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ABSTRACT

We present measurements of the growth rate of cosmological structure from the modelling of the anisotropic galaxy clustering measured in the
final data release of the VIPERS survey. The analysis is carried out in configuration space and based on measurements of the first two even
multipole moments of the anisotropic galaxy auto-correlation function, in two redshift bins spanning the range 0.5 < z < 1.2. We provide robust
and cosmology-independent corrections for the VIPERS angular selection function, allowing recovery of the underlying clustering amplitude at
the percent level down to the Mpc scale. We discuss several improvements on the non-linear modelling of redshift-space distortions (RSD) and
perform detailed tests of a variety of approaches against a set of realistic VIPERS-like mock realisations. This includes using novel fitting functions
to describe the velocity divergence and density power spectra Pθθ and Pδθ that appear in RSD models. These tests show that we are able to measure
the growth rate with negligible bias down to separations of 5 h−1 Mpc. Interestingly, the application to real data shows a weaker sensitivity to the
details of non-linear RSD corrections compared to mock results. We obtain consistent values for the growth rate times the matter power spectrum
normalisation parameter of fσ8 = 0.55 ± 0.12 and 0.40 ± 0.11 at effective redshifts of z = 0.6 and z = 0.86 respectively. These results are in
agreement with standard cosmology predictions assuming Einstein gravity in a ΛCDM background.
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1. Introduction

The discovery of the accelerated expansion of the Universe in the
late stages of the twentieth century has given us a self-consistent
standard cosmological model, which is in close agreement with
virtually all current cosmological observations. Multiple lines of
evidence, such as cosmic microwave background anisotropies
(Hinshaw et al. 2013; Planck Collaboration XIII 2016), baryon
acoustic oscillations in the galaxy distribution (Beutler et al.
2011; Blake et al. 2011; Anderson et al. 2012), and SNe Ia lu-
minosity distances (Riess et al. 1998; Perlmutter et al. 1999), re-
quire most of the energy content of the Universe to be in the form
of a repulsive dark energy that is empirically close in behaviour

⋆ Based on observations collected at the European Southern Obser-
vatory, Cerro Paranal, Chile, using the Very Large Telescope under
programs 182.A-0886 and partly 070.A-9007. Also based on obser-
vations obtained with MegaPrime/MegaCam, a joint project of CFHT
and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT),
which is operated by the National Research Council (NRC) of Canada,
the Institut National des Sciences de l’Univers of the Centre National
de la Recherche Scientifique (CNRS) of France, and the University of
Hawaii. This work is based in part on data products produced at TER-
APIX and the Canadian Astronomy Data Centre as part of the Canada-
France-Hawaii Telescope Legacy Survey, a collaborative project of
NRC and CNRS. The VIPERS web site is http://www.vipers.
inaf.it/

to the classical cosmological constant (see e.g. Weinberg et al.
2013, for some history and a review of current constraints). The
nature of dark energy is naturally a question of huge interest,
with possibilities ranging from a fixed vacuum energy density
with equation of state w = P/ρc2 = −1 to dynamical models
based on evolving scalar fields varying both in space and time.
Such models motivate an effort to measure w and its evolution.
But independent of the outcome of this exercise, a puzzle re-
mains that a very large vacuum density seems to be necessary,
and hence the much smaller observed value therefore requires a
challenging degree of fine-tuning (Weinberg 1989).

A more radical explanation for the observed acceleration
could be that the theory of gravity itself is modified on cosmo-
logical scales (Carroll et al. 2004; Jain & Khoury 2010; Clifton
2011). Commonly discussed alternatives include f (R) gravity,
where the gravitational Lagrangian is made more complicated
than a simple Ricci scalar R; chameleon models that invoke
a fifth fundamental force to drive the acceleration; and DGP
(Dvali-Gabadadze-Porrati) models, which postulate a higher di-
mensional Minkowski space-time, within which the ordinary
3+1 space-time is embedded. For an appropriate choice of model
parameters, dark energy and modified gravity can both repro-
duce the observed expansion history H(z). In principle this de-
generacy can be lifted by measuring the growth rate of cos-
mic structure. Modifications of gravity involve a variation in the
strength of the gravitational force with scale or environment, and
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thus a key question is whether density fluctuations are growing
at the rate predicted by models involving general relativity and a
homogeneous dark energy.

Among observational methods to estimate the growth rate of
structure, redshift-space distortions (RSD) in the clustering pat-
tern of galaxies (Kaiser 1987) have assumed a growing impor-
tance in the last decade (e.g. Guzzo et al. 2008). These distor-
tions arise when the Doppler effect of galaxy peculiar velocities
supplements the isotropic Hubble expansion. Peculiar velocities
are inevitably associated with gravitational growth of inhomo-
geneities, which can be described by the logarithmic growth rate
of density perturbations,

f ≡ d ln δ
d ln a

, (1)

where δ is the fractional density fluctuation and a is the cos-
mic scale factor. For many (but not all) theories of gravity, this
growth rate can be well approximated by an empirical relation as
f (z) = [Ω(z)]γ (Peebles 1980; Lahav et al. 1991), provided the
fluctuations are in the linear regime and in the growing mode.
For Einstein gravity, γ ≃ 0.55, but this parameter can vary by
around 0.1 between different commonly discussed models of
late-time dark energy and modified gravity (Dvali et al. 2000;
Linder & Cahn 2007). Measurements of linear RSD from galaxy
redshift surveys constrain the combination β = f /b, where b
is an unknown linear galaxy bias parameter. But the real-space
galaxy autocorrelation function, b2ξmass, is observable, so the
combined parameter β can be split to yield an estimate of a quan-
tity that purely concerns dark matter: fσ8, where σ8 is the rms
linear matter fluctuations within spheres of radius 8 h−1 Mpc.

Unfortunately, extracting the linear RSD signal from galaxy
redshift surveys is non-trivial because much of the RSD signal
lies on quasi-linear and non-linear scales. A simple and widely
used extension of the linear Kaiser model is the dispersion model
(Peacock & Dodds 1994), which accounts for radial convolu-
tion by a random velocity dispersion plus non-linear correc-
tions to the real-space power spectrum. This model was success-
fully applied to several galaxy surveys in the past (Peacock et al.
2001; Guzzo et al. 2008), but is insufficiently accurate to be
trusted when the precision allowed by the data goes below 10%
(Okumura & Jing 2011; Bianchi et al. 2012; see also the com-
panion paper by Wilson et al. 2017). There have been a num-
ber of attempts to derive improved RSD models. As shown by
Scoccimarro (2004), the dispersion model is a simplification of
the original streaming model (Peebles 1980; Fisher 1995), in
which the full redshift-space correlation function is obtained by
convolution with a proper scale-dependent pairwise velocity dis-
tribution. But predicting this distribution function is hard (e.g.
Bianchi et al. 2015, 2016; Uhlemann et al. 2015) and typical ap-
plications simplify the problem by adopting a scale-dependent
Gaussian pairwise distribution function (e.g. Reid et al. 2012).
Scoccimarro (2004) proposed an influential alternative, in which
the linear Kaiser term is generalised by including the velocity
and velocity-density power spectra. This concept was extended
by the TNS model (Taruya et al. 2010), which takes better into
account the non-linear coupling between the density and the ve-
locity field. This model is currently considered one of the best
descriptions of RSD down to the quasi-linear regime.

These theoretical developments have been stimulated by a
growing number of new measurements from larger datasets.
These included in particular the 6dfGS (Beutler et al. 2012),
WiggleZ (e.g. Blake et al. 2011; Contreras et al. 2013), and
BOSS (e.g. Reid et al. 2014; Beutler et al. 2017; Satpathy et al.
2017; Sanchez et al. 2017; Grieb et al. 2017). The present paper

is one in a series aimed at extending this RSD work to higher red-
shifts by analysing the final PDR-2 release of the VIMOS Pub-
lic Extragalactic Redshift Survey (VIPERS; Guzzo et al. 2014;
Garilli et al. 2014; Scodeggio et al. 2017). This survey has col-
lected redshifts for about 90 000 galaxies in the range 0.4 .
z . 1.2 with sampling and volume comparable to those of
local surveys, such as the Two-degree Field Galaxy Redshift
Survey (2dFGRS) at z ≃ 0.1 (Colless et al. 2001). The prime
goal of VIPERS was an accurate measurement of the growth
rate of structure at a redshift around unity. An early measure-
ment was performed using the Public Data Release 1 (PDR-1;
Garilli et al. 2014), setting a reference measurement of fσ8 at
z = 0.8 (de la Torre et al. 2013). Having nearly doubled the sam-
ple, this analysis is now revisited and expanded in a number of
ways. de la Torre et al. (2017) performs a configuration space
joint analysis involving RSD and galaxy-galaxy lensing, while
Wilson et al. (2017) develops a direct Fourier-space approach
coupled with the so-called “clipping” linearisation of the density
field. With a similar aim, Mohammad et al. (in prep.) identifies
optimal subclasses of RSD tracers, focusing on luminous blue
galaxies. The analysis we present here uses the configuration-
space information contained in the first two even multipole mo-
ments of the anisotropic correlation function, implementing the
currently most advanced non-linear corrections and testing their
performances on VIPERS-like mocks.

