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ABSTRACT

We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this
comparison we found that, when the sampling is low (the average number of object per cell is around unity), it is necessary to use a parametric
method to model the galaxy distribution. We used a set of mock catalogues of VIPERS to verify if we were able to reconstruct the cell-count
probability distribution once the observational strategy is applied. We find that, in the simulated catalogues, the probability distribution of galaxies
is better represented by a Gamma expansion than a skewed log-normal distribution. Finally, we correct the cell-count probability distribution
function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying
galaxy density function in VIPERS from redshift 0.5 to 1.1. We found a very weak evolution of the probability density distribution function and
that it is well approximated by a Gamma distribution, independently of the chosen tracers.
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1. Introduction

Galaxy clustering offers a formidable playground in which to try
to understand how structures have grown during since. the evo-
lution of the Universe. A number of statistical tools have been
developed and used over the past 30 years (see Bernardeau et al.
2002, for a review). In general, these statistical methods use the
fact that the clustering of galaxies is the result of the gravitational
pull of the underlying matter distribution. Hence, the study of the
spatial distribution of galaxies in the Universe allows us to get
information about the statistical properties of its content matter.
As a result, it is of paramount importance to be able to mea-
sure the statistical quantities that describe the galaxy distribution
from a redshift survey. In particular, we focus on the probability

⋆ Based on observations collected at the European Southern
Observatory, Cerro Paranal, Chile, using the Very Large Telescope
under programmes 182.A-0886 and partly 070.A-9007. Also based
on observations obtained with MegaPrime/MegaCam, a joint project
of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope
(CFHT), which is operated by the National Research Council (NRC) of
Canada, the Institut National des Sciences de l’Univers of the Centre
National de la Recherche Scientifique (CNRS) of France, and the
University of Hawaii. This work is based in part on data products pro-
duced at TERAPIX and the Canadian Astronomy Data Centre as part
of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative
project of NRC and CNRS. The VIPERS web site is http://www.
vipers.inaf.it/
⋆⋆ Corresponding author: J. Bel,
e-mail: julien.bel@brera.inaf.it

distribution of galaxy cell count which has also been measured
in previous redshift surveys (Bouchet et al. 1993; Szapudi et al.
1996; Yang & Saslaw 2011).

The development of multi-object spectrographs on 8-m class
telescopes during the 1990s triggered a number of deep redshift
surveys with measured distances beyond z ∼ 0.5 over areas of 1–
2 deg2 (e.g. VVDS Le Fevre et al. 2005; DEEP2 Newman et al.
2013; and zCOSMOS Lilly et al. 2009). Even so, it was not until
the wide extension of VVDS was produced (Garilli et al. 2008),
that a survey existed with sufficient volume to attempt cosmolog-
ically meaningful computations at z ∼ 1 (Guzzo et al. 2008). In
general, clustering measurements at z ≃ 1 from these samples re-
mained dominated by cosmic variance, as is dramatically shown
by the discrepancy observed between the VVDS and zCOSMOS
correlation functions at z ≃ 0.8 (de la Torre et al. 2010).

The VIMOS Public Extragalactic Redshift Survey (VIPERS)
is part of a global attempt to take cosmological measurements at
z ∼ 1 to a new level in terms of statistical significance. In contrast
to the BOSS and WiggleZ surveys, which use large field-of-view
(∼1 deg2) fibre optic positioners to probe huge volumes at low
sampling density, VIPERS exploits the features of VIMOS at the
ESO VLT to yield a dense galaxy sampling over a moderately
large field-of-view (∼0.08 deg2). It reaches a volume at 0.5 <
z < 1.2, comparable to that of the 2dFGRS (Colless et al. 2001)
at z ∼ 0.1, allowing the cosmological evolution to be tested with
few statistical errors.

The VIPERS redshifts are being collected by tiling the se-
lected sky areas with a uniform mosaic of VIMOS fields. The
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area covered is not contiguous, but presents regular gaps owing
to the specific footprint of the instrument field of view, in addi-
tion to intrinsic unobserved areas, which are due to bright stars
or defects in the original photometric catalogue. The VIMOS
field of view has four rectangular regions of about 8 × 7 square
arcminutes each, separated by an unobserved cross (Guzzo et al.
2014; de la Torre et al. 2013). This creates a regular pattern
of gaps in the angular distribution of the measured galaxies.
Additionally, the target sampling rate and the survey success
rate vary among the quadrants, and a few of the latter were lost
because of mechanical problems within VIMOS (Garilli et al.
2014). Finally, the slit-positioning algorithm, SPOC (see Bottini
et al. 2005), also introduces some small-scale angular selection
effects, with different constraints along the dispersion and spatial
directions of the spectra, as thoroughly discussed in de la Torre
et al. (2013). Clearly, this combination of angular selection ef-
fects has to be properly taken into account when estimating any
clustering statistics.

In this paper we measure the probability distribution function
of galaxy fluctuations from the VIPERS Public Data Release 1
(PDR-1) redshift catalogue, including ∼64% of the final num-
ber of redshifts expected at completion (see Guzzo et al. 2014;
Garilli et al. 2014, for a detailed description of the survey data
set). The paper is organized as follows: in Sect. 2, we introduce
the VIPERS survey and the features of the PDR-1 sample. In
Sect. 3, we review the basics of the three methods that we com-
pared. In Sect. 4, we present a null test of the three method on
a synthetic galaxy catalogue. In Sect. 5, we use galaxy mock
catalogues to assess the performances of two of the methods.
Magnitude and redshift dependance of the probability distribu-
tion function of VIPERS PDR-1 galaxies are presented in Sect. 6
and conclusions are drawn in Sect. 7.

Throughout, the Hubble constant is parameterized via h =
H0/100 km s−1 Mpc−1, all magnitudes in this paper are in the
AB system (Oke & Gunn 1983), and we will not give an explicit
AB suffix. To convert redshifts into comoving distances, we as-
sume that the matter density parameter is Ωm = 0.27, and that
the Universe is spatially flat with a ΛCDM cosmology without
radiations.

2. Data

The VIMOS Public Extragalactic Redshift Survey (VIPERS)
is a spectroscopic redshift survey, which is being built using
the VIMOS spectrograph at the ESO VLT. The survey tar-
get sample has been selected from the Canada-France-Hawaii
Telescope Legacy Survey Wide (CFHTLS-Wide) optical photo-
metric catalogues (Mellier et al. 2009). The final VIPERS will
cover ∼24 deg2 on the sky, divided over two areas within the
W1 and W4 CFHTLS fields. Galaxies are selected to a limit of
iAB < 22.5, further applying a simple and robust gri colour pre-
selection, to effectively remove galaxies at z < 0.5. Coupled to
an aggressive observing strategy (Scodeggio et al. 2009), this
allows us to double the galaxy sampling rate in the redshift
range of interest, with respect to a pure magnitude-limited sam-
ple (∼40%). At the same time, the area, and depth of the survey
result in a fairly large volume, ∼5 × 107 h−3 Mpc3, analogous
to that of the 2dFGRS at z ∼ 0.1. This combination of sam-
pling and depth is quite unique over current redshift surveys at
z > 0.5. The VIPERS spectra are collected with the VIMOS
multi-object spectrograph (Le Fevre et al. 2003) at moderate res-
olution (R = 210), using the LR Red grism, which provides a
wavelength coverage of 5500–9500 Å and a typical redshift er-
ror of 141(1+z) km s−1. The full VIPERS area is covered through

Table 1. Magnitude selected objects (in B-band) in the VIPERS PDR-1.

zmin zmin Luminosity ρ̄ (Eq. (1))
MB − 5 log(h) < 10−3 h3 Mpc−3

0.5 0.7 −18.6 − z 4.49
0.5 0.7 −19.1 − z 2.96
0.5 0.7 −19.5 − z 1.88
0.5 0.7 −19.7 − z 1.43
0.5 0.7 −19.9 − z 1.04
0.7 0.9 −19.1 − z 2.47
0.7 0.9 −19.5 − z 1.66
0.7 0.9 −19.7 − z 1.25
0.7 0.9 −19.9 − z 0.912
0.9 1.1 −19.5 − z 0.622
0.9 1.1 −19.7 − z 0.535
0.9 1.1 −19.9 − z 0.425

a mosaic of 288 VIMOS pointings (192 in the W1 area, and 96
in the W4 area). A discussion of the survey data-reduction and
management infrastructure is presented in Garilli et al. (2012).
An early subset of the spectra that is used here is analysed
and classified through a principal component analysis (PCA) in
Marchetti et al. (2013).

