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ABSTRACT

Aims. Various galaxy classification schemes have been developed so far to constrain the main physical processes regulating evolution of different
galaxy types. In the era of a deluge of astrophysical information and recent progress in machine learning, a new approach to galaxy classification
has become imperative.
Methods. In this paper, we employ a Fisher Expectation-Maximization (FEM) unsupervised algorithm working in a parameter space of 12 rest-
frame magnitudes and spectroscopic redshift. The model (DBk) and the number of classes (12) were established based on the joint analysis of
standard statistical criteria and confirmed by the analysis of the galaxy distribution with respect to a number of classes and their properties. This
new approach allows us to classify galaxies based on only their redshifts and ultraviolet to near-infrared (UV–NIR) spectral energy distributions.
Results. The FEM unsupervised algorithm has automatically distinguished 12 classes: 11 classes of VIPERS galaxies and an additional class of
broad-line active galactic nuclei (AGNs). After a first broad division into blue, green, and red categories, we obtained a further sub-division into:
three red, three green, and five blue galaxy classes. The FEM classes follow the galaxy sequence from the earliest to the latest types, which is
reflected in their colours (which are constructed from rest-frame magnitudes used in the classification procedure) but also their morphological,
physical, and spectroscopic properties (not included in the classification scheme). We demonstrate that the members of each class share similar
physical and spectral properties. In particular, we are able to find three different classes of red passive galaxy populations. Thus, we demonstrate
the potential of an unsupervised approach to galaxy classification and we retrieve the complexity of galaxy populations at z∼ 0.7, a task that usual,
simpler, colour-based approaches cannot fulfil.

Key words. galaxies: evolution – galaxies: star formation – galaxies: stellar content

1. Introduction

The problem of classification of galaxies and dividing them into
different types is as old as the notion of “extragalactic nebulae”
(Hubble 1926). As Sandage et al. (1975), and more recently
Buta (2011) and Buta & Zhang (2011) point out, classification
of objects is the first step in the development of most sciences,
and applies to galaxy studies no less than to any field of research.
Only once we find common features of studied objects and use

⋆ Based on observations collected at the European Southern Obser-
vatory, Cerro Paranal, Chile, using the Very Large Telescope under
programs 182.A–0886 and partly 070.A–9007. Also based on obser-
vations obtained with MegaPrime/MegaCam, a joint project of CFHT
and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT),
which is operated by the National Research Council (NRC) of Canada,
the Institut National des Sciences de l’Univers of the Centre National
de la Recherche Scientifique (CNRS) of France, and the University of
Hawaii. This work is based in part on data products produced at TER-
APIX and the Canadian Astronomy Data Centre as part of the Canada–
France–Hawaii Telescope Legacy Survey, a collaborative project of
NRC and CNRS. The VIPERS web site is http://www.vipers.
inaf.it/

them to sort them into categories, do we obtain a starting point
for the further analysis. Identifying similarities and differences
between the selected groups allows us to then build theoretical
models, which can ultimately lead us to the global picture of
physical mechanisms at the origin of their properties.