The paper is organised as follows. In Sect. 2 we give a de-
scription of the final VIPERS dataset and of the corresponding
mock catalogues used throughout the analysis, while in Sect. 3
we describe the estimation of the two-point correlation function
of galaxies in redshift space. Section 4 describes the target se-
lection biases and how these are mitigated. In Sect. 5 we present
the VIPERS measurements. The error estimates are described in
Sect. 6 along with the fitting procedure. Section 7 gives a de-
scription of the RSD models that are used in Sect. 8 to under-
stand the level of systematics in the recovery of the growth rate
of structure. The results are presented in Sect. 9 and discussed in
Sect. 10 with our conclusions.

Throughout this analysis, if not specified otherwise, we
assume a fiducial flat ΛCDM cosmological model with
(Ωm,Ωb, ns) = (0.30, 0.045, 0.96) and parametrise the Hubble
constant as H0 = 100 h km s−1 Mpc−1.

2. The VIPERS survey

2.1. Observations

The VIPERS survey covers an overall area of 23.5 deg2 over
the W1 and W4 fields of the Canada-France-Hawaii Telescope
Legacy Survey Wide (CFHTLS-Wide). The VIMOS multi-
object spectrograph (Le Fèvre et al. 2003) was used to cover
these two fields with a mosaic of 288 pointings, 192 in W1 and
96 in W4 (see Fig. 1). Galaxies are selected from the CFHTLS
catalogue to a faint limit of iAB = 22.5, applying an additional
(r − i) vs. (u− g) colour preselection that efficiently and robustly
removes galaxies at z < 0.5. Coupled with a highly optimised ob-
serving strategy (Scodeggio et al. 2009), this doubles the mean
galaxy sampling efficiency in the redshift range of interest, com-
pared to a purely magnitude-limited sample, bringing it to 47%.

Spectra are collected at moderate resolution (R ≃ 220) us-
ing the LR Red grism, providing a wavelength coverage of
5500−9500 Å. The typical redshift error for the sample of re-
liable redshifts is σz = 0.00054(1 + z), which corresponds to an
error on a galaxy peculiar velocity at any redshift of 163 km s−1.
These and other details are given in the full PDR-2 release
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Fig. 1. Footprint of the VIPERS observations within the W1 (top) and W4 (bottom) fields, as reconstructed from the final galaxy sample. The
VIMOS pointings and quadrants are indicated by black rectangles. Galaxies are colour coded according to their value of the target sampling rate
(TSR: see Sect. 4), which can be considered as a proxy for the inverse of the projected galaxy density field. Empty rectangles correspond to failed
quadrants, for which the spectroscopic mask insertion failed or was incorrect, leading to no collection of data.

accompanying paper (Scodeggio et al. 2017). A discussion of
the data reduction and management infrastructure was presented
in Garilli et al. (2014), while a complete description of the sur-
vey design and target selection was given in the survey descrip-
tion paper (Guzzo et al. 2014). The dataset used in this paper is
an early version of the PDR-2 data, from which it differs by a few
hundred redshifts revised during the very last period before the
release. In total it includes 89 022 objects with measured red-
shifts. As in all statistical analyses of the VIPERS data, only
measurements with quality flags 2 to 9 inclusive are used, corre-
sponding to a sample with a redshift confirmation rate of 96.1%
(for a description of the quality flag scheme, see Scodeggio et al.
2017).

In the analysis presented here we analyse two redshift sub-
samples of the whole survey (W1 +W4) in the ranges 0.5 < z <
0.7 and 0.7 < z < 1.2, including 30 764 and 35 734 galaxies, re-
spectively, for a total of 66 498 high-quality redshifts (out of the
total number of 76 552 galaxies of this quality, i.e. with flag ≥2,
in the full survey, see Scodeggio et al. 2017).

2.2. Redshift distribution

The redshift distribution of the galaxy sample is shown in Fig. 2.
At z > 0.6, it follows the typical decay in the number of objects
expected for a magnitude-limited survey, while the rapid fall of
the counts at z < 0.5 is the result of the colour-colour preselec-
tion. In de la Torre et al. (2013) it was shown that this histogram
can be modelled analytically by the functional form

N(z) = A

(

z

z0

)α

exp


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CSR(z), (2)

where A, z0, α, and β are fitting parameters. The term CSR(z)
(colour sampling rate) describes the colour−colour preselection
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Fig. 2. Redshift distribution of the final VIPERS galaxy sample. The
distributions of redshifts collected separately within the two CFHTLS
fields are plotted together with the combined distribution using dif-
ferent colours. The red and purple solid lines show the best fit using
the analytic template in Eq. (2) and the predicted Vmax profile of the
combined redshift distribution, respectively. The peculiar distribution
of the VIPERS galaxy sample differs from the typical expectation from
a magnitude-limited sample. This deviation is the result of the colour-
colour preselection adopted to reject most galaxies located at z < 0.5.

in terms of an error function transitioning between 0 and 1
around redshift z = 0.5, i.e. CSR(z) =

(

1 − erf
[

b(zt − z)
])

/2
where the transition redshift zt and the transition width b are
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free parameters. As shown in Scodeggio et al. (2017), CSR(z) is
unity for z ≥ 0.6, corresponding to a purely magnitude-limited
selection.

The best fit of Eq. (2) to the final VIPERS data is shown
by the red curve in Fig. 2. Such modelling of the redshift
distribution is an important and sensitive ingredient when es-
timating galaxy clustering, as we discuss in Sect. 3 and in
de la Torre et al. (2013). We compare it with the Vmax technique
(e.g. Cole 2011; de la Torre et al. 2013) shown in Fig. 2 with
the purple curve. Although we find no significant difference
in the resulting clustering between the two methods, here we
chose to use the Vmax method, as in the companion paper of
de la Torre et al. (2017). A further method often used in the lit-
erature is that of smoothing the observed redshift distribution
with a Gaussian kernel (as for instance in the parallel papers by
Rota et al. 2017; and Wilson et al. 2017).

2.3. Mock galaxy samples

In order to test the details of the analysis and the mod-
elling of RSD, we make use of a suite of mock galaxy
catalogues designed to be a realistic match to the VIPERS
final dataset. These were constructed from the Big Mul-
tiDark N-body simulation (Klypin et al. 2016), which as-
sumes a flat ΛCDM cosmology with (Ωm,ΩΛ,Ωb, h, ns, σ8) =
(0.307, 0.693, 0.0482, 0.678, 0.960, 0.823) and covers a volume
of 15.625 h−3 Gpc3. The construction of the mock samples is de-
scribed in de la Torre et al. (2017) and is based on the method
detailed in de la Torre et al. (2013). These papers provide for fur-
ther detail; we only give a brief overview of the adopted method
in the following.

We extracted 153 independent light cones from the sim-
ulation volume, which follows the geometry of the VIPERS
W1+W4 fields. The dark matter haloes identified in the simula-
tion were populated with galaxies using the halo occupation dis-
tribution (HOD) technique. Because of the halo mass resolution
of the simulation which is too large to host the faintest galax-
ies observed in VIPERS, the method of de la Torre & Peacock
(2013) was applied to reconstruct haloes below the resolution
limit. Each halo was then populated with galaxies according to
its mass as described by the HOD. The HOD was calibrated
directly on the VIPERS data as presented in de la Torre et al.
(2013). To obtain fully realistic VIPERS mocks one needs to re-
produce the VIPERS survey selection function. This was carried
out following several steps. First, the magnitude cut iAB < 22.5
and the effect of the colour selection on the radial distribution of
the mocks were applied. The mock catalogues thus obtained are
similar to the parent photometric sample used as target galaxy
sample for spectroscopy in VIPERS. The slit-positioning algo-
rithm with the same setting as for the data was further applied to
parent mock catalogues. This allows us to reproduce the VIPERS
footprint on the sky, the small-scale angular pair incomplete-
ness, and the variation of TSR across the fields. Finally, random
redshift errors were added to mock galaxy redshifts, which are
similar to those present in the data. This procedure allows us
to produce realistic mock galaxy catalogues that contain the de-
tailed survey completeness function and observational biases of
VIPERS.

