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ABSTRACT

Aims. We use the first release of the VImos Public Extragalactic Redshift Survey of galaxies (VIPERS) of ∼ 50, 000 objects to measure the biasing
relation between galaxies and mass in the redshift range z = [0.5, 1.1].
Methods. We estimate the 1-point distribution function [PDF] of VIPERS galaxies from counts in cells and, assuming a model for the mass PDF,
we infer their mean bias relation. The reconstruction of the bias relation is performed through a novel method that accounts for Poisson noise,
redshift distortions, inhomogeneous sky coverage. and other selection effects. With this procedure we constrain galaxy bias and its deviations from
linearity down to scales as small as 4 h−1 Mpc and out to z = 1.1.
Results. We detect small (up to 2 %) but statistically significant (up to 3 σ) deviations from linear bias. The mean biasing function is close to
linear in regions above the mean density. The mean slope of the biasing relation is a proxy to the linear bias parameter. This slope increases with
luminosity, which is in agreement with results of previous analyses. We detect a strong bias evolution only for z > 0.9, which is in agreement with
some, but not all, previous studies. We also detect a significant increase of the bias with the scale, from 4 to 8 h−1 Mpc , now seen for the first time
out to z = 1. The amplitude of non-linearity depends on redshift, luminosity, and scale, but no clear trend is detected. Owing to the large cosmic
volume probed by VIPERS, we find that the mismatch between the previous estimates of bias at z ∼ 1 from zCOSMOS and VVDS-Deep galaxy
samples is fully accounted for by cosmic variance.
Conclusions. The results of our work confirm the importance of going beyond the over-simplistic linear bias hypothesis showing that non-
linearities can be accurately measured through the applications of the appropriate statistical tools to existing datasets like VIPERS.

1. Introduction

Galaxies do not perfectly trace mass. The long known proof is
that galaxy clustering depends on properties of galaxies such as
luminosity, colour, morphology, stellar mass, and so on (e.g. Sza-
pudi et al. 2000; Hawkins et al. 2001; Norberg et al. 2001, 2002;
Zehavi et al. 2002, 2011; Meneux et al. 2009; Marulli et al. 2013)
and not solely on the underlying mass distribution. Differences
in clustering properties are caused by the physical processes that
regulate the formation and evolution of galaxies and should dis-
appear when averaging over scales much larger than those af-
fected by these processes.

Modelling the physics of galaxy formation, or at least its im-
pact on the bias relation, is of paramount importance to extract
cosmological information from the spatial distribution of galax-

⋆ Based on observations collected at the European Southern Ob-
servatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the
Very Large Telescope, and also based on observations obtained with
MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at
the Canada-France-Hawaii Telescope (CFHT), which is operated by the
National Research Council (NRC) of Canada, the Institut National des
Science de l’Univers of the Centre National de la Recherche Scien-
tifique (CNRS) of France, and the University of Hawaii. This work is
based in part on data products produced at TERAPIX and the Canadian
Astronomy Data Centre as part of the Canada-France-Hawaii Telescope
Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS
web site is http://vipers.inaf.it/.

ies. Indeed, the large-scale structure of the Universe as traced by
galaxies is one of the most powerful cosmological probes as tes-
tified by the increasing number of large galaxy redshift surveys
either ongoing, such as Boss (Anderson et al. 2012), DES1, and
VIPERS (Guzzo et al. 2014) or those planned for the near future,
such as eBOSS2, DESI (Schlegel et al. 2011), and Euclid (Lau-
reijs et al. 2011)3. These surveys are designed to address several
important questions both in cosmology and in galaxy evolution
theory. Chief among them is the origin of the accelerated expan-
sion of the Universe.

It has recently been realised that geometry tests based on
standard candles and standard rulers can trace the expansion his-
tory of the Universe but cannot identify the cause of the accel-
erated expansion, which can be obtained either by advocating
a dark energy component or by modifying the gravity theory
(e.g. Wang 2008). To break this degeneracy one needs indepen-
dent observational tests. These are provided by the build-up of
structures over cosmic time (Guzzo et al. 2008). The analysis of
large-scale structures in galaxy distribution allows us to perform
these two tests at one time. The baryonic acoustic oscillation
peaks in the two point statistics provide a standard ruler to per-
form geometry test (e.g. Seo & Eisenstein 2003; Percival et al.

1 www.darkenergysurvey.com
2 http://www.sdss3.org/future/
3 http://www.euclid-ec.org/
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2007; Gaztañaga et al. 2009; Reid et al. 2012) whereas the ap-
parent radial distortions in galaxy clustering caused by peculiar
motions that are gravitationally induced allow us to measure the
rate at which cosmic structures grow. Since both tests rely on
baryonic structures, the knowledge of the bias relation is manda-
tory to probe the underlying mass distribution and set cosmolog-
ical constraints. Notwithstanding, a clustering statistics that is in
principle bias insensitive has been recently proposed by Bel &
Marinoni (2014) and applied to VIPERS data (Bel et al. 2014).

Galaxy bias is not just a nuisance parameter in the quest for
the world model. This bias also represents an opportunity to con-
strain models of galaxy evolution as it encodes important infor-
mation about the physical processes that regulate the evolution of
stars and galaxies. Therefore, it is important to model galaxy bias
by establishing its link to the relevant astrophysical processes
that regulate galaxy evolutions.In a recent review, Baugh (2013)
has classified galaxy evolution models into two categories. The
so-called empirical models belong to the first category. These
authors use theoretically motivated relations to model galaxy
distribution from halos extracted from N-body simulations. The
two most popular schemes to populate halos with galaxies are
halo occupation distribution (HOD; e.g. Cooray & Sheth 2002;
Zheng et al. 2005) and sub-halo abundance matching (SHAM;
e.g. Vale & Ostriker 2004; Conroy et al. 2006). The second cat-
egory is represented by physical models in which the processes
that regulate the evolution of baryons are explicitly considered to
link them to the host dark matter structures. This approach is at
the heart of the semi-analytic models of galaxy formation (e.g.
White & Frenk 1991; Bower et al. 2006; De Lucia & Blaizot
2007). In most cases these models have been used to estimate
galaxy bias from clustering statistics such as galaxy counts or
2-point correlation functions. The results indicate that the accu-
racy in both types of models is one of the main limitations in
constraining dark energy or modified gravity from current and,
even more so, future observational campaigns (Contreras et al.
2013).

Alternatively, one can adopt a purely phenomenological ap-
proach and use an operational definition of the bias in terms of
map between the density fluctuations of mass, δ and galaxies, δg
smoothed on the same scale. This approach assumes that galaxy
bias is a local process that depends on the local mass density
only. Many studies further assume that the bias relation is lin-
ear and deterministic, so that galaxy bias can be quantified by
a single linear bias parameter b: δg = bδ. The concept of linear
bias has played an important role in cosmology and many results
have been obtained using this assumption, which is known to be
unphysical as it allows negative densities. Also, this assumption-
has no justification at the relatively small scales of interest to
the study of galaxy formation processes, which depend on many
physical parameters and on large scales due to the presence of
neutrinos (Villaescusa-Navarro et al. 2014). In fact, the bias is
constant only on scales larger than about 40 h−1 Mpc (Manera &
Gaztañaga 2011). Indeed, galaxy bias can be more conveniently
described within a probabilistic framework as proposed by Dekel
& Lahav (1999) and recently reformulated in the context of the
halo model (Cacciato et al. 2012a).

From the phenomenological viewpoint, bias has been exten-
sively investigated from counts in cells statistics, weak gravita-
tional lensing, and galaxy clustering. The latter is probably most
popular approach. It is typically based on 2-point statistics and
on the assumption of linear bias (Norberg et al. 2001, 2002; Ze-
havi et al. 2005; Coil et al. 2006; Basilakos et al. 2007; Nuza
et al. 2013; Arnalte-Mur et al. 2014; Skibba et al. 2014; Marulli
et al. 2013). A comparatively smaller number of studies searched

for deviations from the linear and deterministic bias either us-
ing 2-point (Tegmark & Bromley 1999) or higher order statis-
tics (Verde et al. 2002; Gaztañaga et al. 2005; Kayo et al. 2004;
Nishimichi et al. 2007; Swanson et al. 2008).

Gravitational lensing in the weak field regime has also been
exploited to constrain galaxy bias. In particular, within the
limit of scale-independent bias on large scales, weak lensing and
galaxy clustering can be combined to estimate the linear bias pa-
rameter in a manner which is independent of the amplitude of
density fluctuations (Amara et al. 2012; Pujol et al. 2016; Chang
et al. 2016). On smaller scales weak lensing was also used to
measure the scale dependence of galaxy bias (Hoekstra et al.
2002; Simon et al. 2007; Jullo et al. 2012; Comparat et al. 2013),
although this effect is degenerate with bias stochasticity, i.e. the
fact that galaxy bias might not be solely determined by the local
mass density.

The most natural way to study a possible scale dependence
(or non-linearity) of galaxy bias is in a probabilistic framework
by means of counts in cells statistics (Sigad et al. 2000) since
in this case one can separate deviations from linear bias and the
presence of an intrinsic scatter in the bias relation. This approach
was used to estimate the bias of galaxies in the PSCz (Branchini
2001), VVDS (Marinoni et al. 2005, hereafter M05), and zCOS-
MOS (Kovač et al. 2011, hereafter K11) catalogues as well as
the relative bias of blue versus red galaxies in the 2 degrees field
galaxy redshift survey (2dFGRS; Colless et al. 2001; Wild et al.
2005). Despite some disagreement, results obtained at low red-
shift (z < 0.5) generally indicate that, at least for some types
of galaxies, the bias is stochastic, scale dependent and, there-
fore, non-linear. However. The situation at z > 0.5 is less clear.
Gravitational lensing studies either focused on very bright ob-
jects to probe the baryonic acoustic oscillations (Comparat et al.
2013) or on galaxies in the COSMOS field (Jullo et al. 2012);
these studies found no evidence for stochasticity but, in the case
of Jullo et al. (2012), detected a significant scale dependence of
galaxy bias. This conflicting evidence shows a lack of accuracy
in current estimators for galaxy bias that is a serious warning for
precision cosmology. This is especially true considering that this
is the range that will be probed by next generation surveys that
have the potential to trace both the redshift and scale dependence
of galaxy bias (Di Porto et al. 2012a,b)

The results obtained so far that focus on counts in cells pro-
vide some conflicting evidence. In M05 authors analysed galax-
ies in the VVDS-Deep catalogue over an area of 0.4×0.4 deg and
found significant deviations from linearity. The estimated effec-
tive linear bias parameter showed little evolution with redshift.
In contrast, the biasing relation of zCOSMOS galaxies measured
by K11 over a region of about 1.52 deg2 turned out to be close
to linear and rapidly evolving with the redshift. The tension be-
tween these results is paralleled by the observed differences in
the spatial correlation properties of the two samples, with the
2-point correlation function in zCOSMOS systematically higher
than that of VVDS galaxies (see e.g. Meneux et al. 2009). Owing
to the large cosmic variance in the two samples, a rather small
galaxy sample was proposed as the source of this mismatch, so
a larger galaxy sample should be used to settle the issue.

The Vimos Public Extragalactic Redshift Survey [VIPERS]
(Guzzo et al. 2014) has a depth similar to the zCOSMOS survey
but with a much larger area of 24 deg2. Its volume is comparable
to that of 2dFGRS and is large enough to significantly reduce
the impact of the cosmic variance (see Appendix in Fritz et al.
2014). We adopt the same approach as M05 and K11 and esti-
mate galaxy bias from counts in cells. To do so we use a novel
estimator that accounts for the effect of discrete sampling, allow-
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ing us to use small cells and probe unprecedented small scales
that are more affected by the physics of galaxy formation.

The layout of the paper is as follows. In Section 2 we de-
scribe both the real and mock datasets used in this work. In Sec-
tion 3 we introduce the formalism used to characterise galaxy
bias and the estimators used to measure this bias from a galaxy
redshift survey. In Section 4 we assess the validity of the es-
timator and use mock galaxy catalogues to gauge random and
systematic errors. We present our results in Section 5 and com-
pare these with those of other analyses in Section 6. The main
conclusions are drawn in Section 7

Throughout this paper we assume a flat ΛCDM universe
(Ωm, ΩΛ, σ8)= (0.25; 0.75; 0.9). Galaxy magnitudes are given
in the AB system and, unless otherwise stated, computed assum-
ing h ≡ H0/100 km s−1Mpc−1 = 1.The high value of σ8 has
little impact on our analysis since our results can be rescaled to
different values of σ8 that are more consistent with current cos-
mological constraints. The dependence of the magnitude upon
h is expressed as M = Mh − 5 log(h), where Mh is the absolute
magnitude computed for a given h value.

2. Datasets

The results in this paper are based on the first release of the
VIPERS galaxy catalogue (Garilli et al. 2014). Random and sys-
tematic errors were computed using a set of simulated galaxy
catalogues mimicking the real catalogue and its observational
selections. Both, the real and mock samples are described in this
Section.

