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ABSTRACT

Aims. Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the key parameters that describe the galaxy
density field and its spatial correlations in redshift space.
Methods. We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy
luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener
filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the
inhomogeneous selection function.
Results. We present joint constraints on the anisotropic power spectrum, and the bias and number density of red and blue galaxy classes in
luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density
parameters are strongly correlated although they are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-
space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate fσ8 = 0.38 with 18% uncertainty at
redshift 0.7.

Key words. large-scale structure of Universe – cosmology: observations – galaxies: statistics – cosmological parameters – methods: statistical –
methods: data analysis

1. Introduction

The distribution of galaxies on large scales provides a funda-
mental test of the cosmological model. In the standard picture,
galaxies trace an underlying matter density field and the sta-
tistical properties of this field such as its power spectrum and
higher order moments are given by the theory (Peebles 1980).
This clear view is confounded, however, by the sparse distribu-
tions of luminous galaxies mapped by surveys (Lahav & Suto
2004). Galaxies are complex systems; they are biased tracers of
the non-linear matter field and their clustering strength depends
on their properties and formation histories (Davis & Geller 1976;
Blanton et al. 2005; Kaiser 1984; Bardeen et al. 1986; Mo &
White 1996). Furthermore, their redshift gives a distorted view
of distance, which is affected by coherent and random velocities
(Kaiser 1987).

Upcoming galaxy surveys will be sensitive to subtleties in
these trends requiring increasingly sophisticated modelling and
numerical simulations to interpret the galaxy distribution in de-
tail (The Dark Energy Survey Collaboration 2005; LSST Dark
Energy Science Collaboration 2012; Levi et al. 2013; Laureijs
et al. 2011). At the same time, these surveys will be sufficiently
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large to be limited by minute selection effects that systemati-
cally and significantly alter the observed distribution of galaxies.
Instrumental and observational artefacts can masquerade as gen-
uine astrophysical effects and vice-versa. Thus the analyses will
need to track a large number of instrumental and astrophysical
parameters and be able to characterise the covariances between
them. Reliable error estimation will require incorporating the set
of both systematic and random uncertainties. The stakes are high
as experiments promise highly precise constraints on the nature
of gravity, dark energy and dark matter (Amendola et al. 2013).

Together, the physical and instrumental models compose the
total data model. Given the large number of parameters, the
Bayesian approach is often preferred over the frequentist one
to set joint constraints on the relevant physical quantities (Trotta
2008). At the heart of this approach is the Bayes theorem which
dictates a recipe for translating a set of observations into con-
straints on model parameters. Of fundamental importance is the
incorporation of any prior knowledge of these parameters. This
framework provides a natural means to jointly constrain physical
parameters of interest while marginalising over a set of nuisance
parameters. A paradigmatic example is the analysis of cosmic
microwave background data (Jewell et al. 2004; Eriksen et al.
2004; Wandelt et al. 2004) as demonstrated through the ESA
Planck mission results (Planck Collaboration I. 2015).

The Wiener filter is the first example of the application
of Bayesian reconstruction techniques to galaxy surveys. The
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Wiener solution corresponds to the maximum a posteriori so-
lution given a Gaussian likelihood and prior. In general, for a
signal contaminated by noise, the Wiener filter gives a recon-
struction of the true signal with the minimum residual variance
(Rybicki & Press 1992). This is also true for non-Gaussian sig-
nal and noise sources, and for this reason, since the galaxy field
is not Gaussian (it is thought to tend toward Gaussianity on very
large scales), the Wiener filter has seen significant use in recon-
structing the density field from galaxy surveys (e.g. Lahav et al.
1994) and in particular to predict large-scale structures behind
the Galactic plane (Zaroubi et al. 1995).

Wiener filtering is comparable to other adaptive density re-
construction techniques such as Delaunay tessellations (Schaap
& van de Weygaert 2000), although Wiener filtering offers the
advantage of naturally accounting for a complex survey selec-
tion function with inhomogeneous sampling. Examples of appli-
cations of Wiener filtering to galaxy surveys include the Two-
degree Field Galaxy Redshift Survey (2dFGRS) in which the
Wiener filter was used to identify galaxy clusters and voids
(Erdoǧdu et al. 2004). Kitaura et al. (2009) present a Wiener den-
sity field reconstruction of the Sloan Digital Sky Survey (SDSS)
main sample. Applied to the VIMOS Extragalatic Redshift
Survey (VIPERS; Guzzo et al. 2014), the Wiener filter can nat-
urally account for inhomogeneous sampling and survey gaps.
In a comparison study of different density field estimators for
VIPERS Cucciati et al. (2014) find that the Wiener filter per-
forms well although it over-smooths the field in low-density
environments affecting cell-count statistics.

Physically motivated probability distribution functions have
been developed to improve on the Wiener filter and obtain unbi-
ased density field reconstructions. Kitaura et al. (2010) demon-
strate in a comparison study that the use of a Poisson sampling
model for the galaxy counts with a log-normal prior on the den-
sity field allows better estimation of the lowest and highest den-
sity extremes on small scales. The generalisation of the model
calls for a fully non-linear solver (Jasche & Kitaura 2010). The
Poisson log-normal model was used to reconstruct the density
field probed by the SDSS sample (Jasche et al. 2010a).

The Gaussian likelihood has also been used to construct
maximum a posteriori estimators for the galaxy power spectrum
(Efstathiou & Moody 2001; Tegmark et al. 2002; Pope et al.
2004; Granett et al. 2012). For the galaxy luminosity function es-
timates, maximum likelihood techniques have also enjoyed sig-
nificant use (Ilbert et al. 2005; Blanton et al. 2003; Efstathiou
et al. 1988).

Gaussian likelihood methods have only recently been devel-
oped to jointly infer the density field, power spectrum and lu-
minosity function from galaxy surveys (Kitaura & Enßlin 2008;
Enßlin et al. 2009). The first application to the Sloan Digital Sky
Survey was demonstrated by Jasche et al. (2010b) who utilise
a Gaussian likelihood and prior to jointly estimate the underly-
ing galaxy field and power spectrum. This work was generalised
to simultaneously estimate the linear galaxy bias and luminos-
ity function (Jasche & Wandelt 2013b). Ata et al. (2015) fur-
ther model a scale-dependent and stochastic galaxy bias using
the log-normal Poisson model. The methodology has also been
developed for photometric redshift surveys (Jasche & Wandelt
2012) as first proposed by Kitaura & Enßlin (2008).

The peculiar velocities of galaxies distort the density field
inferred from redshift surveys (Kaiser 1987). The average ef-
fect may be accounted for by a convolution operation (Landy &
Szalay 2002). This serves on large scales where the density field
and velocity field may be inferred in a self-consistent manner
(Kitaura et al. 2012b; Nusser & Davis 1994).

The full description of the galaxy field requires considera-
tion of the higher order moments and depends on the physics of
structure formation. Thus reconstruction methods have been de-
veloped that incorporate physical models based on second-order
perturbation theory (Kitaura et al. 2012a; Kitaura 2013; Jasche
& Wandelt 2013a; Jasche et al. 2015) or approximate n-body
methods such as the particle-mesh code (Wang et al. 2014).
Reconstructions of the local Universe have been used in novel
ways, including to estimate the bias in the Hubble constant due
to cosmic flows (Hess & Kitaura 2014).

In this work we carry out a Bayesian analysis of the VIMOS
Extragalactic Redshift Survey (VIPERS; Guzzo et al. 2014). Our
goal is to jointly estimate the key statistics including the matter
power spectrum, galaxy biasing function and galaxy luminosity
function. Our strategy is, given the observed number density of
galaxies in the survey as a function of position N(RA, Dec, z), to
compute the conditional probability distribution for the param-
eters, written schematically as: the matter over-density field δ,
galaxy mean number density N̄, galaxy bias b and the two-point
correlation function S . The conditional probability distribution
or posterior may be decomposed using Bayes theorem:

p(δ, N̄, b, S |N) ∝ p(N |δ, N̄, b, S )p(δ, N̄, b, S ). (1)

The first and second factors on the right hand side are the data
likelihood and the parameter prior. We will account for obser-
vational systematics such as the survey selection function in
the data model, but we will not propagate their uncertainties.
For VIPERS, the uncertainties in the selection function are sub-
dominant compared with the statistical errors and so the inclu-
sion of the uncertainties will be reserved for future work. We
adopt the Gibbs sampling algorithm to sample from the poste-
rior distribution (Marin & Robert 2007). With this approach the
complex joint probability distribution is broken up in a number
of simpler, individual conditional distributions. Sampling these
distributions allows us to build up a Markov chain that rapidly
converges to the joint distribution.

