hypersurfaces of

TdimC(Θ)=(n−k). For each one of the ZΘ, only the terms in the Newton (Laurent) polynomial

corresponding to Θ[n−k]∩M are relevant in determining ZΘ[n−k] ⊂ Tn−k (which also means

all terms originating from ∆ ∩M are relevant in determining Z∆ ⊂ Tn). Obviously the

primary stratum Z∆ is the same as Z := Ẑ\Y introduce before.

The stratification for the fan Σ′, Ẑ = ∐σ∈Σ′Zσ, is therefore obtained by decomposing

the stratification (3.20) under (3.21). Put differently,

[
E

Θ̃[k−1] × ZΘ[n−k]

]
= ∐

σ′∈φ−1·σ(Θ̃[k−1])
Zσ′ , (3.22)

where φ : Σ′ −→ Σ is the map of toric fans (mapping cones to cones) associated with the

subdivision refining Σ to Σ′ and σ(Θ̃[k−1]) is the map identifying a cone of Σ with a face

Θ̃[k−1] of ∆̃. One can think of E
Θ̃[k−1] as the exceptional geometry appearing in a resolution

of singularities of Pn
Σ associated with the k-dimensional cone σ(Θ̃[k−1]).

3.4 Combinatorial formula for h2,2[H4
(c)(Y )] = [hn−3,n−3[H2n−6

c (Y )]]n=5

Just like various Hodge numbers of a Calabi-Yau toric hypersurface Ẑ are computed by

using the stratification and the Hodge-Deligne numbers of the strata [19, 38], Hodge num-

bers of divisors Ŷi’s of a Calabi-Yau toric hypersurface Ẑ can also be computed essentially

with the same technique. Once h2,2(Ŷi)’s are computed, it is almost straightforward (as

already explained) to determine h2,2[H4
c (Y )].

The ‘Euler characteristics’ of Hodge-Deligne numbers of compact support cohomology

groups (for some geometry X) are

ep,qc (X) :=
∑

k

(−)khp,q[Hk
c (X)]. (3.23)
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These numbers have the following three nice properties, which were exploited heavily in [19,

38], and will also be in the following.

The first two are additivity,

ep,qc (X1 ∐X2) = ep,qc (X1) + ep,qc (X2), (3.24)

and multiplicativity,

ep,qc (E × Z) =
∑

p′+p′′=p

∑

q′+q′′=q

ep
′,q′

c (E)ep
′′,q′′

c (Z). (3.25)

Finally, when an algebraic variety X (of complex dimension n−1) is compact and smooth,

i.e the mixed Hodge structure on cohomology groups is pure,

ep,qc (X) = (−)p+qhp,qc (X) = (−)p+qhp,q(X) = (−)p+qhn−1−p,n−1−q(X) (3.26)

In a slight abuse of language, we will frequently refer to the ep,q as Hodge-Deligne numbers

in the text.

Each divisor component Ŷi (corresponding to ρi ∈ Σ′(1)) of a Calabi-Yau (n− 1)-fold

Ẑ is compact and smooth, and hence hn−3,n−3(Ŷi) = h1,1(Ŷi) is the same as11 en−3,n−3
c (Ŷi).

The compact geometry Ŷi has a stratification associated with Σ′, or to be more specific,

Ŷi =
(
∐ρi≤σ∈Σ′Zσ

)
⊂ Ẑ. (3.27)

Because of additivity, en−3,n−3
c (Ŷi) is obtained by summing up en−3,n−3

c (Zσ) (σ ≥ ρi). Using

multiplicativity, this calculation is further boiled down to the computation of ep,qc (ZΘ) of

various faces Θ ≤ ∆, for which the algorithm of [38] (in combination with (3.12)) can be

used.

Here, we record a few crucial formulas from [38] for Hodge-Deligne numbers of the

strata ZΘ. For a face of dimension f there is the ‘sum rule’

(−1)f−1
∑

q

ep,q(ZΘ) = (−1)p
(

f

p+ 1

)
+ ϕf−p(Θ) , (3.28)

where f is the dimension of the face Θ. Here, the functions ϕk are defined as

ϕk(Θ) :=
∑

j≥1

(−1)k−j

(
f + 1

k − j

)
ℓ∗(jΘ) , (3.29)

where jΘ stands for the polytope which is obtained by scaling all vertices of the face Θ by

j and then taking the convex hull. We introduce the notation

ēp,qc (ZΘ) := ep,qc (ZΘ)− δp,q(−1)f−1−p

(
f

p+ 1

)
, (3.30)

11A completely parallel story holds for any cone ρ ∈ Σ′(ℓ) (not in the interior of a facet of ∆̃), and for

any one of its Hodge numbers.
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in this article. barep,qc (ZΘ) is equal to (−1)f−1hp,q[Hf−1(ZΘ)] except when (p, q) = (0, 0).

Obviously the sum rule (3.28) can be written as

∑

q

ēp,qc (ZΘ) = (−1)f−1ϕf−p(Θ). (3.31)

Furthermore, the Hodge numbers obey [38]

ep,0(ZΘ) = (−1)f
∑

Γ≤Θ,dimΓ=p+1

ℓ∗(Γ) , (3.32)

for any p > 0. For a face of dimension f ≥ 4 we also have that

ef−2,1(ZΘ) = (−1)f−1


ϕ2(Θ)−

∑

Γ≤Θ,dimΓ=f−1

ϕ1(Γ)


 . (3.33)

3.4.1 Computation of h1,1(Ŷi) = hn−3,n−3(Ŷi) for n ≥ 5 cases

We are primarily interested in h2,2(Ŷi), where Ŷi is of (n− 2) = 3-dimensions in a Calabi-

Yau (n − 1) = 4-fold Ẑ, embedded in a toric ambient space Pn=5
Σ′ . This can be regarded,

however, as a special case of the more general problem of determining hn−3,n−3(Ŷi) of a

divisor Ŷi of a Calabi-Yau (n − 1)-fold embedded in a toric ambient space Pn
Σ′ . We shall

study the more general version of the problem for n ≥ 5.

For any 1-dimensional cone ρi generated by a primitive vector νi in the lattice N , there

is a divisor Ŷi of Ẑ. Depending on which face contains νi in its interior, the computation

hn−3,n−3(Ŷi) has to be treated separately. The divisor Ŷi is empty if νi is interior to an

n − 1-dimensional face of ∆̃. Let φ(ρi) ∈ Σ(k0), i.e., νi is an interior point of a (k0 − 1)-

dimensional face Θ̃
[k0−1]
i ≤ ∆̃. The cases we have to study are then

• k0 = 1: i.e., νi is one of vertices of ∆̃.

• 1 < k0 < n− 3: (this case is absent if n = 5.)

• k0 = n− 3: i.e., νi is an interior point of a codimension-4 face (an edge, if n = 5).

• k0 = n−2: i.e., νi is an interior point of a codimension-3 face (a 2dim face, if n = 5).

• k0 = n−1: i.e., νi is an interior point of a codimension-2 face. (a 3dim face, if n = 5)

We work on those five cases one-by-one from now.

The case k0 = 1. Here, νi = Θ̃
[0]
i is a vertex of ∆̃. Ŷi is composed of the following

strata:

Z
Θ

[n−1]
i

, [pt× ZΘ[n−2] ](Θ̃[1],Θ[n−2])
, [(T’s + pts)× ZΘ[n−3] ](Θ̃[2],Θ[n−3])

,

· · · · · · ,
[(
Tn−3’s ∼ points

)
× ZΘ[1]

]
(Θ̃[n−2],Θ[1])

. (3.34)

Note that a stratum Zσ ⊂ [E
Θ̃[k−1]×ZΘ[n−k] ] contributes to Ŷi only when Θ̃[k−1] contains the

vertex νi, i.e. Θ̃
[k−1] ≥ Θ̃

[0]
i (equivalently Θ[n−k] ≤ Θ

[n−1]
i ). Furthermore, Tk−1−p ⊂ E

Θ̃[k−1]
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only contributes when the corresponding p-simplex in Θ̃[k−1] contains νi as one of its faces.

This is why, for example, only one point T0 (one 1-simplex) from E
Θ̃[1] of a given dual pair

(Θ̃[1],Θ[n−2]) contributes to Ŷi. Such strata combined are denoted by [E
Θ̃[k−1] ×ZΘ[n−k] ]ρi≤

in this article.

From the first stratum,

en−3,n−3
c (Z

Θ
[n−1]
i

) = −

(
n− 1

n− 2

)
= −(n− 1) (3.35)

picking up the contribution from hn−3,n−3[H2n−3
c (Z

Θ
[n−1]
i

)].

From the k-th group of strata (k = 2, · · · , (n−2)), each pair (Θ̃[k−1],Θ[n−k]) gives rise to

en−3,n−3
c

(
[E

Θ̃[k−1]×ZΘ[n−k] ]ρi≤
)
=
[
νiℓ

∗
1(Θ̃

[k−1])×ek−2,k−2
c (Tk−2)

]
× [en−k−1,n−k−1

c (ZΘ[n−k])]

= νiℓ
∗
1(Θ̃

[k−1]) . (3.36)

Here, we have introduce the notation νiℓ
∗
1(Θ̃) for the number of internal 1-simplices in the

face Θ̃ which end on νi or, in other words, have νi as a face. In the language of cones

νiℓ
∗
1(Θ̃) :=

∣∣∣
{
σ ∈ Σ′(2) ∩ φ−1 · σ(Θ̃) | ρi ≤ σ

}∣∣∣ (3.37)

We also introduce νiℓ1(∆̃≤p) for the number of 1-simplices (again containing νi as a face)

contained in the p-skeleton (faces of dimension p or less) of ∆̃.

The contribution from the last group of strata, k = n−1, is the same as above, except

that en−k−1,n−k−1
c (ZΘ[n−k]) is not necessarily 1. ZΘ[1] consists of

en−k−1,n−k−1
c (ZΘ[n−k]) = e0,0c = 1 + ℓ∗(Θ[1]), (3.38)

points, which is not necessarily 1. Hence the contribution to en−3,n−3
c is e0,0c (ZΘ[1]) times

larger than that of (3.36). We thus finally obtain

h1,1(Ŷi)|if k0=1 = νiℓ1(∆̃≤n−2)− (n− 1) +
∑

(Θ̃[n−2],Θ[1])

νiℓ
∗
1(Θ̃

[n−2])× ℓ∗(Θ[1]). (3.39)

This formula for the divisors Ŷi of Ẑ is quite like that of Ẑ in (3.3). The first two terms orig-

inate from toric divisors (divisors of the ambient space Pn
Σ′ of Ẑ and the linear equivalence

restricted to Ŷi). The correction term at the end of (3.39) also looks quite similar to the

last term of (3.3); we will come back in section 3.6 to discuss the geometric interpretation

of this term in more detail.

The three cases 1 < k0 < (n−3), k0 = (n−3) and k0 = (n−2). The stratification

of Ŷi is described schematically by

[E
Θ̃

[k0−1]
i

× Z
Θ

[n−k0]
i

]ρi≤, · · · ,
[
E

Θ̃[k−1] × ZΘ[n−k]

]ρi≤ , · · · ,
[
E

Θ̃[n−2] × ZΘ[1]

]ρi≤ . (3.40)

In all the three cases, the contributions to en−3,n−3
c from all but the first group of strata

remain the same as in the k0 = 1 case. The first group of strata gives rise to

en−3,n−3
c ([E

Θ̃
[k0−1]
i

×Z
Θ

[n−k0]
i

]≥ρi) = ek0−1,k0−1
c (E≥ρi

Θ̃
[k0−1]
i

)en−k0−2,n−k0−2
c (Z

Θ
[n−k0]
i

)
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+ek0−2,k0−2
c (E≥ρi

Θ̃
[k0−1]
i

)en−k0−1,n−k0−1
c (Z

Θ
[n−k0]
i

). (3.41)

In all the three cases, 1 < k0 < n− 3, k0 = n− 3 and k0 = n− 2, we have that

• ek0−1,k0−1
c (E≥ρi

Θ̃
[k0−1]
i

) = 1, because the only contribution comes from Tk0−1 correspond-

ing to the 0-plex νi itself

• en−k0−1,n−k0−1
c (Z

Θ
[n−k0]
i

) = 1

• ek0−2,k0−2
c (E≥ρi

Θ̃
[k0−1]
i

) = −(k0 − 1) + νiℓ
∗
1(Θ̃

[k0−1])

The expression for the factor en−k0−2,n−k0−2
c (ZΘ[n−k0]), however, is different in all the three

cases. If 1 < k0 < n− 3, then 2(n− k0 − 2) > (n− k0 − 1), so that

en−k0−2,n−k0−2
c (Z

Θ
[n−k0]
i

) = −

(
n− k0

n− k0 − 1

)
= −(n− k0). (3.42)

For the two other cases, k0 = (n− 3) and k0 = (n− 2), however, there is an extra term in

en−k0−2,n−k0−2
c (ZΘ[n−k0]), which we denote by ēn−k0−2,n−k0−2

c (ZΘ[n−k0]) hereafter.

Therefore, it turns out that h1,1(Ŷi) remains the same as in (3.39) for Ŷi with 1 < k0 <

(n− 3), while

h1,1(Ŷi)|if k0=(n−3),(n−2) = νiℓ1(∆̃≤n−2)− (n− 1) +
∑

(Θ̃[n−2],Θ[1])

νiℓ
∗
1(Θ̃

[n−2])× ℓ∗(Θ[1])

+ēn−k0−2,n−k0−2
c (Z

Θ
[n−k0]
i

). (3.43)

The correction term in the last line of (3.43) is determined by using the sum rule

in [38], (3.28). In the case k0 = n−3, Z
Θ

[n−k0=3]
i

is a surface given by a Laurent polynomial

in T3. Therefore,

ēn−k0−2,n−k0−2
c (Z

Θ
[n−k0]
i

) = ē1,1c (Z
Θ

[3]
i

) = ϕ2(Θ
[3]
i )−

∑

Θ[2]≤Θ
[3]
i

ϕ1(Θ
[2]), (3.44)

= ℓ∗(2Θ[3]
i )− 4ℓ∗(Θ[3]

i )−
∑

Θ[2]≤Θ
[3]
i

ℓ∗(Θ[2]). (3.45)

In the case k0 = n− 2, Z
Θ

[n−k0]
i

is a curve given by a Laurent polynomial in T2. Thus,

ēn−k0−2,n−k0−2
c (Z

Θ
[n−k0]
i

) = ē0,0c (Z
Θ

[2]
i

) = −ϕ2(Θ
[2]
i ) + ϕ1(Θ

[2]
i ), (3.46)

= −ℓ∗(2Θ[2]
i ) + 4ℓ∗(Θ[2]

i ). (3.47)

Again, the first two lines of (3.43) are understood as toric divisors of Ẑ restricted

on Ŷi. The (n − 1)-dimensional redundancy among them is simply given by the num-

ber of toric linear equivalences. The geometric interpretation of the correction term

ēn−k0−3,n−k0−3
c (ZΘ[n−k0]) is discussed in detail in section 3.6.
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The cases k0 = n − 1. Finally, let us work out h1,1(Ŷi) for k0 = n − 1, where νi is in

the interior of an codimension-2 face Θ̃
[n−2]
i of ∆̃. The dual face of ∆ is of dimension 1 and

denoted by Θ
[1]
i . The divisor Ŷi of the Calabi-Yau (n − 1)-fold Ẑ consists of e0,0c (Z

Θ
[1]
i

) =

[1 + ℓ∗(Θ[1]
i )] irreducible components, each of which is a toric variety E≥ρi

Θ̃
[n−2]
i

given by

p-simplices Θ̃
[n−2]
i containing νi as a face. Therefore,

en−3,n−3
c (E≥ρi

Θ̃
[n−2]
i

) = νiℓ
∗
1(Θ̃

[n−2])− (n− 2) . (3.48)

Note that the “number of linear equivalences” is different from that in all the other cases

where k0 < (n − 1): it is now n − 2 instead of n − 1. Finally, h1,1(Ŷi) = hn−3,n−3(Ŷi) is

obtained by multiplying the above expression with e0,0c (Z
Θ

[1]
i

) = [1 + ℓ∗(Θ[1]
i )].

3.4.2 The result

Combining the results of (3.34), (3.43), (3.45), (3.47), (3.48), hn−3,n−3[H2n−6
c (Y )] =

h2,2[H4
c (Y )] is determined. As we have already explained,

hn−3,n−3[H2n−6
c (Y )] =

∑

i

hn−3,n−3(Ŷi) (3.49)

−



∑

i<j

∣∣∣
{
irr. nonempty components of Ŷi ∩ Ŷj

}∣∣∣−
n(n− 1)

2


 .

Noting that all one-simplices on the n − 3-skeleton of ∆̃ contribute twice in the first

line of (3.49) and by (−1) in the second line, and that all one-simplices internal to a

n− 2-dimensional face of ∆̃ do so by a factor of [2 + (−1)]× [1 + ℓ∗(Θ[1])], we find that

hn−3,n−3[H2n−6
c (Y )] = ℓ1(∆̃≤n−2) +

n(n− 1)

2
(3.50)

−(n− 1)


ℓ(∆̃)−

∑

Θ̃[n−1]≤∆̃

ℓ∗(Θ̃[n−1])−
∑

Θ̃[n−2]≤∆̃

ℓ∗(Θ̃[n−2])− 1




−(n− 2)
∑

(Θ̃[n−2],Θ[1])

ℓ∗(Θ̃[n−2])
[
1 + ℓ∗(Θ[1])

]
,

+
∑

(Θ̃[n−2],Θ[1])

ℓ∗1(Θ̃
[n−2])× ℓ∗(Θ[1]),

−
∑

(Θ̃[n−3],Θ[2]))

ℓ∗(Θ̃[n−3])×
{
ℓ∗(2Θ[2])− 4ℓ∗(Θ[2])

}
.

+
∑

(Θ̃[n−4],Θ[3])

ℓ∗(Θ̃[n−4])×



ℓ

∗(2Θ[3])−4ℓ∗(Θ[3])−
∑

Θ[2]≤Θ[3]

ℓ∗(Θ[2])



 .

Here, ℓ1(∆̃≤p) denotes the number of 1-simplices on the p-skeleton of ∆̃ and ℓ∗1(Θ̃) the

number of internal 1-simplices on a face Θ̃.
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3.5 Combinatorial formula for h2,2[H4
c (Z∆)] = [hn−3,2[Hn−1

c (Z∆)]]n=5

Using the sum rule (3.31) of [38] we immediately find that,

2∑

q=0

hn−3,q
[
Hn−1

c (Z∆)
]
= ϕ3(∆), (3.51)

1∑

q=0

hn−3,q
[
Hn−2

c (ZΘ[n−1])
]
= ϕ2(Θ

[n−1]), (3.52)

hn−3,0
[
Hn−3

c (ZΘ[n−2])
]
= ϕ1(Θ

[n−2]). (3.53)

There are six unknowns in the left-hand sides, so that we need three more conditions in

order to determine hn−3,2[Hn−1
c (Z)], i.e. h2,2[H4

c (Z)] (n = 5). They come from the fact

that all of the Hodge numbers of components where neither p = q, nor p + q = n − 1 are

tightly constrained for a compact smooth hypersurface of a toric variety. For p = 0 (or

q = 0) such Hodge numbers even vanish. Thus, for the closure of ZΘ[n−1] (satisfying the

condition above), it follows that

− hn−3,0[Hn−2
c (ZΘ[n−1])] +

∑

Θ[n−2]≤Θ[n−1]

hn−3,0[Hn−3
c (ZΘ[n−2])] = 0 (3.54)

for any facets Θ[n−1] of ∆. Similarly for the closure of Z∆ = Ẑ, we obtain

0 = hn−3,0(Ẑ) (3.55)

= hn−3,0[Hn−1
c (Z∆)]−

∑

Θ[n−1]≤∆

hn−3,0[Hn−2
c (ZΘ[n−1])] +

∑

Θ[n−2]≤∆

hn−3,0[Hn−3
c (ZΘ[n−2])]×1,

where the factor 1 is due to e0,0(E
Θ̃[2]) = (−)2+1[χ(2d ball)− χ(S1)] = 1 (see e.g., [38]).

The (n− 3, 1) component (i.e. h2,1 for the case n = 5) does not vanish, but is given by

the formula (3.5) (see [41], with a correction in [9, 12]):

(−)
∑

(Θ̃[2],Θ[n−3])

ℓ∗(Θ̃[2])× ℓ∗(Θ[n−3]) = (−)n−1en−2,2
c (Ẑ) = (−)n−1en−3,1

c (Ẑ) (3.56)

= hn−3,1[Hn−1
c (Z∆)]−

∑

Θ[n−1]≤∆

hn−3,1[Hn−2
c (ZΘ[n−1])]

+
∑

(Θ̃[1],Θ[n−2])

hn−4,0[Hn−3
c (ZΘ[n−2])]× e1,1c (E

Θ̃[1])

−
∑

(Θ̃[2],Θ[n−3])

hn−4,0[Hn−4
c (ZΘ[n−3])]× e1,1c (E

Θ̃[2]).

On the right hand side, e1,1c (E
Θ̃[1]) = ℓ∗(Θ̃[1]), and e1,1c (E

Θ̃[2]) is given by −2ℓ∗(Θ̃[2]) +

ℓ∗1(Θ̃
[2]).

In order to solve the six unknowns by using the six conditions above, we need to

determine hn−4,0[Hn−3
c (ZΘ[n−2])] and hn−4,0[Hn−4

c (ZΘ[n−3])] appearing in the last condition.
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As for hn−4,0[Hn−3
c (ZΘ[n−2])], using a similar condition for the closure of ZΘ[n−2] ,

hn−4,0[Hn−3
c (ZΘ[n−2])] =

∑

Θ[n−3]≤Θ[n−2]

hn−4,0[Hn−4
c (ZΘ[n−3])] =

∑

Θ[n−3]≤Θ[n−2]

ϕ1(Θ
[n−3]).

(3.57)

For hn−4,0[Hn−4
c (ZΘ[n−3])], we can simply use hn−4,0[Hn−4

c (ZΘ[n−3])] = ϕ1(Θ
[n−3]).

Now we can solve (3.51):

hn−3,0[Hn−2
c (ZΘ[n−1])] =

∑

Θ[n−2]≤Θ[n−1]

ϕ1(Θ
[n−2]), (3.58)

hn−3,0[Hn−1
c (Z∆)] =

∑

Θ[n−1]≤∆

∑

Θ[n−2]≤Θ[n−1]

ϕ1(Θ
[n−2])−

∑

Θ[n−2]≤∆

ϕ1(Θ
[n−2]) =

∑

Θ[n−2]≤∆

ϕ1(Θ
[n−2]),

(3.59)

where we used the fact that any Θ[n−2] is codimension-1 in the boundary of ∆, so that

it is shared by precisely two faces Θ[n−1]; those two results (3.58), (3.59) are examples

of (3.32).12 Let us continue with

hn−3,1[Hn−1
c (Z∆)] =

∑

Θ[n−1]≤∆

ϕ2(Θ
[n−1])−

∑

Θ[n−1]≤∆

∑

Θ[n−2]≤Θ[n−1]

ϕ1(Θ
[n−2])

−
∑

(Θ̃[1],Θ[n−2])

ℓ∗(Θ̃[1])×
∑

Θ[n−3]≤Θ[n−2]

ℓ∗(Θ[n−3]), (3.60)

+
∑

(Θ̃[2],Θ[n−3])

(
−2ℓ∗(Θ̃[2]) + ℓ∗1(Θ̃

[2])
)
× ℓ∗(Θ[n−3])

−
∑

(Θ̃[2],Θ[n−3])

ℓ∗(Θ̃[2])ℓ∗(Θ[n−3]).