A quality flag is assigned to each measured redshift, based
on the quality of the corresponding spectrum. Here and in all
parallel VIPERS science analyses we use only galaxies with
flags 2 to 9 inclusive, corresponding to a global redshift confi-
dence level of 98%. The redshift confirmation rate and redshift
accuracy have been estimated using repeated spectroscopic ob-
servations in the VIPERS fields. A more complete description of
the survey construction, from the definition of the target sample
to the actual spectra and redshift measurements, is given in the
parallel survey description paper (Guzzo et al. 2014).

The data set used in this paper and the other papers of
this early science release is the VIPERS Public Data Release 1
(PDR-1) catalogue, which has been made publicly available in
September 2013. This includes 55 359 objects, spread over a
global area of 8.6 × 1.0 deg2 and 5.3 × 1.5 deg2 in W1 and W4,
respectively. This corresponds to the data frozen in the VIPERS
database at the end of the 2011/2012 observing campaign, i.e.
64% of the final expected survey. For the specific analysis pre-
sented here, the sample has been further limited to its higher-
redshift part, selecting only galaxies with 0.55 < z < 1.1. The
reason for this selection is related to minimizing the shot noise
and maximizing the volume. This reduces the usable sample to
18 135 and 16 879 galaxies in W1 and W4, respectively (always
with quality flags between 2 and 9). The corresponding effective
volume of the two samples are 6.57 and 6.14× 106 h−3 Mpc3. At
redshift, z = 1.1 the two volumes span the angular comoving dis-
tances ∼370 and 230 h−1 Mpc, respectively. We divide the W1
and W4 fields into three redshift bins and we build magnitude
limited subsamples in each of them. For convenience, we use
the magnitude limits that are listed in Table 1 of di Porto et al.
(2014), which we recall in Table 1.

The VIMOS footprint has an important impact on the ob-
served probability of finding N galaxies in a randomly placed
spherical cell in the survey volume. As a matter of fact, a direct
appreciation of the masked area can be shown on the first mo-
ment of the probability distribution, i.e. the expectation value of
the number count N̄ ≡ ∑∞N=0 NPN . On the one hand, we can pre-
dict the mean number of objects per cells from the knowledge of
the number density in each considered redshift bins and, on the
other hand, we can estimate it by placing a regular grid of spher-
ical cells of radius R into the volume surveyed by VIPERS. In
fact, given the solid angle of W1 and W4 and the corresponding
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Fig. 1. Upper: expected mean number count in spheres (solid line, from Eq. (2)) with respect to the observed one (symbols) for the various
luminosity cuts and for the three redshift bins [0.5, 0.7] (left panel), [0.7, 0.9] (central panel), and [0.9, 1.1] (right panel). The selection in absolute
magnitude MB in B-band, corresponding to each symbols/lines and colors, are indicated in the inset. The dotted line displays the N̄ = 1. Lower:
deviation α (see Eq. (3)) between the expected mean number N̄R and the observed one N̄ with respect to the radius R of the cells.

number of galaxies N1 and N4 contained in a redshift bin that has
been extracted from each field, we can estimate the total number
density as

ρ̄ =
N1 + N4

Ω1 + Ω4

1
Vk

, (1)

where Vk is defined as the volume corresponding to a sector of
a spherical shell with a solid angle equal to unity. In the case of
VIPERS PDR-1, the effective solid angles that correspond to W1
and W4 are Ω1 = 1.6651683× 10−3 andΩ4 = 1.5573021× 10−3

(in square radians), respectively. The corresponding expected
number of objects in each cell can be predicted by multiply-
ing the averaged number density by the volume of a cell. This
reads as

N̄R =
4
3
πR3ρ̄, (2)

in the case of the spherical cells of radius R, as considered in this
work. The expectation value N̄R, with respect to the radius of
the cells corresponding to each luminosity sub-sample extracted
from VIPERS-PDR1, is represented by lines in Fig. 1. In the
same figure, we display the measured mean number of object N̄
in each redshift bins. We note that, to perform this measurement,
we place a grid of equally separated (4 h−1 Mpc) spheres of ra-
dius R = 4, 6, 8 h−1 Mpc and we reject spheres with more than
40% of their volume outside the observed region (see Bel et al.
2014). We quantify the effect of the mask using the quantity

α ≡ N̄

N̄R

· (3)

In fact the bottom panels of Fig. 1 show that, for all subsam-
ples and at all redshifts, the neat effect of the masks is to under-
sample the galaxy field by roughly 72%. It also shows that the
correction factor α depends on the redshift that is considered, on

the luminosity, and on the cell-size. The scale dependency can
be explained by the fact that the correction parameter α depends
on how the cells overlap with the masked regions. The left panel
of Fig. 1 suggests that, at low redshift, the mask effect behaves
in the same way for all the luminosity samples, while the mid-
dle panel shows a clear dependency with respect to luminosity.
The correction factor α depends on the redshift distribution. As
a result, the apparent dependency with respect to the luminosity
is due to the dependence of the number density with respect to
the luminosity of the considered objects.

The mask not only modifies the mean number of object, it
also modifies the higher order moments of the distribution in
such a way that the measured PN will be systematically altered.
In this paper, we show that this systematic effect can be taken
into account by measuring the underlying probability density
function of the galaxy density contrast δ. It has been shown (see
Fig. 8 of Bel et al. 2014) that, after rejecting spheres with more
than 40% of their volume outside the survey, the local poisson
process approximation holds. The same kind of rejection crite-
ria is implemented by Cappi et al. (2015) to measure the mo-
ments of the galaxy distribution function. In our case, it allows
us to use the ‘wrong’ probability distribution function to get reli-
able information on the underlying probability density function
p(δ). By then applying the Poisson sampling, we can recover
the unaltered PN using that N̄ = N̄(masked)/α. For the sake
of completeness, we provide tthe measured probability function
that was obtained after rejecting the cells with more than 40% of
their volume outside the survey (see Fig. 8).

In particular, let PM and PN , respectively, be the observed
and the true counting probability distribution function (CPDF).
Assuming that, from the knowledge of PM, there exists a process
to get the underlying probability density function of the stochas-
tic field Λ, which is associated with the random variable N, one
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can compute the true CPDF applying

PN =

∫ ∞

0
P[N|Λ]p(Λ)dΛ, (4)

where P[N|Λ] is called the sampling conditional probability; this
determines the sampling process from which the discrete cell-
count arises. In the following, we assume that this sampling con-
ditional probability follows a Poisson law (Layzer 1956), and as
a result in Eq. (4) we substitute

P[N|Λ] = K[N,Λ] ≡ Λ
N

N!
e−Λ. (5)

It is also convenient to express Eq. (4) in terms of the density
contrast of the stochastic field Λ, δ ≡ Λ/Λ̄ − 1, it follows that

PN =

∫ ∞

−1
K[N|N̄(1 + δ)]p(δ)dδ, (6)

where we used Λ̄ = N̄, which is a property of the Poisson
sampling.