VIPERS has mapped the galaxy field to redshift 1 with un-
precedented fidelity (Guzzo et al. 2014; Garilli et al. 2014). So
far, VIPERS data have been used to constrain the growth rate of
structure through the shape of the redshift-space galaxy correla-
tion function (de la Torre et al. 2013). The cosmological inter-
pretation of the galaxy power spectrum monopole has been pre-
sented by Rota et al. (in prep.). The biasing function that links
the galaxy and dark matter density has been estimated using the
luminosity-dependent correlation function (Marulli et al. 2013)
and the shape of the one-point probability distribution func-
tion of galaxy counts in cells (Di Porto et al. 2014). Moreover
VIPERS has tightened the constraints on the galaxy luminos-
ity and stellar mass functions (Davidzon et al. 2013; Fritz et al.
2014). These measurements firmly anchor models of galaxy
formation at redshift 1.

Beyond the one- and two- point statistics of the galaxy field,
galaxies are organised into a cosmic web of knots, filaments and
walls that surround large empty voids. In VIPERS the higher or-
der moments of the galaxy counts in cells distribution function
have been measured (Cappi et al. 2015). While ongoing efforts
are being made to measure the morphologies of cosmic struc-
tures. A catalogue of voids has been constructed with VIPERS
(Micheletti et al. 2014; Hawken et al., in prep.). More gener-
ally, the Minkowski functionals can be used to characterise the
topology of large-scale structure as a function of scale (Schimd,
in prep.). These measurements typically call for precise re-
constructions of the density field corrected for observational
systematics such as survey gaps and inhomogeneous sampling.
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This work extends previous analyses by considering the joint
distribution of galaxy luminosity, colour and clustering bias with
the spatial power spectrum and density field. We begin in Sect. 2
with an overview of VIPERS and the parameterisation of the
selection function. The data model is described in Sect. 3, and
the method is outlined in Sect. 4. In Sect. 5 we present the con-
straints from the VIPERS data.

We assume the following fiducial cosmology Ωm = 0.27,
Ωb = 0.0469, ΩΛ = 0.73, ns = 0.95, H0 = 70 km s−1 Mpc,
σ8 = 0.80. This coincides with the MultiDark simulation run
(Prada et al. 2012) that was used to construct the mock VIPERS
catalogues. Magnitudes are in the AB system unless noted. The
absolute magnitudes used were computed under a flat cosmology
with Ωm = 0.30; however we transform all magnitudes to the
Ωm = 0.27 cosmology.

2. VIPERS

The VIMOS Public Extragalactic Redshift Survey (VIPERS) is
an ESO programme on VLT (European Southern Observatory –
Very Large Telescope; Guzzo et al. 2014; Garilli et al. 2014).
The survey targets galaxies for medium resolution spectroscopy
using VIMOS (VIsible Multi-Object Spectrograph; Le Fèvre
et al. 2003) within two regions of the W1 and W4 fields of
the CFHTLS-Wide Survey (Canada-France-Hawaii Telescope
Legacy Wide;Cuillandre et al. 2012). Targets are chosen based
upon colour selection to be in the redshift range 0.5–1.2. The
final expected sky coverage of VIPERS is 24 deg2.

For each galaxy, the B-band rest-frame magnitude was esti-
mated following the Spectral Energy Distribution (SED) fitting
method described in Davidzon et al. (2013) and adopted to de-
fine volume limited samples. The choice of B-band rest-frame is
natural, corresponding to the observed I-band at redshift ∼0.8.
We derived K-corrections from the best-fitting SED templates
using all available photometry including near-UV, optical, and
near-infrared.

2.1. Sample selection

This analysis is based on the VIPERS v5 internal data release
which represents 77% of the final survey. We select sources
from the VIPERS catalogue in the redshift range 0.6–1.0 with
redshift confidence >95% (redshift flags 2,3,4,9). The redshift
distribution is shown in Fig. 1. The sources have estimated rest
frame Buser B-band magnitudes and U − V colours defined in
the Johnson-Cousins-Kron system as described by Fritz et al.
(2014). The total number of sources used in the analysis is
36928. We construct subsamples of galaxies in bins of redshift
(∆z = 0.1), luminosity (∆MB = 0.5), and colour as illustrated
in Fig. 2. We separate red and blue galaxy classes using the cut
defined by Fritz et al. (2014) at (MU − MV )Vega + 0.25z = 1.1 in
the Vega system. In total there are 37 bins, 19 for blue and 18 for
red galaxy subsamples, including those that are not complete,
see the discussion in Sect. 3.3.

2.2. Survey completeness

The VIPERS survey coverage is characterised by an angular
mask (Guzzo et al. 2014). The mask is made up of a mo-
saic of VIMOS pointings, each consisting of four quadrants.
Regions around bright stars and of poor photometric quality in
the CFHTLS photometric catalogue have been removed.
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Fig. 1. VIPERS galaxy number density of the v5 internal release sam-
ple. The curves show the effect of the completeness corrections includ-
ing the spectroscopic success rate (SSR) and target sampling rate (TSR).
Our analysis uses the redshift range 0.6–1.0 (vertical lines).
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Fig. 2. Subsamples of galaxies in colour, absolute magnitude and red-
shift bins. Left: the absolute magnitude-colour plane. The histogram at
top shows the distribution of colour. The sample is divided into blue and
red classes following Fritz et al. (2014) at MU−MV+0.25z = 1.1. Right:
the sample is further binned by redshift and absolute magnitude. The lu-
minosity bins account for the mean evolutionary trend. The faintest lu-
minosity bins are not volume limited and the thick blue and dashed red
curves show the limiting magnitudes for blue and red galaxy classes.

Within an observed quadrant there are many factors includ-
ing the intrinsic source properties, instrument response and ob-
serving conditions that determine the final selection function
(Garilli et al. 2014). The fraction of sources out of the par-
ent photometric sample that are targeted for spectroscopy is re-
ferred to as the target sampling rate (TSR). Among the targeted
sources, not all will give a reliable redshift measurement. We re-
fer to this fraction as the spectroscopic success rate (SSR). The
sampling rate is the product of the TSR and SSR: r = rTSRrSSR.

The arrangement of slits in VIMOS is strongly constrained
since the spectra cannot overlap on the imaging plane (Bottini
et al. 2005). In VIPERS, the result is that the number of tar-
geted sources in a pointing is approximately constant, damping
the galaxy clustering signal on both small and large scales (Pollo
et al. 2005; de la Torre et al. 2013).

As described in Sect. 3, in our data model we bin the galaxies
onto a cubic grid, so it is only necessary to estimate the TSR cor-
rection on the scale of the cubic cell. For 5 h−1 Mpc cells, this
corresponds to 10 arcmin at z = 0.7, which is larger than the
VIMOS quadrants. The TSR is estimated on a fine grid as the
fraction of targets out of the parent sample within a 3 arcmin cir-
cular aperture: Ntarget/Nparent. The fine grid is then down-sampled
to determine the average TSR in each grid cell. The colours in
Fig. 3 indicate the TSR measurements as a function of angular
position (at the positions of observed galaxies).

The spectroscopic success rate is primarily correlated to the
conditions at the time of observation and so varies with pointing.
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TSR over the survey is 48%.
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Fig. 4. The spectroscopic success rate (SSR) quantifies the fraction of targets for which the redshift could be measured with >95% confidence. On
the left we show the mean SSR of each pointing divided by quadrant (7×8 arcmin). The inset histogram gives the cumulative number of quadrants
with SSR below the given value. On the right, we show the SSR as a function of iAB magnitude (solid curves) with an analytic fit (dashed curves).
The sample is divided based on the overall quality of the quadrants quantified by SSR. The quadrants are ranked by mean SSR and the curves are
computed for each decile. The range of SSR and the number of sources in the bin are given in the figure legend.