Therefore, we arrive at a the formula

hn−3,2[Hn−1
c (Z∆)] = ϕ3(∆)−

∑

Θ[n−1]≤∆

ϕ2(Θ
[n−1]) +

∑

Θ[n−2]≤∆

ϕ1(Θ
[n−2])

+
∑

(Θ̃[1],Θ[n−2])

ℓ∗(Θ̃[1])×
∑

Θ[n−3]≤Θ[n−2]

ℓ∗(Θ[n−3]) (3.61)

+
∑

(Θ̃[2],Θ[n−3])

(
3ℓ∗(Θ̃[2])− ℓ∗1(Θ̃

[2])
)
× ℓ∗(Θ[n−3]).

3.6 Vertical, horizontal and the remaining components

Due to the exact sequence (3.15), we can now compute h2,2(Ẑ) by summing h2,2[H4(Y )]

in (3.50) and h2,2(Ẑ) in (3.61). In fact, this is how ref. [19] derived the formula (3.3), (3.4)

for h1,1 and h3,1 of a Calabi-Yau hypersurface fourfold Ẑ, and it is a straightforward

generalization to use (3.15) to determine h2,2(Ẑ) in this way. The dimension of the H2,2

12Prop. 5.8 of [38] obtained the formula (3.32) by using the algorithm reviewed here.
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component, however, does not have to be determined in this way: for a smooth fourfold

Ẑ, the formula [9, 12]

h2,2(Ẑ) = 44 + 4
(
h1,1(Ẑ) + h3,1(Ẑ)

)
− 2h2,1(Ẑ) . (3.62)

makes it possible to determine h2,2(Ẑ) from the three other Hodge numbers that are already

determined through (3.3)–(3.5).

The exact sequence (3.15) is still very useful for the purpose of studying the decom-

position (1.2). This is because all the independent divisors of a hypersurface Calabi-Yau

fourfold Ẑ ⊂ P5
Σ′ appear in the form of irreducible components of toric divisors Ŷi of Ẑ. We

can therefore take a set of generators of the vertical component H2,2
V (Ẑ) within [H4(Y )]2,2.

Homological equivalence among the generators has already been taken care of in the study

of [H4(Y )]2,2 in section 3.4. In this section, we start off with identifying which subspace

of [H4(Y )]2,2 corresponds to the vertical component H2,2
V (Ẑ). Mirror symmetry is then

used to identify the horizontal component H2,2
H (Ẑ;C) := H4

H(Ẑ;C) ∩H2,2(Ẑ;C). We will

comment on the geometry associated with the remaining componentH2,2
RM (Ẑ;C) at the end.

3.6.1 The vertical component

Let us discuss which subspace of H1,1(Ŷi) is generated by vertical cycles for the cases with

k0 = 1, n− 3 = 2, n− 2 = 3 and n− 1 = 4. We begin with a divisor Ŷi corresponding to a

vertex νi of ∆̃ (i.e., k0 = 1). The formula (3.39) can be rewritten as

h1,1(Ŷi) = νiℓ1(∆̃≤n−2)−(n−1)+
∑

(Θ̃[n−2],Θ[1])

[
νiℓ

∗◦
1 (Θ̃[n−2]) + νiℓ

∗•
1 (Θ̃[n−2])

]
×ℓ∗(Θ[1]), (3.63)

where νiℓ
∗◦
1 (Θ̃[n−2]) is the number of 1-simplices whose endpoints are νi and one of the

interior points of a face Θ̃[n−2], and νiℓ
∗•
1 (Θ̃[n−2]) is the number of 1-simplices which run

through the interior of Θ̃[n−2], but have both end points on the boundary of Θ̃[n−2]. The

first two terms account for the dimension of the space of algebraic cycles obtained as the

intersection of Ŷi with another toric divisor (i.e., a divisor of Ẑ that descends from the

toric ambient space Pn=5
Σ′ ). When the intersection of a pair of toric divisors of the form

Ŷi ∩ Ŷj corresponds to a 1-simplex counted in νiℓ
∗◦
1 (Θ̃[n−2]), however, the toric divisor Ŷj

corresponding to an interior point of a codimension-two face of ∆̃ consists of ℓ∗(Θ[1]) + 1

irreducible components, each one of which are independent in H1,1(Ẑ). Therefore each

one of Ŷi ∩ [Ŷj ]irr’s can be taken as an independent generator of the vertical algebraic

cycles. The term νiℓ
∗◦
1 (Θ̃[n−2])ℓ∗(Θ[1]) should therefore be counted as a part of the vertical

component H2,2(Ẑ).

1-simplices counted in νiℓ
∗•
1 (Θ̃[n−2]), however, correspond to algebraic cycles of the

form Ŷi ∩ Ŷj , with Ŷj corresponding to a point in a face of codimension-three or higher.

In such cases, Ŷi ∩ Ŷj consists of ℓ∗(Θ[1]) + 1 irreducible components, but only one linear

combination of those irreducible components, Ŷi∩Ŷj , should be regarded as a vertical cycle.

Thus, there are algebraic but non-vertical cycles left over in h1,1(Ŷi) if and only if

νiℓ
∗•
1 (Θ̃[n−2])ℓ∗(Θ[1]) 6= 0. (3.64)
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Let us move on to H1,1(Ŷi) for a toric divisor Ŷi corresponding to an interior point

of Θ̃[1] (i.e., k0 = n − 3 = 2). The first line of (3.43) is rewritten just like in (3.63), and

the same interpretation applies also in this case. The remaining correction term ē1,1c (ZΘ[3])

in (3.43) in the k0 = n − 3 case is not regarded as part of the vertical component either.

To see this, let us use a long exact sequence like (3.11), decomposing Ŷi into the primary

stratum Zρi = Tk0−1 × Z
Θ

[3]
i

and the rest Ŷi\Zρi = ∐ρi<σ∈Σ′Zσ.

· · · // H2n−6
c (Zρi)

// H2n−6
c (Ŷi) // H2n−6

c (Ŷi\Zρi)

// H2n−5
c (Zρi)

// H2n−5
c (Ŷi) // H2n−5

c (Ŷi\Zρi)
// · · · .

(3.65)

We focus on the (n − 3, n − 3) components in this sequence in order to study

hn−3,n−3[H2n−6
c (Ŷi)]. The cohomology groups Hk

c (Zρi) for k = 2n − 6 and 2n − 5 are

determined by

[H2n−6
c (Tn−4 × Z

Θ
[3]
i

)]n−3,n−3 = [H2n−8
c (Tn−4)]n−4,n−4 ⊗ [H2

c (ZΘ
[3]
i

)]1,1, (3.66)

[H2n−5
c (Tn−4 × Z

Θ
[3]
i

)]
n−3,n−3

= [H2n−9
c (Tn−4)]n−5,n−5 ⊗ [H4

c (ZΘ
[3]
i

)]2,2

⊕[H2n−8
c (Tn−4)]n−4,n−4 ⊗ [H3

c (ZΘ
[3]
i

)]1,1 , (3.67)

and (3.12). Thus we find

hn−3,n−3[H2n−6
c (Zρi)] = ē1,1c (Z

Θ
[3]
i

) , hn−3,n−3[H2n−5
c (Zρi)] = (n− 4) + 3 . (3.68)

As for H2n−6
c (Ŷi\Zρi), it is enough to note that all of the irreducible components (strata)

in Ŷi\Zρi are at most of complex dimension (n − 3), so that it suffices to count the

number of such irreducible components, which is in turn determined by νiℓ1(∆̃≤n−3) +∑
νiℓ1(Θ̃

[n−2])
(
ℓ(Θ[1]) + 1

)
. Therefore, the kernel of [H2n−6

c (Ŷi\Zρi)]
n−3,n−3 −→

[H2n−5
c (Zρi)]

n−3,n−3 accounts for the first line of (3.43). The correction term — the sec-

ond line of (3.43) — comes from [H2n−6(Zρi)]
n−3,n−3. All the vertical components in

[H2n−6
c (Ŷi)]

n−3,n−3 are contained within [H2n−6
c (Ŷi\Zρi)]

n−3,n−3, and hence the correction

term ē1,1c (Z
[3]
Θ ) does not belong to the vertical component.

In the case k0 = n − 2, νi is an interior point of a two-dimensional face. The vertical

component in H1,1(Ŷi) is identified in the same way as far as the first line of (3.43) is

concerned; the term νiℓ
∗•
1 (Θ̃[3])ℓ∗(Θ[1]) corresponds to cycles that are algebraic, but not

vertical. The interpretation of the correction term ē0,0c (Z
Θ

[2]
i

) in (3.43), on the other hand,

is quite different from the one in the k0 = n− 3 case.

Note first that in this case, Ŷi is an (n− 2)-fold which can be regarded as a flat family

of toric (n− 3) = (k0 − 1)-dimensional varieties over a curve Σ
Θ

[2]
i

, which is the closure of

Z
Θ

[2]
i

⊂ T2. The fibre over any point in Z
Θ

[2]
i

is given by toric data (νi-containing simplices

within the face Θ̃[k0−1]). The second thing to note is that Z
Θ

[2]
i

is a Riemann surface (of
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Z
Θ

[2]
i

E
≥νi

Θ̃
[2]
i

k
Θ

[2]
i

punctures

Figure 2. Ŷi as a fibration of E≥νi

Θ̃
[2]
i

over the curve Z
Θ

[2]
i

with k
Θ

[2]
i

punctures. Divisors of a generic

fibre correspond to divisors of Ŷi by sweeping them over the whole base.

genus ℓ∗(Θ[2]
i )) with a finite number of punctures. The number of punctures (denoted by

k
Θ

[2]
i

) is given by

k
Θ

[2]
i

− 1 = [H1
c (ZΘ

[2]
i

)]0,0 = 2− ē0,0c (Z
Θ

[2]
i

) . (3.69)

The compact Riemann surface Σ
Θ

[2]
i

is obtained by filling these k
Θ

[2]
i

punctures in Z
Θ

[2]
i

.

Any one of those punctures is assigned to one of the 1-dimensional faces Θ[1] ≤ Θ
[2]
i (see

also footnote 14), and the toric k0 − 1-dimensional fibre geometry is determined by the

νi-containing simplices in the face Θ̃[k0] ≥ Θ̃
[k0−1]
i dual to Θ[1]. From this point of view,

the first line of (3.43), with −(n − 1) replaced by −(k0 − 1), accounts for the number of

irreducible divisors of Ŷi modulo the toric linear equivalence acting in the fibre direction (see

figure 2). The remaining contribution to (3.43) is precisely ē0,0c (Z
Θ

[2]
i

)−(n−k0) = 1−k
Θ

[2]
i

.

This correction term is now understood as counting only the generic fibre class for an

independent divisor in Ŷi, while removing the total fibre class at each one of the k
Θ

[2]
i

points in Σ
Θ

[2]
i

from the formula of h1,1(Ŷi). This subtraction is necessary because the total

fibre class over any point in Σ
Θ

[2]
i

is algebraically equivalent (see figure 3).

The correction term ē0,0c (Z
Θ

[2]
i

) = 3 − k
Θ

[2]
i

should always be negative, because this

term accounts for the algebraic equivalence relations among the generators of H2,2
c (Ŷi). It

is not hard to see this. For a dual pair of faces (Θ̃
[2]
i ,Θ

[2]
i ) and an interior point νi of Θ̃

[2]
i ,

list up all the dual pairs of faces {(Θ̃
[3]
a ,Θ

[1]
a ) | a ∈ Ai} labelled by a ∈ Ai such that

Θ̃[3]
a ≥ Θ̃

[2]
i and Θ[1]

a ≤ Θ
[2]
i .
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Z
Θ

[2]
i

special fibres

E
≥νi

Θ̃
[3]
a1

E
≥νi

Θ̃
[3]
a2

generic fibre E≥νi

Θ̃
[2]
i

Figure 3. Over specific points, the fibre degenerates and becomes reducible. All fibres are alge-

braically (and hence homologically) equivalent, however.

Each one of those pairs leaves ℓ(Θ
[1]
a ) = [1 + ℓ∗(Θ[1]

a )] points in Σ
Θ

[2]
i

for which the fibre of

Ŷi −→ Σ
Θ

[2]
i

is a (not necessarily irreducible) complex surface E≥νi

Θ̃
[3]
a

rather than the generic

fibre E≥νi

Θ
[2]
i

. Therefore

ē0,0c (Z
Θ

[2]
i

) = 3− k
Θ

[2]
i

= 3−
∑

Θ
[1]
a ≤Θ

[2]
i

[1 + ℓ∗(Θ[1]
a )] = 3−#{Θ[1]

a ≤ Θ
[2]
i } −

∑

Θ
[1]
a ≤Θ

[2]
i

ℓ∗(Θ[1]
a ).

(3.70)

The last term is obviously negative as the number of edges of a two-dimensional face Θ[2]

is always greater than or equal to 3. Thus, ē0,0c (Z
Θ

[2]
i

) ≤ 0.

The algebraic equivalence relations encoded in ē0,0c (Z
Θ

[2]
i

) are sometimes among alge-

braic cycles in the vertical component, and sometimes among cycles in the non-vertical

component. Figure 4 is a schematic picture of the singular fibres of Ŷi −→ Σ
Θ

[2]
i

at the

ℓ∗(Θ[1]
a ) + 1 punctures associated with a given face Θ

[1]
a ≤ Θ

[2]
i . There is always at least

one combination of the total fibre classes that is in the vertical component; such a com-

bination of the total fibre classes is in fact even in the space of vertical cycles generated

by toric divisors. Such a fibre class is algebraically equivalent to the generic fibre class of

Ŷi −→ ΣΘ[2] , and is subtracted by the algebraic equivalence on Σ
Θ

[2]
i

corresponding to the

(3−#{Θ
[1]
a ≤ Θ

[2]
i }) term in ē0,0c (Z

Θ
[2]
i

) above.

Suppose that the dual face pair (Θ̃
[3]
a ,Θ

[1]
a ) for an a ∈ Ai is such that all the 1-simplices

counted in νiℓ
∗
1(Θ̃

[3]
a ) end at interior points of Θ̃

[3]
a . This means that all the [1 + ℓ∗(Θ[1]

a )]

total fibre classes of Ŷi −→ Σ
Θ

[2]
i

belong to the space of vertical cycles (see figure 4). Let Avi

be the subset of the labels a ∈ Ai satisfying the condition above, and (Θ̃
[3]
v ,Θ

[1]
v ) be such a
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Z
Θ

[2]
i

Z
Θ

[2]
i 1 + ℓ∗(Θ

[1]
a2
) punctures1 + ℓ∗(Θ

[1]
a1
) punctures

a1 ∈ Avi a2 ∈ Ai \ Avi

Figure 4. (colour online) Fibre components corresponding to points νi contributing to Θ
[3]
v (left

hand side) and Θ
[3]
nv (right hand side). The fibre components drawn in red, blue and green correspond

to fibre components which are obtained by intersecting appropriate divisors. These components arise

from one-simplices connecting νi to an interior point of the face Θ̃
[3]
a . When there is a one-simplex

connecting νi to a point on the boundary of Θ̃
[3]
a , only the sum of several components of different

fibres, drawn in grey, arises from an intersection of divisors (so that it should be considered vertical).

Again, the two degenerate fibres on the left hand side are algebraically equivalent, as are the two

degenerate fibres on the right hand side.

dual pair of faces. The space of vertical but non-toric cycles originating from H1,1(Ŷi) is

reduced by −
∑

Θ
[1]
v ≤Θ[2] ℓ

∗(Θ[1]
v ) due to the algebraic equivalence.

A dual pair of faces (Θ̃
[3]
a ,Θ

[1]
a ) otherwise (i.e., a ∈ Ai \Avi) has at least one 1-simplex

counted in νiℓ
∗
1(Θ̃

[3]
a ) whose boundary other than νi is not in the interior of Θ̃[3]. Such

pairs of faces are denoted by (Θ̃
[3]
nv,Θ

[1]
nv). The remaining −

∑
Θ

[1]
nv≤Θ

[2]
i

ℓ∗(Θ[1]
nv) independent

algebraic equivalences reduce the dimension of the space of algebraic, but non-vertical

four-cycles. To summarize,

V alg(Ẑ) =
∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])
{
−ℓ∗(2Θ[2]) + 4ℓ∗(Θ[2])

}
,

=
∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])(3− kΘ[2]) = V alg
tor (Ẑ) + V alg

cor (Ẑ) + V alg
rm (Ẑ); (3.71)

V alg
tor (Ẑ) :=

∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])
(
3−#{Θ[1] ≤ Θ[2]}

)
,

V alg
cor (Ẑ) := −

∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])
∑

Θ
[1]
v ≤Θ[2]

ℓ∗(Θ[1]
v ),

V alg
rm (Ẑ) := −

∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])
∑

Θ
[1]
nv≤Θ[2]

ℓ∗(Θ[1]
nv). (3.72)

All the three terms are negative.

Finally, in the cases of k0 = n − 1, it is easy to see that all of the generators of

the space ⊕irrH
2,2
c ([Ŷi]irr) are vertical cycles. The space of vertical cycles generated by
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the toric divisors, however, has a dimension given by (3.48) without being multiplied by

e0,0c (Z
Θ

[1]
i

) = [1 + ℓ∗(Θ[1]
i )].

Having seen which subspace of H2,2
c (Ŷi) is identified with a part of the vertical com-

ponent H2,2(Ẑ), we are now ready to determine the dimension of the vertical component

in H2,2
V (Ẑ). Setting aside the components in [H4(Y )]2,2 that have turned out to be non-

vertical, we have

h2,2[H4(Y )] = h2,2V (Ẑ) +
[
RMa(Ẑ) + V alg

rm (Ẑ)
]
+NV1(Ẑ), (3.73)

h2,2V (Ẑ) =
[
Vtor(Ẑ) + V alg

tor (Ẑ)
]
+
[
Vcor(Ẑ) + V alg

cor (Ẑ)
]
, (3.74)

where

Vtor(Ẑ) := ℓ1(∆̃≤n−2) +
n(n− 1)

2

−(n− 1)


ℓ(∆̃)−

∑

Θ̃[n−1]≤∆̃

ℓ∗(Θ̃[n−1])−
∑

Θ̃[n−2]≤∆̃

ℓ∗(Θ̃[n−2])− 1




−(n− 2)
∑

Θ̃[n−2]

ℓ∗(Θ̃[n−2])

Vcor(Ẑ) :=
∑

(Θ̃[3],Θ[1])

[
ℓ∗◦1 (Θ̃[3])− 3ℓ∗(Θ̃[3])

]
× ℓ∗(Θ[1]),

RMa(Ẑ) =
∑

(Θ̃[3],Θ[1])

ℓ∗•1 (Θ̃[3])ℓ∗(Θ[1]),

NV1(Ẑ) :=
∑

(Θ̃[1],Θ[3])

ℓ∗(Θ̃[1])×


ℓ∗(2Θ[3])− 4ℓ∗(Θ[3])−

∑

Θ[2]≤Θ[3]

ℓ∗(Θ[2])


 . (3.75)

Here, ℓ∗◦1 (Θ̃[3]) is the number of 1-simplices that run through the interior of a face Θ̃[3] and

have at least one boundary point in the interior of Θ̃[3]. ℓ∗•1 (Θ̃[3]) is the number of all other

1-simplices that run through the interior of the face Θ̃[3]; it only counts those one-simplices

which start and end on the boundary of the face Θ̃[3].

The Chow group Ch2(Ẑ) is obtained by taking a quotient of the space of alge-

braic (complex)-two-cycles by rational equivalence, whereas we have also exploited al-

gebraic equivalence in studying the cohomology group H2,2(Ẑ). The Deligne cohomology

H4
D(Ẑ;Z(2)) and the closely related Chow group Ch2(Ẑ) not only contain information on

the flux field strength G(4) for F-theory, but also on the three-form potential C(3). Truly

of interest in the context of physics application, though, will be H4
D(Ẑp;Z(2)) for Ẑp cor-

responding to a point p ∈ M∗ in some Noether-Lefschetz locus, rather than that of Ẑp at

a generic point p ∈ M∗. Fluxes which are in the primary horizontal subspace may also

become algebraic in a Noether-Lefschetz locus, where we are expected to end up from the

superpotentialW ∝
∫
Ẑ G

(4)∧Ω. Ignoring the original context of physics applications, how-

ever, let us leave an interesting observation on Ch2(Ẑ) for Ẑ corresponding to a generic

point p ∈ M∗. The relevance of the refined data contained in Ch2(Ẑ) (compared with
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homology) to F-theory fluxes has recently been discussed in [45] (see also the literatures

therein).

For Ẑp at a generic point in complex structure moduli space p ∈ M∗, algebraic cycles

generate a subspace of H2,2(Ẑ) with a dimension no less than

Vtor(Ẑ) + Vcor(Ẑ) +RMa(Ẑ) + V alg(Ẑ),

and possibly larger than this by at most NV1(Ẑ). Only the first term descends from

algebraic cycles of the toric ambient space. Apart from the last term, all the equiva-

lence relations that have been exploited are linear (rational) equivalence. The last term,

V alg(Ẑ), introduces algebraic equivalence relations among those cycles as we have already

seen. They are associated with divisors Ŷi of Ẑ corresponding to interior points νi of

two-dimensional faces Θ̃[2] ≤ ∆̃. The threefolds Ŷi can be seen as flat fibrations of sur-

faces over curves ΣΘ[2] with genus g = ℓ∗(Θ[2]). The fibre classes over any two points

in ΣΘ[2] are mutually algebraically equivalent, and they are identified in the cohomology

group. Under rational equivalence, however, they form a family of inequivalent classes

parametrized by g = ℓ∗(Θ[2]) complex parameters. This is analogous to divisors (points)

on the curve ΣΘ[2] , which are classified under linear equivalence by Pic(ΣΘ[2]), which has

g = dimC[Pic
0(Σ

[2]
Θ )] complex parameters more than the discrete data (the first Chern

class) counted in H1,1(ΣΘ[2]). Noting that

h2,1(Ẑ) =
∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])ℓ∗(Θ[2]) =
∑

(Θ̃[2],Θ[2])

ℓ∗(Θ̃[2])g(ΣΘ[2]), (3.76)

we see that the Ch2(Ẑ) group contains h2,1(Ẑ) more complex parameters than the coho-

mology group, and that this difference comes from divisors Ŷi of Ẑ that are regarded as

flat surface fibration over curves with g > 0.

3.6.2 Horizontal and remaining components

Since the vertical component H2,2
V (Ẑ) has been identified within [H4(Y )]2,2, the horizontal

and the remaining components in the decomposition (1.2) should live in [H4(Z∆)]
2,2 and

the remaining space within [H4(Y )]2,2. We are going to use mirror symmetry to identify

the horizontal component H2,2
H (Ẑ) in [H4

c (Z∆)]
2,2.