Continuing in this direction, we propose to compare three
methods which aim at extracting the underlying probability den-
sity function (PDF) to correct the observed CPDF from the an-
gular selection effects of VIPERS.

3. Methods

In this section we review the PDF estimators that we use and
compare them with each other in this paper. The purpose is to
select the method that is more adapted to the characteristics of
VIPERS.

3.1. The Richardson-Lucy deconvolution

This is an iterative method that aims at inverting Eq. (6) with-
out parametrising the underlying PDF, and it has been investi-
gated by Szapudi & Pan (2004). This method starts with an ini-
tial guess p0 for the probability density function p, which is used
to compute the corresponding expected observed PN,0 via

PN,0 =

∫ ∞

−1
K̂
[

N, N̄(1 + δ)
]

p0(δ)dδ,

where K̂
[

N, N̄(1 + δ)
]

≡ K/
∑

N K. The probability density func-
tion used at the next step is obtained using

p̂i+1(δ) = p̂i(δ)
Nmax
∑

N=0

PN

PN,i

K̂
[

N, N̄(1 + δ)
]

,

where p̂ ≡ p
∑

N K. For each step, the agreement between the
expected observed probability distribution PN,i and the true PN

is quantified by

χ2
i ≡

Nmax
∑

N=0

(

PN

PN,i

− 1

)2

.

It is therefore possible to know the evolution of the cost function
χ2 with respect to the steps i.

In fact it has been shown by Szapudi & Pan (2004) that the
cost function converges toward a constant value that corresponds
with the best evaluation of the probability density function p,

given the observed probability distribution PN . Since these au-
thors have shown that this convergence occurs after around 30 it-
erations, we did our own convergence tests, which show that
adopting a value of 30 iterations is enough. However, the evo-
lution of the χ2 is not always monotonic. In practice, we store
the χ2 result of each step and we look for the step for which
the χ2 is minimum, i.e. p(δ) = pimin (δ). As an initial guess, we
make sure that the discret CPDF is equal to the continuous one
(p0(δ) = p).

3.2. The skewed log-normal distribution

This is a parametric method where the shape of the probabil-
ity density depends on a given number of parameters, in this
case the probability density function is assumed to be well de-
scribed by a skewed log-normal (SLN; Colombi 1994) distri-
bution. It is derived from the log-normal distribution (Coles &
Jones 1991; Kim & Strauss 1998) but is more flexible. It is, in
fact, built upon an Edgeworth expansion; if the stochastic field
Φ ≡ ln(1+ δ), is following a normal distribution then the density
contrast δ instead follows a log-normal distribution. In the case
of the SLN density function, the field Φ follows an Edgeworth
expanded normal distribution

PΦ(Φ) ≡
{

1 +
〈ν3〉c

6
H3(ν) +

〈ν4〉c
24

H4(ν) +
5
72
〈ν3〉2c H6(ν)

}

G(ν)
σΦ
,

(7)

where ν ≡ Φ−µφ
σΦ

, G is the central reduced normal distribution

G(ν) ≡ e−
ν2
2√

2π
, and 〈νn〉c denotes the cumulant expectation value

of ν. As a result, the SLN is parameterised by the four param-
eters µΦ, σΦ, 〈ν3〉c, and 〈ν4〉c which are related, respectively to
the mean, the dispersion, the skewness, and the kurtosis of the
stochastic variable Φ. They can all be expressed in terms of cu-
mulants 〈Φn〉c of order n of the weakly non-Gaussian field Φ. In
Szapudi & Pan (2004), they use a best-fit approach and deter-
mine these parameters by minimizing the difference between the
measured counting probability PN and the one obtained from

Pth
N =

∫ ∞

−1
K
[

N, N̄(1 + δ)
]

PΦ
[

ln(1 + δ), µΦ, σ
2
Φ, 〈Φ3〉c, 〈Φ4〉c

]

×d ln(1 + δ). (8)

However, this requires us to perform the integral (Eq. (8))
in a four-dimensional parameter space which is numerically
expensive.

In this paper, we use an alternative implementation, which
is computationally more efficient. Instead of trying to maximize
the likelihood of the model given the observations, we instead
use the observations to predict the parameters of the SLN. To
do so, we use the property of the local Poisson sampling (Bel
& Marinoni 2012); the factorial moments 〈(N)n

f 〉 of the discrete
counts are equal to the moments of the underlying continuous
distribution 〈Λn〉. Since the transformation between the density
contrast δ and the Edgeworth expanded field Φ is local and
deterministic, it is possible to find a relation between the mo-
ments 〈Λn〉 and the cumulants 〈Φn〉c.

By definition, the moments of the positive continuous field
Λ are given by

〈Λn〉 ≡
∫ ∞

0
ΛnP(Λ)dΛ.
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Since, for a local deterministic transformation the conservation
of probability imposes P(Λ)dΛ = PΦ(Φ)dΦ, it follows that the
moments of Λ can be recast in terms of Φ;

〈Λn〉 = Λ̄n

∫ ∞

0
enΦPΦ(Φ)dΦ.

On the right hand side, we recognise the definition of the mo-
ment that generates functionMΦ(t) ≡ 〈etΦ〉, we therefore obtain
that

MΦ(t = n) =
〈Λn〉
Λ̄n
≡ An. (9)

This equation allows us to link the moment ofΛ to the cumulants
of Φ via the moment generating functionMΦ.

Moreover, since the probability density Pφ is the product
of a sum of Hermite polynomials with a Gaussian function,
it is straightforward to compute the explicit expression of the
moment-generating function so that we obtain

MΦ(t) =

{

1 + 〈Φ3〉c
t3

6
+ 〈Φ4〉c

t4

24
+ 〈Φ3〉2c

5
72

t6

}

etµΦ+t2 σ
2
Φ
2 . (10)

In fact, Eqs. (10) and (9) together allow us to set up a system of
four equations, so that for n = 1, 2, 3, 4 it reads

Yn2
XnBn = An, (11)

where Y ≡ e
σ2
Φ
2 , X ≡ eµΦ and Bn ≡ MΦ(t = n, µΦ = 0, σΦ = 0).

In the system of equations (Eq. (11)), the right hand side is given
by observations and the left hand side depends on the cumulants
µΦ, σ2

Φ
, 〈Φ〉3c , and 〈Φ〉4c parameterised in terms of X, Y, x ≡

〈Φ〉3c and y ≡ 〈Φ〉4c . In Appendix A, we detail the procedure to
solve this non-linear system of equations. We therefore get the
values of the four parameters of the SLN by simply measuring
the moments of the counting variable N up to the fourth order.

3.3. The Gamma expansion

The Gamma expansion method follows the same idea as de-
scribed in Sect. 3.2 but uses a Gamma distribution instead of
a Gaussian one. Thit uses the orthogonality properties of the
Laguerre polynomialsto modify the moments of the Gamma
PDF. This type of an expansion has been investigated in
Gaztañaga, Fosalba & Elizalde (2000) where they compared it
to the Edgeworth expansion to model the one-point PDF of the
matter-density field. Since then it has been extended further by
Mustapha & Dimitrakopoulos (2010), in a more general context,
to multi-point distributions.