For a particular source the SSR depends on the apparent flux as
well as the spectral features that are available to make the red-
shift measurement. We find that the primary contribution comes
from the apparent flux, and we quantify the mean SSR, defined
as Nmeasured/Ntarget in each quadrant, as a function of the i band
magnitude (Guzzo et al. 2014; Garilli et al. 2014). The degra-
dation is most severe in poor observing conditions, so we com-
pute the SSR separately according to the quality of the quadrant.
We rank the quadrants based on mean SSR and compute sep-
arately rSSR(mi) in each decile. The SSR is fit with an analytic
form: rSSR(m) = a(1 − ec(m−b)). In the right panel of Fig. 4 we
see that the SSR depends strongly on the quadrant quality. For
the top 10% of quadrants (shown by the red curve in Fig. 4),
the SSR remains >90%, but it drops quickly as quadrant qual-
ity falls. What is important to note here is that the shape of the
rSSR(iAB) curves changes as a function of quadrant quality.

The effect of the weights on the redshift distribution is shown
in Fig. 1.

2.3. Mock catalogues

We use a set of simulated (mock) galaxy catalogues constructed
to match the VIPERS observing strategy. The catalogues are
built on the MultiDark N-body simulation (Prada et al. 2012) us-
ing the Halo Occupation Distribution (HOD) technique. Details
of the construction may be found in (de la Torre et al. 2013;
de la Torre & Peacock 2013).

Galaxies were added to the dark matter halos in the simula-
tion according to a luminosity dependent HOD model. The cor-
relation function and number counts in luminosity bins were set
to match measurements made at 0.5 < z < 1.2 in CFHTLS,
VVDS and earlier releases of VIPERS. Each mock galaxy is
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characterised by its angular coordinate, comoving distance, ob-
served redshift including its errors and an absolute magnitude in
the B band.

We partition the mock catalogues into bins of redshift and
luminosity, but not in colour, as we do for the VPERS data. The
step size in redshift and luminosity are ∆z = 0.1 and ∆MB = 0.2
over the redshift range 0.6 < z < 1.0. We have 46 bins including
those bins that are not complete owing to the apparent flux limit.

The mock galaxies match the number density of the VIPERS
observations, but do not include the slit placement constraints
that we correct in the data with the TSR weights. The catalogues
do not simulate the spectroscopic sampling rate.

3. Data model

3.1. Galaxy number counts

We overlay a three-dimensional cartesian grid on the survey. The
number of galaxies in a given sample observed within a cell in-
dexed by i is related to an underlying continuous galaxy density
field δG by

Ni = N̄wi(1 + δG,i) + ǫi, (2)

where wi is the spatial selection function and N̄i is the mean den-
sity providing the normalisation. The stochastic nature of galaxy
counts is captured by the random variable ǫi and is dominated
by Poisson noise except in the highest density peaks (Di Porto
et al. 2014). The cells are defined in comoving redshift-space
coordinates and we adopt a fiducial cosmology to define the re-
lationship between redshift and comoving distance.

The selection function w in Eq. (2) gives the likelihood of
observing a galaxy at a given grid point. It accounts for the an-
gular geometry of the survey, sampling rate and redshift distri-
bution. In this analysis we separate the angular and line-of-sight
components. As described in Sect. 5.1, the angular dependence
is determined from the survey mask and TSR while the redshift
distribution is computed assuming the luminosity function and
apparent flux limit for the given subsample of galaxies.

The expected number of galaxies in a cell is given by the
product of N̄ and the selection function, giving

〈Ni〉 = N̄wi. (3)

The selection function described can account for spatial varia-
tions but cannot describe sampling dependencies on galaxy type
or apparent flux. For VIPERS data we will up-weight galaxies
based on the inverse SSR depending on quadrant and apparent
i band magnitude. These weights are only indirectly correlated
with the density field so they result in an amplification of the shot
noise level. The SSR weight of a galaxy is wSSR and the noise
amplification factor is α = 〈wSSR〉 averaged over all galaxies in
the subsample. Therefore, in Eq. (2) Ni represents the weighted
count of galaxies and, consequently, the variance of the stochas-
tic term, σ2

ǫ , is boosted to ασ2
ǫ .

In this analysis we discretise the galaxy field onto a coarse
spatial grid as well as onto a finite grid of Fourier modes. This
process introduces an error in the density field arising from the
aliasing of structures: small-scale structures with spatial fre-
quencies higher than the Nyquist frequency become imprinted
on larger scales (Hockney & Eastwood 1988). The effect may
be corrected for in the power spectrum by assuming the spec-
tral shape above the Nyquist frequency (Jing 2005). However,
to accurately reconstruct the density field without making such
assumptions, we may use a mass-assignment scheme or anti-
aliasing filter discussed in Appendix A. The smoothing effect

of mass-assignment schemes introduces a convolution in Eq. (2)
which invalidates the simple count model. An alternative is to
use the super-sampling method of Jasche et al. (2009) that ap-
proximates the ideal anti-aliasing filter and does not damp small-
scale power. Since we desire a compact window in both configu-
ration and Fourier space, we adapt this technique with a soft cut
as described in Appendix A. This approach reduces the aliased
signal to the level of the triangle-shaped-cell scheme while pre-
serving small-scale power to k ∼ 0.7kNyquist.

The convolution introduced by the anti-aliasing filter modi-
fies the noise properties such that the Poisson expectation, σ2

i
=

N̄iwi, cannot be assumed. Instead we use a re-scaled Poisson
variance characterised by the factor νi ≡ σ2

i
/N̄. As described

in Sect. 5, the factor may be estimated in a Monte Carlo fashion
given the mask and anti-aliasing filter.

A cell partially cut by the mask will become strongly coupled
with its neighbour through the anti-aliasing filter. In practice we
neglect the additional off-diagonal cell-cell contributions in the
noise covariance matrix. However, we found that it is necessary
to regularise the noise matrix by increasing the noise level to
achieve stable results. We set a lower limit on the cell variance
through a parameter νthreshold such that the scaled shot noise has a
floor set by νi ← max(νthreshold, νi). The procedure is identically
applied both to mock and real data.

3.2. Galaxy bias

We assume a constant linear biasing model such that

δG,i = bD(zi)δi, (4)

where zi is the redshift of the cell indexed by i. The bias factor b
depends on the luminosity and colour of the galaxy subsample.
We give explicitly the growth of matter fluctuations with time
according to the linear growth factor D(z) ≡ D(z)/D(zref) with
δ(z) = δ(zref)D(z). For the VIPERS sample the reference redshift
is set to zref = 0.7. Since VIPERS covers an extended redshift
range this factor brings large-scale density modes to a common
epoch.

3.3. Number density

The number density of galaxies in a luminosity bin is given by
the integral of the luminosity function:

n(z) =

∫ Mfaint(z)

Mbright

n(M, z)dM. (5)

We parameterise the luminosity function using the Schechter
function (Schechter 1976) in terms of magnitudes and the pa-
rameters (φ⋆,M⋆, α):

n(M) = 0.4 ln 10 φ⋆
(

100.4(M⋆−M)
)α+1

exp
(

100.4(M⋆−M)
)

. (6)

The characteristic magnitude evolves as M⋆(z) = M⋆(0) + Ez
with E ≈ −1 for red galaxies in VIPERS (Fritz et al. 2014)
confirming the findings of previous studies at moderate redshift
(Ilbert et al. 2005; Zucca et al. 2009).

The number density observed is further reduced by the sur-
vey completeness. In VIPERS, galaxies are targeted to an appar-
ent magnitude limit of mlim = 22.5 in the iAB photometric band.
This sets an absolute magnitude limit for a given class of galaxy

Mlimit(z) = mlim − Dm(z) − K(z), (7)
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where Dm(z) is the distance modulus which depends only on the
background cosmology and K is the K-correction term which
depends on the particular type of galaxy targeted. The absolute
magnitudes were computed for each galaxy by fitting spectral
energy distribution templates to broadband photometry as de-
scribed by Davidzon et al. (2013) and from the absolute magni-
tudes we infer the K-corrections. We parameterise the trend of
K-correction with redshift asK(z) = K0+∆K(z). The value ofK0

is estimated from the median value of galaxies within a given
subsample while ∆K(z) is a polynomial fit with the following
coefficients, different for red and blue galaxy types:

∆K,blue(z) = 1.784(z − 0.7)2 + 0.440(z − 0.7) − 0.678 (8)

∆K,red(z) = 2.144(z − 0.7)2 + 1.745(z − 0.7) − 0.720. (9)

Using this parameterisation the inferred magnitude limits cor-
responding to 50% completeness are indicated in Fig. 2 for
the blue and red samples by the solid and dashed lines. For
mock samples, the K-correction term and its evolution are fixed
to Kmock = z − 1.3.