2.1. Real data

The VIMOS Public Extragalactic Redshift Survey is an ongo-
ing ESA Large Programme aimed at measuring spectroscopic
redshifts for about 105 galaxies at redshift 0.5 < z < 1.2 and
beyond. The galaxy target sample is selected from the ‘T0005’
release of the Canada-France-Hawaii Telescope Legacy Survey-
Wide (CFHTLS-Wide) optical photometric catalogue4. VIPERS
covers 24 deg2 on the sky, divided over two areas within the
W1 and W4 CFHTLS fields. Galaxies are selected to a limit of
IAB < 22.5, further applying a simple and robust colour prese-
lection to efficiently remove galaxies at z < 0.5. This colour cut
and the adopted observing strategy (Scodeggio et al. 2009) al-
low us to double the galaxy sampling rate with respect to a pure
magnitude-limited sample. At the same time, the area and depth
of the survey result in a relatively large volume, 5 × 107 h−3

Mpc3, which is analogous to that of the 2dFGRS at z ∼ 0.1.
VIPERS spectra are collected with the VIMOS multi-object
spectrograph (Le Fèvre et al. 2003) at moderate resolution (R
= 210) using the LR Red grism, providing a wavelength cov-
erage of 5500-9500 Å and a typical radial velocity error of
σv = 141(1 + z) km s−1.

The full VIPERS area of 24 deg2 is covered through a mo-
saic of 288 VIMOS pointings. A complete description of the
survey construction, from the definition of the target sample to
the actual spectra and redshift measurements, is given in Guzzo
et al. (2014). The dataset used in this and other papers of the
early science release represent the VIPERS Public Data Release
1 (PDR-1) catalogue that includes 55359 redshifts (27935 in W1
and 27424 in W4), i.e. 64% of the final survey in terms of cov-
ered area (Garilli et al. 2014). A quality flag was assigned to

4 http://terapix.iap.fr/cplt/oldSite/Descart/CFHTLS-T0005-
Release.pdf

each object in the process of determining their redshift from the
spectrum, which quantifies the reliability of the measured red-
shifts. In this analysis, we use only galaxies with flags 2 to 9.5,
which corresponds to a sample with a redshift confirmation rate
of 90%.

Several observational effects need to be taken into account to
investigate the spatial properties of the underlying population of
galaxies.

i) Selection effects along the radial direction are driven by the
flux limit nature of the survey and, at z < 0.6, by the colour pres-
election strategy. We use volume-limited (luminosity-complete)
galaxy subsamples that we obtain by selecting galaxies brighter
than a given magnitude threshold in a given redshift interval.
We adopted a redshift-dependent luminosity cut of the form
MB(z) = M0 − z that should account for the luminosity evolution
of galaxies (e.g. Zucca et al. 2009). The value of the threshold
is set to guarantee that the selected sample is > 90 % complete
within the given redshift interval. In this sense each subsample
is volume limited and luminosity complete. This z-dependent lu-
minosity cut is very popular and has been adopted in other pa-
pers (see e.g. K11). However, other works used different types
of cuts, either ignoring any dependence on redshift (such as in
M05; Coil et al. 2008) or assuming a different functional form
for the redshift evolution (e.g. Arnalte-Mur et al. 2014). Adopt-
ing an incorrect luminosity evolution would generate a spurious
radial gradient in the mean density of the objects and a wrong
z−dependence in the galaxy bias. To minimise the impact of this
potential bias, we carry out our analysis in relatively narrow red-
shift bins, so that adopting any of the aforementioned luminos-
ity cuts would produce similar results, as we verified. The ro-
bustness of our result to the choice of the magnitude cut can be
tested a posteriori. Figure 16 shows that the difference between
estimates obtained with a z-dependent cut (filled red dot) and
with a z-independent cut (open red dot) are smaller than the total
random errors.

Selection effects induced by the colour preselection strategy
were determined from the comparison between the spectroscopic
and photometric samples (Guzzo et al. 2014; de la Torre et al.
2013; Fritz et al. 2014) and are accounted for by assigning to
each galaxy an appropriate statistical weight dubbed colour sam-
pling rate (CSR).

ii) The surveyed area presents regular gaps due to the specific
footprint of the VIMOS spectrograph that creates a pattern of
rectangular regions, called pointings, separated by gaps where no
spectra are taken. Superimposed on this pattern are unobserved
areas resulting from bright stars and technical and mechanical
problems during observations. We discuss our strategy to take
into account this effect in our counts in cells analysis in the fol-
lowing (see Cucciati et al. 2014, for a more detailed study).

iii) In each pointing, slits are assigned to a number of po-
tential targets that meet the survey selection criteria (Bottini
et al. 2005). Given the surface density of the targeted popula-
tion, the multiplex capability of VIMOS, and the survey strat-
egy, a fraction of about 45% of the parent photometric sample
can be assigned to slits. We define the fraction of targets that
have a measured spectrum as the target sampling rate (TSR) and
the fraction of observed spectra with reliable redshift measure-
ment as the spectroscopic sampling sate (SSR). Both functions
are roughly independent of galaxy magnitude except the SSR,
which decreases for IAB > 21.0, as shown in Fig. 12 of Guzzo
et al. (2014).

All these selection effects are thoroughly discussed and
quantitatively assessed by de la Torre et al. (2013). We make
no attempt to explicitly correct for these effects individually. In-
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stead, we assess their impact on the estimate of galaxy bias in
Section 4 using the mock galaxy catalogues described below.

For the scope of our analysis, the main advantages of
VIPERS are the relatively dense sampling of tracers, which al-
lows us to probe density fluctuations down to scales comparable
to those affected by galaxy evolution processes, and the large
volume that, as discussed in the previous Section, allows us to
reduce the impact of cosmic variance considerably with respect
to previous estimates of galaxy bias at z ∼ 1.

The parent PDR-1 VIPERS sample contains 45871 galaxies
with reliable redshift measurements. Here we restrict our analy-
sis in the redshift range z = [0.5, 1.1] since the number density of
objects at larger distances is too small to permit a robust estimate
of galaxy bias. To investigate the possible dependence of galaxy
bias on luminosity and redshift, we partitioned the catalogue into
subsamples by applying a series of cuts in both magnitude and
redshift.

The complete list of subsamples considered in this work is
presented in Table 1. We considered three redshift bins (z =
[0.5, 0.7], [0.7, 0.9], [0.9, 1.1]) and applied different luminosity
cuts that we obtained by compromising between the need of
maximising both completeness and number of objects. Differ-
ent luminosity cuts within each redshift bin allow us to study the
luminosity dependence of galaxy bias at different redshifts. The
magnitude cuts, MB = −19.5−z−5 log(h) and −19.9−z−5 log(h),
that run across the whole redshift range are used to investigate
a possible evolution of galaxy bias. In the Table the subsamples
are listed in groups. The first three groups indicate subsamples
in the three redshift bins. The last group indicates subsamples
that are designed to match the luminosity cuts performed by K11
(MB = −20.5 − z − 5 log(h = 0.7) = −19.72 − z − 5 log(h))
and by M05 (MB = −20.0 − 5 log(h). The most conservative cut
MB = −19.5 − z − 5 log(h) guarantees 90 % completeness out
to z = 1 for the whole galaxy sample and higher for late type
objects (see Fig. 1).

Since the analysis presented in this work is based on cell
count statistics, a useful figure of merit is represented by the
number of independent spheres that can be accommodated
within the volume of the survey. Considering intermediate cells
with a radius of 6 h−1 Mpc , the number of such independent
cells is N = 3869, 5527, 6964 in the three redshift intervals
z = [0.5, 0.7], [0.7, 0.9], [0.9, 1.1], respectively.

2.2. Mock datasets

We considered a suite of mock galaxy catalogues mimicking the
real PDR-1 VIPERS catalogue to assess our ability to measure
the mean biasing function and evaluate random and systematic
errors.

We used two different types of mock galaxy catalogues. We
based the bulk of our error analysis on the first mock galaxy cat-
alogue, which is described in detail in de la Torre et al. (2013).
In this set of mocks, synthetic galaxies are obtained by applying
the HOD technique to the dark matter halos extracted from the
MultiDark N-body simulation (Prada et al. 2012)of a flatΛCDM
universe with (Ωm, ΩΛ, Ωb, h, n, σ8)= (0.27; 0.73; 0.0469; 0.7;
0.95; 0.82). Since the resolution of the parent simulation was
too poor to simulate galaxies in the magnitude range sampled
by VIPERS, de la Torre & Peacock (2013) applied an original
technique to resample the halo field to generate sub-resolution
halos down to a mass of M = 1010h−1 M⊙. These halos were
HOD populated with mock galaxies by tuning the free parame-
ters to match the spatial 2-point correlation function of VIPERS
galaxies (de la Torre et al. 2013). Once populated with HOD

Table 1. VIPERS subsamples.

z-range MB- cut nVIPERS nmock

MB − 5 log(h) 10−3h3 Mpc−3 10−3h3 Mpc−3

0.5 - 0.7 −18.6 − z 4.78 4.36
0.5 - 0.7 −19.1 − z 3.16 2.43
0.5 - 0.7 −19.5 − z 2.10 1.37
0.5 - 0.7 −19.9 − z 1.24 0.68
0.7 - 0.9 −19.1 − z 2.71 2.55
0.7 - 0.9 −19.5 − z 1.86 1.47
0.7 - 0.9 −19.9 − z 1.07 0.72
0.9 - 1.1 −19.5 − z 0.62 0.63
0.9 - 1.1 −19.9 − z 0.42 0.43
0.5 - 0.7 −19.7 − z 1.64 1.36
0.7 - 0.9 −19.7 − z 1.13 1.05
0.9 - 1.1 −19.7 − z 0.53 0.53
0.7 - 0.9 −20.0 1.42 1.49

Notes. Col. 1: redshift range. Col. 2: B-band magnitude cut (computed
for h = 1). Col 3: galaxy number density in the real VIPERS sub-
catalogues. Col 4: galaxy number density in the HOD-mock VIPERS
sub-catalogues. In the Parent mock catalogue the number density is a
factor ∼ 3.7 larger. Cells fully contained in the surveyed volume (i.e.
not overlapping with gaps or empty areas) contain ∼ 40 % more objects
on average.

Fig. 1. Luminosity selection as a function of redshift. The black dots
show the W1 and W4 VIPERS galaxies (with spectroscopic redshift
flag between 2 and 9.5). Yellow lines represent the principal magnitude
cuts applied in every redshift bin. The green line represents the cut M0 =

−19.7 − z made to compare our results to those of K11.

galaxies, the various outputs were rearranged to obtain 26 and
31 independent light cones mimicking the W1 and W4 fields
of VIPERS and their geometry, respectively. In our analysis we
considered 26 W1+W4 mock samples. They constitute our set
of Parent mock catalogues, as opposed to the Realistic mock
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catalogues that we obtain from the Parent set by applying the
various selection effects (VIPERS footprint mask besides TSR,
SSR, and CSR) and by adding Gaussian errors to the redshifts
to mimic the random error in the measured spectroscopic red-
shifts. The mock catalogues were built assuming a constant SSR
whereas, as we pointed out, this is a declining function of the
apparent magnitude. However, the dependence is weak and only
affects faint objects, i.e. preferentially objects at large redshifts.
For this reason we decided to explicitly include this dependence
by selectively removing objects, starting from the faintest and
moving towards brighter objects until we match the observed
SSR(m) (Guzzo et al. 2014).

The average galaxy number densities in the mocks are listed
in Column 4 of Table 1. For z ≤ 0.9 the number density in
the mocks is similar or somewhat smaller than in the real cata-
logue. This discrepancy increases with the luminosity and prob-
ably originates from the uncertainty in the procedure to HOD-
populate halos with bright mock galaxies. The consequence for
our analysis is an overestimation of the random errors in the
measurement of the bias of VIPERS galaxies. At higher redshift
the trend is reversed; the number density of objects in the mocks
is systematically larger than in the real catalogue. In this case, to
avoid underestimating errors, we randomly diluted the galaxies
in the mocks. Hence the perfect match of number densities in the
redshift bin z = [0.9, 1.1], as shown in the table.

On the smallest scale investigated in this paper, R = 4
h−1 Mpc , the second-order statistics of simulated galaxies and
the variance of the galaxy density field are underestimated by
∼ 10 % (Bel et al. 2014). Therefore, to check the robustness of
our bias estimate to the galaxy model used to generate the mock
catalogues and to the underlying cosmological model, we con-
sidered a second set of mocks. These were obtained from the
Millennium N-body simulation (Springel et al. 2005) of a flat
ΛCDM universe with (Ωm,ΩΛ,Ωb, h, n,σ8)= (0.25; 0.75; 0.045;
0.73; 1.00; 0.9) and using the semi-analytic technique of De Lu-
cia & Blaizot (2007), an alternative to the HOD. As a result of
the limited size of the computational box, it was possible to cre-
ate light cones with an angular size of 7 × 1 deg2, i.e. smaller
than the individual W1 and W4 fields. Overall, we considered
26+ 26 reduced versions of the W1+W4 fields. From these light
cones we created a corresponding number of Realistic mock cat-
alogues.

Robustness tests that involve both types of mock catalogues
were restricted to a limited number of samples (one for each
redshift bin). In these tests we simply compared the errors in the
bias estimates after accounting for the larger cosmic variance in
the Millennium mocks. Since these robustness tests turned out to
be successful in the sense that errors estimated with the two sets
of mocks turned out to be consistent with each other, we do not
mention these mocks again and, for the rest of the paper, fully
rely on the error estimates obtained from the HOD mocks.

3. Theoretical background

In this section we briefly describe the formalism proposed by
Dekel & Lahav (1999) and the method that we use to estimate
bias from galaxy counts. The key step is the procedure to esti-
mate the galaxy PDF, P(δg), from the measured probability of
galaxy counts in cells, P(Ng). We review some of the techniques
proposed to perform this crucial step and describe in detail the
technique used in this work.