As mentioned above the Gamma expansion requires the use
of the Gamma distribution φG defined as

φG(u) ≡ uk−1

θΓ(k)
e−u, (12)

where Γ is the Gamma function (for an integer n, Γ(n + 1) = n!,
θ and k are two parameters, which are related to the first two
moments of the PDF. If the galaxy probability density function
is well described by a Gamma expansion at order n then it can
be formally written as

P(Λ) = φG(u) f (k−1)
n (u), (13)

where, by definition, u ≡ Λ

θ
, k = Λ̄2

σ2
Λ

, θ ≡ Λ̄

k
=
σ2
Λ

Λ̄
. The func-

tion f
(k−1)
n represents the expansion. which aims at tuning the

moments of the Gamma distribution; we note that the exponent
(k − 1) is not the derivative of order k − 1. Since this expansion
is built upon the orthogonal properties of products of Laguerre
polynomials with the Gamma distribution, the function f

(k−1)
n is

given by the sum

f (k−1)
n (x) ≡

n
∑

i=0

ciL
(k−1)
i

(x), (14)

where L
(k−1)
i

are the generalised Laguerre polynomials of order i
and the coefficients ci represent the coefficients of the Gamma
expansion and therefore depend on the moments of the galaxy
field Λ:

cn ≡
n
∑

i=0

(

n

i

)

Γ(k)
Γ(k + i)

(−1)i 〈Λi〉
θi
· (15)

The main interrest of the Gamma expansion with respect to the
SLN is that the coefficients of the expansion are directly related
to the moments of the distribution we want to model, i.e. it is not
necessary to solve a complicated non-linear system of equations,
or perform a likelihood estimation of the coefficients. Moreover,
it can be easily performed at higher order to describe, as well as
possible, the underlying probability-density function of galaxies.

Another advantage of describing the galaxy field Λ by a
Gamma expansion probability-density function is that the cor-
responding observed PN can be expressed analytically, which is
not the case for the SLN, which must be integrated numerically.

In Appendix B we demonstrate the previous statement,
which follows that the CPDF PN can be calculated from

PN =
(−θ)N

N!

n
∑

i=0

ci

Γ(i + k)
Γ(k)

h
(N)
i

(θ), (16)

where hi ≡ 1
i!

θi

(1+θ)i+k and, in this case, we use the notation h
(N)
i
=

dN hi

dγN . The successive derivatives of hi can be obtained from the
recursive relation

h
(N)
i

(θ) =
(i)N

f

θN
hi(θ) −

N
∑

m=1

(

N

m

)

(i + k)m
f

(1 + θ)m
h

(N−m)
i

(θ).

In addition to the fact that having the possibility of computing
the corresponding observed PN without requiring an infinite in-
tegral for each number N is computationally more efficient, it is
also practical to have the analytical calculation for some partic-
ular values of the k parameter of the distribution. In fact, when k
is lower than 1, which occurs on small scales (4 h−1 Mpc), the
probability-density function goes to infinity when Λ goes to 0
(although the distribution is still well defined). In particular, this
numerical divergence would induce large numerical uncertain-
ties in the computation of the void probability P0. Moreover,
one can see that, for the void probability, we have the simple
relation

P0 =

n
∑

i=0

ci

Γ(k + i)
Γ(k)

hi(θ), (17)

which can be used to recover the true void probability in
VIPERS.
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4. Application of the methods on a synthetic galaxy

distribution

In this section we analyse a suite of synthetic galaxy distribu-
tions generated from 20 realizations of a Gaussian stochastic
field. The full process involved in generating these benchmark
catalogues is detailed in Appendix C. Each comoving volume
has a cubical geometry of size 500 h−1 Mpc. We generate the
galaxies by discretizing the density field according to the sam-
pling conditional probability P[N|Λ], which we assume to be
a Poisson distribution with mean Λ. In this way, we know the
true underlying galaxy density contrast δ. We can therefore per-
form a reasonable comparison between the methods introduced
in Sect. 3.

To avoid the effect of the grid (0.95 h−1 Mpc), we smooth
both the density field and the discrete field using a spherical top-
hat filter of radius R = 8 h−1 Mpc. We apply the three methods
mentioned in Sect. 3 and compare the reconstructed probability-
density function to the one expected to be obtained directly from
the density field δ.

The discrete distribution of points contains an average num-
ber of object per cell N̄ = 8,which is the one that is expected, ac-
cording to our sampling process. The corresponding PN is given
by the black histogram in the lower panel of Fig. 2. From this
measurement we apply the three methods R-L, SLN, and Γe and
obtain an estimation of the probability density function that cor-
responds to each method. In the upper panel of Fig. 2, we com-
pare the performance of the three methods at recovering the true
probability-density function (the black histogram referred to as
a reference in the inset). We note that, for this test case, we use a
Gamma expansion at order 4 to be coherent with the order of the
expansion of the skewed log-normal. We have also represented
the probability-density function, estimated when neglecting the
shot noise (red dotted line), which is used as the initial guess in
the case of the R-L method.

From the top panel of Fig. 2, we can conclude that the three
methods perform reasonably well. It seems that the Γe method
reproduces the density distribution of under-dense regions (δ ∼
−1) better but this is expected in the sense that the distribution
used to generate the synthetic catalogues is a Gamma distribu-
tion (see Appendix C). However, this is not obvious because
the scale on which the density field has been set up is one or-
der of magnitude smaller than the scale of the reconstruction
R = 8 h−1 Mpc.

The performance of the three methods is also represented in
the bottom panel of Fig. 2, in which we compare the expected
observed PN we compare the PN that is expected from the un-
derlying density distribution obtained from each method to the
true probability distribution. It can be seen that they all agree at
the 15% level, hence it is not possible to conclude that one is
better than an other. This scenario was actually expected, based
on a comparison of the underlying density field (Fig. 2). Indeed,
if one of the methods did not agree with the PDF, then we would
also expect a disagreement on the observed CPDF (see Sect. 6).

Below, we investigate the sensitivity of the three methods
with respect to the shot noise. In fact, as shown in Fig. 1, we
will work with a high shot noise level (N̄ ≤ 1) in most of the
sub-samples of VIPERS PDR-1. We therefore randomly under-
sample the fake galaxy distribution by keeping only 10% of the
total number of objects contained in each comoving volume.
This process gives an average number per cell of 0.8, which is
more representative in the context of the application of the re-
construction method. We perform the same comparison as in the
ideal case (N̄ ≃ 8) and find that the R-L method appears to be

Fig. 2. Upper: black histogram with error bars showing the true under-
lying probability-density function (referred to as reference in the inset)
compared to the reconstruction obtained with the R-L (red dashed line),
the SLN (green dot-dashed line), and the Γe (blue long dashed line)
methods. The red dotted histogram shows the PDF used as the initial
guess for the R-L method and the coloured dotted lines around each
method line represent the dispersion of the reconstruction among the
20 fake galaxy catalogues. We also display the relative difference of the
result obtained from each method with respect to the true PDF. Lower:
the black histogram with error bars shows the observed probability-
density function (referred to as reference in the inset) compared to the
reconstruction obtained with the R-L (red dashed line), the SLN (green
dot-dashed line), and the Γe (blue long dashed line) methods. We also
display the relative difference in the result obtained from each method
with respect to the observed PN .

highly sensitive to shot noise. In fact, if the mean number of ob-
jects per cell is too few then the output of the method depends too
much on the initial guess. It follows that, if it is too far from the
true PDF, the process does not converge (see top panel of Fig. 3)
and the corresponding PN does not match the observed PN (see
bottom panel of Fig. 3). We note that we explicitly checked this
effect by increasing the number of iterations from 30 to 200.
While in the case of both the SLN and the Gamma expansion,
in Fig. 3 we can see the output probability-density function is in
agreement (with a larger scatter) to the one obtained in the N̄ ≃ 8
case. This means that the sensitivity regarding to the shot noise
is much smaller when considering parametric methods.