With these ingredients we model the redshift distribution of
each galaxy subsample by integrating the luminosity function
with Eqs. (7) and (5). We leave the mean density of each subsam-
ple free to set the normalisation of the redshift distribution. We
then take the shape given by the Schechter function to interpo-
late the luminosity function across the bin. The parameters M⋆
and α in each colour and redshift bin are fixed to the values mea-
sured in VIPERS (Fritz et al. 2014). Since the precise luminosity
evolution is not known, the evolution term, E, is allowed to vary
as a function of colour and redshift. This gives a characteristic
magnitude M⋆(z) = M⋆(zref)+E(z−zref), where zref is taken to be
the midpoint of the redshift bin. Changing E modifies the shape
of the redshift distribution.

3.4. Power spectrum

The matter power spectrum in real space P(k) = 〈|δk |2〉 is as-
sumed to be isotropic. Seen in redshift-space, it is distorted along
the line-of-sight direction (Hamilton 1998). We model the signal
on the cartesian Fourier grid as

S (k, µ; β, σv, σobs) = A

(

1 + βµ2
)2

1 + k2
los
σ2
v

e−
k2
los
σ2

obs
2 B2(kx, ky, kz)P(k), (10)

where µ ≡ klos/k and k =
√

k2
x + k2

y + k2
z . The line-of-sight di-

rection is aligned with the grid such that klos = kz taking the
plane-parallel approximation.

The coherent motions of galaxies on large scales are de-
scribed by the Kaiser (1987) factor with β = f /bg, where
the growth rate in ΛCDM is f (z) = d log D/d log a. On small
scales, velocities randomise and may be modelled by an ex-
ponential pairwise velocity dispersion giving a Lorentzian pro-
file in Fourier space which we refer to as the dispersion model
(Ballinger et al. 1996). The velocity dispersion term, σv in
Eq. (10), has units of h−1 Mpc. The conversion to velocity units

is H(z)/(1 + z)/
√

2 ≈ 60.0 h Mpc−1 km s−1, which is nearly
constant over the redshift range of interest. We add a Gaussian
term along the line of sight to characterise redshift measurement
errors where σobs = σcz/H(z) and σcz is the redshift error. For
VIPERS the estimated redshift error is σcz = 141(1 + z) km s−1

(Guzzo et al. 2014) and σobs = 1.67 h−1 Mpc and is nearly
constant over the redshift range 0.6–1.0.

Table 1. Accounting of the free parameters in the data model.

Parameter Symbol Dimension

Overdensity field δ
2 × 72 × 16 × 172

(5 h−1 Mpc cubic cells)

Power spectrum P 109
Distortion factor β 1
Velocity dispersion σv 1
Galaxy bias b 37 (19 blue, 18 red)

Mean number density N̄ 37
Luminosity evolution E 8

The factorB(kx, ky, kz) accounts for the cell window function
arising from the anti-aliasing filter and is given by Eq. (A.2).
In this analysis the absolute amplitude of the power spectrum
is not constrained. So we set the amplitude A in Eq. (10)
to fix σ8 = 0.8, the variance computed on a scale of R =
8 h−1 Mpc integrated to the Nyquist frequency.

We ignore geometric distortions arising from the choice of
the fiducial cosmology (Alcock & Paczynski 1979). The result-
ing bias is not significant when compared with the statistical
uncertainties of the VIPERS redshift-space clustering measure-
ments (de la Torre et al. 2013). However, when carrying out a
model test, we may rescale the density field and two point statis-
tics to transform from the fiducial to the test cosmology as car-
ried out for the VIPERS power spectrum analysis by Rota et al.
(in prep.), but this is not done here.

4. Gibbs sampler

We present a brief overview of the Gibbs sampler. Since our im-
plementation differs from that of Jasche & Wandelt (2013b) we
provide a detailed description in Appendix B. The full parameter
set introduced in the previous section is summarised in Table 1.
We use the Gibbs sampling method to sample from the joint pos-
terior of the parameter set. This is performed by iteratively draw-
ing samples from each conditional probability distribution in the
following steps (where←indicates that a sample is drawn from
the given distribution):

1. generate δs+1 ← p(δ|N̄ s, bs, Ps, βs, σs
v ,N);

2. generate Ps+1 ← p(P|δs+1, N̄ s, bs, βs, σs
v ,N);

3. normalise power spectrum Ps+1;
4. generate βs+1, σs+1

v ← p(β, σv|Ps+1, δs+1, N̄ s, bs,N);
5. generate N̄ s+1 ← p(N̄ |bs+1, Ps+1, βs+1, σs+1

v , δ
s+1,N);

6. generate Es+1 ← p(E|N̄ s, bs+1, Ps+1, βs+1, σs+1
v , δ

s+1,N);
7. generate bs+1 ← p(b|Ps+1, βs+1, σs+1

v , δ
s+1, N̄ s+1,N).

These steps are repeated forming a Markov chain and after an
initial burn-in period we can expect that the samples are repre-
sentative of the joint posterior distribution.

In the first step, we sample from the conditional probabil-
ity distribution for the density field in a two-stage procedure.
First, the Wiener filter is used to compute the maximum a priori
field δWF (Kitaura et al. 2010). The Wiener filter solution is a
smoothed field that gives an underestimate of the true power. To
generate a realisation of the density field a random component
that is uncorrelated with the observations δrandom is added (Jewell
et al. 2004). The final field is thus the sum δ = δWF + δrandom.

After constructing a realisation of the density field, the sec-
ond step is to sample the power spectrum. We put a Gaussian
prior on the first bin at k < 0.01 h Mpc−1setting the mean and
variance to the fiducial value and sample variance expectation.
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This aids the stability of the chain. A uniform prior is used for
the bins at k > 0.01 h Mpc−1. We use two approaches to sample
the power spectrum detailed in Appendix B.2. First, we draw
samples from the inverse-gamma distribution, see e.g. Jasche
et al. (2010b); however, this produces very small steps in the
low signal-to-noise regime and so can be inefficient at small
scales. Therefore, on alternative steps we carry out a Metropolis-
Hastings routine to draw samples of the power spectrum accord-
ing to the likelihood, Eq. (B.2). We find consistent sampling of
the power spectrum using the two methods.

Since we cannot constrain the absolute normalisation of the
power spectrum, we normalise to the desired value of σ8. We
then draw the redshift-space distortion parameters β, σv which
are independent of the power spectrum amplitude.

Next, we sample from the mean density conditional prob-
ability distribution for each galaxy sample which includes the
evolution factor E. Here we use a Poisson distribution, as
described in Appendix B.4.

Finally we sample from the bias conditional probability dis-
tribution for each galaxy sample. This distribution is Gaussian
for the bias parameter (see Appendix B.3). In this method, the
bias is computed on the redshift-space grid, which in our case
has a resolution of 5 h−1 Mpc. For physical interpretation it is
interesting to estimate the bias averaged on larger scales. So,
in estimating the bias we first down-grade the grid resolution
by a factor of two, such that the bias is averaged over a scale
of 10 h−1 Mpc. We impose a uniform prior for the bias values
of 0.5 < b < 4.

5. Application to VIPERS

5.1. Set-up

The data and mock catalogues are processed similarly, although
the construction of galaxy subsamples differs. The mock cata-
logues do not include the inhomogeneous incompleteness cor-
rected for in the data by the SSR and TSR factors. The uncer-
tainties introduced by these corrections are negligible compared
with statistical uncertainties in VIPERS.

1. The two survey fields, W1 and W4 are separately embedded
into rectangular boxes. The grids have dimensions 72× 16×
172 cells and each cubic cell has comoving size 5 h−1 Mpc.
We align the grid such that at the field centre the three axes
correspond to the right ascension, declination and line-of-
sight directions. The co-moving coordinates are computed
using the fiducial cosmological model. In the real catalogue
alone, galaxies are up-weighted by the inverse SSR depend-
ing on quadrant and apparent i-band magnitude.

2. We compute the density on the grid using the anti-aliasing
filter based on the super-sampling method proposed by
Jasche et al. (2009) with a soft k-space cut-off as described
in Appendix A.

3. The angular (α, δ) and radial (z) components of the selection
function are computed separately on the grid: w(αi, δi, zi) =
w(αi, δi)w(zi).