3. Galaxy clustering estimation

We quantify galaxy clustering in redshift space by estimating the
anisotropic two-point correlation function ξ(s, µ), where s is the
redshift-space separation of galaxy pairs and µ is the cosine of

the angle between the separation vector and the line of sight. We
generate a catalogue of randomly distributed objects subject to
the same angular and radial selection as the true data and use the
Landy & Szalay (1993) estimator

ξ(s, µ) =
GG(s, µ) − 2GR(s, µ) + RR(s, µ)

RR(s, µ)
, (3)

where GG(s, µ), GR(s, µ), and RR(s, µ) are the normalised
galaxy-galaxy, galaxy-random, and random-random pair counts
in bins of s (∆(log10 s) = 0.1) and µ (∆µ = 0.01), respectively.
This estimator has been shown to provide a nearly unbiased esti-
mate of the two-point correlation function, while minimising its
variance (Landy & Szalay 1993). We typically use random sam-
ples with 30 times more objects than in the true data to reduce
their shot noise contribution to a negligible amount.

In this work we estimate the growth rate by fitting RSD mod-
els not to the full shape of ξ(s, µ), but rather to its first two even
multipole moments, ξ(0)(s) and ξ(2)(s), defined as

ξ(ℓ)(s) =
2ℓ + 1

2

∫ +1

−1
ξ(s, µ)Lℓ(µ)dµ, (4)

where Lℓ is the ℓth order Legendre polynomials. Such an ap-
proach is normally preferred to prevent the size of data vectors
and the resulting covariance matrix from becoming too large for
practical computation (but see Mohammad et al. 2016, for dis-
cussion of some drawbacks of this choice). We do not include
in this analysis the extra information potentially provided by the
hexadecapole ξ(4). In addition to being noisier than the lower
order moments, we found that our corrections of ξ(4) for obser-
vational effects (see next chapter) do not fully recover the correct
shape, thus there is a risk of introducing a further systematic bias
in the final measurements.

4. Systematic selection effects

The VIPERS angular selection function is the result of com-
bining several different angular completeness functions. Two of
these are binary masks, i.e. describing areas that are fully used or
fully lost. The first mask is related to defects in the parent pho-
tometric sample, which are mostly areas masked by bright stars,
and the other mask is associated with the specific footprint of
VIMOS and how the different pointings are tailored together to
mosaic the VIPERS area. Working in configuration space, these
masks are easily accounted for when defining the area and the
auxiliary random samples for clustering measurements.

A more complex selection is related to the incomplete target
sampling of VIPERS; on average 47% of the targets satisfying
the VIPERS selection criteria can be placed behind a slit and
observed, defining what we call the average target sampling rate
(TSR). In principle, we should also account for the colour-colour
preselection of the target sample, which introduces a colour sam-
pling rate (CSR; see Scodeggio et al. 2017). In practice, since the
CSR can be safely assumed to be constant over the survey area
thanks to the particularly careful homogenisation of the parent
sample photometry (see Guzzo et al. 2014), its effect is absorbed
into the fit or model describing the smoothed redshift distribu-
tion, as in Eq. (2). In any case, the CSR is consistent with being
unity for z ≥ 0.6. Finally, we also have to take into account how
the probability of measuring the redshift of a targeted galaxy de-
pends on observational conditions or technical issues, which can
be location-dependent, which we call the spectroscopic success
rate (SSR). The relative relevance, modelling, and overall im-
pact of all these effects is described in more detail the following
sections.
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Fig. 3. Diagram of the slit lay-out of a typical VIMOS pointing of the
VIPERS survey (W1P082 in this case) superimposed on the actual DSS
finding chart. The open circles with the tiny horizontal slits mark the
target objects. The vertical rectangles define the area where the resulting
spectrum falls once the dispersing element (grism) is inserted.

4.1. Slit collisions

A multi-object spectrograph survey must inevitably face the lim-
itations imposed by the mechanics of how light from the tar-
gets is collected on the focal plane. Either fibres or slitlets (as
in the case of VIMOS) impose a minimum physical size below
which the spectrum of two adjacent galaxies on the sky can-
not be collected at the same time. This completely suppresses
the small-scale clustering amplitude, unless multiple telescope
visits of the same field are performed, which is not the case
with VIPERS. Furthermore, the same limit on close pairs causes
high-density regions on the sky to be more poorly sampled
with respect to low-density regions; this introduces a mismatch
that, as we show here, affects the amplitude of clustering on all
scales. For VIMOS, this effect is further enhanced by the slit-
positioning optimisation software (SPOC; Bottini et al. 2005),
which attempts to maximise the number of slits observed in each
quadrant and as such tends to homogenise the angular distribu-
tion of targets.

Furthermore, in a multi-slit spectrograph such as VIMOS the
dispersed spectrum is imaged directly onto the detector. As is ev-
ident from Fig. 3, this creates another “forbidden zone” perpen-
dicular to the slit, where no other target can be observed without
causing two spectra to overlap; this unlike in fibre spectrographs,
where fibres are typically taken away from the telescope to a
standing spectrograph and the spectra are conveniently aligned
and packed on the CCD. Since the projected length of the spec-
trum on the detector is much larger than the corresponding size
of the slit, this introduces another typical scale below which the
number of measured angular pairs is reduced, again limiting the
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Fig. 4. Top: angular correlation function measured from the VIPERS
W1 mock samples. In order to enhance the signal-to-noise ratio, we
show only the mean over 153 realisations. The angular correlation
function of the parent and selected sample are shown with a cyan and
magenta line, respectively. The two dashed vertical lines indicate the
typical angular size of the slits and the raw spectra. Bottom: the com-
pleteness function, extracted from the mean of the 153 W1 mock sam-
ples (magenta line), is shown. The corresponding quantity measured
from the VIPERS dataset is shown with red circles.

sampling of overdensities on the sky. In VIPERS, the spectral
dispersion is always oriented along the north-south direction, so
the depletion of galaxy pairs is anisotropic on the sky and larger
along the declination direction.

The impact of these effects on angular clustering is quantified
in Fig. 4, where in the top panel we plotted, for both the average
of 153 mocks (solid lines) and the VIPERS data (filled points),
the angular correlation function of the parent and spectroscopic
samples (wp(θ) and ws(θ), respectively). The bottom panel shows
instead the ratio of the corresponding numbers of pairs (bottom
panel), defined as

C(θ) =
1 + ws(θ)
1 + wp(θ)

· (5)

In this figure we find clear evidence of the two angular scales dis-
cussed earlier, which are related to the width and length of the
spectra; these are identified in the figure by the vertical dashed
lines. The origin of this effect can be better identified if we split
the separation angle θ into its components along the right ascen-
sion and declination directions, ∆RA and ∆DEC. The angular com-
pleteness map C(∆RA,∆DEC), corresponding to Eq. (5) is shown
in Fig. 5. Here the ‘shadow’ of the target spectra is recognisable
as the rectangular region with nearly zero counts at small sepa-
rations. The few residual counts in this area are produced by the
small variations in the slit length, together with the effect of the
few serendipitous targets observed by chance within the slit of a
primary target.

Translated to spatial scales, this angular selection func-
tion results in a strong suppression of the clustering ampli-
tude below 1 h−1 Mpc, as shown by the dotted line in Fig. 6.
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spectrum is visible in the plot as the almost zero rectangular region at
small angular separation. This region corresponds to the typical area oc-
cupied by the projected spectrum of an observed source. The enhance-
ment of clustering in the top left region of the plot is produced by the
particular displacement along common columns of slits within a quad-
rant. The scale of the abscissa and the ordinates is very different.

In de la Torre et al. (2013), we corrected for this effect by up-
weighting each galaxy-galaxy pair at a given angular separation
θi j by the inverse of the corresponding value of C(θi j), i.e.

wA(θ) =
1

C(θi j)
· (6)

We discuss the effectiveness of this weight together with the cor-
rection of the large-scale effect of the TSR at the end of the next
section.

4.2. Larger-scale effects

Along with the drastic suppression at small separations, the
physical size of the slits is responsible for the inhomogeneous
sampling between high- and low-density regions across a sin-
gle VIMOS quadrant. This translates in an almost constant sup-
pression of the clustering amplitude on scales above 1 h−1 Mpc.
The correcting scheme we discuss here builds upon the origi-
nal approach of de la Torre et al. (2013), in which galaxies are
assigned a further weight

wi =
1

TSRi

· (7)

In that paper, however, the TSR used for each galaxy was simply
the average value over the corresponding VIMOS quadrant; in
this way, all target galaxies in a quadrant were up-weighted by
the same factor. As shown by the dot-dashed curve in Fig. 6,
when considering the real-space correlation function ξ(r) this
procedure has limited effect; however when combined with the
wA(θ) = 1/C(θi j) small-scale boost, the TSR up-weighting strat-
egy provides a better correction (see Fig. 8 of de la Torre et al.
2013).