Considering the sensitivity of the R-L method to the initial
guess, knowing that the average number of galaxies per cell can
be lower than unity and, finally, taking computational time into
account, we continue our analysis using only the two parametric
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Fig. 3. Same as in Fig. 2, but we use only 10% of the galaxies con-
tained in the fake galaxy catalogues. As a result, the average number of
galaxies per cell drops from N̄ = 8 to N̄ = 0.8.

methods SLN and Γe. In the following, we compare them using
more realistic mock catalogues for which we don’t know, apriori,
the true underlying PDF.

5. Performances in realistic conditions

In this section, we discuss how observational effects have been
accounted for in our analysis and test the robustness of the recon-
struction methods SLN and Gamma expansion. For this purpose
we use a suite of mock catalogues created from the Millenium
simulation, which are also used in the analysis performed by
di Porto et al. (2014).

We compare the reconstruction methods between two cat-
alogues, namely REFERENCE and MOCK. The reference is
a galaxy catalogue that was obtained from semi-analytical
models. We simulate the redshift errors of VIPERS PDR-1
by perturbing the redshift (including distortions owing to pe-
culiar motions) with a normally distributed error with rms
0.00047(1 + z). Each MOCK catalogue is built from the cor-
responding REFERENCE catalogue by applying the same ob-
servational strategy (de la Torre et al. 2013) which is applied
to VIPERS PDR-1; spectroscopic targets are selected from
the REFERENCE catalogue by applying the slit-positioning
algorithm (SPOC, Bottini et al. 2005) with the same settings as
for the PDR-1. This allows us to reproduce the VIPERS footprint
on the sky, the small-scale angular incompleteness that is due to
spectra collisions, and the variation of the target sampling rate

Table 2. List of the magnitude selected objects (in B-band) in the mock
catalogues.

zmin zmin Luminosity
MB − 5 log(h) <

0.5 0.7 −18.42 − z
0.5 0.7 −19.12 − z
0.5 0.7 −19.72 − z

0.7 0.9 −19.12 − z
0.7 0.9 −19.72 − z

0.9 1.1 −19.72 − z

Fig. 4. Comparison between the SLN and Γe methods at 0.9 < z < 1.1.
Each panel corresponds to a cell radius R of 4, 6, and 8 h−1 Mpc from
left to right. Top: the red histogram shows the observed PDF in the
MOCK catalogues while the black histogram displays the PDF ex-
tracted from the REFERENCE catalogues. The blue diamonds with
lines and the magenta triangles each show the Γe expansion performed
in the REFERENCE and MOCK catalogues, respectively. On the other
hand, the cyan diamonds with lines and the orange triangles show,
respectively, the SLN expansion performed in the REFERENCE and
MOCK catalogues. Bottom: relative deviation of the Γe and SLN ex-
pansions applied to both the REFERENCE and MOCK catalogues with
respect to the PDF of the REFERENCE catalogues.

across the fields. Finally, we deplete each quadrant to reproduce
the effect of the survey success rate (SSR, see de la Torre et al.
2013). In this way, we end up with 50 realistic mock catalogues,
which simulate the detailed survey completeness function and
observational biases of VIPERS in the W1 and W4 fields.

To perform a similar analysis to the one we aim at doing for
VIPERS PDR-1, we construct subsamples of galaxies selected
according to their absolute magnitude MB in B-band; we take all
objects brighter than a given luminosity. We list these samples
in Table 2, having a total of six galaxy samples. The highest
luminosity cut (MB − 5 log(h) < 19.72− z) allows us to follow a
single population of galaxies at three cosmic epochs.

In Figs. 4–6, we show the reconstruction performances for
the SLN and the Γe method. We consider the same population
(Mb − 5 log h + z < −19.72) but in three redshift bins, 0.9 < z <
1.1, 0.7 < z < 0.9, and 0.5 < z < 0.7. To test the stability of
the methods, we perform the reconstruction using three smooth-
ing scales, R = 4, 6, and 8 h−1 Mpc. The comparison is done
as follows, on the one hand we estimate the true PN from the
REFERENCE catalogue (before applying the observational se-
lection) and we perform the reconstruction on it so that we can
test the intrinsic biases that are the result of the assumed para-
metric method (SLN or Γe). On the other hand, we estimate the
observed PM in the MOCK catalogues, from which we perform
the reconstruction to verify if we recover the expected PN from
the REFERENCE catalogue.
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Fig. 5. Comparison between the SLN and Γe methods at 0.7 < z < 0.9.
Each panel corresponds to a cell radius R of 4, 6, and 8 h−1 Mpc from
left to right.

Fig. 6. Comparison between the SLN and Γe methods at 0.5 < z < 0.7.
Each panel corresponds to a cell radius R of 4, 6, and 8 h−1 Mpc from
left to right.

Fig. 7. Comparison between the SLN and Γe methods. Each column
corresponds to a cell radius R of 4, 6, and 8 h−1 Mpc from left to right,
and each row corresponds to a combination of redshift and magnitude
cut.

Looking more closely at Fig. 4, firstly, we can see that the in-
trinsic error that is due to the specific modelling of the methods
is much greater for the SLN (cyan diamonds compared to the
black histogram) than for the Γe (magenta diamonds compared
to the black histogram). From the top panel we see that the SLN
does not reproduce the tail of the CPDF, and from the bottom
panel we see that, even for low counts, it shows deviations as
large as 20%. This intrinsic limitation propagates when perform-
ing the reconstruction on the MOCK catalogue (orange triangles
compared to the black histogram) while, for the Γe, we see that
the agreement is better than 10% (magenta triangles compared to
the black histogram) in the low count regime and the tail is fairly
well reproduced. In the second place, comparing the Γe that was
performed on the REFERENCE and the MOCK catalogues (blue

diamonds with respect to magenta triangles), we can see the loss
of information owing to the observational strategy that has, at
most, an impact of 10% on the reconstructed CPDF, which is
reduced when considering larger cells (less shot noise).

In general, Figs. 5 and 6 confirm that for the considered
galaxy population the same results hold at lower redshifts.
However, the reconstruction at R = 4 h−1 Mpc can, in particu-
lar, exhibit deviations larger than 20%, which is at odds with the
fact that the shot noise contribution is expected to be the same
for the three redshift bins (magnitude limited). We attribute this
larger instability to the fact that, not only is the shot noise contri-
bution higher for R = 4 h−1 Mpc, but the volume probed is also
smaller when decreasing the redshift.

The performances of the reconstruction for the last three
galaxy samples are shown in Fig. 7, where each row corresponds
to a galaxy sample (we only show the residual with respect to the
REFERENCE). This comparison allows us to claim that the re-
construction instability at 4 h−1 Mpc was indeed due to the high
level of shot noise. We can conclude that, in the HOD galaxy
mock catalogues, the galaxy distribution is more likely to be
modelled by a Γe instead of an SLN. Finally, for a chosen re-
construction method, the information contained in the MOCK
catalogues is enough to be able to reconstruct the CPDF of the
REFERENCE catalogue at the 10% level.