4. For the angular component, we generate a uniform grid of
test points that over-sample the grid by a factor of 8 and
reject points outside the survey angular mask. For VIPERS
data the remaining are down-sampled by the TSR. The points
are then assigned to the grid points using the anti-aliasing
mass-assignment scheme. The selection function wi is then
given by the normalised density of test points on the grid.

5. The radial component of the selection function is estimated
in bins of redshift, luminosity, and colour. We estimate the

median K-correction term for galaxies within each bin and
use Eq. (5) to compute the unnormalised N(z).

6. We estimate the generalised shot noise variance νi ≡ σ2
i
/N̄i

which depends on the mask through the anti-aliasing filter in
Monte Carlo fashion. We generate a set of 1000 shot noise
maps by distributing random points over the survey volume.
For VIPERS data the points are down-sampled by TSR. We
then compute the variance for each cell of the map over the
1000 realisations. To regularise the noise covariance matrix,
a threshold is set νi = max(νthresh, νi), where νthresh = 0.3 for
mocks and 0.15 for data to account for TSR.

With the galaxy number density map, selection function and
noise map, we have all the components of the data model
required to estimate the posterior probability distribution in
Eq. (1). To sample this probability distribution we run the Gibbs
sampler Markov chain for 2000 steps and, allowing for a burn-
in period, begin the analysis from step 1000. The convergence
properties and justification for the burn-in period are shown in
Appendix C. For the VIPERS data we ran seven independent
chains for 2000 steps each providing 7000 post-burn-in samples
for analysis.

Taking the variance of the Markov chain gives us an internal
error estimate on the parameters. The runs on mock catalogues
show that the chain variance corresponds to the expected sample
variance for the power spectrum. However, this is not necessarily
true for the other statistics. For instance the luminosity function
quantifies the distribution of observed galaxies that remains fixed
in the chain. It is only indirectly dependent on the underlying
density.

5.2. Density field

The density field taken from a single step (1500) in the Markov
chain is shown in Fig. 5. It represents the application of the
Wiener filter on a bias-weighted combination of the galaxy sub-
samples. The reconstruction is based on the redshift-space dis-
tortion model and so the resulting field is anisotropic and is
characterised by effective redshift-space distortion parameters
averaged over the galaxy samples.

The result of the Wiener filter is an adaptively smoothed
field that extrapolates structures over the correlation length of a
few megaparsecs. To build a full realisation of the structures we
add a Gaussian constrained realisation that fills in the gaps and
gives the full variance. The structures outside the survey bound-
ary are generated from a random Gaussian realisation although
the phases are properly aligned at the boundary. The true galaxy
density field on scales of 5 h Mpc−1 is far from Gaussian and the
difference is visible by eye.

In Fig. 5 we can recognise the cosmic web of structures
including knots, filaments and void regions. The structures are
richest where the sampling is highest at lower redshift. At red-
shift z > 0.8 we see fewer coherent structures and the contri-
bution from the constrained Gaussian realisation is larger. Each
step of the Markov chain gives a reconstruction of the field with
different realisations of noise and large-scale modes. Once the
chain has passed the burn-in period (see Appendix C), we can
consider these realisations to represent Gaussian perturbations
around the observed galaxy field.

5.3. Redshift-space power spectrum

The galaxy power spectrum in redshift space is parameterised
in terms of the real-space matter power spectrum, bias, and
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Fig. 5. VIPERS cone diagrams for the fields W1 (top) and W4 (bottom). The left panels show the redshift-space positions of observed galaxies.
The marker colour indicates the blue or red colour class and the marker size scales with B-band luminosity. The depth of the slice is 10 h−1 Mpc.
The orange line traces the field boundaries cut in the redshift direction at 0.6 < z < 1.0. At right we show a slice of the density field taken from
one step in the Markov chain. It represents the anisotropic Wiener reconstruction from the weighted combination of galaxy tracers. The field is
filled with a constrained Gaussian realisation. The field has been smoothed with a Gaussian kernel with a full width half maximum of 10 h−1 Mpc.
The colour scale gives the over-density value.
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Fig. 6. Constraints on the real-space power spectrum. The lower panel shows the relative difference with the fiducial model. The black dots give
our estimates of the binned real-space power spectrum taken from the median of the Markov chain. Overplotted is the fiducial model adopted
in this study (black dashed curve). We find agreement with the best-fit model using VIPERS data by Rota et al. (in prep.) (purple dot-dashed
curve). The pink dashed curve is the mean of the power spectrum estimates taken from the 27 mock catalogues. We present three error estimates:
the internal chain variance determined from VIPERS data (grey steps), the chain variance determined from mock catalogues (blue steps) and the
variance of the individual estimates from the 27 mock catalogues (red steps). The error corridors show 70% confidence intervals.

redshift-space distortion factors (Eq. (10)). We bin the power
spectrum linearly with bin size ∆k = 0.01 giving 109 bins. The
redshift-space distortion parameters are fit to k < 0.4 h Mpc−1.
This limit corresponds to kσv ≈ 1 where we can expect the
dispersion model to break down.

The Markov chain provides joint samples of the parame-
ters. In Fig. 6 we show the median over the power spectrum
chain (black dots). The confidence cooridor gives the 1σ con-
fidence interval estimated from the chain variance (grey steps).

We find good agreement with the model computed with CLASS
and Halofit (black dashed) with Ωm = 0.27 (Lesgourgues 2011;
Smith et al. 2003; Takahashi et al. 2012). The best-fitting model
determined by Rota et al. (in prep.) has Ωm = 0.272 ± .03
(over-plotted with purple dot-dashed curve).

On small scales k > 0.45 h Mpc−1 (0.75×Nyquist frequency)
the power drops. This is due to neglecting correlations between
cells that arise because of the anti-aliasing filter. On large scales,
there is a dip in power at k = 0.05 h Mpc−1seen in both mock
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Table 2. Constraints on redshift-space distortion parameters.

β σβ,chain σβ,mock beff σb,chain σb,mock fσ8 σ f ,chain σ f ,mock

Mock 0.47 −0.12/+0.09 0.09 1.54 −0.04/+0.04 0.03 0.46 +0.09/−0.12 0.08

VIPERS 0.41 −0.08/+0.07 1.44 −0.03/+0.02 0.38 −0.07/+0.06

Notes. We give the 68% confidence intervals from the chains and the standard deviation among the 26 mock catalogues. The fiducial value is
fσ8(z = 0.7) = 0.45.

catalogues and data, although it biases the estimate only at the
1σ level. Scales at k < 0.06 h Mpc−1 are only measured in the
line-of-sight direction with VIPERS so the inability to recon-
struct them properly without a prior constraint is not surprising.

The median values we find for the redshift-space distortion
parameters are βVIPERS = 0.41 and βmock = 0.47. The within-
chain variance is σchain = (−0.12,+0.10) (68% confidence inter-
val), while the scatter of the 26 mocks gives standard deviation
σmock = 0.09.

We compute the growth rate through the relation

fσ8(z) = βσ8,galaxy(z), (11)

where σ8,galaxy = beffσ8. In this analysis we have fixed the am-
plitude of the matter power spectrum at redshift z = 0.7 with
σ8(z = 0.7) = 0.643 which corresponds to σ8 = 0.8 at z = 0 in
the fiducial cosmology.

We compute the effective galaxy bias as the
number-weighted average over the galaxy samples,

b2
eff =

∑

l,i N̄lwl,ib
2
l

∑

l,i N̄lwl,i

, (12)

where the sums are over the galaxy subsamples and selection
function grids.

We summarise the constraints on the growth rate in Table 2.
We find ( fσ8)VIPERS = 0.38+0.06

−0.07
and ( fσ8)mock = 0.46+0.09

−0.12
at

z = 0.7 where we quote the chain variance. The scatter between
the mocks gives a standard deviation σ f ,mock = 0.08. Thus these
constraints on the growth rate are in agreement with the VIPERS
correlation function measurement by de la Torre et al. (2013).
There, the error was 16% on the growth rate fσ8 = 0.48 at z =
0.8. In this work we find an error of 18%. We attribute the higher
error in this analysis to the fact that we marginalise over the real-
space power spectrum, while in the previous analysis it was fixed
to a fiducial cosmology.