3.1. Stochastic non-linear bias

Dekel & Lahav (1999) proposed a probabilistic approach to
galaxy bias in which non-linearity and stochasticity are treated
independently. In this framework, galaxy bias is described by
the conditional probability of galaxy over-density, δg, given the
mass over-density δ: P(δg|δ). Both quantities are smoothed on
the same scale and treated as random fields. If biasing is a local
process then P(δg|δ) fully characterises galaxy bias. Key quanti-
ties formed from the conditional probability are the mean biasing
function

b(δ)δ ≡ 〈δg|δ〉 =
∫

P(δg|δ)δgdδg , (1)

and its non-trivial second-order moments

b̂ ≡
〈b(δ)δ2〉
σ2

b̃2 ≡
〈(b(δ)δ)2〉

σ2
, (2)

where σ2 ≡ 〈δ2〉 is the variance of the mass over-density field
on the scale of smoothing. The quantity b̂ represents the slope
of the linear regression of δg against δ and is the natural gen-
eralisation of the linear bias parameter. The ratio b̃/b̂ quanti-
fies the deviation of the mean biasing function from a straight
line. It measures the non-linearity of the mean biasing relation
and, in realistic cases, is close to unity. In the limit of linear and
deterministic bias, the two moments b̂ and b̃ coincide with the
(constant) mean biasing function b(δ) = bLIN, where bLIN is the
familiar linear bias parameter. We note that b̂ is sensitive to the
mass variance and scales as b̂ ∝ σ−1. On the contrary, the mo-
ments’ ratio is very insensitive to it, b̃/b̂ ∝ σ0.15 (Sigad et al.
2000). These scaling relations are used in Section 5 to compare
results obtained assuming different values of σ8. There are other
useful parameters related to galaxy bias that can be measured
from the data. One is the ratio of variances bvar ≡ (σg/σ)2 in
which σg is measured from counts in cells and σ depends on the
assumed cosmological model. Another quantity is the inverse re-
gression of δ over δg, binv ≡ σ

2
g/〈δgδ〉 that requires an estimate

of the galaxy and the mass density fields (Sigad et al. 1998). In
the case of non-linear deterministic bias these quantities differ
from b̂. Specifically, if the non-linearity parameter b̃/b̂ is larger
(smaller) than unity then they are biased high (low) with respect
to b̂ (Dekel & Lahav 1999).

In this paper we focus on the b̂ parameter, a choice that al-
lows us to compare our results with those of K11 (but not with
M05, in which the focus is instead on b̃). Fortunately, as we shall
see, the small degree of non-linearity makes these two choices
almost equivalent.

If bias is deterministic, then it is fully characterised by the
mean biasing function b(δ)δ. However, we do not expect this to
be the case since galaxy formation and evolution are regulated
by complex physical processes that are not solely determined by
the local mass density. Therefore, for a given value of δ there is a
whole distribution of δg about the mean b(δ)δ. This scatter, often
referred to as bias stochasticity, is contributed by two sources:
shot noise due to the discrete sampling of a continuous underly-
ing density field and those astrophysical processes relevant to the
formation and evolution of galaxies that do not depend (solely)
on the local mass density.

Previous studies (Branchini 2001; Marinoni et al. 2005; Viel
et al. 2005; Kovač et al. 2011) that, like this one, used the galaxy
1-point PDF to recover the biasing function ignored the impact
of stochasticity and assumed a deterministic bias. We aim to im-
prove the accuracy of the bias estimator by taking bias stochas-
ticity into account and we do this by assuming that shot noise is
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the only source of stochasticity. This simplifying assumption can
be justified theoretically by both numerical and analytic argu-
ments. Numerical experiments in which semi-analytic galaxies
are used to probe the mass density field in samples mimicking
SDSS (Szapudi & Pan 2004) (see Figs. 11 and 16) and 2MRS
(Nusser et al. 2014) (see Fig. 1), i.e. two surveys with galaxy
number densities similar to that of VIPERS, do indeed show that
shot noise is the dominant source of scatter. More specifically,
Poisson noise accounts for the scatter in the δg versus δ relation
except at large over-density where the relation is over-dispersed.
Analytic arguments in the framework of the halo model also con-
firm that the main source of stochasticity is shot noise with the
halo-halo scatter providing a significant contribution for faint ob-
jects alone (Cacciato et al. 2012b). Assessing the impact of this
shot noise only assumption is not simple, but some arguments
can be made to quantify the systematic effect of underestimating
stochasticity.

An upper limit can be obtained when stochasticity is ignored
altogether. In the case of linear and stochastic bias, for example,
b̃ and b̂ would be equal whereas binv would be systematically
larger by about 10% (Somerville et al. 2000). The more realis-
tic case of a non-linear and stochastic bias was considered by
Sigad et al. (2000) using numerical simulations again. In this
case, the effect of ignoring stochasticity is that of overestimat-
ing both b̃ and b̂. The amplitude of the effect depends on both
the cosmological model assumed and the scale considered. To
obtain estimates relevant to our analysis we repeated the Sigad
et al. (2000) test in Section 4.1. The results, which we anticipate
here, indicate that b̃ and b̂ are overestimated by 8(4)% on a scale
of 4(8) h−1 Mpc . As for the ratio, b̃/b̂ we also confirm that it is
remarkably insensitive to stochasticity and, as expected, to the
model adopted (Sigad et al. 2000).

Analyses of the datasets may also constrain the size of the
effect. Galaxy clustering, higher order statistics, or gravitational
lensing generally indicate that galaxy bias cannot be linear and
deterministic. However, as we anticipated in the introduction, it
is not possible to disentangle the effects induced by non-linearity
and stochasticity, except for the case of relative bias between
two types of tracers. With respect to this, the largest stochastic-
ity σb/b̂ = 0.44 so far was measured by Wild et al. (2005). If
ignored, this would induce a systematic error of ∼ 20% on the
relative b̂ moments.

Overall, the variety of evidenceindicates that if stochasticity
is ignored then σb and b̂ are overestimated by 10-20 %, whereas
their ratio is unaffected. However, we stress that in our work
stochasticity is, at least in large part, taken into account. There-
fore, we expect that our assumption that shot noise is the only
source of bias stochasticity generates systematic errors well be-
low the 10 % level.

3.2. Direct estimate of b(δ)δ

Under the hypothesis that bias is deterministic and monotonic
the mean biasing function, b(δ)δ, can be estimated by compar-
ing the PDFs of the mass and of the galaxy over-density. We let
C(δ) ≡ P(> δ) and Cg(δg) ≡ P(> δg) be the cumulative probabil-
ity distribution functions [CDFs] obtained by integrating the two
PDFs. Monotonicity guarantees that the ranking of the fluctua-
tions δ and δg is preserved and b(δ)δ can be obtained by equating
the two CDFs at the same percentile,

b(δ)δ = C−1
g (C(δ)) , (3)

where C−1
g indicates the inverse function of Cg.

Equation 3 provides a practical recipe to estimate galaxy bias
from observed counts in cells of a given size. It requires three
ingredients: the galaxy over-density δg, its PDF, and that of δ. δg
can be estimated from galaxy counts in cell, Ng as

1 + δg = Ng/〈Ng〉 , (4)

where 〈Ng〉 represents mean over all counts. From Eq. 4 one can
form the galaxy PDF, P(δg) and the count probability P(Ng). The
biasing function can then be obtained by comparing Cg(δg) with
a model C(δ).

This simple bias estimator has been used by several authors
(Sigad et al. 2000; Branchini 2001; Marinoni et al. 2005; Viel
et al. 2005; Kovač et al. 2011). It is potentially affected by sev-
eral error sources that should be systematically investigated. The
first error source is shot noise that affects the estimate of δg from
Ng. Shot noise induces stochasticity in the bias relation in con-
trast with the hypothesis of deterministic bias. Stochasticity af-
fects the estimate of b(δ)δ from Equation 3, especially at large
values of δg, where the CDF flattens and the evaluation of the in-
verse function C−1

g becomes noisy. A second issue is the mass
PDF for which no simple theoretical model is available. The
last error source is redshift distortions. Galaxy over-densities are
computed using the redshift of the objects rather than distances.
This induces systematic differences between densities evaluated
in real and redshift space (Kaiser 1987).

All these issues potentially affect the estimate of galaxy bias
and should be properly quantified and accounted for. In the next
section, we review some existing estimators designed to min-
imise the impact of the shot noise and propose a new estimator
that we apply in this paper. We investigate the performance of
this new strategy in Section 4.

3.3. From P(Ng) to P(δg)...

The probability of galaxy counts, P(Ng), can be expressed as

P(Ng) =
∫ +∞

−1
P(δg)P(Ng|δg)dδg , (5)

where the conditional probability function P(Ng|δg) specifies the
way in which discrete galaxies sample the underlying, continu-
ous field. The common assumption that galaxies are a local Pois-
son process implies that

P(Ng|δg) =

[

〈Ng〉(1 + δg)
]Ng

e−〈Ng〉(1+δg)

Ng!
. (6)

The Poisson model provides a good match to numerical exper-
iments except at large densities where a negative binomial dis-
tribution seems to provide a better fit (Sheth 1995; Somerville
et al. 2001; Casas-Miranda et al. 2002). In this work we adopt the
Poisson model. However, different forms for P(Ng|δg) could be
considered as well.

The following strategies have been proposed to estimate
P(δg) from P(Ng) using Equation 5:

– Richardson-Lucy deconvolution. Szapudi & Pan (2004) pro-
posed this iterative, non-parametric method to reconstruct
P(δg) by comparing the observed P(Ng) to that computed
from Eq. 5 at each step of the iteration, starting from an ini-
tial guess for P(δg).

– Skewed lognormal model fit. This parametric method was
also implemented by Szapudi & Pan (2004). In this approach
one assumes a skewed lognormal form for P(δg) and then de-
termines the four free parameters of the model by minimising
the difference between Eq. 5 and the observed P(Ng).
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– Gamma expansion [ΓE]. Among the various forms proposed
to model the galaxy PDF, the Gamma expansion, defined by
expanding the Gamma distribution on a basis of Laguerre
polynomials (Mustapha & Dimitrakopoulos 2010) captures
the essential features of the galaxy density field. The expan-
sion coefficients directly depend on the moments of the ob-
served counts. Because of this, the full shape of the galaxy
PDF can be recovered directly from the observed P(Ng) with
no need to integrate Eq. 5.

Szapudi & Pan (2004) have tested the ability of the first two
methods in reconstructing the PDF of halos and mock galax-
ies obtained from N-body simulations. They showed that a suc-
cessful reconstruction can be obtained when the sampling is
〈Ng〉 ≥ 0.1; safely a factor 3 smaller than the smallest mean
galaxy density in our VIPERS subsamples. Bel et al. (2016)
extensively tested the ΓE-method and showed, using the same
mock catalogues as in this paper, that this method reconstructs
the PDF of a VIPERS-like galaxy distribution with an accuracy
that is superior to that of the other methods. This comes at the
price of discarding counts in cells that overlap the observed ar-
eas by less than 60 %, which is a constraint that further reduces
deviations from the Poisson sampling hypothesis.

To illustrate the performance of the ΓE-method we plot, in
Figure 2, the galaxy PDFs ΓE-reconstructed from the 26 Re-
alistic mock VIPERS subsamples with galaxies brighter than
MB = −19.1 − z − 5log(h) in the range z = [0.7, 0.9]. The blue
dashed curve represents the mean among the mocks and the blue
band the 1-σ scatter. The scatter for cells of R = 8 h−1 Mpc is
larger than for R = 4 h−1 Mpc and is driven by the limited num-
ber of independent cells rather than sparse sampling.

The reconstruction is compared with the “reference” PDF
(solid, red line) obtained by averaging over the PDFs recon-
structed, with the same ΓE method, from the Parent mock cata-
logues. We regard this as the “reference” PDF since, as shown by
Szapudi & Pan (2004) and checked by us, when the sampling is
dense, all the above reconstruction methods recover the PDF of
the mass, P(Ng) and the mean biasing function very accurately.
In the plot we show P(1 + δg)(1 + δg) to highlight the low- and
high-density tails, where the reconstruction is more challenging.
The reconstructed PDF underestimates the reference PDF in the
low- and high-density tails and overestimates it at δ ∼ 0. Sys-
tematic deviations in the low- and high-density tails are to be ex-
pected since the probability of finding halos, and therefore mock
galaxies, in these regimes significantly deviates from the proba-
bility expected for a Poisson distribution. However, these differ-
ences are well within the 1-σ uncertainty strip as shown in the
bottom panels of each plot.

The ΓE method used to reconstruct the galaxy PDF from dis-
crete counts is implemented as follows:

– We consider as the input dataset one of the volume-limited,
luminosity complete subsamples listed in Table 1. The po-
sition of each object in the catalogue is specified in redshift
space, i.e. by its angular position and measured spectroscopic
redshift.