The improved correction adopted here uses instead a local
estimate of the TSRi, which is defined as the ratio of the local
surface densities of target and parent galaxies (i.e. before and af-
ter applying the target selection); these are estimated as detailed
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Fig. 6. Optimising the correction for the Target Sampling Rate on large-
scales; the tests are based on the mean of 153 mock samples. Top:
systematic error on the real-space two-point correlation function intro-
duced by the TSR (dotted line), confronted to the results of different
strategies to estimate its local value and the corresponding weight (see
text for details). Circular apertures with varying radius (r = 90, 70 and
50 arcsec), and a rectangular aperture 60 × 100 arcsec2 are compared.
The dot-dashed line also shows the result of using a weight based only
on the quadrant-averaged TSR. Note that here the small-scale further
correction based on Eq. (6) has not been applied yet. Bottom: corre-
sponding scatter of the different corrections. To allow comparison with
the systematic error, this is also reported, for the rectangular aperture,
as the shaded area in the top panel.

below and then averaged within an aperture of a given shape and
size. If we call these quantities δp

i
and δs

i
, the TSRi is defined as

TSRi =
δs

i

δ
p
i

· (8)

The continuous δ fields are obtained, starting from the discrete
distributions of parent and target galaxies, using a Delaunay tes-
sellation (Delaunay 1934) to estimate the density at the position
of each galaxy, and then linearly interpolating. These two con-
tinuous fields are then used to compute the values of δp

i
and δs

i
within an aperture of a given shape and size.

We identified the best-performing geometry for this aper-
ture through the tests shown in Fig. 6. The overall correction
is remarkable, since we are able to accurately recover the par-
ent ξ(r) at large separations, both with a circular and rectan-
gular aperture. The rectangular aperture provides the best cor-
rection to real-space clustering, which can be understood in
terms of the anisotropy of the spectral “shadows” discussed ear-
lier. The optimal size of the rectangular aperture is found to be
60 × 100 arcsec2. The resulting distribution of the TSRi values
over the survey regions is shown in Fig. 1. One may expect the
size of the optimal aperture for estimating the TSR to match to
some extent the typical shadow of the VIPERS spectra on the
focal plane. By direct test, this is clearly not the case because the
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Fig. 7. Impact of the TSR and the SSR on the radial profile of the
VIPERS galaxy samples. In the bottom panel we plot the relative differ-
ence of the Vmax fits to the redshift distribution after applying the correc-
tion to the same obtained from the observed histogram. Dashed, dotted,
and solid lines give the results for W1, W4, and the combined measure-
ment, respectively. The smoothed radial profile is estimated using the
Vmax method. While the TSR does not affect the redshift distribution,
the SSR enhances the number counts at z > 0.95.

typical size of a spectrum defines an aperture that is too small, if
one is to make shot noise negligible.

4.3. Redshift dependence of angular corrections

Some of the corrections for angular selection biases also have an
effect on the redshift distribution. Figure 7 shows the effect of
correcting for the TSR and SSR on the observed redshift distri-
bution of the VIPERS data. While the TSR does not introduce
a significant redshift dependence, the application of the SSR
boosts the expected number of galaxies in the distant (z > 1) part
of the sample. This clearly reflects the increased inefficiency to
measure redshifts for more and more distant objects. To be fully
consistent with the data, the random samples used for the clus-
tering analyses have to be weighted accordingly.

5. Two-point correlations from the VIPERS data

We thus proceed to estimate the redshift space correlation func-
tion and its moments for the VIPERS survey, adopting the
weighting scheme discussed in the previous sections, which we
recap for convenience:

– Each galaxy is up-weighted by the inverse of its TSR defined
by Eqs. (7) and (8), wTSR

i
, as well as by the inverse of its SSR,

wSSR
i

.
– Each galaxy-galaxy pair with angular separation θ is up-

weighted by the angular weight wA(θ) defined in Eqs. (5)
and (6).

Pair counts in the two-point correlation function estimator of
Eq. (3) are then expressed as

GG(s, µ) =
NG
∑

i=1

NG
∑

j=i+1

wA(θi j)wTSR
i wTSR

j w
SSR
i wSSR

j Θi j(s, µ), (9)

GR(s, µ) =
NG
∑

i=1

NR
∑

j=1

wTSR
i wSSR

i Θi j(s, µ), (10)

RR(s, µ) =
NR
∑

i=1

NR
∑

j=i+1

Θi j(s, µ) , (11)

where Θi j(s, µ) is equal to unity for log(si j) in [log(s) −
∆ log(s)/2, log(s) + ∆ log(s)/2] and µi j in [µ − ∆µ/2, µ + ∆µ/2],
and null otherwise.

The final performance of this weighting scheme on the re-
covered monopole and quadrupole of the redshift space corre-
lation function are shown in Fig. 8 for the two redshift ranges
considered in the analysis. The combined correction recovers
the amplitude of the monopole at the 2% level, down to the
Mpc scale, yielding a quasi-unbiased estimate of ξ(0)(s) on all
comoving scales that are used for the RSD fitting. As for the
quadrupole, we are able to have a reliable measurement of ξ(2)(s)
(<5% deviation from the fiducial value) down to a few Mpc.
This is an encouraging result; any uncorrected anisotropy from
selection effects would be in danger of inducing a spurious con-
tribution to the quadrupole, since this is our main measure of
anisotropy.

Figure 9 shows the measurement of the anisotropic corre-
lation function ξ(rp, π) obtained from the full VIPERS data at
0.5 < z < 0.7 and 0.7 < z < 1.2. A bin size ∆s = 0.5 h−1 Mpc
was used in both rp and π directions. We combine the results
coming from the two VIPERS fields W1 and W4 simply by sum-
ming up the pair counts in each bin of separation and normalising
for the total number of objects.

6. Covariance matrix and error estimation

Given the intrinsic correlation among different bins of the two-
point correlation function (and consequently of its multipoles), it
is essential to obtain a reliable estimate of the covariance matrix
to be used during the fitting procedure. The fit is carried out by
performing a maximum likelihood analysis of the data given the
RSD model, which can be more easily described as the search
throughout the parameter space of the position maximizing the
likelihood function L defined as

−2 lnL =
Nb−1
∑

i=0

Nb−1
∑

j=0

(

yd
i − y

m
i

)

Ψi j

(

yd
j − y

m
j

)

. (12)

Here the observable y = (ξ0, ξ2) is the monopole-quadrupole
combined vector, Ψ ≡ C−1 is the precision matrix (the inverse of
the covariance matrix), Nb is the total number of data points, and
indices d and m stand for data and model, respectively.

The covariance matrix C is organised in four blocks cor-
responding to the monopole-monopole, quadrupole-quadrupole
and monopole-quadrupole cross covariance (two identical
blocks in the latter case). The full monopole-quadrupole covari-
ance matrix is estimated from the 153 mock realisations as

Ĉi j =
1

Ns − 1

Ns
∑

k=1

(

yk
i − ȳi

) (

yk
j − ȳ j

)

, (13)
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Fig. 8. Impact of the target selection effects and their correction on the
amplitude of the monopole (left) and quadrupole (right) of the redshift-
space correlation function ξ(s, µ). Considering the mean over 153 mock
samples, in the bottom panel we plot the fractional deviation of the mul-
tipoles measured with the observed sample from those obtained using
the parent catalogue.

where Ns is the number of independent realisations used to es-
timate the covariance, y is the monopole-quadrupole vector, in-
dices i, j run over the data points, and index k runs over differ-
ent realisations. The mean value ȳ is estimated by averaging the
measured values from different realisations, namely

ȳ =
1
Ns

Ns
∑

k=1

yk. (14)

The corresponding correlation matrices obtained in this way for
the two redshift subsamples are shown in Fig. 10.