6. VIPERS PDR-1 data

In this section, we apply the reconstruction method to the
VIPERS PDR-1. In the previous sections, we saw that the SLN
and Γe methods are sensitive to the assumptions we make about
the underlying PDF. In fact, we saw in Sect. 4 that, if the under-
lying PDF is close to the chosen model, then the reconstruction
works. In Sect. 5, we found that the galaxy distribution arising
from semi-analytic models is better described by a Γe than an
SLN distribution. However, in the following we do not take for
granted that the same property holds for galaxies in the PDR-1.

We want to choose which one of the two distributions (log-
normal or gamma) best describes the observed galaxy distribu-
tion in VIPERS PDR-1, when no expansion is applied. Thus, we
compare the observed PDF to the one that is expected from the
Poisson sampling of the log-normal probability density function
(PS-LN) and to the one that is expected from the Poisson sam-
pling of the Gamma distribution (the so-called negative bino-
mial). Error bars are obtained by performing a jack-knife resam-
pling of 3 × 7 subregions in each of the fields, W1 and W4.

The SP-LN distribution does not have an analytic expres-
sion and must be obtained by numerically integrating Eq. (6),
while the Poisson sampling of the Gamma distribution leads to
the negative binomial distribution defined as

PN =
θN

N!
r(r + 1)...(r + N − 1)

(1 + θ)N+r
, (18)

where θ = N̄
r

and r = N̄2

σ2
N
−N̄

to ensure that the first two mo-

ments of the negative binomial match those of the observed dis-
tribution. We note that the applicability of the negative bino-
mial to galaxies was first suggested by Carruthers & Duong-van
(1983). In Fig. 8, we show the outcome of this comparison; it fol-
lows that the negative binomial is much closer to the observed
PDF than the PS-LN. This is in agreement with what has been
found by Yang & Saslaw (2011), who compared the negative
binomial and the gravitational equilibrium distribution (Saslaw
& Hamilton 1984) to model the galaxy clustering. As a result,
the underlying galaxy distribution is more likely to be described
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Fig. 8. Observed count-in-cell probability distribution function PN (histograms) from VIPERS PDR-1 for various luminosity cuts (indicated in the
inset). Each row corresponds to a redshift bin, from the bottom to the top, 0.5 < z < 0.7, 0.7 < z < 0.9, and 0.9 < z < 1.1. Each column corresponds
to a cell radius R = 4, 6, 8 h−1 Mpc from left to right. Moreover we added the expected PDF from two models which match the two first moments
of the observed distribution; the red solid line shows the prediction for a Poisson-sampled log-normal (PS-LN) CPDF, while the green dashed line
indicates the negative binomial model for the CPDF.

by a Gamma distribution than by a log-normal. Hence, we only
use the Gamma expansion to model the galaxy distribution of
VIPERS PDR-1.

Moreover, the use of the Gamma expansion instead of the
SLN substantially simplifies the analysis. In Fig. 9 we provide
the reconstructed probability-distribution function of VIPERS
PDR-1, together with the corresponding underlying probability-
density function for each redshift bin and luminosity cut. Each
panel of Fig. 9 shows how the choice of a particular class of trac-
ers (selected according to their absolute magnitude in B-band)
influences the PDF of galaxies. When measuring specific prop-
erties of the intrinsic galaxy distribution for each luminosity cut,
it is enough to look at the CPDF. However, when comparing the
distributions with each other, it is necessary to take account of
the averaged number of objects per cell, which varies from sam-
ple to sample. As a result, it appears more useful to compare the
properties of the different galaxy samples using their underlying
probability-density function which, assuming Poisson sampling,
is free from sampling-rate variation between different type of
tracers.

For the two first redshift bins, we can see that the probabil-
ity density function is broadening when selecting more luminous
galaxies, this goes in the direction of increasing the linear bias
with respect to the matter distribution. However, for the highest
redshift bin, it seems that this goes in the opposite direction, de-
spite a less significant trend. This trend might be an artifact; in-
deed by analysing Fig. 1, we see that, for all these samples, the
averaged number of object per cell is between 0.2–0.4, which
shows that theses samples could be highly affected by shot noise
effects. Consequently, particular care should be taken when in-
terpreting these three high redshift samples.

In the following, we focus on the evolution of the underlying
PDF for a particular class of objects on the wide redshift range

probed by VIPERS PDR-1. Figure 10 displays the outcome of
this study and shows how the PDF evolves, with regard to the
redshift at which it is measured, for three populations (the three
highest magnitude cuts). The three populations (top, middle, and
bottom panels) exhibit non-monotonic evolution in relation to
the redshift. In particular, the more luminous population shows
that the PDF at 0.9 < z < 1.1 appears to be systematically differ-
ent to that is the two lower redshift bins. However, we see also
that some instabilities appear in the reconstruction (see wiggles
at high 1 + δ). This might be due to the fact that we have fewer
galaxies in this sample, giving rise to a large shot-noise contribu-
tion (N̄ < 0.3). Indeed, we verified that, for the high mass bin and
the two other galaxy populations, if we vary the order of the ex-
pansion from 6 to 4, the resulting PDF changes by less than 1σ,
while for the most luminous population, truncating the expan-
sion at order 4 only removes the instability without changing the
overall behaviour of the PDF significantly. This consistency test
shows that the radical change in the measured PDF for the high-
est redshift bin appears to be the true feature. Probably only the
final VIPERS data set will be able to give a robust conclusion.

Finally, in Table 3, we list the relevant coefficients of the
Gamma expansion, which we measured from the VIPERS PDR-
1 at the scale R = 6 h−1 Mpc. These can be used to model both
the CPDF (Eq. (16)) and the PDF (Eq. (13)).

7. Summary

The main goal of the present paper is to measure the probability
of finding N galaxies falling into a spherical cell that is randomly
placed inside a sparsely sampled (i.e. with masked areas or with
low-sampling rate) spectroscopic survey. Our overall approach
to this problem has been to use the underlying probability-
density distribution of the density contrast of galaxies to recover
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Fig. 9. Top: reconstructed PDF applying the Γe method in three redshift bins (from left to right) at the intermediate smoothing scale R = 6 h−1 Mpc.
Bottom: underlying PDF corresponding to the CPDF in the top panel, for each luminosity cut the 1-sigma uncertainty is represented by the dotted
lines.

Table 3. Coefficients of the Γe expansion, which describe the VIPERS PDR-1 data for R = 6 h−1 Mpc.

z MB − 5 log(h) k θ c3 c4 c5 c6

0.5−0.7 −18.6 − z 0.87961819 4.5053822 −0.027583435 −0.030026522 −0.018218867 −0.019292756
−19.1 − z 0.78883961 3.2677238 −0.011759548 −0.0041201299 0.0076149367 −0.0010233871
−19.5 − z 0.72531432 2.2643581 −0.020667396 0.00070338969 0.021056193 −0.00061403852
−19.7 − z 0.64267892 1.4068744 −0.034276861 −0.022797814 0.022229339 0.023963984
−19.9 − z 0.64267892 1.4068744 −0.0071341640 −0.0072444524 −0.0030038079 −0.045733910

0.7−0.9 −19.1 − z 0.76911853 2.9737929 −0.063844766 −0.046627985 −0.032441385 −0.067589757
−19.5 − z 0.73969794 2.0841542 −0.032831012 −0.032693436 −0.028383261 −0.064019117
−19.7 − z 0.70270085 1.6638888 −0.019063352 −0.048572844 −0.061832661 −0.078445546
−19.9 − z 0.67984433 1.2608492 0.013646925 −0.028325455 −0.042087256 −0.021113201

0.9−1.1 −19.5 − z 0.47473429 1.3138704 −0.10794135 −0.17074978 −0.10267837 −0.0089188521
−19.7 − z 0.49470455 1.0926144 −0.075805086 −0.16739016 −0.13623398 −0.019540367
−19.9 − z 0.48382041 0.90259279 −0.076620326 −0.20604275 −0.23060122 −0.14506575

the counting probability that has been corrected from sparseness
effects. We therefore compared three ways (R-L, SLN and Γe) of
measuring the probability density of galaxies that are classified
in two categories: direct and parametric. We found that, when
the sampling is high (N̄ ≃ 10), the direct method (Rychardson-
Lucy deconvolution) performs well and avoids putting any prior
on the shape of the distribution. On the other hand, we saw that,
when the sampling is low (N̄ ≃ 1), the direct method fails to
converge to the true underlying distribution. We thus concluded
that, in such cases, the only alternative is to use a parametric
method.