The correlations between a subset of the power spectrum and
redshift-space distortion parameters are shown in Fig. 7. The star
symbols mark the median values of the parameters estimated
from the VIPERS Markov chain while the filled contours give
the 70% and 90% confidence intervals. The median value and
marginalised 70% uncertainty on each parameter are labelled.
We find that fσ8 (18% relative error) is better constrained than β
(20% error). This is due to the anti-correlation between beff and
βwith correlation coefficient ρ = −0.58. These correlations arise
from the specific parameterisation adopted and would be modi-
fied under a different data model.

The black dots in Fig. 7 represent the median values esti-
mated from individual mock catalogues. We find that the value
of the galaxy bias is different within the mocks (beff = 1.55)
and VIPERS (beff = 1.44). The bias of the mock galaxies
is determined by the luminosity-dependent HOD prescription
(de la Torre et al. 2013) and so the minor difference from real
data is not unexpected. Accounting for the difference in bias, we
find excellent agreement between the distribution of mocks and
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Fig. 7. Degeneracies between RSD parameters β, σv, effective bias and
the power spectrum at k = 0.4 h Mpc−1. The shaded regions mark the
68% and 95% confidence intervals from VIPERS chain and the star
symbols mark the mean value. The points give the distribution of mean
values derived from mock catalogues. The histograms along the diag-
onal give the marginalised distributions of each parameter chain. The
filled histogram gives the distribution from the VIPERS chain, while
the solid line is the distribution of mean values derived from the mock
catalogues.

the parameters estimated from real data. The similarity of the
probability distribution function shapes also gives us confidence
in the analysis method and error estimates. Furthermore, since
the mocks do not include many of the selection effects present in
the data the agreement suggests that these sources of systematic
uncertainties do not influence our conclusions.

5.4. Colour and luminosity dependent galaxy bias

We compute the galaxy bias from the variance of the galaxy
counts on the grid. However, we first down-sample the grid
by a factor of two such that the bias is computed on a scale
of 10 h−1 Mpc.

In Fig. 8 we show the median bias values of the Markov
chain and the confidence intervals are given by the chain vari-
ance. The bias is computed in bins of redshift, luminosity, and
colour. We find a colour bimodality with red galaxies more
strongly biased than blue. This corresponds to the well-known
galaxy morphology-density relationship that early type galax-
ies are predominantly found in high density environments (e.g.
Cucciati et al. 2006; Dressler 1980; Davis & Geller 1976).
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Fig. 8. VIPERS galaxy bias parameters in redshift, luminosity, and
colour bins. A colour bimodality is seen in each redshift bin. The trend
with luminosity is most striking in the lower redshift bins for both blue
and red galaxies.

Similarly, we expect to find that galaxy bias increases with
galaxy luminosity since more massive and more luminous galax-
ies tend to form in more massive dark matter clumps (Coupon
et al. 2012).

Previous studies with VIPERS data estimated the galaxy bias
of the full galaxy sample as a function of luminosity and redshift.
Marulli et al. (2013) measured the projected galaxy correlation
function in luminosity and redshift bins to constrain the mean
bias averaged over scales 5–20 h−1 Mpc. Di Porto et al. (2014)
modelled the counts-in-cells probability distribution function to
estimate the linear bias. To compare our estimate of the galaxy
bias with these previous results we construct luminosity thresh-
old samples counting both red and blue galaxies. We cross-
correlate these number density maps with the Wiener density
field from the core analysis and estimate the measurement un-
certainty from the chain variance. The resulting bias values are
shown by the markers with error bars in Fig. 9. We find excel-
lent agreement with the previous analyses, although our redshift
bins differ. The bias values from Di Porto et al. (2014) have
been taken on a scale R = 8 h−1 Mpc while those of Marulli
et al. (2013) are sensitive to smaller scales. The disagreement
at z > 0.9 may indicate that the bias of luminous galaxies is
scale dependent at high redshifts probed differently by the three
studies.

5.5. Luminosity function

In Fig. 10 we show the derived luminosity function based on the
mean galaxy number density (dots with error bars) for different
galaxy types. We compare the result to the analysis from Fritz
et al. (2014) based on the Sandage-Tammann-Yahil (STY, Ilbert
et al. 2005; Sandage et al. 1979) estimator (dashed curves). We
can expect to find a difference in the two estimates arising from
how the galaxy bias is treated. The STY estimate is designed to
be independent of the underlying density field under the approx-
imation that the galaxy luminosity is uncorrelated with density.
A strong luminosity dependence of the bias can systematically
tilt the inferred luminosity function (Smith 2012; Cole 2011).
The agreement between our analysis and the STY measurement

indicates that the VIPERS volume is large enough such that the
sample variance does not significantly alter the amplitude and
that any effects due to the luminosity dependence of bias are
weak.

5.6. Parameter covariance

We estimate the covariance of the statistics with the Markov
chain. Figure 11 shows the normalised correlation matrix deter-
mined in our analysis,

ρ2
i j =

Ci j

σiσ j

· (13)

The bias and mean number density parameters are ordered first
by luminosity and colour and then by redshift bin. The appear-
ance of blocks in the matrix indicates that within redshift bins the
statistics are strongly correlated. We also find that bias and mean
density are anti-correlated, that is, increasing bias necessitates
decreasing mean density to preserve the same fluctuation. The
bias and mean density parameters are weakly correlated with the
power spectrum measurement.

The bins of the power spectrum (spacing ∆k = 0.01 h Mpc−1)
show independence on large scales, as is expected for the
Gaussian data model, but they become correlated at k >
0.3 h Mpc−1. The correlations arise from the redshift-space
parametrisation that couples the amplitude of the power spec-
trum to β and σv. The upper right square in the figure represents
the nearly 100% correlation between these two parameters.

6. Conclusions

Using VIPERS we have demonstrated a method of reconstruct-
ing the galaxy density field jointly with the redshift-space power
spectrum, galaxy biasing function and galaxy luminosity func-
tion with minimal priors on these parameters. The Bayesian
framework naturally accounts for the correlations between these
observables. We adopt a likelihood function for the galaxy num-
ber counts that is given by a multivariate Gaussian and set a
Gaussian prior on the density field. The solution that maximises
the posterior distribution is given by the classical Wiener filter.
To sample from the posterior distribution we add a Gaussian
constrained realisation. Incorporating this density field estima-
tor within a Gibbs sampler, we jointly sample the full posterior
distribution including the power spectrum, bias and luminos-
ity function parameters. We find encouraging results by using a
multivariate Gaussian model for the likelihood and prior distri-
butions, although more theoretically motivated descriptions may
be used (Kitaura et al. 2012a; Jasche & Wandelt 2013a).

There are clear gains when jointly estimating correlated pa-
rameters. For instance the galaxy colour-density relation can
be used to improve estimates of the density field. Furthermore
it is well known that bias weighting galaxies when estimating
the power spectrum leads to improved accuracy (Percival et al.
2004) and greater statistical power (Cai et al. 2011).

Moreover, the Bayesian framework provides a recipe for
propagating uncertainties in the measurement, incorporating
prior knowledge and constraints from the data, and it guaran-
tees reliable error estimates. In VIPERS we account for inho-
mogeneous sampling and detailed angular masks. We correct
for the selection function of VIPERS by up-weighting galaxies
according to the magnitude-dependent spectroscopic sampling
rate, while including the target sampling rate in the angular de-
pendence of the survey selection function. These corrections are
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Fig. 9. Galaxy bias measured from the full (red and blue combined) VIPERS galaxy sample in luminosity threshold bins. Reference data are
taken from the VIPERS projected correlation function analysis (Marulli et al. 2013) and counts-in-cells probability distribution function analysis
(Di Porto et al. 2014). We note that the redshift ranges differ.
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Fig. 10. Galaxy luminosity function inferred from the mean density
Markov chain for red, blue and combined samples in redshift bins.
Markers are plotted at the median value of the chain and the height
of the rectangles indicates the 68% confidence interval. The Schechter
function fits from Fritz et al. (2014) are overplotted for comparison.

fixed in our analysis, although for upcoming surveys it will be
important to propagate the uncertainties in the selection function
to the data products.

Investigating the covariances between parameters, we find
strong correlations between galaxy bias and number density pa-
rameters within a given redshift bin. This is not unexpected since
both these parameters depend on the one-point probability dis-
tribution function of the density field. On the other hand the
correlation with the power spectrum is weak.