– Spherical cells are thrown at random positions within the sur-
veyed region. We consider cells with radii R = 4, 6, and 8
h−1 Mpc . The smallest radius is set to guarantee 〈Ng〉 ≥ 0.3.
The largest radius is set to have enough cell statistics to sam-
ple P(Ng) at large Ng. We only consider cells that overlap
by more than 60 % with the observed areas. This constraint
reduces deviations from Poisson statistics (Bel & Marinoni
2014). Counts in the partially overlapping cells are weighted

Fig. 2. Reconstructed PDF of the mock VIPERS galaxies measured in
cells of R = 4 h−1 Mpc (top) and R = 8 h−1 Mpc (bottom). The blue
solid curve represents the reference galaxy PDF obtained by averag-
ing over the PDFs reconstructed from the Parent mocks using the ΓE

method. The blue dashed curve shows the average PDF reconstructed
from the Realistic mocks using the same method. The blue shaded re-
gion represents the 1-σ scatter among the 26 Realistic mocks. We plot
P(1 + δg)(1 + δg) to highlight the performance of the reconstruction at
high and low over-densities. We note the different Y-ranges in the two
panels. The bottom panels in each plot show the difference ∆p between
the reconstructed and reference PDFs in units of the random error σp.
Horizontal, dashed lines indicate systematic errors equal to 1-σp ran-
dom uncertainties.

by the fraction f of the surveyed volume in the cell: Ng/ f .
The probability function P(Ng) is then computed from the
counts frequency distribution.

– We use the measured P(Ng) and its moments to model the
galaxy PDF with the ΓE method that we compute using all
factorial moments up to the sixth order.

3.4. ....and from P(δg) to b(δ)δ.

To estimate the mean biasing function from the galaxy PDF, we
solve Equation 3. To do so, we assume that shot noise is the
main source of stochasticity and that a reliable model for the
mass PDF is available. Despite its conceptual simplicity, this
procedure requires several non-trivial steps that we describe be-
low. The uncertainties introduced in each step are estimated in
the next section. The procedure is as follows:

– We start from the galaxy PDF estimated from the measured
P(Ng), as described in the previous section.

– We assume a model PDF for the mass density field in red-
shift space. Rather than adopting some approximated, ana-
lytic model, we measure the mass PDF directly from a dark
matter only N-body simulation with the same characteris-
tics and cosmological model as the Millennium run (Springel
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et al. 2005), thatis not based on the same model used to build
the HOD-mock VIPERS catalogues. The use of an incorrect
mass PDF is yet another possible source of systematic er-
rors that we quantify in Section 4. However, this error is ex-
pected to be small since b̂ and b̃ are mainly sensitive to σ
and their ratio is largely independent of the underlying cos-
mology (Sigad et al. 2000).

– After computing the cumulative distribution function from
the mass and galaxy PDFs, we use Eq. 3 to estimate the mean
biasing function.

– We determine the maximum over-density δMAX at which the
reconstructed mean biasing function can be considered re-
liable. To estimate δMAX we compare the measured P(Ng)
with the estimated P(Ng) following the procedure described
in Section 4.4.4 .

– We estimate the second-order moments b̂ and b̃ and their ra-
tio by integrating over all δ up to δMAX

b̂ = σ−2
∫ δMAX

−1
b(δ)δ2P(δ) dδ ,

b̃2 = σ−2
∫ δMAX

−1
(b(δ)δ)2P(δ) dδ . (7)

and test the robustness of the result with respect to the choice
of δMAX.

4. Error sources

In this Section we review all possible sources of uncertainty that
might affect the recovery of the biasing function and assess their
amplitude using mock catalogues. In this process we need to
consider a reference biasing function to compare with the results
of the reconstruction. This could be estimated directly from the
distribution of the dark matter particles and mock galaxies within
the simulation box. However, we use the mean biasing func-
tion obtained from the Parent mocks as reference. We justify
this choice as follows. First, Szapudi & Pan (2004) showed that
when the sampling is dense both the Richardson-Lucy and the
skewed lognormal fit methods recover the mean biasing func-
tion with high accuracy. Second, in Section 3.3 we found that
when the sampling is dense the ΓE method accurately recovers
the mean biasing function in the Parent mocks.

4.1. Sensitivity to the galaxy PDF reconstruction method

Most of the previous estimates of the mean biasing function did
not attempt to account for shot noise directly. This choice can
hamper the recovery of b(δ)δ when the sampling is sparse. To
estimate errors induced by ignoring shot noise and quantify the
benefit of using the ΓE method we compared the biasing func-
tions reconstructed using both procedures. The result of this test
is shown in Figure 3. The red curve represents the reference bi-
asing function obtained by averaging over the Parent mocks. In
each mock the biasing function was estimated from the galaxy
PDF using the ΓE method. The blue dashed curve represents the
same quantity estimated from the 26 Realistic mocks using the
ΓE method. The blue band represents the 2-σ scatter. For nega-
tive values of δg the reconstructed biasing function is below the
reference biasing function, but the trend is reversed for δg > 0,
reflecting the mismatch between the reconstructed and reference
PDFs in Figure 2. The discrepancy however, is mostly within
the 2-σ scatter (horizontal dashed line in the bottom sub-panels).
On the contrary, the biasing function obtained from the “direct”

Fig. 3. Mean biasing function of mock VIPERS galaxies computed
from counts in cells of R = 4 h−1 Mpc (bottom panel) and R = 8
h−1 Mpc (top panel). The magnitude cut and redshift range of the mock
VIPERS subsample, indicated in the plot, are the same as Figure 2.
Solid red curve: reference biasing function obtained from the Par-
ent mock catalogues. Blue dashed curve and blue-shaded region: av-
erage value and 2-σ scatter of the biasing function reconstructed from
the Realistic mocks using the ΓE method.Brown dot-dashed curve and
orange-shaded band: average value and 2-σ scatter of the biasing func-
tion reconstructed from the Realistic mocks using a ’direct’ estimate of
the galaxy PDF. Bottom sub-panels: difference ∆p between the recon-
structed and reference PDFs in units of the random error σp. Dashed
lines indicate systematic errors equal to 1-σp random errors.

estimate of δg (brown dot-dashed curve and the corresponding
2-σ scatter, orange band) is significantly different from the ref-
erence function. The discrepancy increases at low densities and
for small spheres, i.e. when the counts per cell decrease and the
shot noise is large.

4.2. Sensitivity to the mass PDF

Another key ingredient of the mass reconstruction is the mass
PDF. In principle this quantity could be obtained from galaxy
peculiar velocities or gravitational lensing. However, in practice,
errors are large and would need to be averaged out over scales
much larger than the size of the cells considered here. For this
reason we need to rely on theoretical modelling. Coles & Jones
(1991) and Kofman et al. (1994) found that the mass PDF can be
approximated by a lognormal distribution and this model was in-
deed adopted in previous reconstructions of the biasing function
(e.g. M05, Wild et al. (2005), K11).

However, the lognormal approximation is known to perform
poorly in the high- and low-density tails and for certain spec-
tra of density fluctuations. An improvement over the lognor-
mal model is represented by the skewed lognormal distribution
(Colombi 1994). This model proved to be an excellent approx-
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imation to the PDF of the dark matter measured from N-body
experiments over a wide range of scales and of over-densities
(Ueda & Yokoyama 1996). The impact of adopting either model
for the mass PDF can be appreciated in Fig. 4. The solid red
curves represent the same biasing functions shown in Fig. 3 ob-
tained from the galaxy PDFs of the Parent mocks and from a
mass PDF obtained directly from an N-body simulation with the
same cosmological parameter and size as the Millennium sim-
ulation using the output corresponding to z = 0.8. As in the
previous test, we consider the red solid curve as the reference
biasing function. The brown dot-dashed curve shows the mean
biasing function reconstructed assuming a lognormal model for
the mass PDF, i.e. a lognormal fit to the PDF measured from
the N-body simulation. The curve represents the average among
26 mocks and the orange band is the 2-σ scatter. For R = 8
h−1 Mpc , the biasing function is systematically below the refer-
ence whereas for R = 4 h−1 Mpc is above the reference at both
high and low densities. The mismatch is very large and signifi-
cantly exceeds the 1-σ scatter (bottom sub-panels). The skewed
lognormal model (blue dashed curve) performs significantly bet-
ter with differences well below 1-σ except at very negative δ
values.

We conclude that, for the practical purpose of reconstruct-
ing galaxy bias, the mass PDF measured from N-body data and
a skewed lognormal fit perform equally well. The main advan-
tage of using the latter would be the possibility of determining
the four parameters of the fit experimentally. Since, however, the
parameters are poorly constrained by observations, we decided
to adopt the mass PDFs from N-body simulations. This choice
introduces a dependence on the cosmological model, however,
that is mostly captured by one single parameter, σ, for which b̂
and b̃ exhibit a linear dependent. With respect to this, the mass
PDF used to obtain the biasing functions in Figure 4 is not the
true mass PDF since it is obtained from an N-body simulation
that uses a cosmological model that is different from the model
used to produce the mock catalogues. We did this on purpose
to mimic the case of the real analysis for which the underlying
cosmological model is not known.

4.3. Sensitivity to redshift distortions

Galaxy positions are measured in redshift space, i.e. using
the observed redshift to estimate the distance of the objects.
The presence of peculiar velocities induces apparent radial
anisotropies in the spatial distribution of galaxies and, as a con-
sequence, modifies the local density estimate and their PDF
(Kaiser 1987). However, our goal is to reconstruct the mean bi-
asing function in real space without redshift distortions. Consid-
ering the difficulties and uncertainties in determining the galaxy
PDF in real space, one could instead consider the galaxy and
mass PDFs both measured in redshift space under the assump-
tion that peculiar velocities induce similar distortions in the spa-
tial distribution of both dark matter and galaxies so that they
cancel out when estimating the mean biasing relation from Eq. 3.
In the limit of the Gaussian field, linear perturbation theory and
no velocity bias, the cancelation is exact. However, non-linear
effects have a different impact on the mass and galaxy density
fields and induce different distortions in their respective PDFs.
To assess the impact of these effects we compared the mean bi-
asing function of mock galaxies reconstructed from PDFs esti-
mated in real and redshift space.

The results are shown in Figure 5. The solid red curve repre-
sents the mean biasing function of galaxies in the Realistic mock

Fig. 4. Solid red curve: reference mean biasing function of Fig. 3 com-
puted using the mass PDF from N-body simulations. Brown dot-dashed
curve and orange band: biasing function obtained using a lognormal fit
to the mass PDF and 2-σ scatter from the mocks. Blue dashed curve
and blue band: biasing function obtained using a skewed lognormal fit
to the mass PDF and 2-σ scatter from the mocks. Bottom panels: dif-
ference ∆p between the reconstructed and reference PDFs in units of the
random error σp. Dashed lines indicate systematic errors equals to 1-σp

random errors.

catalogues estimated using the PDFs of galaxies and mass in real
space. The blue dashed line shows the same function estimated
in redshift space. Both curves are obtained by averaging over the
26 mocks and the blue band represents the 2-σ scatter in red-
shift space. The redshift space biasing function underestimates
the true biasing function in low-density regions and overesti-
mates it at high densities, i.e. in the presence of highly non-linear
flows. The difference is systematic but its amplitude is within
the 2-σ random errors estimated by adding in quadrature the
scatter among mocks in real and redshift space (bottom panels
in each plot). The biasing functions shown in Figure 5 repre-
sents a demanding test in which we consider the smallest cells
of 4 h−1 Mpc where deviations from linear motions are larger.
The discrepancy decreases if the size of the cell increases.

These systematic differences induce errors in the estimated
moments b̂ and b̃. To quantify the effect we computed the mo-
ments as a function of δ (i.e. by varying δMAX in Eq. 7) both in
real and redshift space. The results are shown in Figure 6. The
plots show the per cent difference between the moments mea-
sured in redshift versus real space. The panels and curves refer
to the same redshift bins and magnitude cuts as in Figure 5. Sys-
tematic errors induced by redshift distortions are ∼ 2 % for b̂ and
for b̃ (not shown) and one order of magnitude smaller for b̃/b̂.
They provide the main contribution to the total systematic errors
listed in Table 2 and are of the same size, although somewhat
smaller than the random errors.
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Fig. 5. Mean biasing function estimated in real space (solid, red curve)
and redshift space (dashed blue curve and its 2-σ uncertainty band).
Counts are performed in spherical cells with a radius of 4 h−1 Mpc . The
luminosity cut and the redshift range is indicated in each panel. The
width of each band represents the scatter among mocks. In the bottom
part of each plot we show the difference ∆p between the reconstructed
and reference PDFs in units of σTOT, where σTOT accounts for the rms
scatter in both the real- and redshift-space mocks. Dashed lines indicate
where systematic errors equal to 1-σTOT random errors.

Considering the absolute and relative size of these errors, we
perform our analysis in redshift space.

4.4. Error estimate

Different sources of errors affect the recovery of the biasing
function. One error source is cosmic variance due to the finite
volume of the sample. This source dominates the error budget of
the M05 and K11 analyses.

The other sources are the shot noise induced by discrete sam-
pling and the limited number of independent cells used to build
the probability of galaxy counts P(Ng). In the VIPERS survey,
which is based on a single-pass strategy, sparse sampling is more
of an issue than in the M05 and K11 cases. The cumulative ef-
fect of the single pass strategy and colour preselection reduces
the sampling rate to ∼ 35 % on average with significant vari-
ations across quadrants. The survey geometry, characterised by
gaps and missing quadrants that occupy ∼ 25 % of the would-be
continuous field, further dilutes the sampling (we consider cells
that overlap up to 40 % with unobserved regions) and limits the
number of independent cells that can be accommodated within
the survey. Our PDF reconstruction strategy is designed to min-
imise these effects that, nevertheless, induce random and system-
atic errors that need to be estimated. We do this with the help of
both the Parent and Realistic mock catalogues. The former pro-
vide the reference mean biasing function. Errors are estimated

Fig. 6. Bottom panel: per cent difference between the b̂ values esti-
mated in redshift space and in real space using spherical cells with a
radius of 4 h−1 Mpc as a function of 1 + δMAX (see Eq. 7). The different
curves refer to different redshift shells and magnitude cuts, as indicated
in the plot. Upper panel: per cent difference in the estimated non-linear
parameter b̃/b̂. Vertical dashed lines are drawn in correspondence to
the δMAX values at which systematic errors are computed and listed in
Table 2.

by comparing the bias function reconstructed from the Realistic
mocks to the reference mocks. The procedure is detailed below
and the estimated errors are listed in Table 2.

