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The vibrations of radial ball bearings 

H Rahnejat, BSc, MSc and R Gohar, BSc, DIC, PhD, CEng, MIMechE 
Department of Mechanical Engineering, Imperial College of Science and Technology, Exhibition Road, London SW7 

This paper presents a theoretical analysis of the vibration response of a rotating rigid shaft supported by two radial deep-groove 
lubricated ball bearings. The bearings and their oilfilms are approximated to a set of non-linear elastic springs and dampers rotating 
relative to the shaft when it is subjected to a rotating unbalance or inner race surface waviness. Under gravity load, the shaft’s initial 
vibration is damped down to a limit cycle operating at a quasi-simple harmonic frequency of small amplitude. Rotating unbalance and 
surface features introduce further signijjcantfrequencies which influence the output response. 

NOTATION 

coordinates of shaft centre with respect to 
the outer race centre 
time 
oil film thickness, least film initially, least 
film under ith ball 
shaft centre eccentricity from its mass centre 
film thickness perturbation 
elastic deflection 
undistorted profile gap 
principle radii of curvature and reduced 
radius (1 /R  = 1/R, l /R , , )  
radial clearance, wave amplitude 
radial interference, wave amplitude associ- 
ated with interference 
radii of inner race at  contacts and ball 
number of circumferential waves on inner 
race 
number of balls 

squeeze velocity 
rolling velocity, 

1 = inner race 
2 = ball u = u,+ u, 

angular velocity of inner race 
angular velocity of cage 
ball centre angular displacement 
angular position on wave 
half-shaft mass 
Mg 
integrated pressure 
pressure 
viscosity 
pressure-viscosity coefficient 
Young’s modulus and Poisson’s ratio of 
materials, Er = (1 - v2)/nE 
external periodic forces of shaft centre at 
bearing. 

22.3 

1 3.50GN/m3/’ 
312 

132 /u  
67.7/U 
0.75 
0.75 

W E r I r i  

W S l U  
vo U E r l r ~  
a l E r  

h0lr2 9 hilr2 
A ,  ePWst 
ratio of elastostatic elliptical footprint major 
to minor axes 

j ir ,Y X I 6 0  > Y / 6 0  
R R J R ,  
s;. 6iI60 
Ai A ,  exp(jiXi) 
B i  B, exp& 
hi hilho 
iq WI wo 
P WOl(M7 60) 
- p ,  9 F y  

e PThO 

T ( w o / M ~ o ) l i z  

P PI60 

F,/Wo, F,/Wo 
t z t  

L Izh,  

d log decrement 
5 - damping ratio (d/2n) 

Subscripts 
0 initial condition 
i ith ball 
j iteration count 
Oi ith surface wave 
n nth vibration with time 

1 INTRODUCTION 

The stiffness, rotational accuracy and vibration charac- 
teristics of a high-speed spindle are partly controlled by 
the rolling element bearings that support it. These bear- 
ings, together with the oil films, can be considered as 
non-linear springs and squeeze film dampers rotating 
round the spindle. An analysis of the bearings’ dynamic 
behaviour is therefore important if a prediction of the 
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182 H RAHNWAT AND R GOHAR 

and care of assembly of the bearings influences their 
noise levels as well as their life expectancy (1). 

Some recent theoretical and experimental studies 
have examined the stiffness and damping characteristics 
of disc machines (2) and angular contact bearings (3), 
the conclusion being that the oil films themselves can 
act as squeeze film dampers, while, for the bearings, 
some dry friction damping may also occur between the 
outer race and its housing. Other experiments on 
machine tool spindles have explained the influence of 
preload on dynamic stiffness and vibration character- 
istic of angular contact bearings (4, 5). 

In the work reported below, a theoretical study is 
made of the vibration response of a rigid horizontal 
shaft having a mid-span load and supported by two 
deep-groove radial ball bearings, thus allowing for two- 
dimensional motion of its centre in the vertical plane. 
Most of the models employed assume the bearings to be 
geometrically perfect but possessing various amounts of 
radial interference. These bearings are then allowed to 
vibrate freely or be subjected to rotating unbalance. 
Imperfect models assume some form of prescribed race 
surface waviness, and again system response is found. In 
all the examples quoted the rolling elements are con- 
sidered massless and are fully lubricated during their 
oribital paths. 