To this end, it is convenient to verify a couple of relations among the combinatorial

data first. Let us introduce the following decomposition in order to facilitate the discussion:

h2,2[H4(Z∆)] := Hmon(Ẑ) +Hred(Ẑ) +NV3(Ẑ), (3.77)

where

Hmon(Ẑ) := ϕ3(∆)−
∑

Θ[4]

ϕ2(Θ
[4]) +

∑

Θ[3]

ϕ1(Θ
[3]),

Hred(Ẑ) :=
∑

(Θ̃[2],Θ[2])

(
3ℓ∗(Θ̃[2])− ℓ∗1(Θ̃

[2])
)
× ℓ∗(Θ[2]),
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NV3(Ẑ) :=
∑

(Θ̃[1],Θ[3])

∑

Θ[2]≤Θ[3]

ℓ∗(Θ̃[1])× ℓ∗(Θ[2]) . (3.78)

We claim that

Hmon(Ẑ)=Vtor(Ẑm), Hred(Ẑ)=V alg(Ẑm), NV1(Ẑ)+NV3(Ẑ)=Vcor(Ẑm)+RMa(Ẑm).

(3.79)

This also means that the following relation holds:

h2,2[H4
c (Z∆)] +NV1(Ẑ) = Vtor(Ẑm) + Vcor(Ẑm) +RMa(Ẑm) + V alg(Ẑm). (3.80)

Let us verify the relations (3.79) one by one. As for the first one, note that

Hmon(Ẑ)

= [ℓ(2∆)− (n+ 1)ℓ(∆) +
n(n+ 1)

2
] (3.81)

−
∑

Θ[n−1]≤∆

[ℓ∗(2Θ[n−1])− nℓ∗(Θ[n−1])] +
∑

Θ[n−2]≤∆

ℓ∗(Θ[n−2]),

= [ℓ(2∆)− ℓ(∆)−
∑

Θ[n−1]

ℓ∗(2Θ[n−1])] (3.82)

−n[ℓ(∆)−
∑

Θ[n−1]

ℓ∗(Θ[n−1])] +
n(n+ 1)

2
+

∑

Θ[n−2]≤∆

ℓ∗(Θ[n−2]),

= [ℓ(2∆)− ℓ(∆)−
∑

Θ[n−1]

ℓ∗(2Θ[n−1])]− [ℓ(∆)− 1−
∑

Θ[n−1]

ℓ∗(Θ[n−1])], (3.83)

+

[
−n+

n(n+ 1)

2

]
,

−


(n−1)


ℓ(∆)−1−

∑

Θ[n−1]

ℓ∗(Θ[n−1])−
∑

Θ[n−2]

ℓ∗(Θ[n−2])


+(n−2)

∑

Θ[n−2]

ℓ∗(Θ[2]),


 .

Obviously one only needs to verify that (3.83) is equal to ℓ1(∆≤n−2) in order to prove that

Hmon(Ẑ) = Vtor(Ẑm). Secondly, we see that the first term in (3.83) counts the number of

lattice points in M at the “lattice-distance-2” that are not in the interior of n-dimensional

cones, while the second term in (3.83) counts lattice points at the “lattice distance 1”. Now

remember that we assume existence of a fine unimodular triangulation of the polytope ∆

(so that both Ẑm and the ambient toric variety Pn
Σ are smooth). For a cone whose base at

the lattice-distance 1 is a minimum volume k-simplex, lattice points at the distance 1 are

the k+1 vertices of the k-simplex, while those at the distance 2 consist of
(
k+1
1

)
+
(
k+1
2

)
=(

k+2
2

)
=: Nk,2 points corresponding to the vertices and 1-simplices on the k-simplex (see

figure 5).13 Because any cone of the fan Σ̃ can be decomposed into such cones of the fan Σ̃′,

ℓ(2Θ) = ℓ(Θ) + ℓ1(Θ) (3.84)

13The slice of such a cone at the distance h becomes a k-dimensional pyramid of height h (see footnote 16).

The number of interior points of such a pyramid is Nk,h−k−1 = (h − k)k/k!, which becomes positive only

when h > k. That is, a lattice point corresponding to a k-simplex is found only at the lattice distance

h > k. At the distance 2, ∂(2∆̃), the lattice points correspond only to vertices or 1-simplices on ∂∆̃.
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Figure 5. (colour online) The lattice points at the distance-2 layer are in one-to-one correspondence

with the lattice points and 1-simplices at the distance-1 layer.

for any faces Θ < ∆. Using recursion with respect to the faces of Θ, similar relations

can be derived for the number of internal one-simplices, ℓ∗1(Θ). This proves the equality

between ℓ1(∆≤n−2) and (3.83) and also the first relation Hmon(Ẑ) = Vtor(Ẑm) in (3.79).

The second one of the relations (3.79) Hred(Ẑ) = V alg(Ẑm) can be verified for each one

of dual pairs, (Θ̃[2],Θ[2]). Using the relation (3.84) for the 2-dimensional face Θ̃[2] < ∆̃, we

find that14

ē0,0c (Z
Θ̃[2]) = −ℓ∗(2Θ̃[2]) + 4ℓ∗(Θ̃[2]) =

(
3ℓ∗(Θ̃[2])− ℓ∗1(Θ̃

[2])
)
. (3.89)

The third relation in (3.79) is equivalent to

ℓ∗(2Θ[3])− 4ℓ∗(Θ[3]) = ℓ∗1(Θ
[3])− 3ℓ∗(Θ[3]) (3.90)

for each one of the faces Θ[3] < ∆. This relation also follows from (3.84).

Toric divisors on Ẑm are mirror to monomial deformations of the defining equation of

the hypersurface Ẑ. It is thus reasonable to consider that the space spanned by mutual

intersections of toric divisors — a Vtor(Ẑm)-dimensional subspace of the primary vertical

subspace of ⊕pH
p,p(Ẑm) — is mirror to second order monomial deformations of Ẑ, which

must be a subspace of the primary horizontal subspace of ⊕pH
p,n−1−p(Ẑ). This subspace

14The relation (3.69), (3.70) between ē0,0c (ZΘ̃[2]) = −ℓ∗(2Θ̃[2]) + 4ℓ∗(Θ̃[2]) and the number of punctures

kΘ̃[2] can also be derived purely combinatorially, without looking at the geometry of the curve and punctures

on it. To see this, note first that kΘ̃[2] = VB , where VB is the number of lattice points appearing on the

boundary of a two-dimensional simplicial complex Θ̃[2]. Now, let T be the number of 2-simplices in Θ̃[2],

EI and EB the number of 1-simplices in the interior and boundary of Θ̃[2], and VI and VB the number of

points in the interior and boundary of Θ̃[2]. The topology of Θ̃[2] and ∂Θ̃[2] indicates that

0 = VB − EB , (3.85)

1 = (VB + VI)− (EB + EI) + T, (3.86)

3T = 2EI + EB . (3.87)

From this, we find that

3VI − EI = 3− VB = 3− kΘ[2] . (3.88)

The left-hand side is precisely the right-hand side of (3.89), and is hence equal to ē0,0c (ZΘ̃[2]) combinatorially.

This completes a combinatorial proof of the relation (3.69), (3.70), which also follows from the geometry of

the curve ZΘ̃[2]).
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should have a dimension Hmon(Ẑ) = Vtor(Ẑm) because of mirror symmetry. This reasoning

seems to work very well: the first line of the expression (3.83) of Hmon(Ẑ) counts the

number of lattice points 2∆ ∩M of the form ν̃α + ν̃β where ν̃α and ν̃β have corresponding

monomial deformationsDαΩẐ andDβΩẐ , and there is a 1-simplex joining the lattice points

ν̃α and ν̃β . It is quite reasonable to identify the point ν̃α+ ν̃β in 2∆∩M with the quadratic

complex structure deformation DαDβΩẐ (or (Ω−1DαΩ)·(Ω
−1DβΩ) in H

2(Ẑ;∧2T Ẑ) of [4]).

According to mirror symmetry, the subspace of non-vertical components with the di-

mension NV1(Ẑ) +NV3(Ẑ) must be decomposed into

Hcor(Ẑ) := Vcor(Ẑm) =
∑

(Θ̃[1],Θ[3])

ℓ∗(Θ̃[1])×
[
ℓ∗◦1 (Θ[3])− 3ℓ∗(Θ[3])

]
,

RMm
a (Ẑ) := RMa(Ẑm) =

∑

(Θ̃[1],Θ[3])

ℓ∗(Θ̃[1])ℓ∗•1 (Θ[3]) . (3.91)

The space generated by Hcor generators must also be part of the primary horizontal sub-

space. The Hcor-dimensional subspace of the primary horizontal component must cor-

respond to D2ΩẐ which involve at least one deformation that is not represented by a

monomial, i.e. the last term of (3.4). It is reasonable that the expression of Hcor(Ẑ) above

vanishes when there is no pair of dual faces where ℓ∗(Θ̃[1])ℓ∗(Θ[3]) 6= 0, because there should

be no non-monomial deformation of complex structure in that case.

The correction term Hred(Ẑ) in (3.77) is mirror to the V alg(Ẑm) algebraic equivalences,

and hence will represent some redundancy in the description of the quadratic deformations

of complex structure by Hmon(Ẑ)+Hcor(Ẑ) generators and RM
m
a (Ẑ) for the non-horizontal

non-vertical components. Hred(Ẑ) can be split into three, just like we did for V alg(Ẑ). The

dimensions of those three pieces are denoted by Hred
mon(Ẑ), H

red
cor (Ẑ) and H

red
rm (Ẑ).

By using mirror symmetry, we finally arrive at the following formula for the vertical,

horizontal and remaining components of H2,2(Ẑ) of a Calabi-Yau fourfold Ẑ obtained as a

hypersurface of a toric variety P5
Σ′ .

h2,2(Ẑ) = h2,2V (Ẑ) + h2,2RM (Ẑ) + h2,2H (Ẑ), (3.92)

h2,2H (Ẑ) =
[
Hmon(Ẑ) +Hred

mon(Ẑ)
]
+
[
Hcor(Ẑ) +Hred

cor (Ẑ)
]
, (3.93)

h2,2RM (Ẑ) =
[
RMa(Ẑ) + V alg

rm (Ẑ)
]
+
[
RMm

a (Ẑ) +Hred
rm (Ẑ)

]
. (3.94)

This result shows under which circumstances the remaining component is present. It is

quite reasonable from the perspective of mirror symmetry, though, that the remaining

component H2,2
RM (Ẑ) has a dimension that is symmetric under the exchange of ∆ and ∆̃.

The term RMa(Ẑ) describes the space of algebraic cycles on divisors Ŷi of Ẑ that are

not obtained by restriction of divisors of Ẑ; that is, they come from

Coker
[
i∗
Ŷi →֒Ẑ

: NS(Ẑ) −→ NS(Ŷi)
]
. (3.95)

We do not have a robust theory on the component with the dimension RMm
a (Ẑ) at this

moment. Some of this component come from NV1(Ẑ)-dimensional subspace of [H4(Y )]2,2,
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but some may also come from the NV3(Ẑ)-dimensional subspace of [H4
c (Z∆)]

2,2. There are

some examples where (a part of) the RMm
a (Ẑ)-dimensional space also represents algebraic

but non-vertical cycles characterized by (3.95), as we will see in section 4.3. Not all of the

components in this RMm
a (Ẑ)-dimensional space may be of this form for general choices of

∆ and ∆̃, however. We just simply do not know at this moment.

3.6.3 Triangulation (resolution) independence

As we have already explained in section 2, formulating F-theory compactification on re-

solved fourfolds only makes sense if the dimensions of the vertical, horizontal and the

remaining components (i.e., h2,2V , h2,2H and h2,2RM ) of a Calabi-Yau fourfold Ẑ are indepen-

dent of the choice of crepant resolution of singularities of Zs (fine regular unimodular

triangulation of ∆̃).15 As we have discussed, this follows from the independence of the

complex structure moduli space on which resolution is chosen.

In this section we supplement this general argument with a more specific discussion of

triangulation independence for the construction discussed in this section, i.e. for resolutions

Ẑ of Zs obtained by fine unimodular triangulations of the polytope ∆̃.

It is easy to see, first, that Hmon(Ẑ) and V
alg
tor (Ẑ) do not depend on the triangulation

of ∆ (or ∆̃), because their expressions only involve the numbers of lattice points in poly-

topes. Since Vtor(Ẑ) and Hred
mon(Ẑ) are mirror to Hmon(Ẑm) and V alg

tor (Ẑm), they are also

independent of the triangulation of ∆̃ (or ∆); although the expression of Vtor(Ẑ) involves

a number of 1-simplices explicitly, we have seen by using (3.84) that Vtor(Ẑ) is equal to

Hmon(Ẑm), and the number of 1-simplices used in Vtor(Ẑ) does not depend on the choice

of triangulation. This means that both

[
Vtor(Ẑ) + V alg

tor (Ẑ)
]

and
[
Hmon(Ẑ) +Hred

mon(Ẑ)
]

are independent of triangulations.

The dimensions of other components such as Vcor(Ẑ), V
alg
cor (Ẑ), RMa(Ẑ), etc., however,

involve counting the number of 1-simplices with much more specific restrictions, and it is

not obvious at first sight how we see triangulation-independence. Let us look at (3.94),

however, where four terms are grouped into two. The first two terms do not depend on the

triangulation of ∆, but they may depend on the triangulation of ∆̃; the last two terms,

on the other hand, do not depend on the triangulation of ∆̃, but they may depend on the

triangulation of ∆. The dimension of h2,2RM (Ẑ), however, has no chance of depending on the

choice of triangulation of ∆ by construction. This means that the last two terms of (3.94)

combined — [RMm
a (Ẑ)+Hred

rm (Ẑ)] — should not depend on the choice of a triangulation of

∆, and not just on the triangulation of ∆̃. Taking its mirror, we see that the combination

15To be more precise, the formulation of F-theory suggests this resolution independence only for Calabi-

Yau fourfolds where Zs is given by a Weierstrass-model elliptic fibration over B3, and Ẑ is a crepant

resolution of Zs such that Ẑ −→ B3 remains a flat fibration. Thus, the statement here is stretching the

“suggestion” a bit too far by not demanding a flat elliptic fibration, and also restricting the range of validity

by focusing on Ẑ which are obtained as hypersurfaces of toric fivefolds. Thus, an attempt of formulating

flux in F-theory using resolved models Ẑ will still survive, even when the dimensions h2,2
V , h2,2

H and h2,2
RM may

turn out to depend on resolutions for some Calabi-Yau fourfolds Zs which do not admit elliptic fibrations.

– 35 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
7

of the first two terms,

[RMa(Ẑ) + V alg
rm (Ẑ)],

also does not depend on the triangulation of ∆̃. This proves that h2,2RM (Ẑ) is independent

of which (fine, regular, unimodular) triangulation is chosen.

In order to prove that h2,2V (Ẑ) is also independent of the triangulation of ∆̃, note

that V alg(Ẑ) and NV1(Ẑm) + NV3(Ẑm) are independent of triangulation; they depend

only on numbers of lattice points, not on 1-simplices. This means that the combination

V alg
cor (Ẑ) + V alg

rm (Ẑ) is also independent of triangulation, because V alg
tor (Ẑ) is, and so is the

combination [Vcor(Ẑ) + RMa(Ẑ)] because of the relation (3.79). From all above, we see

that the combination [
Vcor(Ẑ) + V alg

cor (Ẑ)
]
,

the second group of terms in (3.74), is also independent of triangulation. Obviously the

independence of [Hcor(Ẑ) +Hred
cor (Ẑ)] also follows from mirror symmetry.

We have therefore seen that the six groups of terms in (3.74), (3.93), (3.94) are sep-

arately independent of the choice of triangulations of ∆̃ and ∆ in a toric-hypersurface

realization of a smooth Ẑ and singular Zs. This statement is almost the same as the sim-

ilar statement in section 2, although the argument in section 2 is about arbitrary crepant

resolutions Ẑ of Zs, i.e. Ẑ does not have to be a toric hypersurface. When a Calabi-Yau

fourfold hypersurface Ẑ of a toric fivefold is also realized as a complete intersection in an

ambient space of higher dimensions, the separation between [Vtor + V alg
tor ] and [Vcor + V alg

cor ]

may not remain the same, in general. One can also see that the argument for triangulation-

independence given here exploits some combinatorics of toric data, (3.84), but still relies

partially on mirror symmetry. This means that there must be some triangulation indepen-

dent relations involving such numbers as ℓ∗•1 (Θ[3]), ℓ∗1(Θ̃
[1]) etc.

4 Examples

A couple of examples of toric-hypersurface Calabi-Yau fourfolds are presented in this sec-

tion. We begin with the pair of sextic (6) ⊂ P5 and its mirror in section 4.1, where the

geometry is so simple that we can compute everything by hand. It serves well for the

purpose of digesting such notions as stratification and mixed Hodge structure. We will see

how things work together nicely so that the long exact sequence (3.11) holds. For more

complicated toric-hypersurface Calabi-Yau fourfolds, however, we need to use the computer

packages TOPCOM [46] and sage [47] partially in the computation (see section 4.2). Exam-

ples in section 4.3 bring the formulae (3.74), (3.93), (3.94) and (3.72), (3.75), (3.78), (3.91)

to life. We chose examples where various terms have non-zero contributions, so that we

can test our geometric interpretation developed in the previous section. In section 4.4, we

work on examples to be used in F-theory compactification for unified theories, and compute

h2,2V , h2,2H and h2,2RM . The results in this section are used as an input in section 6, along

with additional results from appendices C and B, to study how the number of flux vacua

depends on the number of generations Ngen or on the choice of the unification group of

low-energy effective theories.
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4.1 The sextic and its mirror

As a first canonical example, let us discuss the sextic fourfold Ẑ6, a degree-six hypersurface

of P5, and its mirror manifold denoted by Ẑ6,m. With this definition, it is easy to find (using

index theorems and the Lefschetz hyperplane theorem) that the Hodge numbers of Ẑ6 are

hp,q(Ẑ6) =

1 1

426 0 1

0 1752 0

1 0 426

1 1

. (4.1)

In this presentation of the Hodge numbers, p starts from 0 and increases to the right,

while q begins with 0 and increases upward. We will use the same presentation style

in this article, when we write down the numbers ep,qc . For the sextic, h1,1(Ẑ6) = 1 is

generated by H|Ẑ6
, restriction of the hyperplane class of P5. The vertical component

H2,2
V (Ẑ) is generated by H2|Ẑ6

, and we expect h2,2V (Ẑ) = 1. Mirror symmetry also indicates

that h2,2H (Ẑ6,m) = 1. We compute h2,2H (Ẑ6) = h2,2V (Ẑ6,m) and h2,2RM (Ẑ6) = h2,2RM (Ẑ6,m)

in section 4.1.3. Sections 4.1.1 and 4.1.2 are only meant to be warming up exercise for

readers unfamiliar with such notions as mixed Hodge structure or toric stratification.

As a toric variety, P5 can be described by a fan over the faces of a polytope P̃6, whose

six vertices in Z⊕5 are given by




−1 0 0 0 0 1

−1 0 0 0 1 0

−1 0 0 1 0 0

−1 0 1 0 0 0

−1 1 0 0 0 0




. (4.2)

The dual polytope P6 has six vertices in Z⊕5:




−1 −1 −1 −1 −1 5

−1 −1 −1 −1 5 −1

−1 −1 −1 5 −1 −1

−1 −1 5 −1 −1 −1

−1 5 −1 −1 −1 −1




, (4.3)

and one quickly recognizes that the fan Σ over the faces of P6 gives rise to an orbifold of P5.

4.1.1 Geometry of the sextic: mixed Hodge structure of its subvarieties

The sextic Ẑ6 has six toric divisors Ŷi, i = 1, · · · , 6, corresponding to the six vertices of

P̃6. These toric divisors Ŷi are all (6) ⊂ P4. Similarly, Ŷi ∩ Ŷj are surfaces (6) ⊂ P3,

while Ŷi ∩ Ŷj ∩ Ŷk are curves (6) ⊂ P2 and Ŷi ∩ Ŷj ∩ Ŷk ∩ Ŷl are six points in P1. These

– 37 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
7

facts can be read out from the fact that the k-dimensional faces Θ[k] of the polytope P6

are k-dimensional pyramids of height-6 (7 points in one edge),16 which are regarded as

the complete linear system of the divisor 6H of Pk. Exploiting e.g. index theorems in

combination with the Picard-Lefschetz hyperplane theorem one easily finds that

hp,q(Ŷi) =

5 1

255 1

1 255

1 5

hp,q(Ŷi ∩ Ŷj) =

10 1

86

1 10

hp,q(Ŷi ∩ Ŷj ∩ Ŷk) =
10 1

1 10
hp,q(Ŷi ∩ Ŷj ∩ Ŷk ∩ Ŷl) =

6
. (4.4)

We begin with the direct computation of Hk(Y ) using the explicit results (4.4) and

the Mayer-Vietoris spectral sequence, where Y = ∪iŶi is the complement of the primary

stratum ZP6 in Ẑ6. The compact support cohomology groups of ZP6 , on the other hand,

are obtained by following the algorithm of [38] (which we have reviewed partially in the

previous section). Those computations allow us to see that the long exact sequence (3.11)

nicely reproduces the Hodge diamond (4.1); see (4.12).

It is important in the sum rule (3.28), (3.31) and the algorithm of [38] that they

can be applied to polytopes that do not necessarily correspond to the complete linear

system defining a family of Calabi-Yau hypersurfaces; the sum rule (3.31) has been used

in (3.52), (3.53), for example. Thus, we will compute ep,qc (ZΘ[k]) from the Hodge diamonds

of the subvarieties (4.4), and confirm that the sum rule (3.28), (3.31) is indeed satisfied at

the end of this section.