Our estimate of the power spectrum is effectively decon-
volved from the survey window function (see Rota et al.,
in prep.) and we find that the covariance of the power spectrum
bins is diagonal on large scales as expected from an unmasked
Gaussian random field. On small scales, k > 0.3 h Mpc−1 we find
significant correlations between power spectrum bins. On these
scales correlations are expected due to the physical processes
of structure formation; however, in this case the correlations

,

1.0

0.5

0.0

0.5

1.0

Fig. 11. Normalised correlation matrix of the parameters computed
from the VIPERS Markov chain. The blocks represent the mean den-
sity, galaxy bias, power spectrum and RSD parameters. The structure in
the covariance arises from the data model parameterisation. The values
of luminosity and colour dependencies of galaxy bias and mean den-
sity within a redshift bin are strongly correlated, while they are only
weakly correlated across redshift. On large scales the power spectrum
covariance is diagonal, but at k > 0.3 h Mpc−1the bins become corre-
lated owing to coupling of the small-scale power with the redshift-space
distortion parameters.

arise from the parameterisation of the data model. There is a
degeneracy between the redshift-space distortion factors β and
σv and the amplitude of the power spectrum on small scales.
Nevertheless, the error estimate given by the Gibbs sampler
closely matches the expectation of cosmic variance estimated
from mock catalogues.

Our results are in good agreement with previous VIPERS
measurements. We find values of the redshift-space distortion
factor β that are consistent with the correlation function analy-
sis (de la Torre et al. 2013). Our values of luminosity dependent
bias follow the trends expected from Marulli et al. (2013) and
Di Porto et al. (2014) at z < 0.9. We further estimate the galaxy
bias for colour samples finding a more pronounced dependence
on luminosity for red galaxies than blue. The luminosity func-
tion we infer from the mean number density matches well with
those found by Fritz et al. (2014) using the STY estimator.
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In our analysis we have left the power spectrum, galaxy
bias and number density without parameterisation. Despite this
freedom, we find that the resulting errors in the key quantities
such as the distortion parameter are only marginally larger than
those given by traditional methods which can be strongly depen-
dent on parameterisation.

Our methodology can be extended to jointly analyse multi-
ple datasets in a self-consistent manner. A particular challenge
when considering multiple surveys is dealing with the differ-
ences in angular coverage, sampling rates and galaxy types. The
Bayesian approach provides a method of homogenising datasets
allowing for consistent measurements.

For future studies with VIPERS we can consider the joint
analysis with the VVDS-Wide spectroscopic survey (Garilli
et al. 2008). Although the two surveys partially overlap, the se-
lection function and sampling rates differ prohibiting their di-
rect combination. However, through the Bayesian framework,
the joint analysis becomes natural. We may further add con-
straints given by the density reconstructions in the gaps by the
ZADE algorithm (Cucciati et al. 2014) or photometric redshift
samples from the full CFHTLS Wide fields (Granett et al. 2012;
Coupon et al. 2012). Sheer measurements in these fields can
provide additional constraints on the underlying matter density
providing a powerful probe in combination (Coupon et al. 2015).
For upcoming surveys, this strategy will guarantee a complete
and self-consistent picture of the Universe.
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Appendix A: Anti-aliasing filter

Binning the continuous galaxy density field onto a grid may
be characterised as a smoothing operation followed by discrete
sampling (Hockney & Eastwood 1988). In the simplest ap-
proach, if particles are assigned to the nearest grid point (NGP)
the smoothing kernel W(x) has a top-hat shape with the dimen-
sion of the grid cell. More extended kernels can be chosen that
distribute the weight of the particle over multiple cells. Common
assignment schemes include cloud-in-cell (CIC) and triangle-
shaped-cell (TSC) which correspond to iterative smoothing op-
erations with the same top-hat filter. Smoothing the field damps
small scale power, but better localises the signal in k-space
which is beneficial in Fourier analyses.

A consequence of using the fast Fourier transform (FFT) al-
gorithm is that the signal must be discretised onto a finite number
of wave modes or equivalently that periodic boundary conditions
are imposed. The observed power is thus a sum of all harmonics
of the fundamental wavelength which are known as aliases (Jing
2005; Hockney & Eastwood 1988):

P′(k) =
∑

n

|W(k + 2kNn)|2P(k + 2kNn). (A.1)

As long as the signal is sufficiently well sampled and band-
limited, meaning that there is no power above the Nyquist fre-
quency, the signal may be recovered without error. However,
most signals of interest are not band limited, and so after sam-
pling onto the grid, the harmonics overlap and the signal cannot
be exactly recovered.

The ideal anti-aliasing filter in k-space is the top-hat that cuts
all power above the Nyquist frequency. However, the signal can-
not be localised both in k-space and in position-space and a sharp
cut in k-space will distribute the mass of a particle over the entire
grid.

A practical implementation of the ideal filter was developed
by Jasche et al. (2009). The method involves first super-sampling
the field by assigning particles to a grid with resolution higher
than the target grid. Transforming to Fourier space via FFT, the
high resolution grid is filtered setting to 0 all modes above the
target Nyquist frequency. Finally the grid is transformed back to
position-space and down sampled to the target grid. The tech-
nique is very efficient with the additional trick that the down-
sampling step can be carried out by the inverse FFT by cutting
and reshaping the Fourier grid.

The algorithm of Jasche et al. (2009) is limited only by the
memory needed to apply the FFT on the high resolution grid,
so it is competitive with common position-space cell assignment
schemes. However, the sharp cut in k-space leads to an extended,
oscillatory distribution in position-space. Such a decentralised
and unphysical cell assignment is undesirable for estimation of
the density field.

An alternative approach was taken by Cui et al. (2008) who
introduce the use of Daubechies wavelets to approximate the
ideal filter while keeping compactness in position-space. We do
not consider this technique here because the centre of mass of
the wavelets adopted is offset from the particle position and so
they are not well suited for estimation of the density field.

As a compromise, we test a smooth cutoff with a k-space
filter with the form:

W(kx, ky, kz) =
∏

i= (x,y,z)

1

1 + |ki/kN |α
· (A.2)

The parameter α adjusts the sharpness of the cut: we test α = 100
(Sup hard) and α = 8 (Sup soft).
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Fig. A.1. Top panel: an illustration of the mass-assignment kernels in
two-dimensions: a hard k-space cut (Sup hard), a soft k-space cut
(Sup soft), nearest-grid-point (NGP) and cloud-in-cell (CIC). The lower
three panels give a comparison of the kernel functions (in one dimen-
sion) for various mass assignment schemes. Top: the kernels in Fourier
space. The Nyquist frequency is 1 pixel−1 on the scale. Middle: the ker-
nels in position space. Bottom: the cumulative power of each kernel in
position space.

Figure A.1 shows the comparison of the mass assignment
schemes including the super-sampling technique. We see that
the hard cut (Sup hard) leads to ringing in position-space (the
transform is the sinc function). The amplitude is significantly
reduced when the parameter α = 8 (Sup soft) and the first
peak is more compact than CIC. In k-space, the filter remains
nearly 1 to ∼0.7kN while NGP, CIC and TSC functions are drop-
ping. Beyond the Nyquist frequency, the soft cut-off kernel drops
faster than TSC without oscillatory behaviour. The bottom panel

of A.1 shows the cumulative power S (R) =
∫ R

0
|W(r)|2dr. We

see that soft-cut off scheme has compactness similar to CIC and
NGP, while the latter schemes severely damp the total power.

Figure A.2 compares the aliased power in the power spec-
trum measurement. The top four panels show the shot noise
power multiplied by the kernels. The principal contribution (n =
0) and the first harmonic (n = −1) are plotted along with the full
sum of all harmonics. We see for instance, that the power mea-
sured with the NGP scheme mixes power from all harmonics.
The hard cut-off filter performs nearly ideally with no aliasing
effect. The soft cut-off also performs well matching the aliasing
characteristics of the TSC scheme.
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Fig. A.2. A comparison of the shot noise power as a function of
wavenumber under various mass assignment schemes. The Nyquist fre-
quency is 1 pixel−1 on the scale. The top four plots show the principal
component (thick line), the n = −1 harmonic and the sum of all harmon-
ics (thin line). The bottom frame shows the fraction of aliased power for
each assignment scheme.

To implement the soft cut-off filter we use the following
practical super-sampling recipe:

1. Assign particles to a grid with resolution increased by a fac-
tor f . The assignment is done with the CIC scheme. We set
f = 8.