Given the large number of mock samples, the estimate and
the inversion of the covariance matrices can be achieved with
good accuracy. However, the use of a finite number of mocks
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Fig. 9. Final measurements of the anisotropic redshift-space correlation
function, ξ(rp, π) from the final data of the VIPERS survey within the
two redshift ranges indicated by the labels. Solid contours correspond
to iso-correlation levels of 0.3, 0.5, 1, 2, 5.

has two implications. Firstly, the estimated precision matrix ob-
tained by taking the inverse of Ĉ is biased with respect to the
true one, Ψ, where the difference is well-represented by an in-
verse Wishart distribution. Furthermore, the precision matrix Ψ
contains statistical errors that propagate to the parameter space,
affecting the derived errors on the cosmological parameters. We
follow Percival et al. (2014) and correct for these effects by ap-
plying two correction factors. In the first case, we can remove
the systematic bias of the precision matrix by rescaling Ĉ−1 as

Ψ =

(

1 − Nb + 1
Ns − 1

)

Ĉ−1. (15)

The latter correction factor involves the total number of data
points Nb and realisations Ns. It takes into account the typical
skewness characterising an inverse Wishart distribution and is
capable of providing an unbiased estimate of the precision ma-
trix (Hartlap et al. 2007). In the second case, the propagation of
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Fig. 10. Correlation matrices for the combined monopole-quadrupole
data vector in the low- (top) and high- (bottom) redshift bin. Correla-
tion matrices are computed as Ri j = Ci j/

√

CiiC j j, where C is the co-
variance matrix estimated from a set of 153 independent mock samples.
The bottom left and top right squares correspond to the auto-covariance
of the monopole s2ξ(0) and the quadrupole s2ξ(2), respectively, while the
remaining squares show the cross-covariance terms. The scales under
consideration range from smin = 5 h−1 Mpc to smax = 50 h−1 Mpc (from
left to right).

errors from the precision matrix to the derived parameters can be
corrected by defining

A =
2

(Ns − Nb − 1)(Ns − Nb − 4)
,

B =
(Ns − Nb − 2)

(Ns − Nb − 1)(Ns − Nb − 4)
, (16)

and applying the correction factor

m1 =
1 + B(Nb − Np)

1 + A + B(Np + 1)
(17)

to the estimated parameter covariance. In the previous equation,
Np is the total number of free parameters.

7. Modelling redshift-space distortions

Redshift-space distortions arise because the apparent position of
galaxies is modified by the Doppler effect of their peculiar veloc-
ity u. In this way, the redshift-space position s of galaxies located
at r becomes

s = r +
v‖

aH(a)
ê‖, (18)

where a is the scale factor, H(a) is the expansion rate and
v‖ = u · ê‖ is the component of the galaxy peculiar velocity along
the line of sight. Invoking mass conservation, the redshift-space
density field δs(s) can be expressed as a function of its real-space
counterpart δ(r) as

δs(s) = [1 + δ(r)]
∣

∣

∣

∣

∣

d3
s

d3r

∣

∣

∣

∣

∣

−1

− 1. (19)

The targeting of high-redshift galaxies in VIPERS means that
the largest pair separations are much smaller than the distance
from the observer, so we can use the small-angle plane-parallel
approximation; the Jacobian of the real-to-redshift space trans-
formation then reduces to
∣

∣

∣

∣

∣

d3
s

d3r

∣

∣

∣

∣

∣

= 1 − f∂‖u‖, (20)

where the normalised velocity field is defined as u(r) =
−u(r)/[ f aH(a)]. Substituting this expression inside Eq. (19) it
follows that

δs(s) =
δ(r) + f∂‖u‖

1 − f δ‖u‖
· (21)

Taking the Fourier transform of this equation and making ex-
plicit the dependence on µ = k̂ · r̂, we obtain

δs(k, µ) =

∫

d3
s

(2π)3
e−ik·sδs(s)

=

∫

d3
r

(2π)3
e−ik·reikµ f u‖

[

δ(r) + f∂‖u‖
]

. (22)

The redshift-space power spectrum can thus be written as
(Scoccimarro et al. 1999)

Ps(k, µ) =

∫

d3
r

(2π)3
e−ik·r

〈

e−ikµ f∆u‖

×
[

δ(x) + f∂‖u‖
] [

δ(x
′) + f∂‖u‖

]

〉

, (23)

with ∆u‖ = u‖(x) − u‖(x
′) and r = x − x

′. This last equation
completely describes the anisotropies produced by peculiar ve-
locities on the clustering of matter particles at each separation.
Here, the only assumption is the plane-parallel approximation
limit.

It is possible to identify two main regimes within which dis-
tortions manifest themselves. At large separations, matter has a
coherent flow towards overdense regions. In this regime, the ve-
locity field is mainly irrotational (Bernardeau et al. 2002) and
can thus be described by its divergence θ(x) = ∇ · u(x). These
motions produce a systematic distortion of the large-scale distri-
bution along the line of sight. This “Kaiser effect” (Kaiser 1987)
is basically produced by the terms inside the square brackets in
Eq. (23).

In contrast, within the typical scale of haloes, galaxy orbits
cross each other: there is a random dispersion in velocities at a
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given point, which convolves the redshift-space structure in the
radial direction. The clustering amplitude is thus suppressed on
small scales, and structures appear stretched along the line of
sight in the so-called “Fingers of God” (Jackson 1972). This ef-
fect is mainly generated by the exponential pre-factor involving
the moment generating function of the velocity field.

Equation (23) is hard to use in its given form, because we
lack an analytic formula for the ensemble average term in-
side the integral, particularly in the strongly non-linear regime.
But a number of simpler approximate forms have been sug-
gested, which aim to provide a satisfactory representation of the
redshift-space power spectrum measured from galaxy surveys:

– Kaiser model (Kaiser 1987): within the linear theory approx-
imation, the exponential pre-factor can be suppressed since
its impact on the largest scales is negligible and θ ∝ δ. If
the galaxy-matter bias relation is also assumed to be linear
(δg = bδ), it follows that

Ps(k, µ) =
(

1 +
f

b
µ2

)2

b2Pδδ(k), (24)

where Pδδ = P is the linear real-space matter power spectrum
and b is the linear galaxy bias.

– Dispersion model (Peacock & Dodds 1994): although the
previous model can reproduce the apparent enhancement of
clustering at large separations, it fails in the description of
the non-linear regime. The latter can be treated in a phe-
nomenological way by artificially suppressing the linear the-
ory predictions to account for the effect of the Fingers of
God. Eq. (24) can thus be written as

Ps(k, µ) = D
(

kµσ12
)

(

1 +
f

b
µ2

)2

b2Pδδ(k), (25)

where D
(

kµσ12
)

is an analytical damping factor. This term
depends on a nuisance parameter σ12, which plays the role
of a pairwise velocity dispersion. The basic assumption of
the dispersion model is that σ12 is not scale-dependent, but
rather can be fitted as a free parameter. An useful extension
of this model is to replace the linear Pδδ by a non-linear ver-
sion (using an analytic approximation such as HALOFIT).
This then allows the dispersion model to give the correct pre-
diction for µ = 0: such modes run transverse to the line of
sight and undergo no RSD effect. Some of the alternatives
discussed here fail to match the real-space power exactly at
µ = 0; this is because they are attempting the harder task of
predicting the non-linearities, rather than taking them from a
fit to N-body simulation data.

– Scoccimarro model (Scoccimarro 2004): as soon as the
mildly non-linear regime is entered, the density and veloc-
ity divergence fields must be treated separately to account
for the non-linear mode coupling between them. The ansatz
proposed by Scoccimarro is that the exponential pre-factor
inside Eq. (23) can be decoupled from the Kaiser term, so
that its impact on the clustering is limited only to the small-
est scales. In this case, it can be replaced with a damping
factor similar to that already used in the dispersion model,
leading to

Ps(k, µ) = D
(

kµσ12
)

(

b2Pδδ(k) + 2 f bµ2Pδθ(k) + f 2µ4Pθθ(k)
)

,

(26)

where Pδθ and Pθθ are the density-velocity divergence cross-
spectrum and the velocity divergence auto-spectrum, respec-
tively. When applying this (and the following) model to real
data, these quantities cannot be obtained from the data under
analysis. As such, applications of this (and the following)
model have used empirical fitting functions calibrated using
numerical simulations (Jennings et al. 2011). In a parallel pa-
per (Bel et al., in prep.), we used a large set of N-body simu-
lations in different cosmologies (the DEMNUni simulations;
Carbone et al. 2016), to derive the following, more general
set of fitting formulae:

Pδθ(k) =

(

Pδδ(k)Plin(k)e−k/k∗
)

1
2

, (27)

Pθθ(k) = Plin(k)e−k/k∗ , (28)

where Plin(k) is the linear matter power spectrum and k∗ is a
parameter representing the typical damping scale of the ve-
locity power spectra. The latter is well described as

1
k∗
= p1σ

p2

8 , (29)

where p1, p2 are the only free parameters of the fit. These
forms for Pδθ and Pθθ have valuable, physically motivated
properties: they naturally converge to Pδδ(k) in the linear
regime, including a dependence on redshift through σ8(z).
Full details on the derivation and performances of these fit-
ting formulas are presented in Bel et al. (in prep.). Their use
in the analysis presented in the following sections is a signif-
icant improvement over previous applications of the Scocci-
marro and TNS (Taruya et al. 2010) models, as it allows us
to extend our tests to smaller scales and apply the models to
a higher redshift, as sampled by VIPERS.