2 GOVERNING EQUATIONS 

2.1 Oil film thickness 

Hitherto, published expressions for the oil film thickness 
under elastohydrodynamic lubrication (e.h.1.) conditions 
have not considered the surface squeeze velocity 
(normal to the surfaces) when combined with the rolling 
velocity. When a rotating ball bearing is subjected addi- 
tionally to a periodic or step load, squeeze forces will be 
encountered as well as those caused by the normal 
rolling motion. These time-dependent squeeze forces 
must be included in any analysis. There are several solu- 
tions to the e.h.1. problem when considering squeeze 
motion only (6, 7). The usual method is to use a march- 
ing procedure, starting with the moving member far out 
as an undistorted elastic body and observe its distortion 
as its uniform geometric centre velocity drives it 
towards the other rigid stationary surface through the 
oil film. Points on the moving oil film roof at any time 
do not generally have equal velocities during the 
squeezing motion. Herrebrugh (6), for example, studied 
the squeeze action of an elastic cylinder approaching a 
plane through an oil film and assumed a uniform 
surface velocity in the region of pressure. The different 
film shapes he obtained at  different times were a 
measure of the inaccuracy of the uniform velocity 
assumption, but were considered as a first approx- 
imation to a complete solution. One general conclusion 
reached was that, except for very thin films, a rigid body 
assumption is valid. However, as the situation in vibrat- 
ing bearings can involve thin films, the rigid body 
assumption cannot be made in obtaining a regression 
formula for the relation between material properties, 
film thickness, load, viscosity, rolling speed and surface 
squeeze speed, for any rolling element. When the 
dynamics of the problem is considered, the surface 
squeeze speed, although considered uniform, is different 
from the velocity of a remote point on the element. A 
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Fig. 1 Bearing geometry 

completely rigid body assumpion makes both speeds 
the same. Expressed mathematically, the elastic body 
assumption is as follows. Referring to Fig. 1, the film 
thickness equation is 

(1) 
where P,(x, y) is the local undistorted film profile and 
does not alter with time, 6(x, y) is the surface deforma- 
tion relative to the element centre, which is considered 
remote and has only a rigid body movement, and 6(0, 0) 
is the surface deflection at the lubricated contact centre. 
Differentiating equation (1) with respect to time, 

The rigid body assumption makes h(x, y) = h(0, 0), and 
d(x, y )  = S(0,O) = 0. An elastic surface having a uniform 
squeeze velocity makes h(x, y) = h(0, 0) and 6(x, y) = 
d(0, 0), though each relative deformation rate does not 
necessarily equal zero. Mostofi (8) has solved numeri- 
cally the e.h.1. problem assuming the usual external con- 
ditions of rolling speed, load, oil properties, geometry 
and a fully flooded inlet, but with additionally a 
uniform surface squeeze speed on the RHS of Reynolds' 
equation. He obtained a regression formula for the least 
film thickness in an elliptical contact in terms of all 
these external parameters. In terms of W* (the integrat- 
ed dimensionless pressure), it comes to 

h(x, Y )  = h(O, 0) + m, Y )  - 6(0, 0) + PAX, y )  

h(x, y )  = h(0, 0) + S(x, y )  - d(0, 0) 

where 

132 
U 

p = -  
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Fig. 2 Variation of load with film thickness and squeeze speed 

A similar expression is found in (U), though without 
the squeeze term. The various dimensionless groups are 
defined in the notation. The sign convention in Fig. 1 
makes w,*i negative in equation (2)  if ball and race 
contact surfaces are approaching one another. Thus W* 
increases for a constant h:, though clearly, in the actual 
dynamical problem we have here, hi* would generally 
decrease as well. Equation (2)  only strictly applies for 
the range of external parameters used in the computa- 
tions of (8, 9), but is employed in the analysis below 
over a much wider range for want of a more com- 
prehensive formula. For w: (see notation) increasing 
negatively, equation (2) is well behaved, but for wf posi- 
tive (surfaces separating) its range is limited because 
(1 - 0.75e132wstiu) can become a negative. (When w: = 
0, we have pure rolling motion.) In a vibrating ball 
bearing, all regimes of lubrication may be encountered. 
Thus, elements can successively be under hydrody- 
namic, piezoviscous and e.h.1. conditions, with the 
squeeze velocity being of either sign, making a com- 
prehensive formula for the instant surface load under an 
element (i) necessary. 

Assuming that the dynamics of the shaft are 
influenced mainly by the e.h.1. pressure contribution, 
and neglecting the piezoviscous zone, a general approx- 
imate expession for the instant surface load can be 
written. This is cast in normalized form, as it eliminates 
the large and small quantities found in equation (2)  and 
is therefore better suited for subsequent computations. 
It comes to 

where 

Cis0 Y -  
- w: K’ 

- W$(h,*)”2 
W = -  Y -~ ’ w;’ - W,*(h,*)a” 

(3)  

67.7 Bi = B, exhl, x = I zh ,  , ;1 = - B,  = 0.75 u ’  
- w .  24x U * 
h. = 2 , c. = ’ t h o  J(2Rh,*)2(3 + 2R) 

t is a time scaling factor, W $  and h,* are respectively the 
dimensionless load and film thickness at  time t = 0, and 
other terms are defined in the notation. 