The cohomology group of the compact (but singular) geometry Y = ∪iŶi is computed

by the Mayer-Vietoris spectral sequence. At the stage of dpq1 : Ep,q
1 −→ Ep+1,q

1 , we have

6× (1)

0

6× (0, 1, 0) −→ 15× (1)

6× (5, 255, 255, 5) −→ 0

6× (0, 1, 0) −→ 15× (10, 86, 10) −→ 20× (1)

0 −→ 0 −→ 20× (10, 10)

6× (1) −→ 15× (1) −→ 20× (1) −→ 15× (6)

, (4.5)

where dim(Ep,q
1 ) is shown in the (p+1)-th column from the left and the (q+1)-th row from

the bottom, in a form maintaining the information of the Hodge filtration. To proceed

to the stage Ep,q
2 in the spectral sequence calculation, we need to know the morphisms

16A k-dimensional pyramid of height-h is (anything lattice-isomorphic to) the minimal k-dimensional

simplex in a lattice Z⊕k enlarged by a positive integer h. The number of lattice points on such a pyramid

is Nk,h := [(h+ 1)(h+ 2) · · · (h+ k)]/k!, while the number of interior points is given by Nk,h−k−1.
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dpq1 : Ep,q
1 −→ Ep+1,q

1 . In the case of the sextic, the morphism d1 : E0,q
1 −→ E1,q

1 has a

5-dimensional image for q = 0, 2, 4, while d1 : E
1,q
1 −→ E2,q

1 has a 10-dimensional image for

q = 0, 2. The morphism d1 : E2,0
1 −→ E3,0

1 has a 10-dimensional image. Combining all of

the above, we have that

dim(Ep,q
2 ) =

(6)

(0, 1, 0) (10)

(30, 1530, 1530, 30)

(0, 1, 0) (150, 1275, 150) (10)

(200, 200)

(1) (0) (0) (80)

. (4.6)

We conclude from this that

h3,3[H6(Y )] = 6, h2,2[H5(Y )] = 10, h0,0[H0(Y )] = 1, h1,1[H2(Y )] = 1, (4.7)

and all other Hodge-Deligne numbers of the cohomology groups Hk(Y ) with k = 0, 1, 2, 5, 6

vanish. As for Hk(Y ) with k = 3, 4,

hp,q[H3(Y )] =

30

150 1530

200 1275 1530

80 200 150 30

, hp,q[H4(Y )] =

0

0 1

10 0 0
. (4.8)

Let us now move on to the computation the Hodge-Deligne numbers of the cohomology

group of the top (primary) stratum Z6 = Ẑ6 \ Y = ZP6 . They are determined by the

algorithm of §5 in [38], which is precisely the one we adopted in section 3.5. We only need

the values of the functions ϕi for the polytope P6,

ϕ1(P6) = 1, ϕ2(P6) = 456, ϕ3(P6) = 3431, ϕ4(P6) = 3431, ϕ5(P6) = 456, (4.9)

in order to use the algorithm.17 It turns out that

hp,q[H4
c (ZP6)] =

1

30 426

150 1530 1751

200 1275 1530 426

80 200 150 30 1

. (4.10)

17This task has already been carried out partially in section 3.5. h2,1 of H4
c (ZP6) is given by (3.60),

while (3.61) determines h2,2. The formulae (3.32), (3.58), (3.59) can be used to determine hp,q’s of H4
c (ZP6)

with p = 1, 2, 3, 4, while h3,1 is determined by (3.33), (3.4). The sum rule (3.28), (3.31) still has to be used

along with (4.9), however, to determine two more Hodge-Deligne numbers h1,1 and h0,0 of H4
c (ZP6).
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Using the Hodge-Deligne numbers of other cohomology groups Hk
c (ZP6) given in (3.12), we

also see that

ep,qc (ZP6) =

1 1

30 426 −5

150 1530 1761

200 1265 1530 426

80 200 150 30 1

. (4.11)

With all the Hodge-Deligne numbers of the cohomology groups Hk
c (ZP6) and Hk(Y )

determined, we are now ready to see that the long exact sequence (3.11) reproduces the

Hodge diamond of the sextic (4.1):

[H4
c (ZP6)] → [H4(Ẑ)] → [H4(Y )] → [H5

c (ZP6)] → [H5(Ẑ)]

h2,2 = 1751 → h2,2 = 1752 → h2,2 = 1 → 0

h3,1 = 426 → h3,1 = 426 → h3,1 = 0

h4,0 = 1 → h4,0 = 1 → h4,0 = 0

0 → h1,1 = 10 → h1,1 = 10 → 0

; (4.12)

hp,q[H4
c (ZP6)] for (p, q) with p + q < 4 are irrelevant here, because hp,q[H3(Y )] =

hp,q[H4
c (ZP6)] for p+ q < 4, as one can see from (4.8) and (4.10).

The study above used the Mayer-Vietoris spectral sequence and the Hodge numbers

of subvarieties (4.4) to determine the Hodge-Deligne numbers of Hk(Y ). This is doable by

hand only for such a simple geometry as the sextic, however. The Hodge-Deligne numbers

of Hk(Y ) in more complicated geometries are dealt with much more systematically under

the approach using the toric stratification (3.1) and the algorithm and sum rule of [38].

We therefore confirm from here, toward the end of this section, that the sum rule (3.28) is

satisfied indeed by ep,qc (ZΘ[k])’s of various faces Θ[k] of the polytope P6.

The polytope P6 has six vertices Θ[0] in (4.3),
(
6
2

)
= 15 faces Θ[1] of dimension-1,(

6
3

)
= 20 faces Θ[2] of dimension-2,

(
6
4

)
= 15 faces Θ[3] of dimension-3, and

(
6
5

)
= 6

facets Θ[4]. All the faces of a given dimension k are lattice-isomorphic, thanks to the high

symmetry of the sextic-mirror-sextic. Each one of the k-dimensional faces has
(
k+1
1

)
facets

Θ[k−1] of dimension-(k − 1),
(
k+1
2

)
faces Θ[k−2] of dimension-(k − 2), etc., all the way to(

k+1
k

)
= (k + 1) faces Θ[0], i.e., vertices.

Let us begin with the face Θ[1]. The hypersurface ZΘ[1] ⊂ T1 consists of six points, just

like in the last entry of (4.4). This means that e0,0c (ZΘ[1]) = 6, and ē0,0c (ZΘ[1]) = 5. Because

Θ[1] is a 1-dimensional pyramid of height 6, ℓ∗(Θ[1]) = N1,6−2 = 5 (see footnote 16), the

sum rule (3.31) — which states that ē0,0c (ZΘ[1]) = ϕ1(Θ
[1]) = ℓ∗(Θ[1]) = 5 in this case —

is satisfied indeed.

The next step is to verify the sum rule for ZΘ[2] . It is a degree-6 curve of P2 = P2
Θ[2]

(i.e., g = 10 curve, Ŷi∩ Ŷj ∩ Ŷk in (4.4)), with 3 set of six points (i.e., ZΘ[1]) removed. Using
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the additivity of ep,qc ’s, we find that

ep,qc (ZΘ[2]) =
−10 1

1 −10
− 3

6
=

−10 1

−17 −10
, ēp,qc (ZΘ[2]) =

−10

−15 −10
. (4.13)

The sum
∑

q ē
p,q
c is indeed equal to −ϕ2−p(Θ

[2]) given by ϕ1(Θ
[2]) = ℓ∗(Θ[2]) = N2,6−3 = 10

and ϕ2(Θ
[2]) = ℓ∗(2Θ[2])− 3ℓ∗(Θ[2]) = N2,12−3 − 3 ·N2,6−3 = 25.

A similar computation for Θ[3] and Θ[4] proceeds as follows:

ep,qc (ZΘ[3]) =

10 1

86

1 10

− 4
−10 1

−17 −10
− 6

6
=

10 1

40 82

33 40 10

, (4.14)

ep,qc (ZΘ[4]) =

−5 1

−255 1

1 −255

1 −5

− 5

10 1

40 82

33 40 10

− 10
−10 1

−17 −10
− 10

6
. (4.15)

We thus find that

ēp,qc (ZΘ[3]) =

10

40 85

30 40 10

, ēp,qc (ZΘ[4]) = −

5

50 255

100 425 255

50 100 50 5

, (4.16)

which are consistent with the sum rule on
∑

q ē
p,q
c (Θ[k]) using the value of ϕk−p(Θ

[k]) given

by

ϕ1(Θ
[3]) = 10, ϕ2(Θ

[3]) = 125, ϕ3(Θ
[3]) = 80, (4.17)

ϕ1(Θ
[4]) = 5, ϕ2(Θ

[4]) = 305, ϕ3(Θ
[4]) = 780, ϕ4(Θ

[4]) = 205. (4.18)

As a final consistency check, one can compute ep,qc (Y ) by using the additivity of ep,qc

and the stratification of Y into non-compact and smooth subsets:

ep,qc (Y ) =

(
6

2

)
ep,qc (ZΘ[1]) +

(
6

3

)
ep,qc (ZΘ[2]) +

(
6

4

)
ep,qc (ZΘ[3]) +

(
6

5

)
ep,qc (ZΘ[4])

=

−30 6

−150 −1530 −9

−200 −1264 −1530

−79 −200 −150 −30

. (4.19)

One can see that this result is consistent with ep,qc (Y ) given directly from the Hodge-

Deligne numbers of Hk(Y ) in (4.7), (4.8). Also, ep,qc (ZP6) + ep,qc (Y ) reproduces the Hodge

diamond (4.1), as it should be.
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v0 v1

v2

Figure 6. A 2-dimensional face of P6, Θ
[2]. We have shown vertices, integral points, and a simple

triangulation.

4.1.2 Geometry of the mirror-sextic: toric stratification

Let us now use the mirror-to-sextic Ẑ6,m fourfold to have a close look at the stratification

associated with the toric divisors
{
Ŷi

}
. The stratification of Ẑ6 was very simple — Z6 +

(
6
1

)
ZΘ[4]+

(
6
2

)
ZΘ[3]+· · ·+

(
6
4

)
ZΘ[1] — because all the faces Θ̃[k] of the polytope P̃6 are lattice-

isomorphic to the minimal simplex of k-dimension, so that any one of E
Θ̃[k] ’s consists of a

single point. The faces Θ[k] (k < n = 5) of the polytope P6 are not, however.

To the primary stratum of Ẑ6,m,
(
6
1

)
×Z

Θ̃[4] is added first. Each one of the Z
Θ̃[4] ’s is a

P3 with five hyperplanes removed.

Coming next are the strata
(
6
2

)
×EΘ[1] ×ZΘ̃[3] . The geometry of ZΘ[3] is a P2 with four

hyperplanes removed, while EΘ[1] is the exceptional locus of an A4 singularity resolution.

This exceptional locus EΘ[1] has a stratification that consists of five T1’s and six points,

because ℓ∗(Θ[1]) = 5 and ℓ∗1(Θ
[1]) = 6.

Similarly, there are strata
(
6
3

)
×EΘ[2] ×ZΘ̃[2] . Each one of Z

Θ̃[2] is P
1 with three points

removed, while EΘ[2] has a stratification comprised of ten T2’s, 3 × 15 = 45 T1’s and

thirty-six points. If a polytope Θ[2] is given the triangulation shown in figure 6, then EΘ[2]

contains ten compact complex surfaces isomorphic to dP3.

The only remaining strata are
(
6
4

)
×Z

Θ̃[1] ×EΘ[3] ; each ZΘ̃[1] consists of a single point.

It is not too difficult to find a unimodular fine triangulation of Θ[3] by hand. For this

triangulation, it turns out that ℓ∗1(Θ
[3]) = 155. This number satisfies ℓ∗(2Θ[3])− ℓ∗(Θ[3]) =

N3,8 − N3,2 = 155 = ℓ∗1(Θ
[3]), a special case of (3.84). Because of this relation, ℓ∗1(Θ

[3])

does not depend on the triangulation we choose.

For the mirror sectic, we can also compute the numbers ep,qc ’s for EΘ[k] and Z
Θ̃[4−k]

as well the primary stratum, and we can then use their multiplicativity and additivity to

compute ep,q(Y ), just as we did for the case of the sextic. All these details, however, are

not recorded here.
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4.1.3 Evaluation of h2,2
V , h2,2

H and h
2,2
RM

Let us now evaluate the dimension of the vertical, horizontal and the remaining components

in H2,2 given by (3.74), (3.93), (3.94), respectively; we do this both for the sextic Ẑ6 and

its mirror Ẑ6,m.

Let us begin with the vertical component H2,2
V of the sextic Ẑ6. Because all the faces of

the polytope P̃6 do not have an interior point (except P̃6 itself), both Vcor(Ẑ6) and V
alg(Ẑ6)

vanish. Therefore the vertical component comes purely from intersections of toric divisors,

h2,2V (Ẑ6) = Vtor(Ẑ6) =

(
6

2

)
+ 10− 4 · 6 = 1 , (4.20)

where we have used (3.75). The vertical component H2,2
V (Ẑ) is generated by H2|Ẑ6

, as we

discussed already at the beginning of this section.

The same formula (3.74) can be used also to determine the dimension of the vertical

(2,2)-forms on the mirror fourfold Ẑ6,m, h2,2V (Ẑ6,m). We first note that Vcor(Ẑ6,m) and

V alg(Ẑ6,m) vanish, as there are no interior points in Θ̃[1], Θ̃[2] and 2Θ̃[2]. In order to evaluate

Vtor(Ẑ6,m), we need to count the number of 1-simplices in the polytope P6. We find that

ℓ1((P6)≤3) =

(
6

4

)
· ℓ1(Θ

[3]) +

(
6

3

)
· ℓ∗1(Θ

[2]) +

(
6

2

)
· ℓ1(Θ

[1]) = 3315, (4.21)

using the 1-simplex counting presented in section 4.1.2. To determine the dimensions

subtracted due to the toric rational equivalence, the second and third line of Vtor(Ẑ6,m), we

also need
∑

Θ[4]≤P6
ℓ∗(Θ[4]) =

(
6
5

)
·N4,1 = 30 and

∑
Θ[3]≤P6

ℓ∗(Θ[3]) =
(
6
4

)
·N3,2 = 150. Hence

h2,2V (Ẑ6,m) = Vtor(Ẑ6,m) = 3315 + 10− 4(462− 30− 150− 1)− 3 · 150 = 1751. (4.22)

This result already indicates that h2,2V (Ẑ6,m) = 1751 and h2,2H (Ẑ6,m) = h2,2V (Ẑ6) = 1

add up to yield all of h2,2(Ẑ6,m) = 1752. Thus, the remaining component should

be absent in Ẑ6,m as well as in Ẑ6. It is not difficult to see this directly. First,

RMa(Ẑ6) = RMm
a (Ẑ6,m) vanishes because all the faces Θ̃[3] of P̃6 are minimal three-

dimensional simplices and no 1-simplices are introduced upon triangulation; ℓ∗•1 (Θ̃[3]) = 0.

Secondly, RMm
a (Ẑ6) = RMa(Ẑ6,m) also vanishes because all of the one-dimensional faces

Θ̃[1] of P̃6 do not have an interior point.

Similarly, one can evaluate the dimension of the horizontal component h2,2H (Ẑ6) and

h2,2H (Ẑ6,m) directly from the formulae in the previous section, although we already know

their results. As in the discussion for the vertical component above, one can see that both

Hred and Hcor vanish for both Ẑ6 and Ẑ6,m. Thus, the horizontal component only comes

from the monomial deformation Hmon; the results are

h2,2H (Ẑ6) = Hmon(Ẑ6) = 3431− 6 · 305 + 15 · 10 = 1751 , (4.23)

and

h2,2H (Ẑ6,m) = Hmon(Ẑ6) = 1− 0 + 0 = 1 (4.24)

by using ϕ3(P̃6) = 1.

– 43 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
7

4.2 Computations in practice

For practical applications to fourfolds more complicated than the sextic, we clearly do not

want to evaluate (3.74), (3.93), (3.94) by hand. What is even worse, it is a non-trivial task to

find an appropriate triangulation of ∆̃. Certainly the value of h2,2V , h2,2H and h2,2RM do not de-

pend on the choice of triangulation, as we have seen at the end of section 3.6, but at least we

have to make sure that there is at least one triangulation that is fine, regular and unimodu-

lar (see section 3.1.1), or otherwise the formulae in the previous section cannot be applied.

In this section we hence explain how to evaluate (3.74), (3.93), (3.94) in practice using

existing computer software. The computation of Hodge numbers is most efficiently carried

out using the package PALP [48] (described in some more detail in [49]). In the present con-

text, PALP is also useful to construct a reflexive polytope from a combined weight system.

In order to obtain triangulation we use the package TOPCOM [46]. It is able to perform

fine regular triangulations, which are, however, not necessarily star. Furthermore, as we

have explained in section 3.1.1, a fine triangulation does not always give rise to a smooth

Calabi-Yau hypersurface, let alone a smooth ambient space.

Even though a fine star triangulation is naturally related to a maximally subdivided

fan, we may also use a fine regular triangulation of ∆̃ which is not star for practical pur-

poses. Let us hence assume we have found a regular, fine (non-star) triangulation of ∆̃. This

clearly gives rise to triangulations of all faces of ∆̃ which are mutually consistent, i.e. the

triangulations of any two neighbouring faces induce the same triangulation on their inter-

section. We may then construct a fan Σ′ (or, if we like a star triangulation) over all simplices

on ∂∆̃ obtained this way. As discussed e.g. in [19] (see also [50]), regularity of the original

triangulation implies existence of a strongly convex support function on the simplices on

∂∆̃, which in turn can be lifted to a strongly convex support function on the cones of Σ′.

We hence feed the configuration of integral points on ∂∆̃ into TOPCOM to generate a fine

regular triangulation, given in terms of five-simplices. As explained above, this can be cast

into the data of a fan Σ′, or, equivalently, a star triangulation. Such manipulations can be

conveniently carried out using the computer algebra system sage [47]. In particular, sage

already contains many routines to construct and analyse lattice polytopes.

Having obtained a regular star triangulation, we only need to check unimodularity.

Again, this can be easily done by checking that the lattice volumes of all five-dimensional

cones are unity.

With a smooth ambient space at hand, we are ready to evaluate the formu-

lae (3.74), (3.93), (3.94). This can again efficiently be done using sage. The computation

of the whole procedure outlined above (without any optimization) can be done in a few

hours (for polytopes ∆̃ with O(100) points such as the mirror sextic) to a few days (for

polytopes with several 1000 points such as the mirrors of the cases discussed in section 4.4)

using an off-the-shelf PC at the time of writing.

Note that a straightforward evaluation of eqs. (3.74), (3.93), (3.94) requires a triangu-

lation of both ∆̃ and ∆, even though we expect the final result to be independent of any

triangulation.
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4.3 Correction terms at work

The sextic and its mirror are clearly very degenerate examples for the evaluation

of (3.74), (3.93), (3.94), as the polytope P̃6 for P5 does not have any interior points of

any of its faces and furthermore does not require triangulation. In this section 4.3, we

present some examples for which various correction terms in (3.74), (3.93), (3.94) give a

non-zero contribution.

Our first example is given by the following pair of reflexive polytopes

P̃B =




−2 −2 0 0 0 0 0 0 0 0 0 0 0 0 2 2

−2 0 −2 −2 0 0 0 0 0 0 0 0 2 2 0 2

0 0 −2 0 −2 −2 0 0 0 0 2 2 0 2 0 0

0 0 0 0 −2 0 −2 0 0 2 0 2 0 0 0 0

1 1 1 1 1 1 1 −1 1 −1 −1 −1 −1 −1 −1 −1




, (4.25)

and

PB =




−1 −1 −1 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0

−1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 1

0 −1 0 −1 0 0 −1 0 0 1 0 0 1 0 1 0

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1




. (4.26)

As before, we have simply given the polytopes in terms of a matrix containing their vertices.

We have confirmed, however, that there is a fine unimodular regular triangulation for both

of the polytopes P̃B and PB, following the procedure described in section 4.2. The Calabi-

Yau fourfold ẐB ⊂ P5
Σ′

B
has the Hodge numbers

hp,q(ẐB) =

1 1

11 0 97

0 476 0

97 0 11

1 1

. (4.27)

The Hodge diamond of the mirror ẐB,m ⊂ P5
Σ̃′

B

is the left-right (or top-bottom) flip of the

Hodge diamond above.

Evaluation of (3.74), (3.93), (3.94) gives that h2,2(ẐB) = h2,2(ẐB,m) should be decom-

posed as h2,2V (ẐB) = 440, h2,2H (ẐB) = 32 and h2,2RM (ẐB) = 4. In particular

Vtor + V alg
tor Vcor + V alg

cor RMa + V alg
rm RMm

a +Hred
rm Hcor +Hre

cor Hmon +Hred
mon

ẐB 442− 2 0− 0 0− 0 4− 0 0− 0 32− 0

ẐB,m 32− 0 0− 0 4− 0 0− 0 0− 0 442− 2

.

(4.28)
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Figure 7. The two isomorphism classes of 2-dimensional faces of the polytope P̃B , Θ̃
[2]
T and Θ̃

[2]
S

are shown in (a) and (b), whereas those of the polytope PB , Θ
[2]
t and Θ

[2]
s are in (c) and (d),

respectively. A specific fine unimodular triangulation of those faces is also shown in (a) and (b).

As can already be seen from the lists of vertices above, we find ℓ∗(Θ̃[1]) = 1 for all

1-dimensional faces of P̃B and ℓ∗(Θ[1]) = 0 for all 1-dimensional faces of PB. This already

explains why [Vcor(ẐB) + RMa(ẐB)] = 0, [NV1(ẐB,m) + NV3(ẐB,m)] = 0. Furthermore,

none of the 2-dimensional faces of PB has any interior points (there are 80 triangles Θ
[2]
t and

18 squares Θ
[2]
s with 3, resp. 4 integral points; see figure 7 (c,d)), so that also V alg(ẐB,m) =

0, Hred(ẐB) = 0 and NV3(ẐB) = 0 follows.

The correction term V alg(ẐB) = −2 is understood as follows. There are 98 dual

pairs of faces (Θ̃[2],Θ[2]) in the pair of polytopes (P̃B, PB); among them, 64 are of the type

(Θ̃
[2]
T ,Θ

[2]
t ), 16 are of the type (Θ̃

[2]
T ,Θ

[2]
s ), 16 are of the type (Θ̃

[2]
S ,Θ

[2]
t ) and 2 are of the type

(Θ̃
[2]
S ,Θ

[2]
s ), modulo lattice-isomorphism; see figure 7 (a–d) for the notation of Θ̃

[2]
T,S and Θ

[2]
t,s.

The correction term V alg(ẐB) = −2 originates from the 2 dual pairs (Θ̃
[2]
S ,Θ

[2]
s ). There is

a divisor Ŷi of ẐB for each pair, which is regarded as a surface fibration over a curve Σ
Θ

[2]
s
.

The generic fibre is a surface, which is P1 ×P1 ⊂ E
Θ̃

[2]
S

in the case the triangulation of Θ̃
[2]
S

is the one in figure 7 (b). The base Σ
Θ

[2]
s

is a curve of genus g = ℓ∗(Θ[2]
s ) = 0, because Θ

[2]
s

corresponds to the complete linear system of H1+H2 of P
1×P1. he fibre may degenerate at

k
Θ

[2]
s

= 4 points Σ
Θ

[2]
s
\Z

Θ
[2]
s
. A naive toric calculation counts the fibre class k

Θ
[2]
s
−2 times,

and the correction term ∆V alg(ẐB) = ē0,0c (Θ
[2]
s ) = −1 removes the overcounting of the fibre

class; k
Θ

[2]
s

− 2 + ē0,0c = 1 because of (3.69). Because all the four faces Θ[1] of Θ
[2]
s do not

have an interior point (see figure 7 (d)), this contributes to V alg
tor (ẐB) and not to V alg

cor+rm.

Although we do not have a particular geometric interpretation for the correction term

Hred(ẐB,m), certainly the contribution Hred(ẐB,m) = −2 comes from the same two dual

pairs of the faces isomorphic to (Θ̃
[2]
S ,Θ

[2]
s ).

The correction term RMa(ẐB,m) = 4 is understood as follows. The 64 dual pairs of

faces (Θ̃[1],Θ[3]) are classified (modulo lattice isomorphisms) into four types. All the Θ̃[1]’s

are isomorphic, and Θ[3]’s have one of the four shapes, a tetrahedron, a pyramid with a

rectangular base, a 3-dimensional prism, and a diamond, shown in figure 8. The correction

term RMa(ẐB,m) comes from the pairs (Θ̃[1],Θ
[3]
dia). The one-simplex in Θ

[3]
dia in figure 8

is surrounded by four triangles and four tetrahedra, realizing a geometry T1 × P1 × P1

in the toric ambient space P5
Σ̃′

B

= P5
P̃B

for ẐB,m. The hypersurface equation selects

[1 + ℓ∗(Θ̃[1])] = ℓ(Θ̃[1])− 1 = 2 points out of T1. Thus, this one-simplex does not represent
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Figure 8. The 64 faces of 3-dimensions in PB form four lattice-isomorphism classes. One of them

looks like the one in this figure, and is denoted by Θ
[3]
dia. Four out of 64 belong to this class. The

face Θ
[3]
dia contains a single internal one-simplex (also shown in the figure) after triangulation. One

example of such a face has (−1, 0, −1, 0, −1), (−1, 0, 0, −1, −1), (−1, 0, 0, 0, −1), (0, 0, 0, 0, 1),

(0, 0, 0, 1, 1), and (0, 0, 1, 0, 1) as its vertices.

a single irreducible algebraic cycle, but consists of two irreducible ones, each of which is

isomorphic to P1 × P1. These two irreducible algebraic cycles combined are vertical and

can be obtained as the intersection of divisors corresponding to the two boundary points

of the 1-simplex in Θ
[3]
dia ≤ PB. This piece is counted as part of Vtor(ẐB,m). The other

ℓ∗(Θ̃[1]) = 1 combination of the irreducible algebraic cycles, however, is not realized as a

vertical cycle, and is counted as a part of RMa(ẐB,m). There are four such dual pairs of

faces (Θ̃[1],Θ
[3]
dia), and this is how RMa(ẐB,m) = 4 is obtained.