– Taruya (or TNS) model (Taruya et al. 2010): the non-linear
mode coupling between the density and velocity divergence
fields is responsible for a systematic bias between measure-
ments of the power spectrum and its prediction using the
previous RSD model. The origin of this deviation is the ad-
ditional terms inside Eq. (26), which are not accounted for
within the previous ansatz. The corrected model can be writ-
ten as

Ps(k, µ) = D
(

kµσ12
)

(

b2Pδδ(k) + 2 f bµ2Pδθ(k) + f 2µ4Pθθ(k)

+CA(k, µ, f , b) +CB(k u, f , b)
)

,

(30)

where CA and CB are terms derived using perturbation the-
ory, which aim to account for the density and velocity diver-
gence couplings with the exponential pre-factor in Eq. (23).
This model bears strong advantages, as it potentially can
break the f − σ8 degeneracy at the expense that it is intrin-
sically more difficult to implement. See de la Torre & Guzzo
(2012) for the details of its application to biased tracers.

All the tested RSD models feature a phenomenological damping
factor D(kµσ12). The function D(kµσ12) damps the power spec-
tra in the Kaiser term but also partially mimics the effects of the
pairwise velocity distribution in virialised systems. The expected
analytic form of the damping factor on large enough scales as-
suming the Scoccimarro ansatz is Gaussian (Scoccimarro 2004);
but analyses of simulated galaxy samples (de la Torre & Guzzo
2012) have shown that a Lorentzian template provides a better
practical fit.

A33, page 10 of 18



A. Pezzotta et al.: Redshift-space distortions in VIPERS

Table 1. Adopted priors on the sampling parameters.

Parameters Uniform prior
f [0.2, 1.8]
σ12 [0, 8]
b [0.5, 5]
σ8 [0.2, 0.65]

Models in Eqs. (25), (26), and (30) are all tested in the next
sections to understand their impact on the recovery of the growth
rate. In all cases, at each step of our Monte Carlo Markov chains
we generate the full anisotropic redshift-space power spectrum.
For this we make use of CAMB with the latest HALOFIT
prescription for the non-linear Pδδ (Takahashi et al. 2012), and
Eqs. (27) and (28) to generate the Pδθ and Pθθ power spectra.
The normalisation of the latter real-space power spectra, which
can be set by σ8, is degenerate with f and b. This is why one
generally parametrises RSD models in terms fσ8 and bσ8 pa-
rameters. In the case of the TNS model, however, this is not pos-
sible directly since the CA term involves sub-terms that are not
multiples of the fσ8 or bσ8 parameters (e.g. Taruya et al. 2010;
de la Torre & Guzzo 2012). Therefore for the TNS model, and
for the others for consistency, we decide to treat f , b, σ8, σ12
as independent parameters in the fit, and provide derived con-
straints on fσ8 a posteriori from the MCMC chains.

In contrast to the implementation discussed in
de la Torre & Guzzo (2012), a linear bias is assumed here
in the modelling. Given the galaxy population sampled by
VIPERS, the redshift range and the scales that are included in
the final fits (s > 5 h−1 Mpc), this is a reasonable assumption
(see Fig. 8 in de la Torre & Guzzo 2012). This assumption is
relaxed in the parallel complementary RSD analysis of the
same VIPERS data by de la Torre et al. (2017), where a full
non-linear bias model is adopted to describe simultaneously
clustering and galaxy-galaxy lensing down to small separations.

It is important to emphasise thatσ8(z) not only plays a role in
shaping the CA term, it also controls the level of non-linearity in
Pδδ, Pδθ, and Pθθ. In particular for Pδδ, the HALOFIT non-linear
correction to the linear matter power spectrum is computed at
each step of the MCMC according to the tested value of σ8(z).
This represents a significant improvement over what is usually
done in RSD analyses, where σ8(z) is fixed to its fiducial value
for the description of Pδδ.

In the end, we measure the Fourier-space multipole mo-
ments as

P(ℓ)(k) =
2ℓ + 1

2

∫ +1

−1
Ps(k, µ)Lℓ(µ)dµ, (31)

and convert them to their configuration space counterparts as

ξ(ℓ)(s) = iℓ
∫

dk

2π2
k2P(ℓ)(k) jℓ(ks), (32)

where jℓ denotes the spherical Bessel functions.
Finally, we do not attempt to account in our modelling for

the Alcock-Paczynski (AP) effect (Alcock & Paczynski 1979),
i.e. the geometrical distortion introduced on the measured sta-
tistical quantities by the choice of a wrong expansion history
when transforming angles and redshifts into comoving coordi-
nates. This would require the inclusion of two extra parame-
ters, allowing us in principle to constrain the expansion rate
H(z) and the angular diameter distance DA(z). This is explored
in two other parallel RSD analyses using the VIPERS data. In

Table 2. Values of the growth rate and related parameters in the two
redshift subsamples obtained by fitting the monopole and quadrupole
correlation functions over the range 5 h−1 Mpc < s < 50 h−1 Mpc, using
the TNS model. Central values and 68% marginalised errors on σ12,
fσ8, and bσ8 are reported.

Parameters 0.5 ≤ z ≤ 0.7 0.7 ≤ z ≤ 1.2
σ12 4.996 ± 0.855 3.542 ± 0.784
fσ8 0.55 ± 0.12 0.40 ± 0.11
bσ8 0.73 ± 0.03 0.74 ± 0.04

Wilson et al. (2017) joint constraints on fσ8 and the AP pa-
rameter FAP ≡ (1 + z)DAH(z)/c are presented, clearly at the
expense of a larger uncertainty on the recovered value of fσ8.
In de la Torre et al. (2017) we also explore the impact of the
AP-RSD degeneracy, but adding the extra constraint of galaxy-
galaxy lensing. Here we instead work with observed quanti-
ties computed in the fiducial cosmology, if not for the single
parameter σ8, which determines the shape of the non-linear
density and velocity spectra to some extent. In this respect,
changing the fiducial cosmological model has a very small im-
pact on the recovered growth rate, for example less than 1%
when moving from a WMAP9-like to a Planck-like cosmology
(de la Torre et al. 2013). The bottom line is that dynamical dis-
tortions dominate over the AP effect, as directly shown in earlier
works (Marulli et al. 2012; Guzzo et al. 2008).

8. Tests of RSD models

We test in this section the RSD models introduced previously on
our set of Ns = 153 mocks. In practice, analysing each mock and
averaging the measurements would be computationally infeasi-
ble, considering the large number of configurations to be tested.
We thus chose to average the monopole and quadrupole mea-
surements over the mocks, scale the covariance matrix properly,
and fit the models to these average measurements. The aim is to
reach a statistical uncertainty that is a factor 1/

√
Ns smaller than

a single VIPERS survey to be able to detect potential systematics
as small as 1%. This process is more revealing and can show how
well a given model performs in recovering the detailed shapes of
the quadrupole and monopole correlation function.

We perform likelihood analyses of the mock mean measure-
ments in different configurations, starting with the ideal case and
moving on to the case in fully realistic conditions. All likeli-
hood analyses are carried out using an MCMC code, whose out-
put has been cross-checked with the independent MCMC code
used in de la Torre et al. (2017). We select flat priors for the full
set of free parameters, using boundaries that allow a large set
of late-time evolution cosmological models to be considered as
possible alternatives to standard ΛCDM. The full list of priors
is shown in Table 1, while the best-fit values for the parame-
ters are listed in Table 2. We vary the minimum scale smin of
the fit to understand how to select the best-fitting range for the
VIPERS data – we expect all RSD models to fail at sufficiently
small and non-linear scales. The maximum scale of the fit is fixed
at smax = 50 h−1 Mpc, above which errors on the VIPERS mea-
sured monopole and quadrupole become too large.

8.1. Ideal case

We first study the ideal case that neglects the complex VIPERS
angular selection function by using the parent mocks. Redshift
errors are also not considered here, to understand how different
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RSD models behave in the absence of any observational bias.
Furthermore, here we consider mock measurements from the full
redshift range probed by VIPERS, i.e. 0.5 < z < 1.2, to max-
imise the available volume for the test; however, we include, in
this way, a range of redshift over which we know that galax-
ies and large-scale structures do evolve. The relative difference
of the recovered fσ8 with respect to the fiducial one is shown
in the top panel of Fig. 11. Two types of small-scale damping
factor D(kµσ12) are tested: the Lorentzian (filled symbols) and
Gaussian (dashed lines) forms.

The overall trend of models using Lorentzian damping
favours the TNS model, which yields almost unbiased mea-
surements of the growth rate down to smin = 5 h−1 Mpc. Some
overestimation is however seen for minimum scales close to
smin = 8 h−1 Mpc, which in fact corresponds to the zero-crossing
scale of the quadrupole ξ(2)(s). In contrast, both dispersion and
Scoccimarro models consistently underestimate the growth rate
with an error that fluctuates between 5–10%.