4.4.1. Total random error

To estimate the total random error σRND, we proceed as follows.
We reconstruct the mean biasing function in each of the Real-
istic mock catalogues, compute the average over the 26 mocks
and, finally, estimate the scatter around the mean. The rms scat-
ter provides an estimate of the total random error. All sources of
uncertainties contribute to this error (e.g. cosmic variance, shot
noise, and limited number of cells), which may affect the recov-
ery of the biasing function. Total random errors for b̂ and b̃/b̂ are
listed in columns 6 and 10 of Table 2, respectively.

4.4.2. Cosmic variance

To assess the contribution of the cosmic variance, σCV, to the
error budget, we proceed as for the estimate of total random er-
rors using, however, the Parent catalogues rather than the Realis-
tic catalogues. Since errors in the bias reconstruction are mainly
driven by discrete sampling and in the Parent catalogues the
sampling is dense, the rms scatter among these mocks is domi-
nated by cosmic variance. Cosmic variance contributions to er-
rors in b̂ and b̃/b̂ are shown in columns 7 and 11 of Table 2,
respectively. It turns out that the contribution of the cosmic vari-
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ance is of the same order as that of the sparse sampling and, un-
like in the case of M05 and K11, it does not dominate the error
budgets.

4.4.3. Systematic errors

Following K11, we compute systematic errors, σSYS, as the av-
erage offset of the bias estimates in the Realistic and the Parent

catalogues, i.e. σSYS = 〈XRealistic − XParent〉, where X is either b̂

or b̃/b̂ and the mean is over the 26 pairs of mocks. These sys-
tematic errors are plotted in the bottom panels of Fig. 3 (blue,
dashed curves). Their amplitudes at δMAX are listed in columns
8 and 12 of Table 2. These systematic errors are of the same
order as the random errors and as the errors induced by redshift
distortions discussed in Section 4.3. These systematic errors in-
clude those induced by redshift distortions. The fact that they are
of the same order as those discussed in Section 4.3 indicates that
they dominate the budget of systematic errors.

Our systematic errors are similar to those estimated by K11
(upper part of their Table 2) from the zCOSMOS sample, which
is significantly small than VIPERS. As these errors do not seem
to depend on the volume of the survey, we conclude that they can
be regarded as genuinely systematic. Systematic errors on b̂ are
on average positive, meaning that the mean slope of the recon-
structed biasing function typically overestimates the true biasing
function. For the non-linear bias, parameter systematic errors are
preferentially negative, indicating that the reconstruction proce-
dure has the tendency to underestimate the non-linearity of the
biasing function.

4.4.4. The value of δMAX

Our bias estimator becomes progressively less reliable as the
density increases, for two reasons: first, the numerical solution to
Eq. 3 becomes unstable when the cumulative distribution func-
tions approach unity, i.e. in correspondence of the high peaks of
the mass and galaxy density fields. In this regime, small errors in
the estimated galaxy PDF propagate into large uncertainties in δ;
second, as anticipated in the previous Section, the scatter in the
δg versus δ relation is larger than Poisson. Our assumption that
Eq. 6 is valid at all δ leads to underestimating the high-density
tail of the galaxy PDF and, consequently, the value of b̂.

Our mock catalogues can be used to estimate the first type of
error, but cannot fully account for the second type of error since
our mock galaxies are sampled from dark matter halos assum-
ing Poisson statistics. We therefore take the alternative route of
reducing the impact of deviations from Poisson statistics at high
densities. We do this by setting a sensible maximum over den-
sity value, δMAX, at which we compute the bias moments. The
value of this threshold is computed as follows:

1. We consider the difference ∆P between the ‘true’ Pt(Ng)
measured in the Realistic mock catalogues and the recon-
structed Pr(Ng) estimated through Eq. 5.

2. We search for the first Ng value, N1, at which ∆P > 2σP,
where σP is the rms scatter in the mocks.

3. We search for the first Ng value, N2, at which |∆P/Pt(Ng)| >
0.5.

4. We take NMAX = Min[N1,N2] and compute the correspond-
ing over-density in galaxy counts δg,MAX = NMAX/〈N〉.

5. We obtain the corresponding mass over-density δMAX from
δg,MAX from the estimated mean biasing function.

The largest over-density at which we search for a solution to
Eq. 3 is δMAX, and this is also the over-density at which we es-
timate the bias moments. This value is clearly model dependent
since it was estimated from the VIPERS mocks. An alternative
way of setting this threshold would be to look for wiggles in the
mean biasing function measured from real data, i.e. spurious
features induced by instabilities in the reconstruction procedure.
We found that this second criterion is less stringent as it produces
δMAX values larger than using mocks. We decided to adopt a con-
servative approach and use the δMAX thresholds estimated with
the first procedure.

With this criterion we obtain different δMAX for the different
galaxy subsamples considered in our analysis. This limits our
ability to compare results. Since the value of δMAX mainly de-
pends on the radius of the cell, we use one single value for δMAX
for a given cell size, irrespective of the other parameters used to
define the subsample. These values, which are listed in Table 2,
correspond to the minimum δMAX among those computed for all
subsamples.

All bias parameters presented in our work were computed at
these over-density values. To check the robustness of our results
to δMAX we also considered a second, less stringent threshold
obtained by taking the maximum value of δMAX among those of
the various subsamples for a given cell size. This second set of
δMAX that we denote as δ̄MAX, is also listed in Table 2 together
with the corresponding estimates for the bias moments (values
in parenthesis).

5. Results

In this section we present the results of our analysis, focusing on
the dependence of the mean biasing function and its moments on
various quantities. In Sections 5.1 and 5.2 we explore the bias de-
pendence on magnitude and redshifts, respectively. In both cases
we fix the radius of the cells equal to 6 h−1 Mpc . The depen-
dence on the cell size is investigated in Section 5.3. Results are
summarised in Section 5.4 and listed in Table 2.

5.1. Magnitude dependence

The different solid curves in Figure 7 represent the mean bias-
ing function of VIPERS galaxies reconstructed from counts in
cells of radius 6 h−1 Mpc for different magnitude cuts for three
different redshift shells (the three panels). We applied a small
horizontal offset δ = 0.015 to the curves to avoid overlapping
error bars. We plot (1 + δ) in logarithmic units both to ease the
comparison with similar plots in the literature and to highlight
deviations from linearity in the low-density regions. Error bars
represent the 2-σ random scatter computed from the Realistic
mocks.

The magnitude range that we are able to explore is set by
competing constraints: the faint limit reflects the requirement of
maximising the completeness of the sample whereas the bright
limit is set by requiring 〈Ng〉 > 0.3 per cell. As a result, the
magnitude range shrinks with the redshift: at z = [0.5, 0.7] it
spans a range ∆MB = 1.4 whereas at z = [0.9, 1.1] ∆MB = 0.5.

In the upper plot the curves corresponding to the different
magnitude cuts are well separated for δg < 0. The separation
reduces and then disappears with the redshift. This is not sur-
prising since at z ≥ 0.9 the luminosity range is very narrow, as
we have seen. No significant trend with luminosity is seen at
large over-density. These features, or the lack of them, are ro-
bust to variations in the size of the cells in the range R = [4, 8]

Article number, page 11 of 22



A&A proofs: manuscript no. arXiv_revised

h−1 Mpc (see Table 2) and confirm the results obtained at lower
redshifts from galaxy clustering (e.g. Norberg et al. 2002; Ze-
havi et al. 2005; Pollo et al. 2006; Coil et al. 2008; Skibba et al.
2014; Arnalte-Mur et al. 2014; Marulli et al. 2013), gravitational
lensing (e.g. Coupon et al. (2012)) and counts in cells (e.g. M05
and K11).

To further investigate galaxy bias in under-dense regions,
we zoom into the δ < 0 range in Figure 8. The curves are the
same as in Figure 7. The black long-dashed line represents the
linear biasing function with a slope matching the b̂ value esti-
mated at δMAX , which is listed in Table 2. Since b̂ only weakly
depends on the magnitude cut we only consider one represen-
tative case per panel. The local slope of the biasing function is
always steeper than the best-fitting linear bias model. The hor-
izontal, short-dashed line shows the δg = −0.9 threshold.The
mass over-density at which this line crosses the biasing curves,
δTH, increases with the redshift and, to a lesser extent, with the
luminosity. This trend, which was noticed by M05 and, with less
significance, by K11,has been interpreted as evidence that low-
density regions are preferentially populated by low-luminosity
galaxies. Also, the quantity δTH has been regarded as the typi-
cal mass over-density below which very few galaxies form.

Figure 8 shows that galaxies can be found at mass over-
densities well below δTH. This low-density tail, together with
the steepness of the biasing function for δ > δTH, shows that
the biasing relation in the under-density region significantly de-
viates from the linear prescription. Non-linearity increases when
decreasing the cell size. As we checked, for R = 4 h−1 Mpc the
slope of the biasing curves further increases well above δTH. For
R = 8 h−1 Mpc , the difference disappears and the two slopes
start to match. Still, the bias curves keep featuring a negative δ
tail that cannot be matched by linear models.

Figure 9 shows the second-order moment b̂ (left panels) and
the ratio b̃/b̂ (right panels) of the biasing functions shown in
Fig. 7. The same colour-code is used to indicate the magnitude
cuts. Large filled symbols refer to measurements performed at
δMAX assuming σ8 = 0.9 whereas the slightly offset, smaller
open symbols refer to estimates performed at δ̄MAX. The values
of the corresponding bias moments are listed in Table 2. Error
bars represent 1-σ total random uncertainties estimated from the
Realistic mocks (see Table 2).

In the left panels of Fig. 7, we notice that in the low red-
shift bin, where the magnitude interval that we probe is larger, b̂
increases with the luminosity. This dependence is much weaker
for z = [0.7, 0.9] and completely absent at higher redshifts. We
show results for cells of 6 h−1 Mpc . However, the same trend is
also seen for 4 and 8 h−1 Mpc .

The right panels show the non-linear parameter b̃/b̂. Val-
ues that differ from unity indicate deviations from linear bias
(horizontal dashed line). A small but significant degree of non-
linearity is present at all redshifts. We do not detect any signif-
icant dependence on luminosity in any redshift bin and for any
cell size.

A common feature of the reconstructed mean biasing func-
tions at z = [0.9, 1.1] is the presence of some irregular behaviour
(wiggling) at high over-densities. This is the typical fingerprint
of an imperfect inversion (Eq. 3) discussed in Section 3.2 and
one of the reasons for introducing the threshold δMAX. These
irregularities typically arise as a result of sampling rare, large
over-densities with a limited number of independent cells. The
effect is most evident at large redshifts and for bright magnitude
cuts, i.e. when the sampling is sparser. This affects the shape of
the reconstructed mean biasing function. However, the impact on

Fig. 7. Mean biasing function of VIPERS galaxies from counts in cells
of radius 6 h−1 Mpc as a function of the B-band magnitude cut in three
redshift ranges indicated in each panel. Curves with different colours
and line styles correspond to the different magnitude cuts indicated in
upper panel. Error bars with matching colours represent the associated
1-σ uncertainty intervals estimated from the mocks. A horizontal offset
δ = 0.015 was applied to avoid overlapping error bars. All biasing
functions are plotted out to δMAX.

Fig. 8. Zoom into the under-density range of Fig. 7. The horizontal
short-dashed line represents the over-density threshold δg = −0.9. The
long dashed line shows the linear biasing function δg = b̂δ, for the b̂
value corresponding to the MB−z−5log(h) < 19.5 cut, which is listed in
Table 2. The dotted line, shown for reference, shows the case bLIN = 1.
Error bars represent the 1-σ rms scatter among the mocks. They are
only shown for the case MB− z−5log(h) < 19.5 to avoid overcrowding.
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Fig. 9. Second-order moments of the mean biasing functions shown
in Fig. 7. Left panels: moment b̂. Right panels: non-linear parameter
b̃/b̂. The cell size is R = 6 h−1 Mpc . Error bars indicate 1-σ scatter
from the mocks. The redshift ranges and colour code are the same as
in Fig. 7. Magnitude cuts are indicated in the plots. All values were
computed assuming σ8 = 0.9. The horizontal dashed line is plotted for
reference and represents the case of no bias (left plot) and linear bias
(right panels). Large filled symbols refer to measurements performed
at δMAX, and small, open symbols refer to estimates at δ̄MAX.

the second moments b̂ and b̃ and, especially, b̃/b̂, is rather lim-
ited. This is because bias moments are integral quantities (Equa-
tion 7) weighted by the mass PDF, which peaks at δ ∼ 0 and
rapidly approaches zero in the high- and low-density tails. Sys-
tematic errors in the bias reconstruction at large over-densities
are therefore suppressed when computing b̂ and b̃ and further
smoothed out when computing their ratio.

Figure 10 demonstrates the validity of this conjecture. In the
left panels we show the values of b̂(δ) computed from equa-
tion 7. Curves with different line styles refer to the different
magnitude cuts indicated in the plot. Error bars with matching
colours indicate the 1-σ scatter from the mocks. In the interval
z = [0.9, 1.1] and for the brightest and sparsest sample, b̂(δ) flat-
tens for δ > 3, i.e. well below δMAX. Analogous considerations
hold for the curve b̃/b̂(δ) shown in the right panels. These trends
are robust to the size of the cells.