Finally, we obtain RMm
a (ẐB) = 4 in the following way. It comes from the same four

dual pairs of type (Θ̃[1],Θ
[3]
dia). As noted already, ℓ∗(Θ̃[1]) = 1 for all 1-dimensional faces

of the polytope P̃B, and the 1-simplex in figure 8 contributes to ℓ∗•1 (Θ
[3]
dia) combinatorially ;

each pair of dual faces (Θ̃[1],Θ
[3]
dia) gives rise to a 1×1 contribution to RMm

a (ẐB), and there

are four such pairs. The geometric interpretation of this component, however, is not as

directly related to the 1-simplex in Θ
[3]
dia as the interpretation of RMa(ẐB,m) is. Remember

that NV3(ẐB) = 0, and note that Vcor(ẐB,m) = Hcor(ẐB) vanishes in this example. The

face Θ
[3]
dia does not have an interior point or 1-simplex ending on such an interior point.

This means that RMm
a (ẐB) originates purely from NV1(ẐB) in this example. Let us now

focus on one of the four pairs of (Θ̃[1],Θ
[3]
dia), and let νi and Ŷi be the interior point of

Θ̃[1] and the corresponding divisor of ẐB, respectively. This divisor Ŷi contains a group of

strata forming a P1 fibration over a surface Z
Θ

[3]
dia

. This surface has ē1,1c (Z
Θ

[3]
dia

) = 1, which

is the origin of RMm
a (ẐB) 6= 0. The Hodge diamond of this divisor Ŷi is reconstructed by

collecting ep,qc of all the relevant strata (see (3.27)), and we found that it is

hp,q(Ŷi) =

1

11

11

1

; (4.29)

h2,0(Ŷi) vanishes because ℓ∗(Θ[3]
dia) = 0. All of the components in H1,1

c (Ŷi) and H2,2
c (Ŷi)

are therefore algebraic, but the exact sequence (3.65) shows that only a 10-dimensional

subspace of the h2,2c (Ŷi) = 11-dimensional space of algebraic cycles is realized in the form
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of vertical cycles. The remaining ē1,1c = 1-dimensional contribution to H2,2
c (Ŷi) is regarded

as part of the RMm
a (ẐB) component, which is algebraic (and hence non-horizontal), but

not vertical. In this example, we see that the RMm
a (ẐB)-component is also characterized

by (3.95), not just the elements in RMa(Ẑ) are.

In this example, the correction terms for H1,1(ẐB) and H
1,1(ẐB,m), i.e. the last term

in (3.3), vanish and all divisor classes are generated by toric divisors for both fourfolds.

This means we can easily compute the dimensions of H2,2
V (ẐB) and H2,2

V (ẐB,m) by using

the intersection ring of the ambient toric space restricted to ẐB and ẐB,m. This computa-

tion reproduces the dimensions of the vertical components in (4.28), h2,2V (ẐB) = 440 and

h2,2V (ẐB,m) = 32. Using mirror symmetry, we can then also recover the dimensions of the

horizontal components. From h2,2 = 476 it follows again that the remaining component

must be 4-dimensional.

A second example is defined by the dual pair of polyhedra

P̃S =




−1 0 0 0 0 1

−1 0 0 0 1 0

−15 −1 5 11 0 0

−3 1 1 1 0 0

−9 −1 5 5 0 0




, PS =




−1 −1 −1 −1 −1 5

−1 −1 −1 −1 5 −1

−1 0 0 1 0 0

0 −1 4 −1 −1 −1

2 0 −1 −1 0 0




, (4.30)

where we have displayed the vertices in the form of a matrix. It turns out that these two

polyhedra are equivalent, so that they define the same Calabi-Yau fourfold, which is hence

self-mirror. We have found fine regular and unimodular triangulations for both P̃S and PS ,

which are used for the computations below. The hodge numbers are

hp,q(ẐS) =

1 1

30 101 30

101 82 101

30 101 30

1 1

. (4.31)

and we find

Vtor + V alg
tor Vcor + V alg

cor RMa + V alg
rm RMm

a +Hred
rm Hcor +Hre

cor Hmon +Hred
mon

ẐS 41− 0 0− 0 150− 150 150− 150 0− 0 41− 0
.

(4.32)

As expected for a self-mirror fourfold with h2,2RM = 0, the result is h2,2V = 1
2h

2,2.

Let us comment on the computation of NV3(P̃S), which was zero in the ex-

ample before. There are three 1-dimensional faces with ℓ∗(Θ̃[1]) = 5. In P̃S they

have vertices at {(0, 0,−1, 1,−1), (0, 0, 5, 1, 5)}, {(0, 0,−1, 1,−1), (0, 0, 11, 1, 5)} and

{(0, 0, 5, 1, 5), (0, 0, 11, 1, 5)}. They are dual to 3-dimensional faces each of which contains

10 points interior to their 2-dimensional faces. As all other 1-dimensional faces have

ℓ∗ = 0, we hence find NV3(P̃S) = 150.

– 48 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
7

Just like in the example PB, the correction term for H1,1(ẐS) vanishes and we can

independently verify that h2,2V (ẐS) = h2,2V (ẐS,m) = 41 by using the intersection ring of the

ambient space.

We now discuss an example for which h2,2RM 6= 0 and not all toric divisors are irreducible.

The vertices of the polytopes defining this example and its mirror are

P̃3 =




−1 0 0 0 0 0 0 0 0 0 0 0 1

−3 −2 −2 −1 −1 0 0 0 2 2 4 4 0

−5 −3 −2 −2 −2 0 0 4 1 1 3 4 0

−8 −5 −4 −3 −2 0 2 2 0 1 1 2 0

−7 −5 −5 −2 −2 1 1 −3 1 1 1 1 0




(4.33)

and

P3 =




−1 −1 −1 −1 −1 −1 −1 −1 0 1 1 8 10

−1 −1 −1 0 1 1 3 4 −1 −1 4 0 1

1 1 2 0 −2 −1 0 −1 1 2 −1 0 −1

−1 0 0 0 2 0 0 0 −1 0 0 0 0

1 0 −1 −1 −1 −1 −1 −1 1 −1 −1 −1 −1




. (4.34)

We have found a fine, regular and unimodular triangulation for both polytopes. The hodge

numbers are

hp,q(Ẑ3) =

1 1

76 11 67

11 594 11

67 11 76

1 1

. (4.35)

Evaluation of (3.74), (3.93) and (3.94) gives

Vtor + V alg
tor Vcor + V alg

cor RMa + V alg
rm RMm

a +Hred
rm Hcor +Hre

cor Hmon +Hred
mon

Ẑ3 212− 6 0− 0 177− 74 118− 61 29− 0 199− 0

Ẑ3,m 199− 0 29− 0 118− 61 177− 74 0− 0 212− 6

,

(4.36)

so that

h2,2V (Ẑ3) = 206 h2,2RM (Ẑ3) = 160 h2,2H (Ẑ3) = 228 (4.37)

In this example, the correction term to h1,1(Ẑ3,m) is equal to 10 and some of the toric

divisors are reducible, giving rise to a non-zero contribution to Vcor(Ẑ3,m). One can check

that the intersection ring of the ambient toric space restricted to Ẑ3,m gives rise to 199

four-cycles in this case, as expected from Vtor(Ẑ3,m) + V alg
tor (Ẑ3,m) = 199. For Vcor(Ẑ3),

the correction term to h1,1 vanishes and all 206 vertical four-cycles are obtained by the

restriction of intersections of toric divisors.
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4.4 Elliptic fourfolds

In this section we come to our objects of interest, which are elliptic fourfolds. With the

machinery to treat toric hypersurfaces in place, let us discuss elliptic fibrations over toric

base manifolds. A smooth elliptic fourfold over a toric base B 3 not supporting any gauge

group can be obtained by taking a generic Calabi-Yau hypersurface in an appropriate

fibration of P2
123 over B 3. The elliptic fibration morphism π then descends from the toric

morphism projecting down to B 3. Torically, we may realize such a situation by setting up

a polytope ∆̃π
B 3

with vertices




−1

0

0


 ,




0

−1

0


 ,




3

2

0


 ,




3

2

~v1


 , · · · ,




3

2

~vn


 . (4.38)

Here, the ~vi are the generators of the 1-dimensional cones in the fan of the toric variety

B 3. The above assignment ensures that X1 (the coordinate associated with (−1, 0, 0, 0, 0))

is a section of −3KB 3 and X2 (the coordinate associated with (0,−1, 0, 0, 0)) is a section

of −2KB 3 .

For appropriate base manifolds B 3, a generic hypersurface Ẑπ
B 3

in the toric variety

defined by a fan over faces of the polytope ∆̃π
B 3

is a smooth elliptic Calabi-Yau manifold

with h1,1(Ẑπ
B 3

) = h1,1(B 3)+1. A compactification of F-theory on such a manifold will not

give rise to any gauge symmetry in the low energy effective action.

The (combinatorially) simplest example is B 3 = P3, where we choose

~v1 =




1

0

0


 , ~v2 =




0

1

0


 , ~v3 =




0

0

1


 , ~v4 =




−1

−1

−1


 . (4.39)

Another class of examples we will discuss in the following is given by taking a toric base

defined by

~v1 =




1

0

0


 , ~v2 =




−1

0

0


 , ~v3 =




n

1

1


 , ~v4 =




0

−1

0


 , ~v5 =




0

0

−1


 . (4.40)

Let us denote the resulting threefolds by B
(n)
3 . We can also characterize them as

P [OP2 ⊕OP2(n)], i.e. they are themselves fibrations of P1 over P2. Hence the resulting

fourfolds are K3 fibred and for F-theory compactifications there is a heterotic dual. One

may think of [z1 : z2] as coordinates on the P1 fibre (they also define two sections of the P1

fibration) and [z3 : z4 : z5] as coordinates on the P2 base.

Using the methods described earlier in this paper, we may now easily compute the

Hodge numbers and the dimension of H2,2
V , H2,2

H and H2,2
RM for these examples. The results

are given in table 1.
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B 3 P3 B
(−3)
3 B

(−2)
3 B

(−1)
3 B

(0)
3 B

(1)
3 B

(2)
3 B

(3)
3

h1,1 2 3 3 3 3 3 3 3

h2,1 0 1 0 0 0 0 0 1

h3,1 3878 4358 3757 3397 3277 3397 3757 4358

h2,2 15564 17486 15084 13644 13164 13644 15084 17486

h2,2V 2 4 4 4 4 4 4 4

h2,2H 15562 17482 15080 13640 13160 13640 15080 17482

h2,2RM 0 0 0 0 0 0 0 0

K 23320 26200 22596 20436 19716 20436 22596 26200

Table 1. Hodge numbers and h2,2V , h2,2H and h2,2RM for generic elliptic fibrations, based on the

polytopes with vertices (4.38), over base spaces P3, and B
(n)
3 .

For a fourfold given by toric data such as (4.38), we may engineer models with a pre-

scribed gauge group G over a divisor S in the base by choosing the monomials appearing in

the defining equation of the hypersurface Ẑπ
B 3

appropriately. If S is given by a toric divisor

of the ambient space, this is equivalent to deleting points from the dual polytope ∆π
B 3, G

in

theM -lattice. If this process results in another reflexive polytope ∆π
B 3, G

, we may construct

the dual ∆̃π
B 3, G

, which contains more points than ∆̃π
B 3

. If the resulting hypersurface ẐG

is smooth, these extra points can be interpreted as the exceptional divisors of a resolution.

We may also reverse this process and define our models with an appropriate ∆̃π
B 3

,

which is what we will do in the following. This anticipates the resolution process (which is

another way to find the new vertices to add) and only allows those monomials in ∆ leading

to the desired fibre structure. This approach is similar to the one used in [51] and the tops

of [52–54]. Equivalently, the polytopes used may also be constructed from the combined

weight systems of appropriately resolved fourfolds.

In the following we will present a few examples for gauge groups SU(5) and SO(10).

4.4.1 SU(5) along P2

For a fourfold given as a hypersurface in a toric ambient space via a reflexive polytope

such as (4.38), we may engineer fibres of type I5 in Kodaira’s classification along a divisor

[zk] in the base (leading to SU(5) gauge symmetry in a compactification of F-theory) by

adding the vertices:18

~ve1 =




2

1

~vk


 , ~ve2 =




1

0

~vk


 , ~ve3 =




0

0

~vk


 , ~ve4 =




1

1

~vk


 (4.41)

18To be more precise, we take the convex hull of these points and the polytope (4.38). In the resulting

polytope, ~ve1 is not a vertex, but lies on an edge between ~vk and ~ve2 .
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B 3 P3 B
(−3)
3 B

(−2)
3 B

(−1)
3 B

(0)
3 B

(1)
3 B

(2)
3 B

(3)
3

h1,1 6 7 7 7 7 7 7 7

h2,1 0 1 0 0 0 0 0 0

h3,1 2204 1249 1423 1723 2148 2698 3373 4173

h2,2 8884 5066 5764 6964 8664 10864 13564 16764

h2,2V 7 9 9 9 9 9 9 8

h2,2H 8877 5057 5755 6955 8655 10855 13555 16756

h2,2RM 0 0 0 0 0 0 0 0

K 13287 7557 8603 10403 12953 16253 20303 25104

Table 2. Hodge numbers, decomposition of H2,2 and K for Calabi-Yau fourfolds with SU(5) gauge

group based on the reflexive polytopes ∆̃π
P3, SU(5) and ∆̃π

B
(n)
3 , SU(5)

.

to the polytope (4.38). For the examples of B 3 discussed in the last section, this leads to

reflexive polytopes ∆̃π
P3, SU(5) and ∆̃π

B
(n)
3 , SU(5)

(for n = −3 · · · 3). For the bases B
(n)
3 , we

place S along the divisor [z1] (the divisor corresponding to ~v1 in (4.40)). This means that

S is a P2 in the base of the elliptic fibration.

Evaluating (3.74), (3.93) and (3.94) gives the results in table 2.

Note that in each case, h1,1 has increased by four, corresponding to the exceptional

divisors. The value of h2,2V (Ẑπ

B
(0)
3 , SU(5)

) = 9 has already been independently computed

in [27]. In the last case, h2,2V (Ẑπ

B
(3)
3 , SU(5)

) = 8 because the 10 matter curve is absent there.

4.4.2 SO(10) along P2

In a similar fashion as done in the last section we may construct the polytopes ∆̃π
B 3, SO(10).

As (generic) models with gauge group SO(10) can be obtained by a further degeneration

of SU(5) models, the polytope ∆̃π
B 3, SO(10) contains ∆̃

π
B 3, SU(5). The vertices which have to

be added to ∆̃π
B 3, SU(5) to achieve gauge group SO(10) along z1 are:

~ve5 =




2

1

2~vk


 , ~ve6 =




3

2

2~vk


 . (4.42)

For these cases we find the hodge numbers given in table 3.

5 Fourfolds which are not hypersurfaces of toric varieties

In the last section, we have shown how H2,2(Ẑ,Q) is decomposed into vertical cycles,

horizontal cycles and the remaining part H2,2
RM (Ẑ,Q) for the case of hypersurfaces in toric

varieties. As we have seen, the remaining part can be non-zero when divisors of Ẑ have

algebraic cycles which are not obtained by intersection with other divisors, cf. (3.95).
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B 3 P3 B
(−3)
3 B

(−2)
3 B

(−1)
3 B

(0)
3 B

(1)
3 B

(2)
3 B

(3)
3

h1,1 7 8 8 8 8 8 8 8

h2,1 0 0 0 0 0 0 0 0

h3,1 2189 1221 1402 1708 2138 2692 3370 4172

h2,2 8828 4958 5684 6908 8628 10844 13556 16764

h2,2V 8 10 10 10 10 10 10 10

h2,2H 8820 4948 5674 6898 8618 10834 13546 16754

h2,2RM 0 0 0 0 0 0 0 0

K 13200 7392 8480 10316 12896 16220 20288 25100

Table 3. Hodge numbers, decomposition of H2,2 and K for Calabi-Yau fourfolds with SU(5) gauge

group based on the reflexive polytopes ∆̃π
P3, SO(10) and ∆̃π

B
(n)
3 , SO(10)

.

In this section we discuss another class of Calabi-Yau fourfolds which can have a non-

vanishing remaining part and are motivated in the study of F-theory compactifications:

elliptic fibrations with singular fibres of type I5 along a divisor S.

Let B3 be a smooth Fano threefold, and let Zs be a fourfold given by imposing a

Weierstrass equation in the ambient space P[OB3 ⊕OB3(−2KB2)⊕OB3(−3KB3)]. We may

choose the Weierstrass equation to be

X2
1 = X3

2 + a5X1X2X3 + a4X
2
2X

2
3s+ a3X1X

3
3s

2 + a2X2X
4
3s

3 + a0X
6
3s

5, (5.1)

where X3,2,1 are the homogeneous coordinates of an ambient space containing the fibre

P[O ⊕ O(−2KB3) ⊕ O(−3KB3)]. A morphism π̄ : Zs −→ B3 defining an elliptic fibration

naturally follows from this. Let [S] be some divisor class of B3 and s a global section of

OB3(S), so that the zero locus of s is S. ar=5,4,3,2,0’s are global sections of appropriate line

bundles OB3(−(6−r)KB3−(5−r)S) making (5.1) a Calabi-Yau manifold. These conditions

leave moduli for s and the ar=5,4,3,2,0, and we assume that they are chosen generic (in the

sense that they are not in a Noether-Lefschetz locus). Fourfolds Zs obtained in this way

have an A4 singularity along the subvariety s = X2 = X1 = 0. A compact and non-singular

fourfold Ẑ can be obtained by carrying out the canonical resolution of the A4 singularity in

Zs first, and then going through a small resolution. The elliptic fibration π : Ẑ −→ B3 re-

mains a flat morphism [30]. Some more details about this resolution procedure are reviewed

in appendices A.1 and A.2 so that there is no ambiguity in the notation used in this article.

This class of geometries generalizes the examples discussed in section 4.4, where Ẑ

is realized as a hypersurface of a toric variety. As a canonical example, we can think of

B3 = P3, and S a quadratic or cubic (or possibly degree d = 4) hypersurface of B3. It is

known that S = P1 × P1 in the d = 2 case, S = dP6 when d = 3, and S = K3 for d = 4. In

these cases, i∗ : H1,1(B3;C) −→ H1,1(S;C) is not surjective, which is a welcome feature in

F-theory compactifications [20, 21].

In this section we study the difference between the algebraic and vertical components

in H2,2(Ẑ;Q) for this class of geometries. This is done by dividing Ẑ into a collection of
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(transversally intersecting) divisors Y = ∪iŶi ⊂ Ẑ and its complement Z := Ẑ\Y , just

like we did in section 3 when studying the case where Ẑ is a toric hypersurface. Here, we

choose a collection of divisors Y = ∪iŶi exploiting the fibration structure: the first five Ŷi,

i = 0, 1, 2, 3, 4, are reserved for the five irreducible components of the family of I5 Kodaira

fibres over the divisor S in B3. Apart from those, the collection ∪iŶi consists of the zero

section σ of the elliptic fibration π : Ẑ −→ B3 and the divisors π∗(Di)’s, where {Di} is

some basis of Pic(B3).

We use the long exact sequence (3.11) with the separation Ẑ = Y ∐Z described above.

The H4
c (Y )-based algebraic cycles are studied by looking at

Ker
[
[H4

c (Y )]2,2 −→ [H5
c (Z)]

2,2
]
. (5.2)

There are two things to be worked out: the first is to determine the (dimension of the)

algebraic components in [H4
c (Y )]2,2 for cases where Ẑ is not necessarily a hypersurface of

a toric variety, and the second is to determine h2,2[H5
c (Z)] = h2,2[H3(Z)]. It is known that

h2,2[H5
c (Ẑ)] = 0 when Ẑ is a hypersurface of a toric variety, but this is not necessarily true

for more general cases (note that 2 + 2 ≥ 3, and Z is smooth and non-compact).

Let us now work out [H4
c (Y )]2,2. It is determined by the Mayer-Vietoris spectral

sequence, and by (3.16), in particular. This task consists of determiningH4(Ŷi), H
4(Ŷi∩Ŷj)

and the morphism between them.

5.1 The dimension of h1,1(Ŷi)’s

We begin by computing the dimension of h2(Ŷi) = h4(Ŷi) for the compact and generically

smooth divisors Ŷi ∈
{
σ, π∗(Di), Ŷ0,1,2,3,4

}
.

For Ŷi = σ ≃ B3, H
2,2
c (B3) = H1,1(B3) = NS(B3).

For Ŷi = π∗(Di) for one of the basis elements of NS(B3), H
1,1(π∗(D)) is generated by

restrictions of the divisors σ, Ŷ0,1,2,3,4 and divisors of B3, where we assume that Di · S is

not empty in B3 for now. To verify this, the Hodge diamond of the threefold π∗(D) ⊂ Ẑ

can be determined by decomposing Ẑ into strata first, and then by collecting strata that

belong to π∗(D). It is convenient to start from the following stratification of the threefold

π∗(D): the surface D ⊂ B3 is decomposed into D\(D ∩ S), D ∩ (S\(Σ(10) ∪ Σ(5))) and

D∩Σ(10) and D∩Σ(5), and the elliptically fibred threefold π∗(D) ⊂ Ẑ is also decomposed

accordingly to the stratification in the base. The Hodge number of the compact and smooth

geometry π∗(D) is obtained by summing up the Hodge-Deligne numbers of the strata. To

h1,1(π∗(D)) = h2,2(π∗(D)), only the first two strata contribute.

h2,2(π∗(D)) =
[
e0,0c (T 2)e2,2c (D\(D ∩ S)) + e1,1c (T 2)e1,1c (D\(D ∩ S))

]

+e1,1c (I5)e
1,1
c (D ∩ S)

= 1 + [h1,1alg(D ⊂ B3)− 1] + 5 = 1 + h1,1alg(D) + 4. (5.3)

The claim is now verified.19 If Di · S = 0 in B3, however, H
1,1(π∗(Di)) is generated by

π∗(Dj |Di
) for Dj ’s in NS(B3) and σ|π∗(Di).