We also check (bottom panel) how the models perform when
we fix the shape of the non-linear density and velocity diver-
gence power spectra to the fiducial cosmology of the mocks
through a fixed value for σ8. Reducing the degrees of freedom
does reduce the statistical error bars, but has a negative impact
on the performance of the TNS model; indeed this model shows
a stable positive systematic error of ∼5% also when fitting large
scales (smin > 25 h−1 Mpc) only.

Returning to the top panel, we also see that in all the cases
the choice of a Lorentzian damping yields smaller systematic de-
viations than with a Gaussian damping. This is reflected by the
trend of the dashed lines, which are close to the corresponding
markers only when the minimum fitting separation smin is larger
than ∼15 h−1 Mpc, while rapidly deteriorating when smaller sep-
arations are included in the fit. This is highlighted in Fig. 12,
where the different best-fitting models for the monopole and
quadrupole using smin = 5 h−1 Mpc are directly compared to
the mock data. Using a Gaussian damping, the model is no
longer able to provide a good description of ξ(0) and ξ(2). Ac-
tually, the fit is mostly dominated by the small scales, whose
data points have the smallest errors, and this explains why sepa-
rations above 7 h−1 Mpc are apparently those giving the strongest
deviation between model and data. This result is in close agree-
ment with previous work on the subject (e.g. Bianchi et al. 2012;
de la Torre & Guzzo 2012).

8.2. Case with redshift errors

So far no redshift error was assumed in the mock samples.
However, real VIPERS redshifts have significant uncertainties,
which clearly impact observed redshift-space distortions. We
know from the multiple redshift measurements (Scodeggio et al.
2017) that the redshift error probability distribution for the
VIPERS sample of reliable redshifts used here is well described
by a Gaussian with standard deviation σz = 0.00054(1 + z).
This corresponds to a dispersion in galaxy peculiar velocity of
163 km s−1.

By applying random errors to mock galaxy redshifts follow-
ing the VIPERS observed distribution, we can effectively see ad-
ditional distortions. These are shown in Fig. 13, where one can
see how the shapes of the monopole ξ(0)(s) and the quadrupole
ξ(2)(s) are affected. The imprint of redshift errors is similar to
that of a small-scale damping of the power spectrum. While the
monopole is damped below 4 h−1 Mpc, the quadrupole is cor-
rupted over a range extending out to ∼20 h−1 Mpc. Clearly, this
effect needs to be carefully handled or modelled, if one hopes to
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Fig. 11. Relative systematic error on the measurement of the linear
growth rate from the mean of 153 mock samples, as a function of the
minimum fitting scale smin, using the three models discussed in the text.
The maximum scales fitted smax is always fixed at 50 h−1 Mpc. Here the
parent mock samples are used to focus on the intrinsic performances of
the models. The filled symbols correspond to the use of a Lorentzian
form for the non-linear damping factor in the models, whereas dashed
lines correspond to a Gaussian form. In the top panel the full model as
described in the text has been used. In the bottom panel, symbols are
as above, but σ8 (and thus the shape of the non-linear density and ve-
locity divergence power spectra) has been fixed to the cosmology of the
mock samples to test the effectiveness of the RSD model under ideal
conditions. In this case, reducing the degrees of freeedom does reduce
the statistical error bars, but for the TNS model seems to introduce a
positive systematic error of ∼5%, this is also the case for smin as large
as 25 h−1 Mpc.

recover an unbiased value for the growth rate. The consequences
of not correcting for this effect are shown by the dashed lines in
Fig. 14, where we repeat the tests of Fig. 11, but now include
redshift errors. As feared, there is a significant deviation from
the values of fσ8 previously measured with the models in the
best configuration, i.e. with the Lorentzian damping.

Rather than correcting for redshift errors in the measure-
ments, as performed for the angular selection selection, it is bet-
ter to include it in the modelling. It is intuitive to supplement
the models with a convolution by an extra Gaussian distribu-
tion with standard deviation fixed to the VIPERS rms value of
σz = 163 km s−1, which corresponds to

σπ =
cσz

H(z)
, (33)
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Fig. 12. Comparison between the best-fit models for the monopole and
quadrupole on the averaged parent mocks using different combinations
of RSD models and damping factors. The fit uses all separations down
to smin = 5 h−1 Mpc. The use of a Gaussian damping in the models
clearly dramatically worsens the accuracy of the fit, in particular for the
large-scale quadrupole signal.

in terms of line-of-sight comoving separation. The filled symbols
in Fig. 14 show how with this extra damping term we recover a
performance similar to the more idealised case of Fig. 11.

We therefore adopt the TNS model with Lorentzian damp-
ing and Gaussian error damping, as our reference model for the
final RSD analysis of the VIPERS data. However, we also test,
for consistency, the behaviour of the other two models on the
actual data to verify whether the trends seen in the mocks are
confirmed.

8.3. Fully realistic case

We now turn to the case including fully realistic observing condi-
tions. This means considering the target selection (masks, TSR,
SSR, etc.) and limiting the samples to the same redshift ranges
covered by the data and including redshift errors. The results
that we obtain are shown in Fig. 15. The trends of the system-
atic error as a function of smin are less stable than in the previous
case, although the general behaviour and relative performances
of the models are the same. The variations give us an idea of
the impact of the selection function on samples this size. Again,
we see some instability in the TNS model (at least in the bin
0.7 < z < 1.2) when the minimum scale of the fit is chosen
around smin ≃ 8 h−1 Mpc. When we look into the MCMC results
in more detail, we see that in this case the Markov chain tends
to drift towards unrealistic values of σ8, which are outside of
the prior range defined in Table 2. This seems to be related to
the difficulty of the TNS model to reach a stable fit in the re-
gion where the quadrupole crosses zero. As soon as we include
smaller scales (or we move to larger scales), the regular trend is
recovered. Nevertheless, we confirm the TNS model as the best-
performing model with systematics .5% down to the smallest
probed minimum scales.

Overall, the different tests performed on the mock catalogues
indicate that we can safely use the TNS model with the appro-
priate damping functions as well as with a minimum fitting scale
of smin = 5 h−1 Mpc. This is the configuration that we adopt for
the analysis of the data.
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Fig. 13. Effect of redshift errors on the recovered monopole and
quadrupole from the galaxy mocks, obtained by adding to the mock
redshifts a random Gaussian deviate with dispersion equal to the rms
redshift error of the VIPERS.
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Fig. 14. Same as Fig. 11, but now including Gaussian redshift errors
with dispersion equal to the rms value measured for the VIPERS data,
added to the mock galaxy redshifts. Here the dashed lines correspond
to the use of a Lorentzian damping only, which in Fig. 11 was found to
perform at best. With redshift errors, this needs to be supplemented by a
further Gaussian damping factor, with dispersion fixed to the above rms
error value, to yield the values described by the filled symbols.
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Fig. 15. Same as Fig. 14, but now using the fully realistic observed
mocks, on which all observational effects (masks, SPOC selection, and
redshift errors) were included. As before, error bars correspond to the
error on the average of the 153 samples.

9. VIPERS RSD results

We present in this section the results of the RSD analysis of the
VIPERS final dataset. We apply the methodology described in
the previous sections to the VIPERS galaxy sample, including
the priors on the sampling parameters reported in Table 1. Since
f and σ8 are treated as separate parameters in the modelling, de-
spite their intrinsic degeneracy the choice of priors on these two
parameters is particularly important. Specifically, the most sen-
sitive prior is that on σ8, as this is the main parameter entering
the non-linear modelling of RSD.

To define a sensible and realistic prior, while allowing room
for deviations from GR, we based our choice on the effec-
tive field theory of dark energy formalism (Gubitosi et al. 2013;
Bloomfield et al. 2013; Gleyzes et al. 2013), which allows a de-
scription of various kinds of dark energy models and modifi-
cations of gravity to be expressed in a self-consistent frame-
work that includes the growth rate of structure (Piazza et al.
2014; Perenon et al. 2015). The latter works show that the range
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Fig. 16. Monopole and quadrupole of ξ(rp, π) for the two redshift sub-
samples of the final VIPERS dataset (solid points), together with the
final best-fitting curves obtained using the TNS model, corresponding
to the values reported in Table 2. The likelihood computation has used
data down to smin = 5 h−1 Mpc, as indicated by the tests. Error bars are
1σ deviations and correspond to the dispersion of the mock measure-
ments. Each of these is also shown as a faint background line.

spanned by σ8(z) for stable theories can vary significantly, sug-
gesting a range [0.2, 0.65] as appropriate to account for early-
and late-time dark energy models at the redshifts covered by
VIPERS (for definitions, see Perenon et al. 2017). Although
this choice might exclude some more extreme modified gravity
models from being selected by the fit, at the same time it avoids
non-physical degeneracies that arise in the likelihood for some
particular values of σ8 outside of this range. This choice is cor-
roborated by our parallel complementary analysis using the same
data by de la Torre et al. (2017), in which the combination of
RSD with galaxy-galaxy lensing constrains directly σ8(z), al-
lowing a broader prior at the outset. The best-fit values of σ8
that we obtain for the different values of smin are all well inside
the adopted prior range with the wings of the posterior distribu-
tion pushed against the boundaries only for the largest values of
smin, where the signal from the data is the weakest.