The second term on the RHS of equation (3) is the 
isoviscous contribution to the instantaneous load. 
When it is relatively large, the e.h.1. term is negligible 
and even negative and vice versa. It is an approx- 
imation to an exact expression which is derived in 
Appendix 1. 

The way varies with ii and Li is shown in Fig. 2. 
When hi becomes large and positive, can go negative 
in equation (3); to ensure it will remain positive under 
all conditions at Bi = 1, the second term in equation ( 3 )  
is replaced by an approximation of the form C3/hi + C,, 
where C, and C, are derived in Appendix 2. Thus, the 
balls always push inwards on the shaft through their 
lubricant films, though often these forces are negligible. 

2.1. I Model geometry 
Consider the balls and the outer race all to be rigid, 
having a radial clearance 2C with the shaft. For pur- 
poses of computation, let the inner race have a reduced 
modulus, with all the elastic distortion occurring on its 
surface as the elements roll over it with a centre-line 
film thickness 2h(0, 0) and deflection 26(0, 0). Then for a 
shaft centre displacement x ,  y from the axial symmetry 
position ( z  axis), and considering the ith ball, 

(4) 
Now equations (1) and (2)  are based on the minimum 
oil film thickness near the ends of the long axis of the 
elastostatic contact ellipse. Furthermore, the expression 
for h*(O, 0) in (8) gives an index for W* of +0.004 
because of its extreme insensitivity to load. The same 
effect was noted in (10). Generally, the ratio of centre- 
line to minimum oil film thickness in e.h.1. contacts does 
not exceed 1.3 (9), so h(0, 0) can be replaced by hi in 
equation (3 )  without much error being introduced when 
eventually considering the system dynamic behaviour. 
6(0, 0) is retained because a further simplifying assump- 
tion is made later with respect to it. Equation (4) there- 
fore becomes, for the ith ball, 

( 5 )  
where di = 6(0, 0) and hi is the minimum oil film thick- 
ness. 

26(0, 0) = 2{ h(O, 0) - C} + x cos Oi + y sin Oi 

2di = 2(hi - C )  + x cos Oi + y sin Oi 
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If there is instead a radial interference fit p, C is 
replaced by - p in equation (4). 

The initial conditions assume axial symmetry about 
the z axis by holding the shaft centre at O(x =. y = 0) 
until t = 0 and then releasing it. Thus, initially each 
rotating ball in the set has the same film thickness 2h, 
and deflection 26, under it, making equation (5) 

60 = ho + p (6) 
Using 6, and h, as scaling factors (see notation) equa- 
tion (4) becomes 

2Ji = 2(i0 hi + p )  + x cos ei + j sin ei (7) 

2.1.2 Equations of motion 
Assuming the balls have negligible mass and an external 
force vector having components F, and F ,  acts in the 
plane of xy, as in Fig. 3, the equations of motion are 

- M g + F ,  
i =  1 

i =  1 

= -P'  C % sin ei + F ,  
( i r l  ) 

Fig. 3 Forces on the inner race 
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The value of the time scaling factor z is set for conve- 
nience by making P' = 1, giving 

Also, 

ei = eoi + o,t 

or 

2ni 
m 

ei = - + w,t 

where 

a l r l  i =  1, m and o, = 
Wl + r2) 

2.2 Elastic deflection 
With the shaft rotating at speed o1 and its centre ini- 
tially at x = y = 0, let m equal equipitched forces W,, 
rotating at speed o, = b i ,  act radially inwards on its 
circumference. For the purposes of computation, the 
shaft can now be considered as not rotating, but having 
the W, , and afterwards the q, forces rotating round it 
at the cage speed d i ,  with F ,  and F, acting in some 
prescribed manner which may be a function of its rota- 
tional speed (such as a rotating unbalance). An addi- 
tional governing equation is necessary for the 
computations. This is the relationship between K. and 
6, in equation (5). As di is at each contact centre, and the 
oil film is considered parallel and equal to hi when con- 
ditions are e.h.l., then 

where y = 3/2 and Ji is the elastostatic deflection at the 
centre of an elliptical footprint (11). The initial condi- 
tions can now be calculated. If U is sufficiently high 
(which it usually is), the conditions are e.h.1. everywhere, 
so equation (3) becomes 

WX(hX)a' = K' (1 1) 

Combining equation (11) with equations (6) and (10) 
under initial conditions, allows W,, h, and 6 ,  to be 
found. 

2.2.1 Calculation procedure 
Find the model constants 

1. Choose the bearing geometry, radial clearance or 
interference fit, shaft rotational speed, number of 
balls, oil and material properties, shaft mass and 
excitation force function. 

Set the initial conditions 

(6), (10) and (11). 
2. At f = 0 - , calculate W, , h, and 6, from equations 

Motion commences 
3. At f = O+ (the moment of release), calculate k(0) 

4. Differentiate equations (3) and (10) with Zespect to t 
and f(0) from equations (8) and (9). 

and equate them at t = 0, to find Si(0) = hi(0). 
Q IMechE 1985 
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The iteration procedure commences 12. Proceed until step 10 is satisfied and increment 
5.  