19To be more precise, the term e1,1c (T 2)e1,1c (D\(D ∩S)) should be decomposed into the region where the

fibre is a smooth T 2 and type II fibre. However, e1,1c = 1 for the type II fibre, so that there is no difference

after all.
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We assume that a basis {Di} of NS(B3) is chosen such that the number of Di’s with

Di · S 6= φ is the same as the dimension ρ̃B of the image of

i∗ : H1,1(B3) −→ H1,1(S). (5.4)

In order to determine the Hodge numbers of the five other divisors Ŷ0,1,2,3,4 comprising

the I5 fibre over the divisor S ⊂ B3, we introduce the following stratification of S:

S = S◦ ∐ Σ◦
(10) ∐ Σ̃◦

(5) ∐ PE6 ∐ PD6 . (5.5)

Here, Σ(10) is the curve in S given by a5|S = 0, and Σ(5) the curve in S given by (a0a
2
5 −

a2a5a3 + a4a
2
3)|S = 0. Those two curves intersect in S, and PE6 and PD6 denote the

collection of such intersection points of two different kinds; PE6 are the points where

a5 = a4 = 0, and PD6 where a5 = a3 = 0. Σ◦
(10) is defined as Σ(10)\(PE6∪PD6). The curve

Σ(5) forms a double point singularity at each one of the points in PD6; Σ̃
◦
(5) is obtained by

resolving the double point singularities (to obtain a curve Σ̃(5)), and then removing the lift

of the points of PE6 and PD6. Finally, S
◦ := S\(Σ(10) ∪ Σ(5)) (see [55, 56]).

The Hodge numbers of the five divisors can be calculated by using the stratification of

the geometry of S as described above, and the additivity and multiplicativity of the Euler

characteristics of the Hodge-Deligne numbers ep,q. Appendix A.3 explains how to carry out

the computation in practice, taking the Hodge numbers of Ŷ4 as an example. The result is

ep,qc (Ŷ4) =

0 h2,0(S) 0 1

h2,0(S) −2g10 [h1,1(S) + 3] 0

0 [h1,1(S) + 3] −2g10 h2,0(S)

1 0 h2,0(S) 0

= (−)p+qh3−p,3−q(Ŷ4) , (5.6)

where the Hodge numbers are given in terms of h2,0(S) and h1,1(S) and the genera g10
and g̃5 of the (resolved) matter curves; we assume that h1,0(S) = 0 here. The appendix A

contains more information on the generators of H1,1(Ŷ4).

Similar computations can be carried out for the four other divisors in the I5 fibre. The

results are:

ep,qc (Ŷ0) = ep,qc (Ŷ1) =

0 h2,0(S) 0 1

h2,0(S) 0 [h1,1(S) + 1] 0

0 [h1,1(S) + 1] 0 h2,0(S)

1 0 h2,0(S) 0

, (5.7)

ep,qc (Ŷ2) =

0 h2,0(S) 0 1

h2,0(S) −g10 [h1,1(S) + 2] 0

0 [h1,1(S) + 2] −g10 h2,0(S)

1 0 h2,0(S) 0

, (5.8)
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ep,qc (Ŷ3) =

0 h2,0(S) 0 1

h2,0(S) −g̃5 [h1,1(S) + 2] 0

0 [h1,1(S) + 2] −g̃5 h2,0(S)

1 0 h2,0(S) 0

. (5.9)

5.2 Determination of H4(Y )

Next, H4(Y ) is determined as the kernel of (3.16). Since we have chosen all of the Ŷi’s

to be irreducible, h4(Ŷi · Ŷj) = 1 for any pair of those divisors (i 6= j) with a non-empty

intersection Ŷi · Ŷj . We switch to the dual (homology group) language in this subsection

and the next. H4(Y ) is the cokernel of the morphism

d1 :
[
⊕i<jH4(Ŷi · Ŷj)

]
= E1

1,4 −→ E1
0,4 =

[
⊕iH4(Ŷi)

]
, (5.10)

and the contribution to H4(Ẑ) from H4(Y ) is characterized as the cokernel of the boundary

map

δ :
[
HBM

5 (Z) = H5(Ẑ, Y )
]
−→ H4(Y ). (5.11)

We have already learned that

dim[H4(σ ≃ B3)] = ρB,

dim[H4(π
∗(Di)] = h1,1(Di) + 1, (if Di · S = φ)

dim[H4(π
∗(Di)] = h1,1(Di) + 1 + 4, (if Di · S 6= φ)

dim[H4(Ŷ0)] = ρS + 1,

dim[H4(Ŷ1)] = ρS + 1,

dim[H4(Ŷ2)] = ρS + 2,

dim[H4(Ŷ3)] = ρS + 2,

dim[H4(Ŷ4)] = ρS + 3, (5.12)

where ρS := h1,1(S) and ρB = h1,1(B3). On the other hand,

dim
[
⊕i<jH4(Ŷi ∩ Ŷj)

]
= ρB +

ρB(ρB − 1)

2
+ 5ρ̃B + 8 , (5.13)

and ⊕i<jH4(Ŷi ∩ Ŷj) is generated by four-cycles of the form

i) σ · π∗(Di)

ii) π∗(Di ·Dj) with i 6= j ≤ ρB

iii) π∗(Di) · Ŷ0,1,2,3,4 for Di · S 6= φ

iv) intersections among Ŷ0,1,2,3,4, neglecting self-intersections

There are ρB four-cycles in the group i) above. In [⊕iH4(Ŷi)], a given cycle of the

form (Ŷi · Ŷj) = σ ·Di appears once in H4(σ) and once in H4(π
∗(Di)). Thus, there are ρB

independent four-cycles [σ ·Di] in H4(Y ) remaining in the Cokernel of the morphism (5.10).
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The second group ii) of four-cycles above are mapped into ⊕iH4(π
∗(Di)), and also

leave a cokernel of dimension ρB. These cycles are represented by π∗(curves ⊂ B3).

A given four-cycle of the form π∗(Di) · Ŷ1,2,3,4 (with Di · S 6= φ) among the group

iii) of four-cycles appears once in H4(Ŷ1,2,3,4) and once in H4(π
∗(Di)). Thus, all of the

4ρS generators of H4(Ŷ1,2,3,4) are in the cokernel. The remaining four-cycles in the third

group are of the form π∗(Di) · ŶS . As only a ρ̃B-dimensional subspace of H1,1(S) descends

from H1,1(B3), the images of these cycles in H4(π
∗(Di)) are mapped to a ρ̃B-dimensional

subspace of H4(ŶS), so that their contribution to the cokernel is ρS − ρ̃B-dimensional.

So far, we have identified 2ρB +4ρS + ρS − ρ̃B independent generators of the cokernel

of (5.10) in H4(Y ). Besides the summands already covered in the discussion above, there

are (1 + 1 + 2 + 2 + 3) = 9-dimensions remaining in ⊕iH4(Ŷi), and eight dimensions

remaining in ⊕i<jH4(Ŷi · Ŷj). We choose Ŷ2 · Ŷ4 as the remaining representative of

thecokernel and may conclude that

dim[H4(Y )] = 2ρB + 5ρS − ρ̃B + 1. (5.14)

5.3 The vertical components in H4(Y )

The (2ρB+1)-dimensional subspace ofH4(Y ) which may be represented by σ·Di andDi ·Dj

is clearly composed of vertical four-cycles. However, not all of H4(Y ) arises in this way.

The remaining 4ρS + (ρS − ρ̃B)-dimensional subspace of H4(Y ) is generated by four-

cycles of the form Ŷ1,2,3,4 · π
∗(ω) or ŶS · π∗(ω) for some ω ∈ H1,1(S) (Poincaré duality is

implicit everywhere). If ω is in the image of (5.4), then such a four-cycle is vertical. Thus,

at least a subspace of dimension 4ρ̃B is also vertical.

Intersections of the form Ŷi · Ŷj for i, j ∈ {0, 1, 2, 3, 4} and i 6= j are all vertical four-

cycles as well. They are already contained in the (2ρB +1)-dimensional subspace of H4(Y )

referred to at the beginning of this subsection, however.

The last remaining group of vertical four-cycles are of the form Ŷi ·Ŷi for i = 0, 1, 2, 3, 4.

Such self-intersections can be computed by using such relations as

Ŷ1 · Ŷ1 ∼ Ŷ1 ·
[
ν∗tot(DS)− Ŷ0 − Ŷ2 − Ŷ3 − Ŷ4

]
. (5.15)

Noting that both c1(NS|B3
) and c1(B3)|S are in the image of (5.4), and using the rela-

tions (A.46)–(A.47), one finds that these vertical four-cycles are not independent from

those that we have discussed already. Therefore, we conclude that the vertical four-cycles

form a subspace of dimension

2ρB + 4ρ̃B + 1 (5.16)

in H4(Y ).

The remaining 5(ρS − ρ̃B)-dimensional subspace of H4(Y ) cannot be represented by

vertical four-cycles. This subspace has a clear geometric interpretation: for any cycle in S

which does not descend from B3, we can form five vertical four-cycles by taking the fibre

components of the I5 fibre over S.
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5.4 The remaining component

A four-cycle in H4(Y ) represents a topological four-cycle in Ẑ only if it is in the cokernel

of the boundary map,

Coker
[
H5(Ẑ, Y ) −→ H4(Y )

]
⊂ H4(Ẑ). (5.17)

For the general class of geometries Ẑ described at the beginning of this section, we do not

have a clear method of computation for H5(Ẑ, Y ). Although it is difficult to find all the

generators of H5(Ẑ, Y ) and their images in H4(Y ), it is easier to identify some generators

of H5(Ẑ, Y ) and study their images in H4(Y ). This way, we can at least establish an upper

bound on the cokernel.

For every two-cycle Σ in H2(S) whose Poincaré dual is in the cokernel of (5.4), there

exists a three-chain γ in B3 with Σ = ∂γ. This three-chain γ and the boundary morphism

H3(B3, S) −→ H2(S) are lifted under the elliptic fibration. Clearly, π−1(γ) is in H5(Ẑ, Y )

and its boundary in H5(Ẑ, Y ) −→ H4(Y ) is represented by π−1

Ŷ0
(Σ)+π−1

Ŷ1
(Σ)+ · · ·+π−1

Ŷ4
(Σ);

there are (ρS−ρ̃B) independent choices of Σ and consequently (ρS−ρ̃B) independent choices

of π−1(γ). This means that only 4(ρS − ρ̃B) out of the 5(ρS − ρ̃B) non-vertical cycles in

H4(Y ) can become non-trivial four-cycles in H4(Ẑ). If there are more cycles in H5(Ẑ, Y )

than the ones considered, this number may decrease.

As the five-chains π−1(γ) constructed above map only to non-vertical cycles in H4(Y )

under the boundary map (5.17), we find that there is at most a (2ρB+4ρ̃B+1)-dimensional

subspace of H4(Ẑ) that is represented by vertical four-cycles. If there are more five-chains

in H5(Ẑ, Y ) than those we discussed above, this subspace may be smaller. Since all the

independent divisors are included in the collection ∪iŶi, all the vertical four-cycles have

already been listed up.

The case (ρS − ρ̃B) > 0 is not without phenomenological motivation [20, 21]. The non-

vertical cycles spanning at most 4(ρS−ρ̃B)-dimensions in H4(Ẑ), are precisely the Poincaré

duals of four-forms that can break SU(5) unification symmetry down to the gauge group

of the Standard Model, while keeping the vector field of U(1)Y massless. In this scenario,

those four-cycles of H4(Y ) need to represent topologically non-trivial four-cycles in H4(Ẑ).

If h2,0(S) = 0, those four-cycles are automatically algebraic, so they are not horizontal

either. The four-forms (four-cycles) of this type in the class of geometries studied in this

section are another class of examples of the remaining component H2,2
RM (Ẑ), and they are

also characterized by the property (3.95). See [57] for an explicit construction of such cycles.

Certainly, all of the components of H2,2
V (Ẑ) are contained in (5.17), and some cy-

cles from H2,2
RM (Ẑ) also are, but we cannot say we have exhausted all the components of

H2,2
RM (Ẑ). Therefore we should use mirror symmetry, h2,2H (Ẑ) = h2,2V (Ẑm), in order to deter-

mine h2,2H (Ẑ). That will be doable once we can construct a smooth model Ẑ as a complete

intersection Calabi-Yau of a toric ambient space [58, 59]. Such an analysis will be a gener-

alization of what we have done in section 3. A crucial step in constructing such a smooth

model is to carry out the resolution of the singularities in the Weierstrass model Zs in toric

language. This process was to add the points (4.41) in section 4.4.1. The essence of this

procedure lies in the fact that the divisor S, the component of the discriminant locus for an
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I5 fibre, is a toric divisor of B3 (represented by a vertex in the polytope). This procedure

works not just in the case when B3 itself is toric (as in section 4.4.1), but also in cases

where B3 is regarded as a complete intersection in a toric ambient space Pk
Σ′

∗
, as long as

this property — S is regarded as a toric divisor of P k
Σ′

∗
restricted on B3 — is maintained, as

discussed in [51].20 It is an extra step to verify that a further small resolution exists, which

is equivalent to finding an appropriate triangulation of the polytope; a smooth model Ẑ

needs to come out as a complete intersection Calabi-Yau, while satisfying the flat-fibration

condition [30]. It is beyond the scope of this article, however, to study all of these issues.

The examples discussed in section 4.4 indeed satisfy (5.16). In section 4.4, we further-

more found that H2,2
RM = 0 for all examples. This of course fits with the facts that S was

a toric divisor of the (toric) bases B3 of the elliptic fibrations in all cases, so that all of

H1,1(S) is obtained by restricting divisors of the base; at least there is no component in

H2,2
RM that is characterized by (5.17) because of ρS = ρ̃B.

6 Distribution of rank of unification group and number of generations

There is mounting evidence that the decomposition of H4(Ẑ;R) of a Calabi-Yau fourfold

Ẑ in a family π : Z −→ M∗ has a non-trivial H2,2
RM (Ẑ;R) component. In addition to the

families of Ẑ = K3 × K3 in [16] (see also (1.5)), we have seen in sections 3–5 that the

four-forms in H2,2
RM (Ẑ;R) are often Poincaré dual to topologically non-trivial cycles on

divisors. Flux in such a four-cycle violates the condition (2.3), and hence we are led to

take Hscan ⊗ R to be the primary horizontal subspace H4
H(Ẑ;R) of a family Z −→ M∗

specified by (B3, [S], R), for an ensemble with the same unbroken symmetry in the effective

theories (as stated already in section 2).

The vacuum index density distribution dµI of such a subensemble of F-theory flux

vacua becomes a product of a prefactor and a distribution ρI (top-dimensional differential

form) on M∗, as in (2.8), (2.9). Since the integral of ρI over the fundamental domain of

M∗ often returns a number of order unity (see [14]; so called “D-limit” regions may have

to be removed from M∗), the prefactor therefore gives an estimate of the number of flux

vacua with a given set of gauge group, matter representations, multiplicities and choice of

(B3, [S]). The distribution of the value of coupling constants of such a class of low-energy

effective theories is given by the distribution ρI on M∗ without being integrated. In this

article and ref. [22], we only discuss the physics consequences coming from the prefactor. We

20In case B3 is a complete intersection of a toric ambient space Pk
Σ′

∗

and S is given by s|B3 = 0 of some

section s ∈ Γ(Pk
Σ′

∗

;O(DS)) on the toric ambient space, (DS is a Cartier divisor of the fine unimodular Σ′
∗) it

is possible to embed the original toric ambient space Pk
Σ′

∗

into another toric variety, the total space of O(DS),

by s, and so are B3 and S. B3 is still a complete intersection of the new toric ambient space, and now S is

also regarded as a toric divisor, satisfying the condition in the main text. This case, however, lacks general-

ity, in that the divisor class of S needs to be in the image of i∗ : Pic(Pk
Σ′

∗

) −→ Pic(B3). Such a situation can

be improved by choosing a different embedding in many cases. An alternative approach exists in the case the

divisor S of B3 is very ample. One can use the projective embedding of B3 using the complete linear system

of S; the divisor S is regarded as the hyperplane divisor of the new ambient space Pdim|S|−1 restricted on the

image of B3, one of the conditions assumed in the main text. We do not know, however, what kind of condi-

tions have to be imposed on B3 so that the image of B3 in Pdim|S|−1 is regarded as a complete intersection.
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learn how the number of vacua depends on the choice of the algebraic information (7-brane

gauge group = unification group R) and topological information (number of generations

Ngen) of the low-energy effective theories, starting with concrete examples and extracting

the essence later on.

Let us begin with the choice R = SU(5) for the unification group and use the (B3, [S])

we studied explicitly already in section 4.4.1 (except the one with B3 = P3). At the

beginning, we pay attention to the sub-ensembles for individual Ngen, the net chirality in

the 10+5̄ vs 10+5 representations of SU(5). This is done by taking Hscan⊗R to be that of

the real primary horizontal subspace of the families in section 4.4.1, and G
(4)
fix to be the flux

generating chirality. As this class of F-theory compactifications has a dual description in

Heterotic string theory, it is well-known how chirality is generated. For the Heterotic string

compactified on an elliptically fibred Calabi-Yau threefold with the base B2 = S = P2,

πHet : ZHet −→ B2 = S. Reference [60] introduced the origin of chirality in the form of

γFMW = λFMW

[
5j∗(Σ(10))− (πHet · iC)

∗(Σ(10))
]
, λFMW ∈

1

2
+ Z, (6.1)

where γ is a divisor with (possibly half) integral coefficient on a spectral surface C ⊂ ZHet,

iC : C →֒ ZHet and j : Σ(10) →֒ C are the embedding maps. It is known from [61, 62] that

Ngen = −(18− n)(3− n)λFMW . (6.2)

The F-theory dual description of γFMW has also been known in the literature [25];

necessary details are reviewed briefly in the appendix C; see (C.2) for the explicit form

of the flux. The maximum contribution to the D3-brane charges from G
(4)
scan, L∗, is given

by (C.1), where G
(4)
fix is assumed to be orthogonal to the scanning space Hscan.

The flux scanning space Hscan⊗R is chosen to be the real primary horizontal subspace

H4
H(Ẑ;R), for the reason discussed in section 2. The dimension of this subspace, K, and

the value of L∗ above, are computed in section 4.4.1 and appendix C, respectively. These

numbers can be fed into the prefactor (2πL∗)K/2/[(K/2)!] in (2.8).

We should note by looking at the values of L∗ and K summarized in table 6, however,

that the condition K ≪ L∗ is not satisfied. It is thus expected that the formula (2.8) is not

going to be very precise. In fact, it is not surprising that L∗ ≪ K holds in the examples of

our interest, rather than L∗ ≫ K. As we have considered base spaces with only small h1,1,

the resulting fourfolds Ẑ also only have a rather small number of divisors whereas h3,1(Ẑ)

is rather large. More generally, one could try to argue that taking B3 to be Fano leads

to h3,1(Ẑ) ≫ h1,1(Ẑ). In any case, h2,2H ≫ h2,2V in table 2 should be regarded as a natural

consequence of h3,1 ≫ h1,1. Although we do not have a general feeling about when h2,2RM

becomes large or small relatively to h2,2H or h2,2V for general Calabi-Yau fourfolds, at least

the remaining component is much smaller than the horizontal component in dimension,

h2,2RM ≪ h2,2H , in table 2. It seems reasonable to even make a guess from this experience and

the result (1.5) that h2,2RM ≪ max[h2,2H , h2,2V ] whenever h3,1 ≫ h1,1 or h3,1 ≪ h1,1.

In cases where

h3,1 ≫ h1,1, h2,2H ≫ h2,2V , h2,2H ≫ h2,2RM , and h2,1 ≈ O(1) , (6.3)
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we find a relation

χ(Ẑ) ≈ K, L∗|G(4)
fix =0

∼
χ(Ẑ)

24
∼
K

24
, (6.4)

which implies L∗ ≪ K. In such cases, one can even use (3.62) to derive a relation

K ≈ 6h3,1 + const., (6.5)

where the constant term comes from “44” in (3.62); the relation (3.62) implies that h2,2H

does not increase quadratically in h3,1, but only linearly.

Let us now try to find a better estimate for the number of vacua when L∗ ≪ K holds.

The reason (2.8) predicts essentially no vacua in this case is that it approximates the number

of lattice points at a specific distance L∗ from the origin in a K dimensional lattice by the

surface area of a sphere. We hence count the number of lattice points at ‘generic’ positions

on such a sphere. If we increase the dimension K while holding L∗ fixed it is hence no

surprise that no such points remain. This does not mean, however, that there are no more

solutions; this is easily seen by restricting the flux quanta to an n-dimensional subspace.

Applying (2.8), we then count the points at generic positions of an n-dimensional sphere.

Following this logic, we may approximate the number of flux vacua in the case

L∗ ≪ K by21
L∗∑

n=1

(
K

n

)
(2πL∗)n/2

(n/2)!
. (6.6)

The reason we only sum contributions up to n = L∗ is that we expect no more solutions

with n > L∗ non-zero flux quanta switched on. We may further approximate the above

sum by only taking the dominant contribution, corresponding to the last term with

n = L∗. This gives the estimate

(
K

L∗

)
(2πL∗)L∗/2

(L∗/2)!
≈ eL∗ ln(

√
2πK/L∗) (6.7)

for the number of flux vacua in the case L∗ ≪ K.

L∗ is always an upper convex quadratic function of Ngen,

L∗ = L∗|G(4)
fix =0

− cN2
gen (6.8)

for some c > 0 as in (C.6), and we can expand the exponent in terms of Ngen for relatively

small number of generations. Retaining only the next-to-leading term and using (6.4) we

obtain

exp[L∗|G(4)
fix =0

ln(K/L∗|G(4)
fix =0

)− cN2
gen(1 + ln(K/L∗|G(4)

fix =0
))] (6.9)

≃ eK/6 exp
[
−5cN2

gen

]
. (6.10)

for the distribution of vacua as a function of Ngen.

It is interesting to note that the distribution function (6.10) has a factorized form.

The first factor eK/6 depends on the algebraic information such as R as well as (B3, [S]),

21A similar approach to tackle cases with L∗ ≪ K is proposed in [14].
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but it does not depend on Ngen. The second factor contains the Ngen-dependence. The

distribution function on the value of coupling constants of the low-energy effective theories,

ρI , can be multiplied to (6.10), as it was in (2.8), if one wishes. One should not expect

that the formula (2.9) remains to be a very good approximation at the quantitative level

because the condition K ≪ L∗ does not hold, but still it is not terribly bad to expect

that ρI still retains qualitative aspects of the distribution of the coupling constants after

smearing over local regions in the moduli space M∗.

The distribution of the number of generations in the low-energy effective theories is

given by the second factor, which is the Gaussian distribution with the variance 1/(10c),

for relatively small Ngen. This should be regarded as a very robust prediction of landscapes

based on F-theory flux compactification, as long as the condition (6.3) is satisfied in the

relevant family of fourfolds π : Z −→ MR
∗ . As for the coefficient c in (6.8), we can read it

out from (C.6),

c =
5

(18− n)(3− n)
, (6.11)

for the examples we studied in section 4.4.1. Also for many other choices of (B3, [S]), the

coefficient c is determined by the intersection ring associated with only a few divisors in

Ẑ, and is expected to be more or less of order unity, as in (6.11). Of course the Gaussian

distribution is not a good approximation for N2
gen large enough to be comparable to the

absolute limit χ(Ẑ)/24; the distribution absolutely vanishes, since it is impossible to satisfy

the D3-tadpole condition without supersymmetry breaking. Since the value of χ(Ẑ)/24

often comes at the order of hundreds to thousands [9, 12, 63], however, the distribution

of Ngen is approximately Gaussian at least for the range Ngen . 10. The distribution for

this range (covering Ngen = 3) will be sufficient information for our practical interest. The

variance 〈N2
gen〉 is of order 1/(10c) ∼ 10−1.