We presented two parametric forms that are aimed at de-
scribing the galaxy density distribution, the SLN, which is often
used in the literature to model the matter distribution and the Γe.
Despite the fact that the two distributions used in this paper al-
ready have been investigated in previous works, the approach
we propose to estimate their parameters is completely new.
Previously, fitting procedures were used to estimate parameters.
Here we propose to measure the parameters of the distributions

directly from the observations. The method can be applied to
both SLN and Γe distributions and decreases the computational
time of the process considerably.

Relying on simulated galaxy catalogues of VIPERS PDR1,
we tested the reconstruction scheme of the counting probability
(PN) under realistic conditions in the case of the SLN and Γe
expansions. We found, that the reconstruction depends on the
choice of the model for the galaxy distribution. However, we
have also shown that it is possible to test which distribution bet-
ter describes the observations.

Using VIPERS PDR1, on the relevant scales that are investi-
gated in this paper (R = 4, 6, 8 h−1 Mpc), we found that the Γ dis-
tribution gives a better description of the observed PN than that
provided by the log-normal (see Fig. 8). We therefore adopted
the Γe parametric form to reconstruct the probability-density
functions of galaxies. From these reconstruction we studied how
their PDF changes according to their absolute luminosity in
B-band and we also studied their redshift evolution. We found
that little evolution has been detected in the first two redshift
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Fig. 10. Evolution of three galaxy populations, selected according to
their luminosity (from bottom to top). On each panel, the black solid,
red dashed, and cyan dot-dashed lines represent, respectively, the three
redshift bins 0.5 < z < 0.7, 0.7 < z < 0.9, and, 0.9 < z < 1.1.

bins, while it seems that the density distribution of the galaxy
field is strongly evolving in the last redshift bin.

Finally, we used the measured PDF to reconstruct the count-
ing probability (CPDF) that would be observed if VIPERS was
not masked by gaps between the VIMOS quadrants.
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Appendix A: Non-linear system

The problem with this system of equations is that it is non-linear,
and is therefore difficult to solve. However, it can be reduced to
a one-dimensional equation which can be solved numerically.

The two first equations (n = 1 and n = 2) can be used to ex-
press the first two cumulants with respect to the third and fourth
order ones:

σ2
Φ = ln(A2) + ln

⎛

⎜

⎜

⎜

⎜

⎝

B2
1

B2

⎞

⎟

⎟

⎟

⎟

⎠

(A.1)

µΦ = −
1
2
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ln(A2) + ln
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⎜

⎜

⎜
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1
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⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

, (A.2)

where B1 and B2 are both functions of x and y. Then, using other
combinations of the equation, one can express a system of two
equations for x and y alone:

B2
3 = a1B2

1B4 (A.3)

B3B3
1 = a2B3

2, (A.4)

where a1 ≡
A2

3
A4

and a2 ≡ A3

A3
2
. To properly solve the system, we

prefer to express it in terms of one parameter η ≡ B2/B1, more-
over one can see that polynomials B1 to B4 are not independent,
as a result.

B4 = d + aB1 + bB2 + cB3,

where a = 96, b = −32, c = 224
27 , d = −

1925
27 and which can be

substituted in Eq. (A.3). Combining Eqs. (A.3) and (A.4) one
obtains a parametric equation for B1

(a + bη)B3
1 + (d + c f (η))B2

1 − g(η) = 0, (A.5)

which can be solved for each value of the parameter η and an
independent parametric equation for B3

B3 = f (η).

As a result we can find a couple B1, B3 for each value of the
parameter η. It follows that one can express x and y with respect
to η and, given the definition of η, the possible solution x and y
must satisfy the condition

B2[x(η), y(η)] − ηB1[x(η), y(η)] = 0,

which gives the possible values of η from which one can re-
cover x and y. Finally, from Eqs. (A.1) and (A.2) we can com-
pute the values of σΦ and µΦ that correspond to each couple (x,
y) of the solutions. This allows us to select the solution which
provides a value of A5 that is closer to the observed one.

Once the values of the cumulants µΦ, σ2
Φ

, 〈Φ3〉c and 〈Φ4〉c
are known from the process detailed above, we know that the
moments of the corresponding Pth

N
will match those of the ob-

served up to order 4. In the end, we can check whether the SLN
distribution provides a good match to data by numerically inte-
grating the probability-density function that was convolved with
the Poisson kernel K (see Eq. (5)).

Appendix B: Generating function

We show that the CPDF that was associated with a Gamma
expanded PDF can be calculated analytically from an expres-
sion that depends explicitly on the coefficients ci of the Gamma
expansion.

Be GN the generating function associated to the probability
distribution PN , it is defined as

GN(λ) ≡
∞
∑

i=0

λN PN . (B.1)

In case of the Poisson sampling of a Gamma distribution, after
some algebra, one can show that it can be expressed with respect
to the coefficients of the Gamma expansion as

GN(λ) =
1
Γ(k)

n
∑

i=0

ciFi(γ), (B.2)

where γ ≡ (1 − λ)θ and

Fi(γ) ≡
∫ ∞

0
xk−1e−xL

(k−1)
i

(x)e−γxdx.

Nevertheless, this integral can be computed using the Laguerre
expansion of the exponential

e−γx =

∞
∑

i=0

γi

(1 + γ)i+α+1
L

(α)
i

(x),

where it reads to

Fi(γ) =
γi

(1 + γ)i+k

Γ(i + k)
i!
· (B.3)

The formal expression of the generating function is therefore
given by

GN(λ) =
(1 + γ)−k

Γ(k)

n
∑

i=0

ci

Γ(i + k)
i!

(

γ

1 + γ

)

, (B.4)

where we still use γ = (1 − λ)θ. From the explicit expression
of the moment-generating function (Eq. (B.4)) one can get the
probability distribution PN by iteratively deriving the generating
function with respect to γ :

PN ≡
1

N!
dNGN(λ)

dλN

∣

∣

∣

∣

∣

∣

λ=0

=
(−θ)N

N!
dNGN(γ)

dγN

∣

∣

∣

∣

∣

∣

γ=θ

·

These derivatives can be calculated explicitly.

Appendix C: Synthetic galaxy catalogues

We describe here how we generate synthetic galaxy catalogues
from Gaussian realizations. The first requirement of these cata-
logues is that they must be characterised by a known power spec-
trum and 1-point probability-distribution function. The second
requirement is that the probability-distribution function must be
measurable.