6. 

7. 

8. 

9. 
10. 

11. 

Using the average acceleration quasi-dynamic pro- 
cedure (12) (see Appendix 3) find 

k,jj ,  2, J ,  Ai, Si, Si for i = 1, m 

where 

2n Oi = i - + w,i 
m 

Si = hi - 1 and is the ripple on the initial film thick- 
ness h, 
Calculate Ji and ii from equation (7) and its differ- 
ential with respect to ?. 
Calculate from equation ( 3 )  or its replacement in 
Appendix 2 (depending on its location in Fig. 2). 
Calculate Si at f = k6i  where k = 1, n and 
n = number of time steps used. 
Find ;(I) and ;(?) from equations (8) and (9). 
Test for convergence using the convergence criteria 

- 
x k .  j - 'k, ( j -  1) 

x k ,  j 
E, - 

and 

Y k ,  j - Y k ,  ( j -  1 )  

Y k ,  j 
G Ep 

where j = iteration counter within each time step k .  
If converged, increment ? to 261 and return to stage 
5. 
If not converged return to stage 5 but with k 
unchanged. 

further the time. 

2.2.2 Particulars of the system model 

Inner race bore 40 mm 
Inner race diameter 50 mm 
Outer race diameter 75.4 mm 
Ball diameter 12.7 mm 
Outer race outside diameter 83.7 mm 
Bearing width 23.4 mm 

Ellipticity of elastostatic footprint 3 
Number of balls (generally) 12 

2.2.3 Results for a gravity load application 

The shaft, previously held centrally at t = 0, is released 
under its own weight, thus subjecting the system to a 
step gravity load. As all bearing surfaces are perfect 
here, the subsequent movement is known as a variable 
compliance vibration. 

Figure 4 shows the resulting shaft centre-line time 
history for the model subjected to the following condi- 
tions: 

Shaft rotational speed 
Cage set speed 83.26 rad/s 
Step load, Q = Mg 
Radial interference 
Number of balls 

209 rad/s (1995 r/min) 

500 N 
2p = 10 pm 
m = 12 

The oscillations commence at x = y = 0. In Fig. 4a, the 
x displacement component in the direction of gravity 
initially has an oscillatory decay about the equilibrium 

Time 
ms 
- 

0 60 120 I80 240 300 

-1 
. . . -- 

----.- - 2  -1 

- 4  

/- 

I /--- ---- 
/ --- 

- 6  

(a) x component 

I I I I I I I I I 
0 60 120 180 240 300 

Time 
ms 

Fig. 4 Shaft centre time history (Q = 500 N ,  p = 5 pm, m = 12) 

- 0.05 I 

- 
(b) y component 
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position (of about x = 3.5 pm) and about which it 
finally goes into a limit cycle, this being a characteristic 
of non-linear vibratory systems. The cycle is maintained 
because an external energy source (the shaft drive 
motor) has to rotate the cage while its ball complement 
is being squeezed and released in their oil films as they 
continually change position. The limit cycle vibration 
double amplitude in the x direction is only about 2 pm. 
In the y direction (Fig. 4b), the vibrations build up from 
zero amplitude to a small limit cycle with a double 
amplitude of 0.05 pm. Observe that it takes 300 ms to 
reach a steady state vibration (when transients have 
subsided), during which time the shaft has made about 
20 revolutions. The measured response frequency of the 
system is 260 Hz, which is marginally less than the 
undamped frequency, found independently (13), and 
differs from the calculated ball pass frequency of 
157.1 Hz. 

x ( t )  

Pm 
- 

(a) x component 

Y ( t )  
Pm 
- 

(b) y component 

Fig. 5 Phase plane trajectories of shaft centre (Q = 500 N, 
p = 5 p m , m = 1 2 )  
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When the x and y oscillations are plotted as trajec- 
tories in the phase plane, namely x - f and y - j ,  as 
shown in Figs 5a and 5b, the x - i curve spirals in 
towards an elliptically shaped stable limit cycle (14) 
with its centre on the equilibrium position. The time for 
one rotation round the limit cycle path is again the 
response frequency of the system. This appears to be the 
base frequency of the non-linear system. A detailed fre- 
quency analysis of the centre movement would prob- 
ably yield a series of harmonics in addition to the base 
frequency. One way of doing this would be to subject 
the bearing to a Dirac function pulse at t = 0 and then 
use fast Fourier transforms to analyse the harmonic 
content of the response. References (13) and (14) discuss 
this method of frequency analysis, which is used below 
in the analysis of the response to a wavy inner race 
surface. When x is plotted against y ,  the shaft centre 
locus is obtained. Figure 6 shows the effect of radial 
interference p on the locus, and its eventual limit cycle. 
Figure 6a is for p = 5 pm. Only the initial part of the 
locus is shown, together with the limit cycle, which cor- 
responds to the phase plane representation in Fig. 5. 
When p is reduced to 1 pm, the limit cycle is centred 
about a larger x component equilibrium position and 
also has larger x and y amplitudes. This is because the 
reduced radial interference makes the balls and races 
operate in a less stiff region of the non-linear load- 
deflection curve, the response frequency now being 
125 Hz. Furthermore, the angular disposition of the 
limit cycle has altered, suggesting that the reduced inter- 
ference makes squeeze film damping more effective, thus 
altering the phase angle between x and y (15). Note also 
that the limit cycle in Fig. 6b is centred slightly to the 
left of the y = 0 axis. The reason is that as the cage set 
rotates clockwise relative to a stationary observer, the 
elements in the bottom right quadrant of the shaft will 
suffer the highest squeeze during any cycle, unless the 
shaft moves to the left to compensate. When the shaft 
rotation vector is reversed, the limit cycle centre moves 
to the right of they = 0 axis. 