Let us now focus on the first factor of the distribution function (6.10), eK/6, from

which we learn the statistical cost of unified symmetry (7-brane gauge group) R with

higher rank. For the purpose of taking ratios of the number of vacua with different unified

symmetries R1 and R2, the ratio e(K1−K2)/6 may be studied instead by eh
3,1
1 −h3,1

2 , when

the condition (6.3) is satisfied. This makes things much easier, since it is much easier

to compute/estimate h3,1 than h2,2H . Appendix B exploits this ∆K ≈ 6∆h3,1 relation

and develops the discussion further. In the rest of this section, however, we stick to the

dimension K of the primary horizontal space. It is also worth mentioning that eK/6 is

regarded as a refinement of the popular “10500”, a crude estimate of the number of flux

vacua of Type IIB Calabi-Yau orientifold compactifications.

It has been widely accepted at the intuitive level that more general flux leads to geome-

try stabilized at more general values of the complex structure, and hence with less unbroken

symmetry (fewer independent divisors). This intuition has been made quantitative by the

factor eK/6; ref. [16] used a family of Calabi-Yau fourfolds that are topologically Ẑ = K3×

K3, and the computation ofK for other families in this article adds more examples. The re-

sults in the family Ẑ = K3×K3 and in the cases in section 4.4 remain similar, though there

is difference in detail. In the family of Ẑ = K3×K3, K is linear in the rank of 7-brane gauge

group, and K = 21× (20− rank7) (where vanishing cosmological constant is not required;

– 62 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
7

B 3 P3 B
(−3)
3 B

(−2)
3 B

(−1)
3 B

(0)
3 B

(1)
3 B

(2)
3 B

(3)
3 P1 ×K3

KR=φ 23320 26200 22596 20436 19716 20436 22596 26200

KR=A4 13287 7557 8603 10403 12953 16253 20303 25104

KR=D5 13200 7392 8480 10316 12896 16220 20288 25100

∆K0-4 10033 18663 13993 10033 7123 4183 2293 1096 84

∆K4-5 87 165 123 87 57 33 15 4 21

Table 4. The value of KR=φ, KR=A4 and KR=D5 in the first three rows are extracted from

tables 1, 2 and 3, respectively. In the case B3 = P1 × K3, the value of ∆K0-4 = KR=φ −KR=A4

and ∆K4-5 = KR=A4 −KR=D5 is determined by using 21×∆rank7.

see [16] for more). The value of K becomes smaller for a subensemble with higher-rank

unification group R. This remains true in the cases we studied in section 4.4 (see table 4).

At the quantitative level, the difference in the dimension of the flux scanning space K

for SU(5) unification and SO(10) unification, KR=A4−KR=D5, remains more or less around

orderO(10) for all the geometries listed in table 4, and the ratio of the number of vacua with

a stack of SU(5) 7-branes to that with a stack of SO(10) 7-branes remains of order eO(10).

The fraction of vacua with a stack of SU(5) 7-branes in [S] in all the flux vacua onB3 is given

by e−∆K0-4/2; the value of ∆K0-4 = KR=φ−KR=A4 can be 1000–10000 for B3 = P3 and B
(n)
3

studied in section 4.4, as opposed to the value ∆K0-4 ∼ 100 in the family Ẑ = K3 × K3.

As we have discussed, we may estimate ∆KR1R2 by (six times) the number of complex

structure moduli which are fixed when enhancing R1 to R2. The result for Ẑ = K3 × K3

is certainly very special. For more general fourfolds, where the number of moduli is much

larger, it seems plausible that the number of complex structure moduli we need to fix to

achieve a gauge group of rank 4 or 5 is typically O(100) to O(1000), irrespective of the

specific (B3, [S]) used. Besides our concrete results (summarized in table 4), such numbers

are typical for the dimensions of the middle cohomology of Calabi-Yau fourfolds.

Note that we have assumed a fixed choice of [S] so far. This way of thinking is perfectly

reasonable when comparing the statistical cost of enhancing a group of low rank, which we

assume is given on [S], to a group of higher rank. When we want to tackle the physically

more interesting question of comparing the abundance of models with no gauge group to a

model with gauge group R for some [S], we need to be able to sum over various choices of

[S]. While we do not expect this to make a relevant contribution in cases where h1,1(B3)

is small, an exhaustive discussion is beyond the scope of the present work.

7 Outlook

Let us leave a few remarks on open problems at the end of the main text. We start

off with an obvious open problem of mathematical flavour. The study we carried out in

section 3 for toric-hypersurface Calabi-Yau fourfolds has a clear generalization to Calabi-

Yau fourfolds obtained as complete intersection in toric ambient spaces [58, 59]. This makes

it possible to determine the dimension of the primary horizontal subspace H4
H(Ẑ;R) and

– 63 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
7

also to elucidate the geometric origin of the cycles in the remaining component H2,2
RM (Ẑ)

for more general cases. We stopped at the level of finding evidence that H2,2
RM (Ẑ) is non-

empty in geometries that are motivated for phenomenological applications, and provided

their geometric characterization (3.95) for the cycles we identified; not all of the cycles

in the remaining component may have been found, however. More detail will be learned

about this geometry by this generalization, as we already stated at the end of section 5.

One can come up with various physics applications of the idea developed in [14–16, 64]

and this article. For example, it is an interesting question whether SU(5) unification due to

the presence of a stack of SU(5) 7-brane is more “natural” than accidental gauge coupling

unification in supersymmetric Standard Models with stacks of U(3), U(2) and U(1) D7-

branes wrapped on different topological cycles, with one U(1) remaining anomaly free. At

least by comparing the number of flux vacua in those two categories, we will have a partial

information that is needed in answer to this “naturalness” question. Although a very crude

baby-version study was carried out in [16], this question deserves much more serious study.

This article did not try to include the symmetry breaking SU(5)GUT −→ SU(3)C ×

SU(2)L×U(1)Y . If one is to use the geometry with non-surjective H1,1(B3) −→ H1,1(S) as

motivated in [20, 21], the flux G
(4)
fix needs to have non-zero component both in H2,2

V (Ẑ) for

Ngen 6= 0, and in H2,2
RM (Ẑ) for the SU(5)GUT symmetry breaking. One then needs to think

more carefully about the integral structure (flux quantization) of the space H2,2
V (Ẑ) ⊕

H2,2
RM (Ẑ) ⊕ H2,2

H (Ẑ); a study of the integral structure in the Hmon component is found

in [17, 18]. Note also that if we set G
(4)
fix so that G

(4)
scan = 0 is contained in Hscan, then G

(4)
fix

may not always be orthogonal to the elements of Hscan.

The statistical cost of requiring an extra global U(1) symmetry can also be studied by

computing the dimension K = dimR[Hscan ⊗ R]. One needs to be careful in how we take

the scanning space of the flux Hscan. The U(1) vector field does not have to remain in

the massless spectrum (indeed, we do not want it to be), but its symmetry should not be

broken spontaneously (possibly apart from non-perturbative symmetry breaking exponen-

tially suppressed to the level harmless in phenomenology). Eventually this statistical cost

needs to be compared against the cost of alternatives. In the application to the dimension-4

proton decay problem, an alternative will be a discrete symmetry, while in the application

to the “approximately rank-1” problem of Yukawa matrices (cf. [65, 66]), the alternative

is to tune a moduli parameter. See also [18].

Obviously one can also exploit the distribution ρI in (2.9) to study distribution of

the values of the coupling constants in a low-energy effective theory. Certainly the for-

mula22 (2.9) is not expected to be very precise, because we expect L∗ ≪ K in many cases.

Experience in explicit numerical studies suggests (see [15] and also figure 5 of [16]) that

qualitative aspects of the actual distribution are still captured by the distribution function

ρI even in cases where L∗ ≪ K.

22See [18] and references therein for the period integral computation to be used in formula (2.9). In

the presence of corrections to the Kähler potential − ln[
∫
Ẑ
Ω ∧ Ω], ρI may not be given simply by the

formula (2.9) with the Weil-Peterson metric of M∗. The authors thank Y. Nakayama and Y. Sumitomo

for raising this issue.
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It should also be noted that the scanning component of the flux, G
(4)
scan, may play

another role in addition to determining the coupling constants of the low-energy effective

theories. All the fluxes in the form of G
(4)
fix + G

(4)
scan with G

(4)
scan ∈ H4

H(Ẑ;R) give rise to

effective theories with the same Ngen, but the number of extra vector-like pairs of matter

in the SU(5)GUT 5̄+ 5 representations may vary among such an ensemble of vacua. It has

been known widely since the work of [67] that there tend to be many vector-like pairs that do

not seem to be present in supersymmetric Standard Models that work phenomenologically

well. It took an enormous effort to find a topological choice that leads to small number of

vector like pairs. Such studies as [65, 67], however, are equivalent to only use the flux G
(4)
fix

in the form of (C.2), or γFMW in (6.1), and set G
(4)
scan = 0. With the freedom for G

(4)
scan,

however, there may be a new insight on the issue of the number of vector like pairs.

As already mentioned in section 3.6.1, specifying fluxes in F-theory (or, more generally

M-theory) backgrounds via a four-form G4 in (co)homology is not sufficient information

to properly characterize all degrees of freedom [68, 69]. In particular, we need to specify

the three form C3. It is an open problem how to include this data in the vacuum counting

problem, i.e. the setup of [14, 15].
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A Geometry of elliptic-fibred Calabi-Yau fourfold for general F-theory

SU(5) models

A.1 Construction

The geometry considered in section 5, smooth elliptically fibred Calabi-Yau fourfolds for

general F-theory SU(5) models, has been studied in [25, 30, 70], see also [51, 71]. We

briefly review the construction of the geometry here, so that no ambiguity remains in the

notation used.

The construction begins with an ambient space

A0 := P [OB3 ⊕OB3(−2KB3)⊕OB3(−3KB3)] , (A.1)

where B3 is a complex 3-dimensional (Fano) variety. A fourfold Zs is defined as a hyper-

surface of A0 by the equation (5.1). The projection πA0 : A0 −→ B3 defines an elliptic

fibration morphism πZs : Zs −→ B3.

Let X3, X2 and X3 be the homogeneous coordinates corresponding to theWP2
1:2:3 fibre

of the ambient space πA0 : A0 −→ B3, and σ be the zero section defined by X3 = 0. DX1 ,

DX2 and DX3 denotes the zero locus of X1, X2 and X3 in A0, respectively. It follows that

DX1 ∼ 3 (σ + c1(B3)) , DX2 ∼ 2 (σ + c1(B3)) . (A.2)
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Consider a line bundle on B3, and let s be a global holomorphic section of this line

bundle. The divisor defined by the zero locus of s is denoted by S, i.e. s ∈ Γ(B3;OB3(S)).

The section s is used in the hypersurface equation of Zs in (5.1), which implements the

condition for an I5 Kodaira fibre over S [72]. The divisor π∗A0
(S) in A0 is denoted by DS .

First blow-up. The fourfold Zs has A4 singularity along a subvariety of A0 given by

Y1 := DS ·DX1 ·DX2 . (A.3)

Thus, we blow up at this locus and let A1 := BlY1A0. The blow-up morphism is denoted

by ν1 : A1 −→ A0, and the exceptional divisor by E1. The center of the blowup Y1 is

contained in Zs, and Zs is of multiplicity k = 2 along Y1. Thus,

ν∗1(Zs) = Z(1)
s + 2E1, (A.4)

where Z
(1)
s is the proper transform of Zs. The proper transforms of DS , DX1 and DX2 are

denoted by D
(1)
S , D

(1)
X1

and D
(1)
X2

, respectively.

Second blow-up. The fourfold Z
(1)
s still has a singularity of type A2 along the subvariety

Y2 := E1 ·D
(1)
X1

·D
(1)
X2

(A.5)

in A1. Thus, let A2 := BlY2A1. The blow-up morphism is denoted by ν2 : A2 −→ A1, and

the exceptional divisor E2. The hypersurface Z
(1)
s of A1 contains Y2 with the multiplicity

2, and hence

ν∗2(Z
(1)
s ) = Z(2)

s + 2E2, (A.6)

where Z
(2)
s is the proper transform of Z

(1)
s under this blow-up morphism. The proper

transforms of E1, D
(1)
X1

and D
(1)
X2

are denoted by E
(2)
1 , D

(2)
X1

and D
(2)
X2

, respectively. ν∗2(D
(1)
S )

is denoted by D
(2)
S .

Small resolution. The fourfold Z
(2)
s still has singularities at loci with codimension higher

than two. These singularities can be resolved while the proper transform of Z
(2)
s remains a

flat family of curves over B3 [30]. We provide a description of two such small resolutions in

the following. The two small resolutions correspond, when B3 and [S] are the ones studied

in section 4.4.1, to having 〈~ve1 , ~ve3〉 in the SR ideal, or having 〈~ve2 , ~ve4〉 in the SR ideal.

We only describe the first resolution in detail and then add a brief comment concerning

the second type.

Small resolution [a]. Let Y
[a]
3 := E

(2)
1 · D

(2)
X1

, and A
[a]
3 := Bl

Y
[a]
3

A2. The blow-up mor-

phism is ν
[a]
3 : A

[a]
3 −→ A2, and the exceptional divisor is E

[a]
3 . The hypersurface Z

(2)
s of A2

contains Y
[3]
3 with multiplicity 1, and hence

(ν
[a]
3 )∗(Z(2)

s ) = Z(3)[a]
s + E

[a]
3 , (A.7)

where Z
(3)[a]
s is the proper transform of Z

(2)
s under the morphism ν

[a]
3 . Proper transforms

of other divisors in A2 are denoted by

(ν
[a]
3 )∗(E(2)

1 ) = E
(3)[a]
1 + E

[a]
3 , (ν

[a]
3 )∗(D(2)

X1
) = D

(3)[a]
X1

+ E
[a]
3 (A.8)
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for divisors involved in the blow-up, and D
(3)[a]
X2

:= (ν
[a]
3 )∗(D(2)

X2
), D

(3)[a]
S := (ν

[a]
3 )∗(D(2)

S )

and E
(3)[a]
2 := (ν

[a]
3 )∗(E2) for the others.

The fourfold Z
(3)[a]
s only becomes non-singular after one more step of blow-up in the am-

bient space. Let us take Y
[a]
4 := E

(3)[a]
2 ·D

(3)[a]
X1

as the centre of the blow-up; A
[a]
4 := Bl

Y
[a]
4

A
[a]
3 .

The blow-up morphism is denoted by ν
[a]
4 : A

[a]
4 −→ A

[a]
3 , and the exceptional divisor by

E
[a]
4 . The hypersurface Z

(3)[a]
s of A

[a]
3 contains Y

[a]
4 with the multiplicity 1, and hence

(ν
[a]
4 )∗(Z(3)[a]

s ) = Ẑ [a] + E
[a]
4 . (A.9)

The proper transforms of other divisors of A3 are

(ν
[a]
4 )∗(E(3)[a]

2 ) = E
(4)[a]
2 + E

(4)[a]
4 , (ν

[a]
4 )∗(D(3)[a]

X1
) = D̂

[a]
X1

+ E
(4)[a]
4 , (A.10)

and

(ν
[a]
4 )∗(D(3)[a]

X2
) = D̂

[a]
X2
, (ν

[a]
4 )∗(D(3)[a]

S ) = D̂
[a]
S , (A.11)

(ν
[a]
4 )∗(E(3)[a]

1 ) = E
(4)[a]
1 , (ν

[a]
4 )∗(E [a]

3 ) = E
(4)[a]
3 . (A.12)

In order to simplify the notation, we now relabel the exceptional divisors according to

their intersections. Over a generic point on S, the four exceptional divisors E
(4)[a]
1,2,3,4 together

with D
(4)[a]
S meet according to the extended Dynkin diagram of A4 (see the first picture

in figure 10). Namely,

D
(4)[a]
S ≡ Ê0 (A.13)

E
(4)[a]
1 ≡ Ê1 E

(4)[a]
2 ≡ Ê2 (A.14)

E
(4)[a]
3 ≡ Ê4 E

(4)[a]
4 ≡ Ê3 . (A.15)

As a consequence of four successive morphisms, (ν
[a]
tot := ν1 · ν2 · ν

[a]
3 · ν

[a]
4 ) : A4 −→ A0,

ν∗tot(Zs) = Ẑ [a] + 2Ê1 + 4Ê2 + 5Ê3 + 3Ê4. (A.16)

One also finds that

ν∗tot(DS) = D̂S + Ê1 + Ê2 + Ê3 + Ê4, (A.17)

ν∗tot(DX2) = D̂
[a]
X2

+ Ê1 + 2Ê2 + 2Ê3 + Ê4, (A.18)

ν∗tot(DX1) = D̂
[a]
X1

+ Ê1 + 2Ê2 + 3Ê3 + 2Ê4. (A.19)

A simple way to represent intersections among divisors of the ambient space is by a

diagram such as figure 9. It organizes the information in the same way as a fan over faces

of a polytope does in the context of toric geometry. In fact, figure 9 is a two-dimensional

projection of a A4 ‘top’ with a triangulation corresponding to the resolution [a].

The divisors D̂X1 , D̂X2 , Ê1,2,3,4 and Ê0 of A
[a]
4 define divisors of Ẑ [a]. They are denoted

by ŶX1 , ŶX2 , Ŷ1,2,3,4 and Ŷ0, respectively.
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Ê0

Ê2

D̂X2
D̂X1

Ê3

Ê1 Ê4

Figure 9. A schematic diagram showing how (some of) the divisors of the ambient space A
[a]
4

intersect; if a set of points in this diagram does not share a simplex, the corresponding divisors

has empty intersection. This diagram shows the history of successive blow-ups starting from the

original ambient space A0. This diagram for A
[b]
4 is such that the 1-simplex joining Ê2 and Ê4 is

replaced by another joining Ê1 and Ê3. In the examples we used in section 4.4.1, this diagram

appears in the form of 2-dimensional faces of the polytope ∆̃.

Small resolution [b]. In an alternative small resolution, one can take Y
[b]
3 := E2 ·D

(2)
X1

in A2, so that A
[b]
3 := Bl

Y
[b]
3

A2. In the next step, the subvariety Y
[b]
4 := E

(3)[b]
1 ·D

(3)[b]
X1

of A
[b]
3

is chosen as the centre of the blow-up; it will be clear what the divisors E
(3)[b]
1 and D

(3)[b]
X1

stand for. The resulting non-singular fourfold is denoted by Ẑ [b].

Note that in the small resolution [b] E
[b]
4 corresponds to the fourth fibre component

and E
(4)[b]
3 to the third, instead of the other way around. By computing which intersections

between the exceptional divisors vanish, one finds that this resolution furthermore

corresponds to a triangulation where the line connection between Ê2 and Ê4 has been

replaced by a line from Ê1 to Ê3

It is obvious from this property of the intersection ring that Ẑ [a] and Ẑ [b] are not the

same geometries. In fact, we can turn Ẑ [a] into Ẑ [b] by a flop transition, which can already

be anticipated from the fact that they only differ by a small resolution. The rich net of

phases connected by flop transitions in F-theory compactifications with non-abelian gauge

groups and the connection to group- and gauge theory has been explored in [30–35].

Any physics consequences in an SU(5) symmetric vacuum should remain the same

whether the resolution [a] or [b] is used in formulating the flux background, as we have

remarked in section 2. It is quite likely (see section 2) that h2,2V , h2,2H and h2,2RM will indeed

turn out to be the same for both [a] and [b]. For this reason, we pay attention only to the

small resolution [a] described above, and use in section 5 in the main text, as well as in the

rest of this appendix. The superscript [a] will hence be dropped completely in the following.

A.2 Degeneration of singular fibres in higher codimension

An elliptic fibration πẐ : Ẑ −→ B3 is obtained by restricting (πA4 := πA0 ·νtot) : A4 −→ B3

on Ẑ ⊂ A4. In this notation, the total fibre class over S ⊂ B3 is π∗
Ẑ
(S) = Ŷ0 + Ŷ1 +

Ŷ2 + Ŷ3 + Ŷ4. Over a generic point in S, the fibres of this projection become curves
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S◦ Σ◦
(10) Σ̃◦

(5)

C

0

C

1

C

4

C

2

C

3

C

S

C

A

C

B

C

C

C

+

C

�

C

iii

C

ii

C

iv

C

i

C

v

C

1

C

1

C

a

C

b

C



C

d

C

e+

C

e�

PE6 PD6

Figure 10. Schematic picture of how irreducible curves in singular fibre share points. This infor-

mation is used in computing the Hodge diagrams of the divisors Ŷ0,1,2,3,4 in section A.3.

C0+C1+C2+C3+C4, which are all P1’s. A further restriction is given by only considering

the divisors Ŷi, πŶi
: Ŷi −→ S.

Let us record known results on degeneration of singular fibre components, as we need

them in the computation in the appendix A.3. The degeneration over the matter curve

Σ(10) ⊂ S is:

π∗
Ŷ0
(Σ(10)) = S∞, π∗

Ŷ1
(Σ(10)) = SB, π∗

Ŷ2
(Σ(10)) = SC + S+,

π∗
Ŷ3
(Σ(10)) = S−, π∗

Ŷ4
(Σ(10)) = SA + SB + SC . (A.20)

Within Ẑ, Ŷ1 · Ŷ4 = SB, and Ŷ2 · Ŷ4 = SC . At a generic point in Σ(10), the fibre becomes

a collection of curves, CS + CA + 2CB + 2CC + C+ + C−, all P1’s.

The degeneration over the matter curve Σ(5) is:

π∗
Ŷ0
(Σ(5)) = Sζ , π∗

Ŷ1
(Σ(5)) = Sǫ, π∗

Ŷ2
(Σ(5)) = Sδ,

π∗
Ŷ3
(Σ(5)) = Sγ + Sβ , π∗

Ŷ4
(Σ(5)) = Sα, (A.21)

Over a generic point in Σ(5) these surfaces become curves that are denoted by Cα,β,γ,δ,ǫ

and Cζ , respectively.

At any one of E6 points,

C0 −→ C∞, C1 −→ Ci, C2 −→ Cii + Ciii,
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C3 −→ Civ + Cv, C4 −→ Ci + 2Cii + Civ, (A.22)

At any one of D6 points,

C0 −→ C∞, C1 −→ Cb, C2 −→ Cc + Cd,

C3 −→ Cd + Ce+ + Ce−, C4 −→ Ca + Cb + Cc (A.23)

A.3 Computation of Hodge numbers of the exceptional divisors Ŷi = Êi|Ẑ

Using the result reviewed in the appendix A.2 and the stratification described in section 5.1,

we compute the Hodge numbers of the divisors Ŷ0,1,2,3,4 in Ẑ. The computation of χ(Ẑ)

in [55] is similar in spirit.