5.2. Redshift dependence

To explore the bias dependence on the redshift we set a mag-
nitude cut MB = −19.5 − z − 5 log(h) and estimated the mean
biasing function of brighter galaxies in the three redshift bins.
This z-dependent magnitude cut is designed to account for lu-
minosity evolution (Zucca et al. 2009), so that differences in the
galaxy bias measured in the different z-bins can be interpreted
as the result of a genuine evolution. The results of our analy-
sis are shown in Figure 11. The plots are analogous to those of
Fig. 7 and use the same symbols, colour scheme, and line style.
However, we consider cells of different sizes in the three panels.

Fig. 10. Left: second-order moment b̂(δ) of the reconstructed mean
biasing functions shown in Fig 7. The cell size is R = 6 h−1 Mpc . Dif-
ferent line styles and colours indicate different luminosity cuts listed in
the plot. The redshift ranges and colour codes are the same as in Fig 7.
Error bars represent the 1-σ scatter among the mocks. Right: similar
plots showing the non-linear bias parameter b̃/b̂(δ). A horizontal off-
set δ = 0.015 was applied to avoid overlapping error bars. All curves
are plotted out to δMAX.

The biasing function shows little or no evolution in the
range z = [0.5, 0.9], as demonstrated by the proximity be-
tween the dashed-blue (z = [0.5, 0.7]) and dot-dashed orange
(z = [0.7, 0.9]) curves and the overlap of their 1-σ error bars.
The red solid line, however, is separated fullyfrom the others,
indicating that galaxy bias evolves significantly beyond z = 0.9.
This evolution is detected both in low- and high-density environ-
ments. It implies that δTH increases significantly with the red-
shift, indicating that evolution shifts galaxy formation towards
regions of progressively lower density. At δ > 0 the effect of
evolution is that of increasing the slope of the biasing function
with z. Since in this range the biasing is close to linear, an es-
timate of bLIN would reveal a redshift evolution consistent with
that observed in several analyses, as detailed in Section 6. The
same trend is evident in all panels, indicating that the bias evo-
lution is similar in all explored scales.

At high redshifts and for R = 8 h−1 Mpc (bottom panel) the
biasing function is characterised by some irregularities at mod-
erate values of δ. As pointed out, these have little impact on the
estimated values of b̂ and b̃/b̂. It is reassuring that these anoma-
lies are only seen at high redshifts, confirming the fact that they
are induced by poor sampling of the counts probability. All this
makes us confident that bias evolution is a genuine feature.

Figure 12 shows the values of b̂ and b̃/b̂ as a function of red-
shift. The values were obtained by integrating the mean biasing
functions in Figure 11 out to the values δMAX and δ̄MAX (large
and small symbols, respectively). The corresponding values are
listed in Table 2. The colour code is the same as in Figure 11
and is indicated in the plot. The mean slope of the curve, b̂ (left
panels), increases significantly beyond z = 0.9 whereas we see
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Fig. 11. Mean biasing function of VIPERS galaxies with MB < −19.5−
z−5 log(h) measured in different redshift bins, characterised by different
colours and line-styles, as indicated in the plot. Error bars represents the
1-σ scatter in the mocks. The three panels refer to different cell sizes
with radii R = 4, 6, 8 h−1 Mpc from top to bottom. A horizontal offset
δ = 0.015 was applied to avoid overlapping error bars. All curves are
plotted out to δMAX.

little or no evolution at lower redshifts. This shows that the trend
seen in Figure 11 is seen at all scales, indicating that the bias
evolution at z > 0.9 is indeed a robust feature. The bias parame-
ter of VIPERS galaxies brighter than MB = −19.9 − z − 5 log(h)
exhibits a small but significant degree of non-linearity at all red-
shifts and scales explored in our analysis (right panels); this bias
parameter, however, does not significantly evolve with redshift.
These results are robust to the luminosity cut since they are also
found for galaxies brighter than MB < −19.9 − z − 5 log(h).

5.3. Scale dependence

In Fig. 13 we explore the dependence of the bias of VIPERS
galaxies on the radius of the cells down to a scale of 4 h−1 Mpc .
In the plots we show the mean biasing function of VIPERS
galaxies brighter than MB = −19.5 − z − 5 log(h) measured at
R = 4, 6 and 8 h−1 Mpc . Different scales are characterised by
different colours, as indicated in the plot. The panels show the
results in the three redshift shells. At negative over-density the
curves are remarkably similar, indicating that δTH and the effi-
ciency of galaxy formation do not depend on the scale in the
range [4, 8] h−1 Mpc . At δ > 0 the curves steepen with the ra-
dius of the cell, indicating that biasing increases with the scale
especially at high redshift.

A more quantitative assessment of scale dependence is
shown in Fig. 14. The value of b̂ steadily increases with the
cell radius, R, especially at high redshift. This trend may sound
counterintuitive; galaxies are expected to trace the mass with in-
creasing accuracy on a larger scale and, consequently, galaxy
bias is expected to approach its linear value. This, however, oc-
curs on scales much larger than those considered here (see e.g.

Fig. 12. Moments of the mean biasing functions shown in Fig. 11.
Panels from top to bottom indicate cells of increasing size. Left panels:
b̂. Right panels: b̃/b̂. Error bars indicate the 1-σ scatter from the mocks.
All values were computed assuming σ8 = 0.9. Large filled symbols
refer to measurements performed at δMAX, small open symbols refer to
estimates at δ̄MAX.

Fig. 13. Mean biasing function of VIPERS galaxies with MB < −19.5−
z − 5 log(h) computed from counts in cells with radii of 4, 6 , and 8
h−1 Mpc . Biasing functions at different scales are indicated with differ-
ent colours and line styles, as indicated in the plots. Error bars represent
the 2-σ rms scatter in the mocks. Different panels refer to different red-
shift shells. An offset δ = 0.015 was applied to avoid overlapping error
bars. Curves are plotted out to δMAX.
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Fig. 14. Moments of the mean biasing functions vs. the size of the cell.
Panels from top to bottom refer to different redshift ranges indicated in
the plot. Left panels: b̂. Right panels: b̃/b̂. The parameters were com-
puted assuming σ8 = 0.9. Error bars indicate the 1-σ rms scatter from
the mocks. Large, filled symbols refer to measurements performed at
δMAX, small open symbols refer to estimates at δ̄MAX.

Wild et al. 2005). On the scales explored here the halo model
predicts that the opposite trend should be observed (see e.g. Fig.
4 of Zehavi et al. 2004). The reason is that in this range of
scales the contribution to galaxy clustering of the 1-halo term,
which dominates on small scales, is comparable to that of the
2-halo term, which dominates on large scales. The scale of the
crossover depends on galaxy type and redshift but it is expected
to be bracketed in the range probed by our analysis. This expla-
nation is corroborated by the fact that the values of b̂ measured
in the HOD mocks, designed following the halo model prescrip-
tions, do show an increasing trend with the size of the cells.

An increase of galaxy bias with the scale was already de-
tected at lower redshifts from the analysis of galaxy clustering
(Zehavi et al. 2005) and from weak lensing (Hoekstra et al. 2002;
Simon et al. 2007). This is the first detection at relatively high
redshift that exploits counts in cell statistics. A small, but signif-
icant amount of non-linearity is detected at all redshifts. Unlike
b̂, the non-linear parameter b̃/b̂ seems to be scale independent.
These results are robust to magnitude cut since similar trends for
b̂ and b̃/b̂ are also seen when one restricts the biasing analysis to
objects brighter than MB < −19.9 − z − 5 log(h).

5.4. Results from the whole dataset

We now summarise the results presented in this section. Overall,
the biasing functions of the VIPERS subsample are in qualita-
tive agreement with those of M05 and K11 with some intriguing
differences. At moderate over-densities and out to δMAX, our bi-
asing functions are close to linear with a slope close to b̂(δMAX).
This is at variance with M05 and K11 whose biasing function
flattens at large δ, leading to an anti-bias signature. This fea-
ture has been variously interpreted as evidence for quenching

Fig. 15. Bottom panel: comparison between b̂ measured in various
mock subsamples and b̂ measured in the VIPERS catalogue. Differ-
ent symbols and colours refer to results obtained with cells of different
sizes, as indicated in the plot. The subsamples were obtained by apply-
ing the same magnitude and redshift cuts used in this section and indi-
cated in Table 2. The error bars represent 1-σ scatter from the mocks.
Top panel: comparison among the non-linear parameters b̃/b̂ measured
in the mocks and in the real sub-catalogues
.

processes (Blanton et al. 2000), enhanced galaxy merging rate
(Marinoni et al. 2005), and early galaxy formation (Yoshikawa
et al. 2001) in high-density regions. We find a similar flatten-
ing only if we push our analysis beyond δMAX. However, its sta-
tistical significance is less that 2 σ. A similar feature was also
detected in simulations and interpreted as an artefact due to lim-
itations of the bias estimator at high redshift (Sigad et al. 2000).
Given the fact that all these works, including ours, use a similar
technique to measure galaxy bias, we suspect that the flattening
at large density is not a genuine effect.

At δ < 0 the biasing function significantly deviates from lin-
ear prescription and is steeper than b̂. Moreover, the galaxy den-
sity remains positive below δTH, indicating that galaxy formation
is not entirely quenched even in very low-density environments.

Table 2 lists the bias parameters measured in the VIPERS
subsamples of Table 1 together with random and systematic er-
rors estimated from the mocks. We computed all of the param-
eters by integrating the mean biasing function out to the value
δMAX listed in the Table. Altogether the results confirm the var-
ious trends that we described in the previous sections: the value
of b̂ increases with luminosity, scale, and with the redshift be-
yond z = 0.9. Deviations from linear biasing are small but typi-
cally detected with significance larger than 1 σ. The non-linear
bias parameter is, within the errors, independent of redshift, lu-
minosity, or scale.

We obtained errors from the VIPERS mock catalogues de-
signed to match the 2-point statistics of real galaxies but not
their abundance or their bias. One consequence of this is that
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bright galaxies in the subsamples of the mocks are sparser than
the real galaxies at z < 0.9 (see Table 1). As a result our ran-
dom errors somewhat overestimate the real errors. As for the
bias, if that of the galaxies in the real sample is different from
the mock sample, then our error estimate would be affected. We
compared the values of b̂ and b̃/b̂ in the mock and in the real
samples to investigate this issue. The resulting scatter plots are
shown in Figure 15. The different points represent the individual
subsamples considered in our analysis. Symbols with different
colours are used to highlight results obtained with different cell
sizes. Error bars represent the rms scatter in the mocks. Most of
the points deviates less than 2 σ from the expected value (black
dashed line), implying that our mocks are realistic and that our
errors are indeed reliable.

6. Comparison with previous results

Several authors estimated the bias of galaxies in the same range,
z = [0.5, 1.1], considered here. The majority of these authors as-
sumed linear bias and estimated the bias parameter from galaxy
clustering (Coil et al. 2006; Meneux et al. 2006; Coil et al.
2008; Meneux et al. 2008, 2009; Coupon et al. 2012; Marulli
et al. 2013; Skibba et al. 2014; Arnalte-Mur et al. 2014). Only
a handful of papers addressed the issue of non-linear or scale-
dependent bias at these redshifts (M05, K11, Simon et al. (2007);
Jullo et al. (2012)). In this section, we compare our results with
both types of analyses. First we compare our estimated non-
linear bias parameter with available measurements from previ-
ous studies. Then we consider the most recents estimates of the
linear bias parameter bLIN in this redshift range available in the
literature and compare them with our value of b̂.In these com-
parisons all results were rescaled to the value σ8 = 0.9 adopted
in this paper whenever required.

6.1. Galaxy bias from counts in cells

In Figure 16 we plot the values of b̂ and b̃/b̂ obtained from our
analysis as a function of redshift (filled and open red dots) and
compare these values to those obtained by M05 (green triangles)
and K11 (blue squares) from counts in cells following a proce-
dure similar to ours. We do not consider the results of the analy-
ses of Simon et al. (2007) and Jullo et al. (2012) since these au-
thors estimate the so-called correlation parameter that accounts
for both non-linearity and stochasticity.

We only considered objects that, at a given redshift, span
a similar range of magnitudes to avoid mixing evolution and
luminosity dependence. For VIPERS we consider objects with
MB < −19.1 − z − 5 log(h). For zCOSMOS we consider objects
above a similar cut-off, MB = −19.22 − z − 5 log(h). For the
VVDS-Deep sample, M05 use a redshift-independent luminos-
ity threshold of MB = −20.0−5 log(h),which is comparable with
the above cut-offs in the range z = [0.8, 1.1]. We considered an
additional VIPERS subsample cut at the same constant magni-
tude limit as M05 to improve the consistency in the comparison
with VVDS.

In the case of M05, the values of b̂ and b̃/b̂ shown in Fig-
ure 16 were inferred from the published values of b̃ and b̂/b̃.
In addition, M05 do not provide the errors for b̃/b̂. The error
bars shown in the plot were extrapolated from the errors on b̂

under the assumption that the ratio of the errors on b̂ and those
on b̃/b̂ are the same for the two datasets. The comparison be-
tween zCOSMOS and VIPERS shows that this assumption is
approximately valid. The zCOSMOS points are plotted at the

centre of their redshift bins. In the VVDS case we added an off-
set ∆z = +0.02 to avoid overlapping. Finally, we restrict our
comparison to counts in cells of R = 8 h−1 Mpc since this is the
minimum cell size considered by K11 and the only one common
to the three analyses.