The steady state lubricant film history for one ball 
can also be shown in the phase plane by phase trajec- 
tories of h - h, as shown in Fig. 7. It is composed of 
two unequal portions, of similar shape, with a common 
point A. The larger segment represents film behaviour 
when the ball is in the unloaded region of the bearing, 
where there is a significant hydrodynamic contribution. 
The smaller segment, to the left of A, corresponds to the 
more highly loaded region which is the elastohydro- 
dynamic part. Of course, each region does not necessar- 
ily apply always to the top or bottom of the shaft, as its 
centre is itself oscillating. A limit cycle period corre- 
sponds to oscillations which commence and terminate 
at  A, describing all the trajectory loops in a to-and-fro 
motion as outlined below. 

One film limit cycle goes from the outer to the inner 
loops of the RH segment clockwise, followed by the 
inner to outer loops of the LH segment anticlockwise. It 
then repeats the operation in a total time T, ,  where 
T,  = 2n/o, and o, is the cage set rotational speed. Any 
one loop traverse is the system response frequency 1/T, 
where T = 7J20 is also the time for one traverse of the 
x - f limit cycle in Fig. 5a. Note that as the loops on 
the RH side of point A enclose larger areas than those 
on the LH side, there is more energy dissipation associ- 
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(a) p = 5 pm 
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Fig. 6 Limit cycle shaft centre (Q = 500 N, rn = 12) 
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Limit cycle phase plane trajectory of oil film (Q = 
500 N, p = 5 pm, rn = 12) 

Fig. 7 

ated with them, suggesting that squeeze film damping 
operates most efficiently in the region of thicker films. 

The periodic load experienced by a single ball during 
a complete revolution of the cage is shown in Fig. 8. 
The cyclic load distribution comprises 20. oscillations 
corresponding to the 20 loops in the h - h limit cycle. 
Points Al and A, relate the ball inlet to, and exit from, 
the most loaded region of the bearing (the small 
segment of the h - h limit cycle). The curve following 
the mean of the natural frequency oscillations (the 
carrier) is itself oscillatory at the cage set frequency and 
has a mean value determined by the preload. It rep- 
resents the average load on a ball during one revolution 
of the cage. Clearly, the superimposed vibration must 
adversely affect the fatigue life of the bearing. If preload 

400r B B  

300 

- w; 
200 A4 

100 

I 1 I 1 I 
0 100 200 300 400 

Cyclic load distribution on a ball (Q = 500 N, p = 
5 pm, rn = 12) 

9" 
Fig. 8 
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188 H RAHNEJAT AND R GOHAR 

exactly equalled zero, then the average load curve 
would oscillate about the zero axis, cauing the ball to be 
unloaded over half a cycle. Such a state of affairs is 
associated with the unloaded balls skidding on the 
races, thus causing damage to them and the cage. 
Radial preload (normally created by axially loading the 
balls) goes some way to curing the problem (5). 

2.2.4 SqueezeJilm damping 
Oil film damping can be studied upon the application of 
a step gravity load. The degree of damping is measured 
by the rate of oscillation decay to the limit cycle in 
Fig. 4. The damping is described by the logarithmic 
decrement, d,  of amplitude peak decay. Therefore, 

d = In($) 

and for small damping, as we have here (12), 

-- - e-d N 1 - d Xn+ 1 

X" 

Thus 

xn - xn+1 

xn 

and the damping ratio is 

d =  

Figure 9 shows how [ varies with @ for two different 
loads. Point P on the graph corresponds to p = 1. As 
the initial film thickness (at t = 0) is given by h, = dp 
- p ,  that is Lo = ko/6,  = 1 - p ,  h, = 0 there, which is 

the hypothetical condition of zero film thickness. There 
is no damping under this condition. The higher applied 
load gives a larger damping coefficient because of the 
larger films and squeeze velocities formed in the top half 
of the bearing. Dareing and Johnson (2) have come to a 
similar conclusion when they carried out experiments 
on loaded discs, one of which was corrugated. 