Let us first work out the Hodge-Deligne numbers of the various strata of the surface

S ⊂ B3. Using the divisor η := c1(NS|B3
) + 6c1(S) on S the number of E6 and D6 points

is given by

NE := (5KS + η) · (4KS + η), ND := (5KS + η) · (3KS + η). (A.24)

Thus the only non-vanishing ep,qc of PE6 and PD6 are

e0,0c (PE6) = NE , e0,0c (PD6) = ND . (A.25)

The genus g10 of the matter curve Σ(10) is determined by

2g10 − 2 = (5KS + η) · (6KS + η). (A.26)

The complement of PE6 and PD6 in Σ(10), denoted by Σ◦
(10), has the following Hodge-

Deligne numbers:

ep,qc (Σ◦
(10)) =

−g10 1

(1−NE −ND) −g10
. (A.27)

The genus g5 of the matter curve Σ(5) is formally given by

2g5 − 2 = (10KS + 3η) · (11KS + 3η) . (A.28)

However, there is a double point singularity at each of the points in PD6. The resolved

curve Σ̃(5) has the genus

g̃5 = g5 −ND. (A.29)

The curve Σ̃◦
(5) is obtained by removing the points PE6 and the lift of the points PD6 from

Σ̃(5). Thus we find that

ep,qc (Σ̃◦
(5)) =

−g̃5 1

(1−NE − 2ND) −g̃5
. (A.30)

Finally, the Hodge-Deligne numbers of S◦ := S\(Σ(10) ∪ Σ(5)) are obtained by using

the additivity of ep,qc . Assuming that h1,0(S) = 0, we find that

ep,qc (S◦) = (−)p+qhp,q(S)− ep,qc (Σ◦
(10))− ep,qc (Σ̃◦

(5))− ep,qc (PE6)− ep,qc (PD6)
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=

h2,0(S) 0 1

(g10 + g̃5) (h1,1(S)− 2) 0

(−1 +NE + 2ND) (g10 + g̃5) h2,0(S)

. (A.31)

We are now ready to compute the Hodge numbers of the exceptional divisors Ŷ0,1,2,3,4 =

Ê0,1,2,3,4|Ẑ . Let us take Ŷ4 as an example; the Hodge numbers of the other Ŷi are determined

analogously. The stratification of Ŷ4 is:

Ŷ4 = [C4 × S◦] ∐
[
(CA + CB + CC)× Σ◦

(10)

]
∐
[
Cα × Σ̃◦

(5)

]

∐ [(Ci + Cii + Civ)× PE6] ∐ [(Ca + Cb + Cc)× PD6] . (A.32)

Using the multiplicativity and additivity of ep,qc , we find that

e2,2c (Ŷ4) = e1,1c (C4)e
1,1
c (S◦) + e0,0c (C4)e

2,2
c (S◦)

+e1,1c (CA + CB + CC)e
1,1
c (Σ◦

(10)) + e1,1c (Cα)e
1,1
c (Σ̃◦

(5))

= (h1,1(S)− 2) + 1 + 3 + 1 = h1,1(S) + 3, (A.33)

e2,1c (Ŷ4) = e1,1c (C4)e
1,0
c (S◦) + e0,0c (C4)e

2,1
c (S◦)

+e1,1c (CA + CB + CC)e
1,0
c (Σ◦

(10)) + e1,1c (Cα)e
1,0
c (Σ̃◦

(5))

= (g10 + g̃5) + 0− 3g10 − g̃5 = −2g10. (A.34)

h2,2(Ŷ4) = h1,1(Ŷ4) is given by e2,2c (Ŷ4), and h
2,1(Ŷ4) by −e2,1c (Ŷ4).

A.4 More on the geometry of the Cartan divisors Ŷ1,2,3,4

H1,1(Ŷ0) is generated by π∗
Ŷ0
(H1,1(S)) and Ŷ1|Ŷ0

. Although σ defines a divisor on Ŷ0 as

well, it can be written in terms of the generators above. To see this, note that

ν∗tot[−c1(B3)] = σ + ν∗tot(DX1 − 2DX2) = σ + D̂X1 − 2D̂X2 − Ê1 − 2Ê2 − Ê3. (A.35)

From this, we obtain

0 =
[
σ − Ê1 + ν∗tot(c1(B3))

]
|Ê0
, (A.36)

because Ê0 · Ê2 = Ê0 · Ê3 = 0 in the ambient space A4 (see figure 9). Using the relations

Ẑ ∼ (3D̂X2 + Ê1 +2Ê2 + Ê3) ∼ (2D̂X1 + Ê3 + Ê4) and the intersection ring information of

the ambient space A4 in figure 9, it also follows that (Ŷ1 − Ŷ4)|Ŷ0
= (Ê1 − Ê4) · Ê0 · Ẑ ∼ 0.

H1,1(Ŷ1) is generated by π∗
Ŷ1
(H1,1(S)) and Ŷ2|Ŷ1

. A few more comments are in order

here. First,

(
Ŷ0 − Ŷ2

)∣∣∣
Ŷ1

∼ (ν∗tot(DS)− ν∗tot(DX2))|Ŷ1
∼ π∗

Ŷ1

[
c1(NS|B3

)− 2c1(B3)|S
]
. (A.37)

That is, both Ŷ0|Ŷ1
and Ŷ2|Ŷ1

are sections of the flat fibration πŶ1
: Ŷ1 −→ S, but they are

different only modulo π∗
Ŷ1
(H1,1(S)). In the derivation above, we have used

D̂X2 |Ŷ1
= D̂X2 · Ê1 · Ẑ ∼ D̂X2 · Ê1 · (2D̂X1 + Ê3 + Ê4) = 0 , (A.38)
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because none of D̂X1 , Ê3 and Ê4 share a face together with both D̂X2 and Ê1. This is a

generalization of the toric statement that the 1-simplex 〈D̂X2 , Ê1〉 (〈ν2, ν9〉 in the notation

of [27]) is inside a facet of the polytope and hence does not give rise to a non-trivial divisor

in Ŷ1. Finally, one can see that Ŷ1 · Ŷ4 = SB is the total fibre component over the matter

curve Σ(10) in πŶ1
: Ŷ1 −→ S, by observing that

ν∗tot(DX1 −DX2)|Ŷ1
=
[
D̂X1 − D̂X2 + Ê3 + Ê4

]
|Ŷ1

= Ê4|Ŷ1
, (A.39)

ν∗tot(σ + c1(B3))|Ŷ1
= ν∗tot(c1(B3)) = π∗

Ŷ1
(c1(B3)|S) . (A.40)

The matter curve Σ(10) is in the class [5KS + η] = c1(NS|B3
) + c1(S) = c1(B3)|S .

H1,1(Ŷ2) is generated by π∗
Ŷ2
(H1,1(S)), Ŷ3|Ŷ2

and Ŷ4|Ŷ2
. Both Ŷ1|Ŷ2

and Ŷ3|Ŷ2
are

sections of the flat fibration πŶ2
: Ŷ2 −→ S, but they are different only by the pullback of

H1,1(S):

(
Ŷ1 − Ŷ3

)∣∣∣
Ŷ2

= ν∗tot (2DS −DX1) |Ŷ2
∼ π∗

Ŷ2
(2c1(NS|B3

)− 3c1(B3)|S) . (A.41)

The other generator Ŷ4|Ŷ2
= SC is one of the two singular fibre components in the flat

family πŶ2
: Ŷ2 −→ S along with the matter curve Σ(10). This four-cycle can be chosen as

the matter surface for the hypermultiplets in the SU(5)-(10+ 10) representations.

H1,1(Ŷ3) is generated by π∗
Ŷ3
(H1,1(S)) and two other independent generators, which

can be chosen as Ŷ4|Ŷ3
and Ŷ2|Ŷ3

. Ŷ3 is also regarded as a flat family of curves over S,

πŶ3
: Ŷ3 −→ S, of which both Ŷ2|Ŷ3

and Ŷ4|Ŷ3
define a section. Divisors D̂X1 |Ŷ3

and D̂X2 |Ŷ3

are linearly equivalent to the generators above; using

ν∗tot(DX2 − 2DS) = D̂X2 − 2D̂S − Ê1 − Ê4, (A.42)

for example, one obtains a relation

Ŷ4|Ŷ3
∼ D̂X2 |Ŷ3

+ π∗
Ŷ3
(2KS). (A.43)

Also, by using ν∗tot(DX1 − 3DS) instead of ν∗tot(DX2 − 2DS), we find that

D̂X1 |Ŷ3
∼ Ŷ4|Ŷ3

+ Ŷ2|Ŷ3
− π∗

hatY3
(3KS) . (A.44)

The matter surface for the SU(5)-(5̄ + 5)-representations is given by a difference be-

tween the two divisors on Ŷ3: div(a3XÊ4
+a5XD̂2

)|Ŷ3
−Ê2|Ŷ3

, where XÊ4
and XD̂X2

are the

homogeneous coordinates of A
[a]
4 corresponding to the divisors Ê4 and D̂X2 , respectively.

The divisor {a3XÊ4
+ a5XD̂X2

= 0} on Ŷ3 consists of two irreducible components. One

component is Ê2|Ŷ3
, to be subtracted away, and the other one is an irreducible component

of the singular fibre over the matter curve Σ(5), the matter surface Sγ . Thus, it is in the di-

visor class [Ê4+ν
∗
tot(c1(NS|B3

)+3c1(B3)|S)]−Ê2 on Ŷ3. From this, we can conclude that the

matter surface for the (5̄+ 5) representations also belongs to the class of a vertical cycles.

H1,1(Ŷ4) is generated by π∗
Ŷ4
(H1,1(S)) and three more divisors Ŷ3|Ŷ4

, Ŷ1|Ŷ4
= SB and

Ŷ2|Ŷ4
= SC . The last two of these form two out of the three singular fibre components
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over the matter curve Σ(10). Although Ŷ0|Ŷ4
also defines a section of the flat fibration

πŶ4
: Ŷ4 −→ S, there is a relation

(
Ŷ3 − Ŷ0

)∣∣∣
Ŷ4

= ν∗tot(DX2 −DS)|Ŷ4
− (Ê2 + D̂X2)|Ŷ4

= −Ŷ2|Ŷ4
+ π∗

Ŷ4
(2c1(B3)|S − c1(NS|B3

)) . (A.45)

Using all the relations above, one can derive the following rational equivalence relations:

Ŷ0 · Ŷ1 ∼ π∗(DS) · σ + c1(B3) · Ŷ0,

Ŷ1 · Ŷ2 ∼ π∗(DS) · σ + c1(B3) · (Ŷ0 + 2Ŷ1)− c1(NS|B3
) · Ŷ1,

Ŷ2 · Ŷ3 ∼ π∗(DS) · σ + c1(B3) · (Ŷ0 + 2Ŷ1 + 3Ŷ2)− c1(NS|B3
) · (Ŷ1 + 2Ŷ2),

Ŷ3 · Ŷ4 ∼ π∗(DS) · σ − (Ŷ2 · Ŷ4) + c1(B3) · (Ŷ0 + 2Ŷ4)− c1(NS|B3
) · Ŷ4,

Ŷ4 · Ŷ0 ∼ π∗(DS) · σ + c1(B3) · Ŷ0, (A.46)

and

Ŷ1 · Ŷ4 ∼ c1(B3) · Ŷ1. (A.47)

The matter surfaces for the 10 and 5̄ representations are different under rational

equivalence only by

[Sγ ]− [−SC ] ∼
[
Ŷ3 ·

{
Ŷ4 + c1(N) + 3c1(B3)− Ŷ2

}]
−
[
−Ŷ2 · Ŷ4

]
(A.48)

∼ c1(B3) · (−2Ŷ1 − 3Ŷ2 + 3Ŷ3 + 2Ŷ4) + c1(NS|B3
) · (Ŷ1 + 2Ŷ2 + Ŷ3 − Ŷ4).

If we turn on a flux which does not break SU(5) gauge invariance, this guarantees that the

chirality in the 10 representation is the same as that in 5̄ representation, as also observed

in [25].

B Dependence of Hodge numbers on the rank of 7-brane symmetry

The number of flux vacua that have a stack of 7-branes with symmetry R scales as eK/6,

K = dim[H4
H(X;R)], as we have seen in section 6. In this appendix, we use the approximate

relation (6.5), which holds in the cases satisfying the condition (6.3), to study the statistics

of the unification symmetry R. Instead of studying how the dimension of the primary

horizontal subspace K depends on the symmetry R, we will estimate how h3,1 changes for

different choices of R.

Let us start from a family for (B3, [S], R1), and suppose that the enhancement of the

7-brane symmetry R1 to R2 occurs when a section f ∈ Γ(B3;O(D)) of some line bundle

OB3(D) vanishes along S; the section f is used in a defining equation of the Weierstrass

model, and the geometry gets more singular for f |S = 0. The line bundle OB3(D) here is

determined by Tate’s algorithm, as we will discuss more explicitly later on. Requiring f to

vanish along S, the number of independent complex structure moduli is reduced roughly by

∆h3,1 = h0(B3;OB3(D))− h0(B3;OB3(D − S)). (B.1)
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One can then use the exact sequence

0 −→ OB3(D − S) −→ OB3(D) −→ i∗ [OS(D|S)] −→ 0 (B.2)

to set an upper bound

∆h3,1 ≤ h0(S;OS(D|S)). (B.3)

This inequality is saturated when h1(B3;OB3(D − S)) vanishes. From this, we can derive

the crude estimate

eh
0(S;OS(D|S)) (B.4)

on the statistical cost of unification symmetry R2 relatively to R1.

Let us use the examples we studied in section 4.4 to see how this works in practice.

We focus on the case B
(n)
3 = P[OP2 ⊕ OP2(n)] and study the enhancement from R1 = A4

to R2 = D5 along S = P2. The condition for this A4 → D5 enhancement is (f = a5)|S = 0;

note also that a5 ∈ Γ(B3;OB3(−KB3)) and hence D|S = S − KS = (3 − n)HP2 . The

estimated upper bound on ∆h3,1 therefore becomes

h0 (S;OS(D|S)) = h0
(
P2;OP2((3− n)H)

)
=

(5− n)(4− n)

2
. (B.5)

The value of ∆K4-5 in table 4 is estimated reasonably well by 6 × h0(S;OS(D|S)) =

3(5− n)(4− n) indeed.23

Let us now use this argument to study how the statistical cost varies for different en-

hancement of symmetries R1 → R2. Suppose that the Weierstrass model Zs is parametrized

by the generalized Weierstrass equation (Tate’s form),

y2 + b1xy + b3y = x3 + x2b2 + xb4 + b6 . (B.6)

When bi vanishes along S with the order of vanishing ni, let bi = snibi|ni
. The dictionary

between the order of vanishing ni’s and the 7-brane symmetry R is known [72], and the

necessary information is recorded in table 5.

An immediate generalization of the A4 → D5 enhancement is the enhancement Am →

Dm+1, m ∈ 2N. In these cases, f = b1|0 and D = −KB3 for anym ∈ 2N, not just form = 4.

Thus, the same value h0(S;OS(−KB3 |S)) = h0(S;OS(S −KS)) provides an approximate

upper bound on ∆h3,1 for any m ∈ 2N.

One can also think of two separate chains of symmetry enhancement, Am → Am+1 →

Am+2 and Dm+1 → Dm+2 → Dm+3. The statistical cost increases at the same pace in

these two chains; as the rank increases by two from Am to Am+2, or from Dm+1 to Dm+3,

we need to set the sections b3|m/2|S , b4|m/2+1|S , b6|m+1|S and b6|m+2|S to zero in any one of

those two chains (see table 5). This is consistent with the result above that the statistical

23It is a little misleading to use these examples to emphasize that this estimate is good. The P1-fibration

structure over S in B
(n)
3 defines a normal coordinate of S that remains well-defined globally on B

(n)
3 . We

do not intend to claim that 6h0(S;OS(D|S)) is a good estimate of ∆K rather than a good estimate of the

upper bound on ∆K.
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b1 b3 b4 b6

Am Ism+1 0 m/2 m/2 + 1 m+ 1

Am+1 Ism+2 0 m/2 + 1 m/2 + 1 m+ 2

Am+2 Ism+3 0 m/2 + 1 m/2 + 2 m+ 3

Dm+1 I∗sm−3 1 m/2 m/2 + 1 m+ 1

Dm+2 I∗sm−2 1 m/2 + 1 m/2 + 1 m+ 1

Dm+3 I∗sm−1 1 m/2 + 1 m/2 + 2 m+ 3

b1 b2 b3 b4 b6

A4 Is5 0 1 2 3 5

D5 I∗s1 1 1 2 3 5

E6 IV∗s 1 2 2 3 5

E7 III∗ 1 2 3 3 5

E8 II∗ 1 2 3 4 5

Table 5. Order of vanishing ni of bi’s required for various types of singular fibre (7-brane gauge

group); information relevant to the discussion in this section is extracted from a table in [72]. m ∈ 2N

is assumed in this table. The order of vanishing for b2 is 1 for any one in the Isk and I∗sk series.

cost for the enhancement Am → Dm+1 remains much the same for any m ∈ 2N. Noting

that bi|ni
∈ Γ(B3;OB3(−iKB3 − niS)), and hence

b3|m/2|S∈Γ(S;OS(−3KB3 |S−m/2S)), b6|m+1|S∈Γ(S;OS(−6KB3 |S−(m+1)S)),

(B.7)

b4|m/2+1|S∈Γ

(
S;OS(−4KB3 |S−

m+2

2
S)

)
, b6|m+2|S∈Γ(S;OS(−6KB3 |S−(m+2)S)),

one finds that the statistical cost for enhancement by rank-one, measured by ∆K/∆m ≈

6∆h3,1/∆m, becomes larger for higher rank m in the case c1(NS|B3
) < 0; if c1(NS|B3

) > 0,

on the other hand, the cost for one-rank enhancement decreases for higher rank m, because

∆h3,1 is bounded from above by smaller value. One should be careful in interpreting this

phenomenon for c1(NS|B3
) > 0; it looks as if higher rank gauge groups become just as

“natural” as lower rank gauge groups at first sight, but it may also be that the choice of

complex structure for such a high rank enhancement has already become impossible.

Let us finally look at the chain of symmetry enhancements Em → Em+1; A4 → D5 is

also regarded as a part of this chain. In this chain, we need to set the section

[
a9−m|0 ∝ bm−3|m−4

]∣∣
S
∈ Γ(S;OS(S − (m− 3)KS)) (B.8)

to zero for the enhancement Em → Em+1. Thus, the statistical cost for one-rank enhance-

ment, ∆K/∆m, becomes increasingly large in higher rank (larger m), if KS < 0. [Note

that there are chiral multiplets in the adjoint representation of Em in the spectrum below

the Kaluza-Klein scale, if KS > 0 instead.]24 Interestingly, the behaviour of ∆K/∆m is

controlled by the normal bundle NS|B3
in the (IIB-like) Am type and Dm type chains of

symmetry enhancement, and by the canonical bundle KS in the Em type chain available

in F-theory.

24In the case of Ẑ = K3 × K3 [16], the dimension of the primary horizontal subspace, K, and h3,1 are

linear in the rank of the 7-brane gauge group rank7, and ∆K/∆rank7 remains constant, in particular.

This simple result for K3×K3 compactifications of F-theory should be understood as an artefact of trivial

bundles KS and NS|B3
.
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C Flux controlling the net chirality

In order to consider an ensemble of fluxes leading to effective theories with a given number

of generations (net chirality) Ngen, G
(4)
fix needs to be chosen so that it generates the net

chirality Ngen. If we take the scanning space Hscan to be the real primary horizontal

subspace H4
H(X;R), then all the flux vacua end up with effective theories with one and

the same value of Ngen in such an ensemble. This appendix begins with writing down the

four-form flux generating the net chirality, which is already a well-understood subject in

the literature. We then move on to compute the D3-tadpole bound

χ(Ẑ)

24
−

1

2
(G

(4)
fix )

2 = L∗ ≥
1

2
(G(4)

scan)
2. (C.1)

We implicitly used that G
(4)
fix ∧ G

(4)
scan = 0, which follows because the chirality generating

flux G
(4)
fix is chosen within the vertical component H2,2

V (Ẑ;R) (because the matter surface

belongs to the space of vertical cycles), and the primary horizontal subspace is orthogonal

to the vertical component.

The choice of (B3, [S]) in section 4.4.1 is a simple generalization of [27]; B3 =

P[OP2 ⊕ OP2(n)] instead of B3 = P[OP2 ⊕ OP2 ] = P1 × P2. In order to determine the

flux G
(4)
fix generating the chirality of SU(5) unification models, the conditions for Lorentz

SO(3,1) symmetry (2.1) and unbroken SU(5) symmetry (2.3) were imposed on the space

of vertical four-forms H2,2
V (Ẑ;R). As we can think of the Kähler form as being expanded

in a basis consisting of divisors of the base, the section, the generic fibre class and the

exceptional fibre components, these constraints also automatically make the D-term (2.2)

vanish. It is legitimate, as we stated above, to search the chirality generating flux G
(4)
fix

from H2,2
V (Ẑ;R), because the matter surface belongs to the space of vertical four-cycles.

We have seen in section 4.4.1 that the space H2,2
V (Ẑ;R) has nine dimensions, while the

conditions of unbroken SO(3,1) Lorentz and SU(5) unified symmetries result in eight in-

dependent constraints. This is true for all the cases with −3 ≤ n ≤ 2, not just the case

n = 0 in [27]. After a straightforward computation, it turns out that

G
(4)
fix = λ

(
5Ŷ4 · Ŷ2 + (2S + (3 + n)HP2) · (2Ŷ1 − 2Ŷ4 − Ŷ2 + Ŷ3)

)
, (C.2)

where λ ∈ R and HP2 is the hyperplane divisor of the base P2. We have confirmed that

this flux is equivalent to the one given in [25] and, in the case of n = 0, to the choice

of [27] with λ = −3β, exploiting rational equivalence. The net chirality for the SU(5)

10-10 representations is given by

Ngen = χ10 = −λ(18− n)(3− n). (C.3)

The choice of such chirality generating flux is quantized due to the condition G
(4)
fix ∈

[H4(Ẑ;Z)]shift. It is not an easy task, to say the least, to determine the integral basis of

[H4(Ẑ;Z)]shift ∩H
2,2
V (Ẑ;Q), but fortunately this task can be detoured in the cases we are

dealing with. Here, a dual description in Heterotic string theory exists, and it is known
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n −3 −2 −1 0 1 2

χ(Ẑ)/24 1263/4 719/2 869/2 2163/4 2713/4 847
1
2(G

(4)
fix )

2 315/4 125/2 95/2 135/4 85/4 10

Lmax
∗ 237 297 387 507 657 837

K 7557 8603 10403 12953 16253 20303

Table 6. The value of χ(Ẑ)/24 as well as (G
(4)
fix )

2/2 and L∗ for λ = ±1/2, when L∗ becomes

maximal for a given n. The result of K := dimR[H
4
H(Ẑ;R)] is copied from table 2.

that (6.1) gives rise to the net chirality (6.2). We should thus identify λFMW = λ, and the

quantization

λ =
1

2
(1 + 2a), a ∈ Z (C.4)

follows from that of that of λFMW [25]. As discussed in [25], G
(4)
fix with this quantization

condition satisfies G
(4)
fix ∈ [H4(Ẑ;Z)]shift.

Now that G
(4)
fix is given explicitly, we are ready to compute the D3-tadpole upper

bound L∗. The standard computation techniques of toric geometry allow us to compute∫
Ẑ G

(4)
fix ∧G

(4)
fix . We find that

L∗ =
2163

4
+

125

8
n(n+ 7)−

5(18− n)(3− n)

2
λ2 (C.5)

=
2163

4
+

125

8
n(n+ 7)−

5N2
gen

2(18− n)(3− n)
. (C.6)

It is not obvious from the above equation whether L∗ becomes integer or not, but L∗ is

indeed; see table 6. The computation here is essentially that of [55], although a K3-fibre

is used instead of the stable degeneration limit dP9 ∪ dP9, and a specific resolution of

singularity is employed. The value of the D3-tadpole upper bound L∗ depends on the

number of generation Ngen. This result is used in section 6 (and also [22]) to derive the

distribution of Ngen in the landscape of F-theory flux vacua.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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