Thus, finally combining the f andσ8 measurements obtained
using our standard configuration (smin = 5 h−1 Mpc), we obtain
fσ8(z = 0.6) = 0.55±0.12 and fσ8(z = 0.86) = 0.40±0.11. We
consider these as our reference measurements in this work and
discuss their cosmological implications in the next section. The
measurements and best-fitting model monopole and quadrupole
correlation functions obtained in the two considered redshift bins
are shown in Fig. 16. The corresponding best-fit values for the
derived parameters are reported in Table 2.
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Fig. 17. Left panels: measured values of fσ8 from the VIPERS survey in the two redshift bins, using the TNS model in its optimal set-up that we
derived in section 8 (double damping factor: free Lorentzian + fixed Gaussian), as a function of the minimum fitting scale smin. The maximum
fitting scale smax is always fixed at 50 h−1 Mpc. The shaded area gives the statistical error at each smin for the TNS model, as derived from the
mocks. Right panels: the same measurements performed on the average of the mocks, i.e. plotting the results of Fig. 15 but showing explicitly the
recovered values of fσ8, to ease comparison with the data results on the left.

It is interesting to verify a posteriori whether the trends and
relative RSD model performances as a function of smin estab-
lished from the mock catalogues are similar to those seen in the
real data. It is of course clear that any trend is less significant,
as the data are statistically equivalent to considering just one of
the 153 mock catalogues. In the left panel of Fig. 17, we show
the result of this exercise, where the measured values of fσ8 as
a function of smin are shown for the different tested models. To
ease comparison, we reported in the right panel using the same
scale, the corresponding results from the mock test for the realis-
tic case (i.e. those of Fig. 15). Apart from the different statistical
errors, the three tested RSD models provide virtually identical
results in the real data, as opposed to the behaviour seen in the
mock catalogues. Moreover, it seems that in the data the varia-
tion of the fσ8 measurements with minimum scale are not driven
by the adequacy of the model down to those scales, but rather by
statistical uncertainties in the measured galaxy correlation func-
tions. The similarity in the results obtained from the different
models is confirmed directly by the values of the reduced χ2,
which turn out to be very similar. By directly looking at the pos-
terior likelihood distributions of the parameters obtained with
the three models in Fig. 18 (for the high-redshift bin), we can
see that each model provides slightly different parameter degen-
eracies, although after marginalisation, fσ8 posterior likelihood
distributions are almost identical for the three RSD models, with
only a slightly larger statistical uncertainty with the TNS model.
However, some trends seen in the mock results are recognised in
the data, as for example the preference of the TNS model in the
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Fig. 18. One- and two-dimensional posterior likelihood distribution of
the derived parameters fσ8, bσ8 and σ12 for the 0.5 < z < 0.7 redshift
bin. This corresponds to the result of the analysis of VIPERS data using
the dispersion model, the Scoccimarro model, the Taruya model, and
smin = 5 h−1 Mpc. The dark- and light-shaded areas correspond to the
68% and 95% joint two-parameter confidence levels, respectively. The
lower redshift sample shows comparable contours and shapes.
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Fig. 19. Plot of fσ8 vs. redshift, show-
ing the VIPERS results together with a com-
pilation of recent measurements. The pre-
vious results from the VVDS (Guzzo et al.
2008), SDSS-MGS (Howlett et al. 2015),
SDSS-LRG (Samushia et al. 2012), WiggleZ
(Blake et al. 2012), BOSS (Reid et al. 2012),
6dFGS (Beutler et al. 2012), and FastSound
(Okumura et al. 2016) surveys are shown with
the different symbols (see inset). The solid
curve and associated error correspond to the
prediction for general relativity in a ΛCDM
model set to Planck 2015 cosmological pa-
rameters (Planck Collaboration XIII 2016).

high-redshift sample to deliver higher values of fσ8 when smin
is close to the zero-crossing scale of the quadrupole.

Finally, it is important to emphasise the global non-linear
approach to RSD that has been used in this analysis. We used
rather small non-linear scales in the fit and by adopting consis-
tent modelling for the non-linearities in the real-space density
and velocity divergence power spectra, we can obtain further
cosmological insight. The level of non-linearity in our analysis
is controlled by one single parameter, σ8(z), and we find that
by letting this parameter vary, we can partly break the standard
degeneracy that dominates on linear scales between f , σ8, and
b parameters. If we marginalise the posterior likelihood func-
tion over the σ12, σ8, b parameters, we obtain the following di-
rect growth rate and σ8 constraints: [ f (z = 0.6), σ8(z = 0.6)] =
[1.048± 0.199, 0.528± 0.076] and [ f (z = 0.86), σ8(z = 0.86)] =
[0.742 ± 0.179, 0.539 ± 0.068]. A similar approach has been
adopted in de la Torre et al. (2017), where this is strengthened by
additional constraints from galaxy-galaxy lensing. In particular,
the latter allows the improvement of σ8 constraints while keep-
ing similar uncertainties on f . A detailed discussion of these re-
sults is given in de la Torre et al. (2017). Overall, these findings
demonstrate the additional constraining power encapsulated in
quasi-linear scales, which can be used to break degeneracies and
further improve the precision of measurement of the growth rate
of structure.

10. Discussion and conclusions

The measurements of the growth rate of structure times σ8 that
we obtained are

fσ8(z = 0.6) = 0.55 ± 0.12 (34)
fσ8(z = 0.86) = 0.40 ± 0.11. (35)

These values are confronted in Fig. 19 with different measure-
ments, including results from other surveys, the VIPERS earlier
PDR-1 dataset, and parallel works analysing analogous subsets

of the VIPERS PDR-2 dataset with complementary techniques.
It may look surprising that there is no appreciable improve-
ment in the error bars between the former measurement from the
PDR-1 (de la Torre et al. 2013, red circle) and the new PDR-2
estimate in a comparable redshift bin despite a ∼30% increase
in the sample size. As discussed in de la Torre & Guzzo (2012),
this is essentially a price to pay for the more sophisticated treat-
ment of non-linear effects through the TNS model, which in-
creases the degrees of freedom.

The parallel PDR-2 results include measurements ob-
tained from the combination of RSD with galaxy-galaxy lens-
ing (de la Torre et al. 2017) or using the void-galaxy cross-
correlation (Hawken et al. 2017). In forthcoming papers, we
shall additionally present further pieces of this combined ap-
proach, using specific colour-selected subsamples (Mohammad
et al., in prep.) or the linearised density field in Fourier space
(Wilson et al. 2017), to minimise the need for non-linear cor-
rections. All these papers represent complementary approaches
towards understanding the current limitations we face in our abil-
ity to extract in practice the value of these parameters from the
modelling of RSD.

The values measured by these different techniques on the
same VIPERS data as well as from other surveys at similar red-
shifts are virtually all compatible within 1σ and agree with the
predictions of a ΛCDM model governed by Einstein gravity. But
on a larger sample, with much smaller statistical errors, greater
care would be needed to test for possible systematic biases that
might still be hidden in one or more of the analyses. The ap-
plication of such a variety of approaches to VIPERS has been
made possible by the specific properties of the survey, in partic-
ular its dense sampling and rich content of information. With a
sparse sampled survey, which is the approach of most of the cos-
mologically oriented surveys, it would have been impossible to
characterise accurately the density field and apply the clipping
linearisation technique of Wilson et al. (2017) or to detect reli-
ably cosmic voids such as those used in Hawken et al. (2017). At
the same time, a survey with limited imaging information would
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not permit the investigation of the selection of optimal sub-
populations (or the combination of different sub-populations),
as we are pursuing in Mohammad et al. (in prep.) or to ex-
ploit the combination of RSD with lensing, as we have carried
out in de la Torre et al. (2017) and which should be exploited to
the fullest by Euclid mission (Laureijs et al. 2011) in the next
decade. We therefore believe that the detailed investigation of
the properties of RSD within VIPERS should serve as a valu-
able foundation for next-generation studies of greater statistical
power.
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