The influence of the number of balls on the response 
frequency is shown in Fig. 10. Increasing the number of 
balls m stiffens the bearing. For any given value of m, 
the higher load gives a lower response frequency despite 

\ 

0 0.25 0.5 0.75 1.00 

P 

Fig. 9 Influence of radial interference on the damping factor 
(m = 12) 
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I 

300c  

2 4 6 8 10 12 14 
0 

m 

Fig. 10 Influence of the number of balls on the natural fre- 
quency (j = 0.75) 

some balls entering a more stiff region of their load- 
deflection characteristics. The effect of m on the 
damping coefficient is shown in Fig. 11. Increasing the 
number of balls stiffens the bearing and reduces the film 
thicknesses in the unloaded region, thereby reducing the 
damping coefficient. A higher load increases these films 
for a given ball complement, thereby increasing the 
damping coefficient. 

2.2.5 Vibrations of an unbalanced shaft 
If the supported shaft's centre of gravity is given a slight 
eccentricity e, the external exciting force components in 
equations (8) and (9) become 

- Mo: - Mw: 
F -  = - e cos Qi and F- =- e sin Qi wo wo 

r 
Q=500N 

-- - Q=2500 N 

I I I L 

2 4 6 8 10 12 14 
0 '  

m 

Fig. 11 Influence of the number of balls on the damping 
coefficient (3 = 0.75) 

@ IMechE 1985 



THE VIBRATIONS OF RADIAL BALL BEARINGS 

0 . 2 r  

I I I 

189 

I I 1 I 1 i 

3 
cm/s 

Hz 

-0.2 

Fig. 12 

-- 
Steady state phase plane x component trajectory with rotating 
unbalance (Q = 500N, w ,  = 209 rad/s, e =25 pm, p = 5 pm, 
rn = 12) 

The resulting limit cycle in the phase plane, for the x 
oscillation, is shown in Fig. 12. The double loop indi- 
cates a response dominated by two frequencies forming 
upper and lower bounds. The inner loop is the model 
natural frequency and the outer loop coincides with the 
ball-pass frequency, which is here defined as 
mco1r1/{2(r1 + rz)}. Experiments carried out by Wardle 
and Poon (1) on angular contact bearings have come to 
a similar conclusion. The corresponding x - y locus, in 
the steady state, is shown in Fig. 13. The complex 
motion reveals the various controlling frequencies 
involved. Note that the y displacement is now signifi- 
cant because of the rotating unbalance. 

2.2.6 Rolling surface imperfections 

The quality of a rolling bearing is described by the 
finish and form of its surfaces. These distributed features 
are generated during manufacture and are usually 
defined in terms of their wavelength. If the wavelength 
of the surface irregularities exceeds the width of the 
elastostatic contact footprint in the rolling direction, the 
feature is termed waviness (1); otherwise it is termed 
roughness. We confine ourselves here to waviness. 

Let the inner race surface have all the waviness in the 
form of a circumferential sinusoidal wave. The contact 

radial clearance becomes now a function of angular 
position 8'. If 2C is the local clearance at O', 

27cr,O' 
2C = 2C0 + 2C, sin - (13) 

*l 

where C ,  is the wave amplitude and 1., the wavelength. 
If C ,  = 0, both radial interference and clearance occur 
alternately round the race. To ensure interference every- 
where, replace 2C0 in equation (5) by - 2p0. Thus : 

2p = 2p, + 2 sin - r,B' (:: 1 
where y, is the wave amplitude associated with an inter- 
ference fit. If there are n waves round the circumference, 

2xr 
n 

2, =- 

The points of interest are when 8' = d i ,  so the radial 
interference at  the ith contact is non-dimensionally 

2pi = 2p0 + 2p, sin(n8,) (15) 
where 

t 
- ~ ( t )  -1.501 

E 
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Fig. 13 Shaft centre locus, steady state (Q = 500 N, w1 = 209 rad/s, e = 25 pm, p = 5 pm, rn = 12) 
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To reduce computing space allocation, let dOi = d o ,  the 
universal initial contact deflection. Therefore there are 
no surface features at t = 0 until they suddenly appear 
at t = d t  where d t  6 1 ms. The governing equations in 
the elastohydrodynamic model remain unaltered except 
for those describing the local rate of deformation when 
t > 0. Differentiating equation (7) where p = p i  and 
using equation (1 5) for pi : 

Ji = ho hi + (W,pp  n cos noi) + 4{; cos 4 + j j  sin Oi 

+ W,( j  cos Bi - 2 sin 8,)) (16) 
where 

8. -, = 0 ,, P = ol, 8 ' =  8i 

The second term on the RHS of equation (16) is the rate 
of change of radial interference pi where p p  = 0, because 
the shaft's wavy contour does not vary with time. This 
is a reasonable assumption because n is chosen to make 
the elastostatic contact width much less than the feature 
wavelength. 