The values b̂ of zCOSMOS galaxies (bottom panel) are in
agreement with those of VIPERS galaxies. These values increase
with redshift in both cases. This trend is more evident in the
zCOSMOS case, while for VIPERS the evolution is detected
only with a significance of ∼ 1 σ only. Our results do not match
those of M05 at z = 0.8, where the two samples overlap. The
significance of the discrepancy, however, is about 1 σ. A sim-
ilar mismatch was observed between VVDS-Deep zCOSMOS
and interpreted by K11 in terms of different clustering ampli-
tude in the two datasets (McCracken et al. 2007; Meneux et al.
2009; Kovač et al. 2011). Indeed, zCOSMOS is characterised by
prominent structures and large spatial coherence as opposed to
the VVDS Deep field. This difference was interpreted as a man-
ifestation of cosmic variance. The VIPERS survey was designed
to reduce the impact of cosmic variance and solve these types
of controversies. In this specific case, the agreement between
VIPERS and zCOSMOS galaxies suggests that the bias of the
latter is closer to the cosmic mean than that of the VVDS-Deep
field.

The comparison among the non-linear bias parameters of
the three galaxy samples (upper panel of Fig. 16) corroborates
this conclusion. The values of b̃/b̂ for zCOSMOS and VIPERS
galaxies agree with each other and significantly deviates from
unity. Thanks to the smaller error bars in VIPERS these devia-
tions are now detected with higher statistical significance. Devi-
ations from non-linear bias in the VVDS-Deep are larger than in
VIPERS but the statistical significance for this mismatch is just
about 1 σ.

Figure 17 is analogous to Figure 16. It shows the values
of b̂ and b̃/b̂ for galaxy subsamples extracted from VIPERS
(red dots) and zCOSMOS (blue squares) using magnitude cuts
brighter than before: MB = −19.7 − z − 5 log(h) for VIPERS
and MB = −19.72 − z − 5 log(h) for zCOSMOS. Our results
confirm those obtained with the fainter samples; the values of
b̂ and b̃/b̂ for VIPERS galaxies agree with those of zCOSMOS
galaxies in the redshift range in which the two analyses over-
lap. Non-linearity is detected at more than 1-σ in the VIPERS
sample alone. No comparison was made with the VVDS-Deep
sample in this case since none of the subsamples analysed by
M05 match these luminosity cuts.

6.2. Linear bias from galaxy clustering

In Section 5 we saw that the bias of VIPERS galaxies devi-
ates from linearity at all redshifts and on all scales explored.
The amount of non-linearity, quantified by the parameter b̃/b̂,
is rather small, of the order of a few per cent. This means that
b̂ is reasonably similar to bLIN and, therefore, can be compared
with the linear bias parameter computed in other analyses.

In the following, we therefore compare the values of b̂ com-
puted in this work with the values of bLIN obtained from different
datasets in the same redshift range but using a variety of bias es-
timators. Galaxy bias at these redshifts has been estimated from
both galaxy clustering and weak lensing. The latter probe, how-
ever, has either focused on bright objects used to trace baryonic
acoustic oscillations (Comparat et al. 2013) or to explore bias
dependence on the stellar mass (Jullo et al. 2012). Therefore, we
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Table 2. Bias parameters of VIPERS galaxies and their errors.

z-range MB- cut R δMAX b̂ σb̂
RND σb̂

CV σb̂
SYS b̃/b̂ σNL

RND σNL
CV σNL

SYS
MB(z = 0) − 5 log h h−1 Mpc

0.5-0.7 −18.6 − z 4 11(15) 1.01 (0.98) 0.04 0.02 0.02 1.018 (1.021) 0.005 0.003 -0.003
0.5-0.7 −19.1 − z 4 11(15) 1.06 (1.03) 0.04 0.02 0.02 1.017 (1.021) 0.006 0.002 -0.004
0.5-0.7 −19.5 − z 4 11(15) 1.10 (1.07) 0.04 0.02 0.02 1.017 (1.020) 0.010 0.002 -0.005
0.5-0.7 −19.9 − z 4 11(15) 1.23 (1.20) 0.05 0.02 0.02 1.007 (1.009) 0.012 0.002 -0.006
0.7-0.9 −19.1 − z 4 11(15) 1.15 (1.12) 0.03 0.02 0.01 1.012 (1.018) 0.004 0.002 -0.002
0.7-0.9 −19.5 − z 4 11(15) 1.17 (1.14) 0.03 0.02 0.02 1.015 (1.019) 0.004 0.001 -0.002
0.7-0.9 −19.9 − z 4 11(15) 1.20 (1.15) 0.04 0.02 0.02 1.013 (1.018) 0.005 0.001 -0.002
0.9-1.1 −19.5 − z 4 11(15) 1.45 (1.45) 0.05 0.02 0.02 1.008 (1.007) 0.006 0.001 −0.002
0.9-1.1 −19.9 − z 4 11(15) 1.49 (1.46) 0.11 0.02 0.03 1.008 (1.008) 0.018 0.001 −0.003
0.5-0.7 −18.6 − z 6 10(14) 1.16 (1.14) 0.04 0.04 0.03 1.012 (1.014) 0.004 0.002 -0.003
0.5-0.7 −19.1 − z 6 10(14) 1.22 (1.21) 0.05 0.04 0.03 1.012 (1.014) 0.004 0.002 -0.003
0.5-0.7 −19.5 − z 6 10(14) 1.27 (1.26) 0.06 0.04 0.04 1.010 (1.011) 0.006 0.002 -0.004
0.5-0.7 −19.9 − z 6 10(14) 1.35 (1.34) 0.07 0.05 0.05 1.009 (1.011) 0.007 0.002 -0.004
0.7-0.9 −19.1 − z 6 10(14) 1.35 (1.34) 0.03 0.03 0.02 1.005 (1.005) 0.003 0.002 -0.002
0.7-0.9 −19.5 − z 6 10(14) 1.37 (1.36) 0.03 0.02 0.02 1.007 (1.008) 0.003 0.002 -0.002
0.7-0.9 −19.9 − z 6 10(14) 1.43 (1.41) 0.03 0.03 0.02 1.009 (1.011) 0.004 0.002 -0.002
0.9-1.1 −19.5 − z 6 10(14) 1.85 (1.84) 0.05 0.03 0.01 1.007 (1.008) 0.004 0.001 -0.002
0.9-1.1 −19.9 − z 6 10(14) 1.85 (1.84) 0.06 0.03 0.02 1.011 (1.012) 0.004 0.001 -0.002
0.5-0.7 −18.6 − z 8 8(12) 1.24 (1.23) 0.07 0.05 0.04 1.007 (1.008) 0.005 0.003 -0.003
0.5-0.7 −19.1 − z 8 8(12) 1.32 (1.31) 0.07 0.05 0.04 1.007 (1.008) 0.004 0.002 -0.003
0.5-0.7 −19.5 − z 8 8(12) 1.36 (1.36) 0.08 0.06 0.05 1.007 (1.008) 0.005 0.002 -0.003
0.5-0.7 −19.7 − z 8 8(12) 1.40 (1.39) 0.09 0.06 0.06 1.006 (1.007) 0.005 0.002 -0.003
0.5-0.7 −19.9 − z 8 8(12) 1.44 (1.44) 0.09 0.06 0.06 1.006 (1.006) 0.005 0.002 -0.003
0.7-0.9 −19.1 − z 8 8(12) 1.44 (1.44) 0.04 0.04 0.02 1.003 (1.003) 0.003 0.002 -0.002
0.7-0.9 −19.5 − z 8 8(12) 1.46 (1.46) 0.05 0.04 0.03 1.005 (1.005) 0.003 0.002 -0.002
0.7-0.9 −19.7 − z 8 8(12) 1.48 (1.48) 0.07 0.04 0.03 1.008 (1.008) 0.004 0.002 -0.002
0.7-0.9 −19.9 − z 8 8(12) 1.51 (1.50) 0.08 0.04 0.04 1.008 (1.009) 0.006 0.002 -0.002
0.9-1.1 −19.5 − z 8 8(12) 2.01 (2.01) 0.06 0.04 0.02 1.010 (1.010) 0.003 0.002 -0.002
0.9-1.1 −19.7 − z 8 8(12) 1.98 (1.98) 0.06 0.04 0.03 1.009 (1.009) 0.003 0.003 -0.002
0.9-1.1 −19.9 − z 8 8(12) 2.01 (2.01) 0.07 0.05 0.04 1.015 (1.015) 0.004 0.003 -0.001
0.7-0.9 −20.0 8 8(12) 1.43 (1.42) 0.04 0.03 0.02 1.006 (1.005) 0.002 0.002 -0.001

Notes. Col. 1: redshift range. Col. 2: z-dependent B-band magnitude cut. Col. 3: cell radius [h−1 Mpc ]. Col. 4: maximum over-density considered
in the analysis δMAX; the value in parenthesis indicates δ̄MAX. Col. 5: estimated value of the bias moment b̂; the values in parenthesis refer to
measurements performed at δ̄MAX. Col. 6: total random error on b̂. Col. 7: cosmic variance contribution to b̂ error. Col. 8: systematic error on b̂.
Col. 9: estimated value of the non-linearity parameter b̃/b̂; values in parenthesis refer to measurements performed at δ̄MAX. Col. 10: total random
error on b̃/b̂. Col. 11: cosmic variance contribution to b̃/b̂ error. Col. 12: systematic error on b̃/b̂.

focus on the values of bLIN obtained from galaxy clustering in
other datasets available in the literature.

The results of these comparisons are shown in Figure 18 in
which we plot the most recent estimates of both b̂ and bLIN in
the three redshift bins as a function of the magnitude cut. We
consider the reference scale of R = 8 h−1 Mpc since this is the
size of the cells used to measure b̂ in VIPERS (large red circles),
VVDS-Deep (small orange pentagons), and zCOSMOS (small,
light green circles), as shown in the previous section. Magni-
tudes on the X-axis are specified in the B-band since this band
is used in most of the considered samples with the exception of
the PRIMUS and CHFTLS-wide. For these two latter cases, we
consider the g-band magnitude and transform it into B-band ac-
cording to the g−B versus z relation measured from the VIPERS
catalogue. Finally, all results were normalised to σ8 = 0.9.

The large red circles represent the b̂ values obtained from
VIPERS, for the systematic errors listed in Table 2. Therefore
these values are slightly different from those shown in Figures 16
and 17.

The light blue asterisks represent the bLIN values obtained
from the Wide part of the Canada-France-Hawaii Legacy Survey

(CFHTLS) (Coupon et al. 2012). In this case, the bias values
were computed from ∼ 3 × 106 galaxies in the redshift interval
z = [0.2, 1.2] by fitting a Halo Occupation Distribution model
to the measured angular correlation function. These bLIN values
were obtained by integrating the halo bias over the halo mass
function. Therefore they are integral quantities much like b̂,
which is computed by integrating over the mass PDF (Eq. 2).
The bLIN values of CFHTLS galaxies agree well with our results
in all redshift bins, including z = [0.9, 1.1].

The brown crosses in the middle panel of Figure 18 are
from Skibba et al. (2014) and show the bias of galaxies in the
PRIMUS catalogue. The PRIMUS (Coil et al. 2011) galaxy sur-
vey is carried out using a low-resolution spectrograph and com-
plete down to i < 23. This dataset, which covers five independent
fields (including the COSMOS field), spans the redshift range
z = [0.2, 1.0]. Here we focus on the interval z = [0.5, 1.0] and
plot the corresponding bias values in the middle panel. The
bias was estimated from the projected galaxy 2-point correla-
tion function, wp,g(r), as bLIN(r) =

√

wp,g(r)/wp,m(r), where the
projected 2-point correlation function of the matter, wp,m(r), was
modelled assuming a flat ΛCDM model with σ8 = 0.8. The
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Fig. 16. Comparison among the values of b̃/b̂ (top panel) and b̂ (bottom
panel) for zCOSMOS galaxies (blue squares) for VVDS-Deep galaxies
(green triangles) and VIPERS galaxies (filled red circles). All samples
are luminosity limited and the magnitude cuts are indicated in the plot.
The open red circles represents a VIPERS subsample matching the mag-
nitude cut and redshift range of the VVDS-Deep sample. Estimates for
the bias parameters of zCOSMOS are taken from K11, and those for
VVDS-Deep galaxies are from M05.

Fig. 17. Same as figure 16, but referring to brighter VIPERS (MB <

−19.7− z−5 log(h), red dots) and zCOSMOS galaxies (MB < −19.72−
z − 5 log(h), blue squares).

bias of PRIMUS galaxies is systematically larger than that of
VIPERS. However, the significance of the mismatch is below
1-σ.