2. Transform the field to Fourier space with the FFT.
3. Multiply Fourier modes by the k-space filter.
4. Transform back to position space with the inverse-FFT.
5. Take a sample of the grid every f cells to down-sample to

the target resolution.

Appendix B: Gibbs sampler

Here we give the algorithms used to sample from the conditional
probability functions.

B.1. Sampling the density field

Using a galaxy survey we count galaxies in a given sample l and
construct the spatial field Nl which is a vector of length ncells. We
will write the set of m galaxy samples (e.g. different luminosity
and redshift bins) as {Nl} ≡ {Nl1 , Nl2 , ...,Nlm }. Each sample l has
a corresponding mean density N̄l and bias bl.

We write the conditional probability for the underlying den-
sity field δ as

p(δ|{Nl}, {N̄l}, {bl},S) ∝ p({Nl}|δ, {N̄l}, {bl},S)p(δ|S)

=

Nsamples
∏

l=1

p(Nl|δ, N̄l, bl,S)p(δ|S). (B.1)

To write the last line we use the property that the number counts
of different samples l are conditionally independent but depend
on the common underlying density field.

For clarity we now explicitly index the cells with subscript i.
We adopt a Gaussian model for the number counts and write the
log of the likelihood log p ∝ χ2 as

− 2 log p(Nl|N̄l, bl, δ) =

ncells
∑

i=1

(

Nl,i − N̄lwl,i (1 + blD(zi)δi)
)2

σ2
l,i

+ log
(

2πσ2
l,i

)

. (B.2)

The variance of counts is generalised as σ2
l,i

and may be differ-

ent from the Poisson expectation N̄w due to the mask and anti-
aliasing filter. However, we neglect noise correlations between
cells which would introduce off-diagonal terms. The sums are
carried out over cells with variance σ2

l,i
> 0.

Next we consider the density field prior. We set a Gaussian
model giving

− 2 log p(δ|S) =

ncells
∑

j=1

ncells
∑

i=1

(

S−1
)

i j
δiδ j + log (2π det S). (B.3)

The correlation function of δ is given by the anisotropic covari-
ance matrix S. In Fourier space the matrix is diagonal and given
by Eq. (10). When writing the posterior we now drop the terms
that do not depend on δ giving

−2 log p(δ|{Nl}, {N̄l}, {bl},S) =

msamples
∑

l=1

ncells
∑

i=1

(

Nl,i − N̄lwl,i (1 + blDiδi)
)2

σ2
l,i

+

ncells
∑

j=1

(

S−1
)

i j
δiδ j. (B.4)

Differentiating the log posterior with respect to δ we find the
equation for the maximum a posteriori estimator which is also
called the Wiener filter. The estimate δ̂ is given by

msamples
∑

l=1

(

N̄lwl,iblDi

)2

σ2
l,i

δ̂i +

ncells
∑

j=1

(

S−1
)

i, j
δ̂ j =

msamples
∑

l=1

N̄lwl,iblDi

σ2
l,i

(

Nl,i − N̄lwl,i

)

. (B.5)

It is informative to point out how the Wiener filter opera-
tion combines the galaxy subsamples. The right hand side of
Eq. (B.5) shows the weighted combination, given by

msamples
∑

l=1

N̄lwl,iblDi

σ2
l,i

(

Nl,i − N̄lwl,i

)

(B.6)

where we consider cell i and the sum is over galaxy samples in-
dexed by l. The subsamples are being weighted by their relative
biases bl. This form of weighting for the density field was de-
rived by Cai et al. (2011) and is optimal in the case of Poisson
sampling but also matches the weights for the power spectrum
(Percival et al. 2004).

To generate a residual field δr with the correct covariance we
follow the method of Jewell et al. (2004). We draw two sets of
Gaussian distributed random variables with zero mean and unit
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variance: w1,i and w2,i. The residual field is then found by solving
the following linear equations.

ζi =

msamples
∑

l=1

N̄lwl,iblDi

σl,i

w1,i (B.7)

ηi =

ncells
∑

j=1

(√
S−1
)

i, j
w2, j (B.8)

msamples
∑

l=1

(

N̄lwl,iblDi

)2

σ2
l,i

δr,i +

ncells
∑

j=1

(

S−1
)

i, j
δr, j = ζi + ηi. (B.9)

The final constrained realisation is given by the sum δCR = δ̂+δr.
The terms including the signal covariance matrix are com-

puted in Fourier space where the matrix is diagonal. The trans-
formation is done using the Fast fourier transform algorithm. We
solve Eqs. (B.5) and (B.9) using the linear conjugate gradient
solver bicgstab provided in the SciPy python library1.

B.2. Sampling the signal

The posterior distribution for the signal is

p(S |δ) ∝ p(δ|S )p(S ). (B.10)

We take a flat prior leaving p(S |δ) ∝ p(δ|S ) which is given by
Eq. (B.3). This is recognised as an inverse-Gamma distribution
for S which can be sampled directly (Kitaura & Enßlin 2008;
Jasche et al. 2010b).

We parametrise the signal in Fourier space as the product
of the real-space power spectrum and redshift-space distortion
model (Eq. (10)). We sample the parameters in two steps. First
we fix β and σv and draw a real-space power spectrum from the
inverse-gamma distribution.

The normalisation of the power spectrum is fixed by

σ2
R =

∫

d3kP(k)|W(k)|2. (B.11)

In the regime where shot noise is more important than cos-
mic variance, this method of sampling is inefficient. An alter-
native sampling scheme was proposed to improve the conver-
gence (Jewell et al. 2009; Jasche et al. 2010b). The new power
spectrum is drawn making a step in both P and δ such that

δs+1 =
√

Ps+1/Psδs. The consequence is that the conditional
posterior p(P|δ) is unchanged but the data likelihood is modified
through δ. We perform a sequence of Metropolis-Hastings steps
to jointly draw P and δ. We alternate between the two modes for
sampling P on each step of the Gibbs sampler.

The redshift-space distortion parameters β and σv are next
sampled jointly. These parameters are strongly degenerate on the
scales we consider. To efficiently sample these we compute the
eigen decomposition of the Hessian matrix to rotate into a coor-
dinate system with two orthogonal parameters. We evaluate the
joint probability over a two-dimensional grid in the orthogonal
space. Finally we use a rejection sampling algorithm to jointly
draw values of β and σv.

B.3. Sampling galaxy bias

The bias is sampled in the manner described by Jasche &
Wandelt (2013b). The conditional probability distribution for the

1 http://www.scipy.org/

bias of a given galaxy sample is a Gaussian with mean given by:

µb =

∑

N̄iwiDiδi(Ni − N̄i)/σ
2
i

∑

i

(

N̄iwiDiδi
)2
/σ2

i

(B.12)

and variance

σ2
b =

1
∑

i

(

N̄iwiDiδi
)2
/σ2

i

· (B.13)

After drawing a value from a Gaussian distribution with the
given mean and variance, it is limited to the range 0.5 < b < 4.0.

B.4. Sampling mean density

We take a Poisson model for the mean density. Taking a uniform
prior we have

p(N̄ |δ,N, b, S ) ∝ p(N |δ, b, N̄, S )p(N̄) (B.14)

∝
∏

i

[

N̄wi (1 + bDδ)
]Ni

Ni!
e−N̄wi(1+bDiδi). (B.15)

Keeping only terms that depend on N̄ we have

log p(N̄) =
∑

i

Ni log N̄ − N̄wi (1 + bDδi) . (B.16)

We draw a sample from this distribution by computing the like-
lihood over a grid of values and using a rejection sampling
algorithm.

Appendix C: Convergence analysis

The Gelman-Rubin convergence diagnostic (Gelman & Rubin
1992; Brooks & Gelman 1998) involves running multiple inde-
pendent Markov chains and comparing the single-chain variance
to the between-chain variance. The scale reduction factor R is the
ratio of the two variance estimates. In Fig. C.1 we show this con-
vergence diagnostic for three parameters: the power spectrum at
k = 0.2 h Mpc−1, the distortion parameter β and the velocity dis-
persion σv. These parameters are the slowest to converge. The
R factor is computed up to a given maximum step i in the chain
after discarding the first i/2 steps. We consider the chain to be
properly “burned-in” when R < 1.2. Based on this diagnostic we
set the maximum step in our analysis to be 2000 and discard the
first 1000 steps.
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Fig. C.1. Gelman-Rubin convergence diagnostic R computed from a
single mock catalogue with 10 chains.
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