0.1 

X U )  
cm/s 

0 -  

-0.1 

x(t) 
Pm 

o.2,  -1.50 -2.25 , - 3 . 0 0  , -3;75 -4;50 -5;25 

- 

- 

- 0 . 2 1  
( a ) n = 4 8  

X(t) 
Pm 

-3.00 - 3 . 7 5  -4.50 -5.25 
0.225[ I I 1 i 
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0.075 - 

X U )  
cm/s 0- 

- 0.075 - 

-0.150- 

(b)n=24 

Fig. 14 Steady state phase plane x component trajectory 
with wavy inner race (Q = 500 N, p = 5 pm, pp = 
,/2 pm, w1 = 209 rad/s, rn = 12) 
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The value of pp depends on the accuracy of the 
machining process. The r.m.s. value of wavy features 
can be correlated with the shaft diameter (16) when 
0.04 m < D < 0.05 m, p p  (r.m.s.) N 1 pm. Therefore 
p p  N 42pm. Figures 14a and 14b shows the phase plane 
response for two values of n. The smallest loop corre- 
sponds to the forcing frequency introduced by the wavi- 
ness. Here the wave-pass frequency (number of wave 
peaks passing the eye per second) is 1956 Hz (calculated 
from the phase plane it is 1587.5). The outer loop rep- 
resents ball-pass frequency of 159 Hz and the middle 
loop is the system base frequency of 260 Hz. The static 
deflection position is still the same as in Fig. 5,  and the 
forced vibration has not significantly affected the x 
amplitude because its frequency far exceeds the model 
base frequency. Halving n has increased the maximum x 
amplitude and has also altered the relative loop dis- 
position. The x direction vibration amplitude has not 
become excessive on account of the surface waviness, 
probably because the oil films and elastic deflection 
have absorbed some of the input amplitude. The system 
is analogous to a car with a soft suspension going over 
a sharply corrugated road. 

A fast Fourier transform spectral analysis was then 
made on the response of the shaft centre to the wavy 
inner race example above. Figure 15 shows that ball- 
pass frequency is significant. The wave-forcing fre- 
quency has little effect, as was shown in Fig. 14a. A 
sub-harmonic of the ball-pass frequency has also 
appeared. No response above the forcing frequency is 
apparent, although in a real bearing this may be the 
case because of its more complex arrangement. 

Experiments on ball bearings subjected to an axial 
preload and having wavy surface features (1) exhibit a 
more complex frequency response spectrum, probably 
because both their inner and outer races are wavy and 
are not generally in phase. The simple model used here 
nevertheless indicates some significant frequencies 
which affect the shaft motion. 

r 3  
1 Shaft rotation frequency f, 

3 Ball-pass frequency fb 
4 Base natural frequency f, 
5 f w  -f, 
7 Wave-pass frequency f, 

2 '4 fb 

6 f w  -fb 

0.0 1.0 
Frequency 

kHz 

2.0 

Fig. 15 Steady state frequency spectrum of x oscillations 
with wavy inner race (Q = 500 N, p = 5 pm, pP = 
J2 pm, o1 = 209 rad/s, m = 12, n = 48) 
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3 CONCLUSION 

The vibration characteristics of lubricated radial deep- 
groove ball bearings which support a horizontal rigid 
rotating shaft have been studied when it is subjected to 
various external excitations. The variable compliance 
vibration response under the weight of the shaft itself 
shows a limit cycle in the steady state operating at a 
quasi-simple harmonic natural frequency. The limit 
cycle frequency and amplitude is affected by the number 
of balls, applied load and radial internal clearance. 
These in their turn determine the magnitude of the 
squeeze film damping characteristic between the balls 
and their races. 

When an external periodic forcing function is applied 
to the shaft by rotating unbalance the ball-pass fre- 
quency becomes significant. When the inner race is 
given a prescribed circumferential surface waviness a 
response frequency equalling the shaft speed times the 
number of waves becomes significant in addition to the 
ball-pass frequency. 
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APPENDIX 1 

The hydrodynamic reaction in equation (3) contains the 
effect of both entraining and squeezing motions, such 
that 

(17) q = Jqi + WRi 
where s = squeeze and R = roll. 
@ IMechE 1985 

From (17), which assumes half Sommerfeld condi- 
tions, 

where I? = RJR,  and hi is the minimum film thickness 
at time t. To obtain Wsi, assume it may be found by 
considering the squeeze only of a rigid egg-shaped body 
of principle radii of curvature R,  and R,  approaching a 
rigid plane at velocity wSi = ah@, where conditions are 
isoviscous. The Reynolds equation for pure squeeze 
under isoviscous conditions is 