The purple hexagons in the plot show bLIN of ALHAM-
BRA galaxies (Arnalte-Mur et al. 2014). The photometric red-
shift survey ALHAMBRA covers seven independent fields, in-
cluding DEEP2 and COSMOS. Photometric redshifts are accu-
rate enough to measure the projected galaxy correlation func-
tion at different redshifts and, from this, to estimate the bias.
In Figure 18 we show the bLIN values estimated in three red-
shift bins: [0.35, 0.65] (top panel), [0.55, 0.85] (middle panel),
and [0.75, 1.05] (bottom panel). We did not consider the interval
z = [0.95, 1.25] since it is largely beyond the VIPERS range. We
show two sets of points. Small open hexagons represent the val-
ues of bLIN obtained from the clustering of galaxies in all seven
fields (labelled ALHAMBRA+ in the plot). Filled hexagons
(labelled ALHAMBRA-) illustrate the effect of removing two
"outlier" fields, COSMOS and ELAIS-N1, which are charac-
terised by a high degree of clustering. The bias of galaxies in
ALHAMBRA- agrees with that of VIPERS for z < 0.9. In the
last redshift bin, for MB(z = 1) < −20.56 − 5 log(h) the bias of
ALHAMBRA- is ∼ 1.5-σ below that of VIPERS. However, the
discrepancy disappears when one considers ALHAMBRA+ and
seems to reappear, with a reverse sign, at higher luminosities.

The green triangles show the bLIN values obtained from the
projected galaxy 2-point correlation function of galaxies brighter
than MB − 5 log(h) = −20.5 − 5 log(h) at z = [0.9, 1.1] in the
DEEP2 survey (Coil et al. 2006). In the brightest magnitude
bin, where the three samples overlap, we find that the bias of
DEEP2 galaxies is significantly smaller than that of VIPERS and
ALHAMBRA objects.

To summarise, we find a good agreement between the value
of b̂ measured in our work and those of bLIN estimated in a num-
ber of surveys in the range z = [0.5, 0.9]. In particular, our mea-
surements agree with those of K11 (small, light green circles)
who used the same technique to estimate b̂.

In the outermost redshift shell not all the bias values mea-
sured in different surveys agree with each other. The value of
bLIN for DEEP2 and, to a lesser extent, for ALHAMBRA- galax-
ies, are smaller than b̂ from VIPERS. This mismatch may indi-
cate either a genuine difference in the clustering properties of the
different samples or deviations from linear bias highlighted by
the different bias estimators.

To quantify the impact of non-linear bias, we compare our
b̂ values with the corresponding bLIN estimated from the very
same VIPERS subsamples considered here. Figure 19 compares
b̂ from VIPERS (red filled symbols) with bLIN from Marulli
et al. (2013) (blue filled squares, also shown, for reference in
Figure 18). The two estimates agree at all redshifts but the last
redshift bin where the bias of Marulli et al. (2013) matches that
of DEEP2 galaxies and, consequently, is significantly below our
b̂ value.

Like most of the other measurements, Marulli et al. (2013)
estimated bLIN from the projected 2-point correlation function.
More precisely, they averaged the correlation signal over the in-
terval r = [1, 10] h−1 Mpc . In the presence of a scaled dependent
bias, a manifestation of which is a b̃/b̂ ratio different from unity,
it is not obvious which effective scale of the bias is estimated by
Marulli et al. (2013). In our comparison we implicitly assumed
that this scale is the same as the cell size, i.e. 8 h−1 Mpc . In fact,
a small scale seems more appropriate, especially if one accounts
for the fact that errors in the projected correlation function in-
creases with the pair separation. For this reason, we also show b̂
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measured in cells of R = 6 h−1 Mpc (orange hexagons). In this
case, the significance of the mismatch is significantly reduced.
Decreasing the scale to R = 4 h−1 Mpc (not shown) would bring
the two values into agreement at the price, however, of creating
a mismatch at lower redshifts.

Focusing on the VIPERS sample, a more homogeneous com-
parison can be performed considering the bLIN value obtained by
Cappi et al. (2015) from counts in cells of R = 8 h−1 Mpc (brown
asterisks, in the plots). In this case the results agree with ours
within the (rather large) error bars.

In the figure we also show the VIPERS linear bias estimated
by Granett et al. (2015) (green triangles) from a Bayesian re-
construction of a Wiener filtered, adaptively smoothed galaxy
density field. The result agrees with that of Marulli et al. (2013).
However, as in that case, it is difficult to associate an effective
scale to the filtering procedure and perform a homogeneous com-
parison with our estimate.

Therefore, all the bias estimates of the VIPERS galaxies
agree with each other at z < 0.9, a sign that galaxy bias is
largely independent of scales. At higher redshifts we observe
some discrepancies among the various estimates whose signifi-
cance, however, is difficult to assess since the different estimates
are sensitive to different scales. It is safe to conclude that the
scale-dependence bias of VIPERS galaxies is more pronounced
at high redshifts, as confirmed by the results presented in Sec-
tion 5.3, and that this can account for most of the discrepancies
seen in Fig. 19.

An additional, though minor, source of discrepancy is incom-
pleteness. At z ∼ 1 the 90 % completeness limit in VIPERS is
MB − 5 log(h) ∼ −21.0 for red galaxies and about half a mag-
nitude fainter for the blue galaxies. Since red galaxies are more
biased than the blue galaxies, selecting objects at this luminos-
ity cut underestimates the bias of the composite VIPERS sam-
ple. The amplitude of the effect depends on the luminosity cut.
We conclude that deviations from linear bias cannot be ignored
at high redshifts and that using bLIN as a proxy for galaxy bias
leads to significant systematic errors.

7. Discussion and conclusions

The importance of characterising galaxy bias at intermediate
redshifts stems from the need to infer the properties of the distri-
bution of the mass from that of the galaxies. This will be espe-
cially important in future redshift surveys aimed at an accurate
estimate of the cosmological parameters. This has prompted sev-
eral efforts to estimate galaxy bias at z > 0.5 exploiting weak
lensing, galaxy clustering, and galaxy counts. Most of these
works assume that galaxy bias is linear and deterministic and
provide an estimate for the linear bias parameter. In this work
we questioned this assumption and searched for possible devia-
tions from linear bias. This issue has already been investigated
by M05 and K11 (using counts in cells and significantly smaller
samples) and by Simon et al. (2007) and Jullo et al. (2012) with
conflicting evidence, as discussed in the introduction.

Our work builds upon these results improving the original
strategy of M05 and K11 in several aspects. First of all, it is
based on a new dataset of ∼ 50, 000 galaxies distributed over
a much larger volume than its predecessors. This significantly
reduces the impact of cosmic variance that in previous studies
dominated the error budget. Secondly, we use a new technique
to infer the mean biasing function from counts in cells that, un-
der the hypothesis of local Poisson sampling, accounts and auto-
matically corrects for shot noise. This improvement greatly in-
creases our ability to recover the biasing function since Pois-

Fig. 18. Comparison between the bias parameters b̂ and bLIN obtained
from galaxy counts and galaxy clustering, respectively. Large red cir-
cles: b̂ of VIPERS galaxies. Blue squares: bLIN of VIPERS from Marulli
et al. (2013). Green triangles: bLIN for DEEP2 galaxies from Coil et al.
(2006). Brown crosses: bLIN for PRIMUS galaxies from Skibba et al.
(2014). Light blue asterisks: bLIN for CHFTLS galaxies from Coupon
et al. (2012). Purple hexagons: bLIN for ALHAMBRA galaxies from
Arnalte-Mur et al. (2014).Small light green dots: b̂ for zCOSMOS
galaxies from Kovač et al. (2011). Small light brown pentagons: b̂ for
VVDS-Deep galaxies from Marinoni et al. (2005). Values of b̂ were
measured on a scale R = 8 h−1 Mpc .

son noise is the main source of stochasticity in the bias rela-
tion. Thirdly, owing to the size of the sample, we are able to ex-
plore the bias dependence on magnitude, redshift, and scale with
unprecedented accuracy. We postpone the investigation of addi-
tional dependences on galaxy colour and stellar mass to a future
analysis to be performed with the final VIPERS sample and new
mock galaxy catalogues designed to mimic these galaxy proper-
ties.

The main results of our study are:
The overall qualitative behaviour of the mean biasing func-

tion of VIPERS galaxies is similar to that of zCOSMOS and
VVDS-Deep galaxies as well as to that of the synthetic VIPERS
galaxies in the mock catalogues that we used to estimate er-
rors. The shape of the mean biasing function is close to linear
in regions above the mean density. It deviates from linear bias
at δ < 0. More specifically, above the threshold δTH at which
δg = −0.9, the bias function is significantly steeper than its mean
slope b̂ on scales smaller than 8 h−1 Mpc . For over-densities be-
low δTH the mean biasing function features a tail that cannot be
accounted for by linear biasing. The over-density threshold δTH
has been interpreted as a typical density scale below which very
few galaxies form. In our analysis, we find that this threshold in-
creases with the redshift and with the luminosity cut-of,f so that
at moderate redshifts low-density regions are typically populated
by faint galaxies.

Article number, page 19 of 22



A&A proofs: manuscript no. arXiv_revised

Fig. 19. Comparison between the bias parameter b̂ obtained from
our analysis on a scale of R = 8 h−1 Mpc (large red circles), R = 6
h−1 Mpc (small orange hexagons) and the linear bias parameters of
VIPERS galaxies, bLIN , obtained by Marulli et al. (2013) (blue squares),
Cappi et al. (2015) (brown asterisks), and Granett et al. (2015) (green
triangles).

The biasing function shows small but significant deviations
from linearity at all redshifts, scales, and magnitude intervals
that we explored. The parameter b̃/b̂ that we use to quantify non-
linearity neither seems to evolve with the redshift nor to depend
on the luminosity. A scale dependence is observed at low red-
shifts below 6 h−1 Mpc with only ∼ 1σ significance.

We confirm that galaxy bias depends on luminosity. The
mean slope b̂ of the biasing function, a good proxy to linear
bias given the small degree of non-linearity, increases with the
luminosity threshold used to select the galaxy sample. The effect
is significant for z = [0.5, 0.7], probably thanks to the large mag-
nitude leverage here compared to the bin z = [0.9, 1.1], in which
we can probe a much smaller magnitude range ∆MB = 0.4. The
value of δTH also increases with the magnitude, suggesting that
the efficiency of galaxy formation decreases with the luminosity
of the object.

We confirm that galaxy bias increases with redshifts as pre-
dicted by most bias models and verified in other datasets. In our
case we find evidence for a rapid evolution beyond z = 0.9. This
result is highly significant and robust since it depends neither
on the scale nor on the luminosity of the objects. The statistical
significance of this result depends on the reliability of our error
analysis, which is based on a mock galaxy catalogue designed to
match the correlation properties of VIPERS galaxies. We veri-
fied that mock catalogues are very realistic in the sense that their
biasing function matches that of real objects remarkably well.In
this analysis, we modelled all known sources of systematic er-
rors, including the magnitude dependence of the spectroscopic
sampling rate that was not originally included in the mock cat-

alogues. We find no evidence for systematic errors that might
mimic a spurious evolution in the bias moments b̂ and b̃.

The value of b̂ increases with the scale from 4 to 8
h−1 Mpc .We interpret this in the framework of the halo model
as the transition between the one-halo and two-halo contribution
to galaxy bias. The same trend is seen in our mock catalogues,
in which objects were extracted assuming the HOD model and
in previous analyses performed at lower redshifts using both
galaxy clustering (e.g. Zehavi et al. (2005)) and weak lensing
(e.g. Hoekstra et al. (2002), Simon et al. (2007)). This is the first
time that this effect is detected at high redshifts with counts in
cells statistics.

We compared our results with those of M05 and K11. These
authors performed an analysis similar to that presented here in a
similar range of redshifts. We limited the comparison on a scale
of 8 h−1 Mpc , which is common to the three analyses. We find
that the values of b̂ of VIPERS and zCOSMOS galaxies agree
within the errors. M05 find a smaller degree of biasing but the
difference is of the order of 1 −σ. We conclude that the claimed
discrepancy between K11 and M05 results is a manifestation of
cosmic variance.

Deviations from linear biasing were also detected by M05
and K11, although with a lower significance than in our case.
Our results agree with those of K11. In M05 the degree of non-
linearity is slightly larger than in our case but the discrepancy
is barely larger than 1-σ. The bias non-linearity is sometimes
expressed in terms of the parameter b2 of the second-order Tai-
lor expansion of δ (Fry & Gaztanaga 1993). Cappi et al. (2015)
analysed the same VIPERS dataset using higher order statistics,
which is a procedure that is less sensitive to non-linear bias than
ours. They detected a deviation from linear bias at z ≤ 0.9 with
a significance of ∼ 1-σ. Their b2 value turned out to be negative,
in agreement with M05 and Marinoni et al. (2008) and, qualita-
tively, with our results too.

measured from the clustering of galaxies in recent galaxy
redshift surveys (DEEP2, PRIMUS, CHFTLS-wide, and AL-
HAMBRA). This comparison is qualitative since it assumes that
bias is linear, while our analysis has detected a small, but sig-
nificant, degree of non-linearity in the bias of VIPERS galax-
ies. The comparison is generally successful at z < 0.9, where
we find a very good agreement with all existing results. In this
redshift range our results provide additional evidence in favour
of a luminosity-dependent bias and of a weak evolution. At
z > 0.9, where the spread among current results is large, our
results favour the case of a significant bias evolution, in agree-
ment with the CHFTLS-wide and ALHAMBRA analyses.

Our results confirm the importance of going beyond the sim-
plistic linear biasing hypothesis. Galaxy bias is a complicated
phenomenon. It can be non-deterministic, non-local, and non-
linear. In this work we focused on deviations from linearity un-
der the assumption that stochasticity is dominated by (and, con-
sequently, accounted for) Poisson noise and that non-local ef-
fects are smoothed out within the volume of our cells. While the
validity and the impact of these assumptions can (and will) need
to be tested, our results show that the application of an improved
statistical tool to the new VIPERS dataset is already able to de-
tect deviations from linear bias with 5 − 10 % accuracy.
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