The basic idea is simple, we generate a Gaussian random
field in Fourier space (assuming a power spectrum), we inverse
Fourier transform it to get its analog in configuration space. We
further apply a local transform to map the Gaussian field into a
stochastic field that is characterised by the target PDF. The two
crucial steps of this process are the choice of the input power
spectrum and the choice of the local transform.

Be ν a stochastic field following a centered (〈ν〉 = 0) reduced
(σ2
ν ≡ 〈ν2〉c = 1) Gaussian distribution. From a realization of

this field, one can generate a non-Gaussian density field δ by
applying a local mapping L between the two, hence

δ = L(ν). (C.1)
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The local transform L must be chosen to match some target PDF
Pδ for the density contrast δ. Assuming that the local transform
is a monotonic function, which maps the ensemble ] − ∞,+∞[
into ] − 1,+∞[ then, owing to the probability conservation
Pδ(δ)dδ = Pν(ν)dν, the local transform must verify the following
matching:

Cδ[δ] = Cν[ν], (C.2)

where Cx stands for the cumulative probability distribution func-
tion. If [a, b] is the definition assemble of the variable x, then
its cumulative probability distribution function is defined as
Cx[x] ≡

∫ x

a
Px(x′)dx′, where Px is the PDF of x. By definition a

probability-density function is positive, it follows that its cumu-
lative is a monotonic function and therefore Eq. (C.2) can always
be inverted to read

δ = C−1
δ [Cν(ν)] ,

where the exponent −1 stands for the reciprocal function such
that F−1 [F(x)] = x. For example, by defining the local map-
ping L, this allows a normal distribution to transform into a log-
normal distribution, which is δ = eν−1. We note that, depending
on the PDF to be matched, this inversion can require a numerical
evaluation, which can be tabulated.

Once a local transform is chosen, we need to address the
question of finding the appropriate power spectrum of the
Gaussian field ν which, once locally mapped into the density
field δ, will match the expected power spectrum. Following
Greiner & Enβlin (2015), who considered a log-transform, we
generalised their result to a generic local transformation. This
mapping is not directly in Fourier space although it is in configu-
ration. Writing the two-point moment of order two of the density
field δ and assuming the probability conservation leads to

ξδ ≡ 〈δ1δ2〉 =
∫

L(ν1)L(ν2)B(ν1, ν2, ξν)dν1dν2, (C.3)

where B is a bivariate Gaussian defined as

B(ν1, ν2, ξν) ≡
1

2π|Cν|1/2
exp

{

−1
2
νTC−1

ν ν

}

. (C.4)

We notice that, in our case (central reduced Gaussian), the co-

variance matrix Cν takes the simple form Cν =

[

1 ξν
ξν 1

]

. Once

integrated over the definition domain of ν1 and ν2, Eq. (C.3) pro-
vides a mapping between the two-point correlation function of
the Gaussian field ν and the two-point correlation function of
the density field δ. However, we prefer to rotate the coordinate
system before performing the integral (C.3) because, in the case
of high correlation (∼1), the Gaussian will be comparable with
a straight line – and most of the sampling of this function will
be useless. That is why we look for the rotation that allows us
to diagonalise the matrix Cν and therefore convert ν into a new
variable x. It follows that

Cx =

[

1 − ξν 0
0 1 + ξν

]

and the integral becomes

ξδ =
1

2π
√

1 − ξ2ν

∫

L

(

x2 − x1

2

)

L

(

x2 + x1

2

)

e
− 1

2

(

x2
1
σ2

1
+

x2
2
σ2

2

)

dx1dx2,

(C.5)

where σ2
1 = 1 − ξν and σ2

2 = 1 + ξν. We can therefore integrate
over a bounded domain that corresponds to the −8σ1, 8σ1 along
the x1 axis and −8σ2, 8σ2 along the x2 axis. Another possibility
for perform the integral (C.3) is to use Mehler’s formula. By do-
ing so, one can show that the two-point correlation of the density
field can be expressed as a Taylor expansion on the two-point
correlation function of the ν field. Thihs reads

ξδ = λ(ξν) ≡
∞
∑

n=0

n!c2
nξ

n
ν , (C.6)

where the cn are the coefficients of the Hermit transform of
the local mapping L(ν) =

∑∞
n=0 cnHn(ν). The cn coefficients

can be calculated using the orthogonal properties of Hermit
polynomials

cn =
1
n!

∫ +∞

−∞
L(ν)Hn(ν)Pν(ν)dν. (C.7)

The latter approach speeds up the numerical evaluation of
Eq. (C.5) considerably. It allows us to compute the 2D integral
as a finite sum of 1D integrals. It also allows us to verify that,
when the two-point function of the field ν is positive, then the
derivative of ξδ with respect to ξν is positive. Moreover, from
Eq. (C.3) we can see that ξν = 0 implies ξδ = 0. This means that
the function that transforms ξν into ξδ is invertible as long as ξδ
is positive. On the other hand, we know that the zero-crossing
of the two-point correlation function occurs at very large scales
at which one can safely assume that |ξδ| ≪ 1. Thus, continu-
ing along this train of thought, we can truncate Eq. (C.6) at or-
der one, which provides a linear relation between ξδ and ξν. As
a result, we can take the reciprocal of the function λ such that
ξν = λ

−1(ξδ).
Once the local transform L and the two-point correlation

mapping λ are known, then the input power spectrum of the
Gaussian field ν can be obtained as follows. We choose a power
spectrum P(k), in the present case Eisenstein & Hu (1998), for
the density field δ. We calculate its corresponding 2-point corre-
lation function

ξδ =

∫

P(k)eik·rd3
k. (C.8)

At each scale r, we can deduce the two-point correlation function
of the Gaussian field ξν = λ−1(ξδ) and finally, using a Fourier
transform, we obtain the input power spectrum

Pin(k) =
1

(2π)3

∫

ξν(r)e−ik·rd3
r. (C.9)

Finally, to make sure that the PDF target will be reproduced, we
need to verify that its integral is indeed equal to the expected
variance in the size of the mesh, once the input power spectrum
Pin(k) has been set up on a regular k-space grid, which will be
used to generate the Gaussian field. Thus, σ̂2

a = ( 2π
L

)3∑
n P(kn)

should be equal to σ2
a =
∫

P(k)d3
k. In general,σa and σ̂a are not

equal, in which case we renormalise the target power spectrum
by the quantity S = σ̂2

a/σ
2
a, P̂in(k) = S Plin(k).

We generate a Gaussian field (with a flat power spectrum)
on a regular mesh of a = 0.95 h−1 Mpc and a comoving box
of 5003 h−3 Mpc3. We then Fourier transform with an FFT and
keep only the phases of the field νk = eiθ(k). At each position kn,

we generate the value of the modulus of νk =
√

Xkeiθ(k), where
Xk = −P̂in(k) ln(1 − ǫ) and ǫ is a random number with a uniform
probability distribution between 0 and 1. We then inverse Fourier
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Fig. C.1. Upper: grey dotted lines show the power spectrum measured
in each of the 20 fake galaxy distributions, the black solid line represent
their average and the errors display the dispersion of the measurements.
The blue long dashed line displays the input power spectrum used too
generate the Gaussian stochastic field nu and the red dashed line shows
the corresponding expectation value for the power spectrum of the den-
sity contrast δ. Lower: shows the deviation between the measured power
spectrum of the δ-field and the expected one.

transform the field to get a centred reduced Gaussian field. In
Fig. C.1, we show the input power spectrum of the Gaussian
field ν compared to the one that was measured using a FFT, and
to the one expected from the local transformation, which was
applied to the ν field to generate the density field δ.
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