- a ( h 3  -- a p )  +- a ( h 3  -- a p )  = 1 2 -  ahi 
a x  ?o ax aY ?o aY at 

Let 

X Y li:= 
J(2R,  hi) ' = 4 ( 2 R ,  hi) 

- hi 
h . = -  and Ph: 

p = 1 2 ~ ,  vo ah/at 3 ' ho 
therefore, 

where h = hi + x2/2R,  + y2/2R, .  
Guess the form of p by assuming it to be 

K p' 
(1 + x2 + j 2 ) 2  

Substituting equation (20) into equation (19) yields 

1 K=-- 
2(1 + 8) 

which satisfies the guess. Therefore, 

1 
2(1 + R)(1 + i2 + j 2 ) 2  

p' 

The integrated pressure Ki can now be obtained from 

Ti = j'" I_ ,P  dx dy 
x = - m  

or, expressed non-dimensionally, 

+ m  

- m  

Integrating the RHS first with respect to i we get 

RHS = -- 

Upon substitution, j = tan @ and integrating with 
respect to j, the RHS comes to RHS = - n/{2(1 + I?)}; 
so equation (22) can be written as 
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Thus equation (17) becomes, in terms of the non- 
dimensional groups and normalized variables, 

q = (R1& g) 
3710; - 1 

{J2(3 + 28)(hi)"' 8h:IZ(1 + @hi 
where h,* is the initial condition minimum film thick- 
ness. Equation (24) is cumbersome for numerical manip- 
ulation so let it be replaced by an exponential 

where 

1271u* c. = 
ISo J2Rh,*(3 + 2a)  

The maximum percentage error between equations (24) 
and (25) is about 5 per cent for a wide range of values of 
w t ,  U* and hi.  

APPENDIX 2 

For large positive values of ii ,  q in equation (3) is 
replaced by an approximate expression 

q = T + C Z  c3 
hi 

which ensures that q can never become negative. 
Let h, and W, be respectively the speed and load at 

which equation (26) starts to operate. So from equations 
(3) and (26), using the hydrodynamic part of (3), 

Also, the slopes must be the same at thejunction. As hi 
is constant along any curve in Fig. 2, at h, , 

and also at h,,  

ahi h: 
arq c3 
- = - -  

from equation (26). Therefore, 

A suitable value for k can be obtai2ed from equation 
(24) by finding the limiting value of hi to make q = 0, 
where 

Let the limiting value be hie. Thus: 

8 U z M 6 ,  'Iz 1 + 2 R  - h . = - - (  ) - (hi)'/' 
3n 2R,W0h0 3 + 2 R  

Now let 

gC = 0.999hie (30) 
which makes q just positive. Hence C2 and C3 can be 
found from equations (27) and (28). 

APPENDIX 3 

The governing equations of motion in two degrees of 
freedom {i.e. equations (8) and (9)) are solved by an 
iterative procedure which incorporates the equations (3) 
and (7). The step-by-step integration, known as the con- 
stant average acceleration method (12, 17) uses the prin- 
ciples of the trapezoidal rule. The acceleration in each 
suitably small time step is taken to be the average of its 
respective values at the beginning and the end of the 
same interval. Although this method is unconditionally 
stable, it is somewhat inaccurate when small variations 
of small quantities are to be detected. Therefore, we use 
the linear acceleration method (here referred to as the 
moving average acceleration) where the acceleration 
changes linearly within each small time step hi. 
However, it has been shown in (17) that this method is 
only conditionally stable, which means that care must 
be taken in its use. 

In the present analysis, values of k k ,  and yk, at any 
given time are obtained from equations (8) and (9) 
respectively. Then, the step-by-step integration follows 
as below: 

For the 2 oscillations (12,17): 

and 

For k > 1, when k = 1 

6f 
2 21, j = 2, + (2, + il, j -  1) - 

and 

. 6i .. 6f2 
- + 2, - j = 20 + (2k, + 21, 3 6 

(33) 

(34) 

where 2,, io are input conditions and k, is given by 
equation (8) at I = 0. k terms are initialized at the 
beginning of each time step k where j = 1 as below. 

When k = 1: 

il, = 2, + k, 6i 
When k = 2: 

(35) 

(37) 
Similar expressions are used for the 5, oscillations and 
for the small oil roof ripple oscillations S and S, with 
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the inclusion of a third index, i, identifying a specific 
ball contact. As an example: 

(38) 
The ii, k ,  terms are obtained by equating the differen- 
tials of equations (3) and (10) with respect to rt. Thus: 

(39) 

and 

201' + 5 
01; = ___ 

2 

193 

(43) 

when 

f = 0, 0 3 0  = 0, Ai = Bi = 0.75 

and &(O) = 1 
L & 

and when Si, = hi, ,  the differential of equation (26) 
replaces that of equation (3). Therefore: 
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