Galaxies in the local Universe display a variety of shapes
and structural properties. The main classification system still in
use is the Hubble tuning fork diagram (Hubble 1926, 1936),
with all the refinements introduced by Sandage (1961) and
de Vaucouleurs (1959), based on the morphological properties
of galaxies (see van den Bergh 1998; Buta 2011, for a de-
tailed discussion). In the modern context, we alternatively re-
fer to continuity of types in the morphological parameter space,
where numerous morphological features are taken into account
(Lintott et al. 2008, 2011; Buta et al. 2010; Kartaltepe et al.
2015). The basic Hubble classification of galaxies into “early”
and “late” types (and their subtypes) has survived because,
among other reasons, these types correlate well with other prop-
erties of galaxies, such as colours, stellar content, neutral hydro-
gen content and so on (Kennicutt 1992; Roberts & Haynes 1994;
Buta et al. 1994; Strateva et al. 2001; Deng 2010; Moutard et al.
2016a).
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Indeed, many types of galaxy properties display bi-
modal distributions: photometric parameters, such as colours
(e.g. Bell et al. 2004; Balogh et al. 2004b; Baldry et al. 2006;
Franzetti et al. 2007; Taylor et al. 2015), morphological param-
eters like the Sérsic index (e.g. Sérsic 1963; Strateva et al. 2001;
Driver et al. 2006; Krywult et al. 2017), the strength of spec-
tral features (e.g. Balogh et al. 2004a; Kauffmann et al. 2003;
Siudek et al. 2017) and so on. Therefore, these properties are
often used as the basis for galaxy classification, especially at
higher redshifts, z, where detailed galaxy morphologies are diffi-
cult to observe. In particular, colour–colour diagrams (e.g. the
(NUV−r) – (r−K) diagram (hereafter NUVrK), NURrJ, BzK,
NUViB, introduced/used by Arnouts et al. 2013; Bundy et al.
2010; Daddi et al. 2004; Cibinel et al. 2013, respectively) are of-
ten used for the purpose of galaxy classification. More refined se-
lection processes can be based on the multi-modality criterion,
which selects red passive galaxies, intermediate “green valley”
objects, and blue star-forming galaxies based on their rest-frame
colours, spectral parameters, or colour and colour-Sérsic index
distributions simultaneously (e.g. Bell et al. 2004; Baldry et al.
2006; Franzetti et al. 2007; Bruce et al. 2014; Lange et al. 2015;
Krywult et al. 2017; Haines et al. 2017). The bimodality cri-
terion can be enriched by a variable cut in galaxy colours
that evolves with redshift (Peng et al. 2010; Fritz et al. 2014;
Moutard et al. 2016b; Siudek et al. 2017), as a non-evolving cut
applied for high-redshift galaxies can result in the selection of
the reddest and most luminous red-type galaxies in one group
and a mixture of star-forming and less massive red galaxies in
the second group.

The methods presented above are powerful tools, but they
are sensitive only to a few specific properties. A disadvantage
of the methods presented above is the small number of groups
which can typically be obtained: selection based on bimodal-
ity of the distribution of a certain property or a set of cor-
related properties usually allows for selection of only two or
three groups (blue star-forming galaxies – intermediate types
– red passive galaxies). Some two-dimensional (2D) colour–
colour diagrams, like the NUVrK, are used for a more detailed
classification (e.g. Arnouts et al. 2013; Moutard et al. 2016a,b;
Davidzon et al. 2016) but are still limited to a relatively small
number of groups.

Moreover, classifications based on the standard 2D cuts suf-
fer from multi-fold selection-effect problems. For example, the
properties of red passive galaxies selected using different criteria
(photometry, morphology, and spectroscopy) differ from one se-
lection to another (e.g. Renzini 2006; Moresco et al. 2013). Red
passive galaxy samples are mostly affected by some level of con-
tamination from dust-reddened galaxies with relatively low lev-
els of star formation activity that may strongly affect their mean
properties. Moresco et al. (2013) showed that the selection of the
purest sample of red passive galaxies demands the combination
of different criteria (in this case, morphological, spectroscopic
and photometric information) confirming the necessity of mul-
tidimensional approaches in order to avoid obtaining a biased
sample of different galaxy types.

Two-dimensional diagrams based on the flux ratios (or
equivalent widths) of spectral lines can also be a powerful tool,
for example for AGN diagnostic and classification (e.g. Baldwin,
Phillips & Terlevich “BPT” diagrams based on the ratios of
“blue” and “red” lines: Baldwin et al. 1981; Lamareille 2010).
The BPT diagram allows for separation of: (1) star-forming
galaxies, (2) Seyferts, (3) low-ionisation nuclear emission-line
regions (LINERS), and the two composite groups, which consist

of: (4) star-forming galaxies and Seyferts, and (5) star-forming
galaxies and LINERS.

However, it becomes clear that any classification based on
a small number of parameters, even carefully chosen, is far too
simple to reflect the huge range of different cosmic objects.

While classical methods of classification are still common
and very useful, recent advancements in automatic machine
learning have opened up new possibilities for the classification
of distant sources. In principle, they allow us to operate in a
multi-parameter space, combining all the available pieces of in-
formation: photometric measurements, redshifts, spectral lines,
and morphologies. In principle, such an approach can immensely
improve the galaxy classification across a wide redshift range.
However, there is also a risk of including too much redundant or
indiscriminative information which would blur the final result or
lead to the unjustified subdivision of types.

Ball & Brunner (2010) and Fraix-Burnet et al. (2015) gave a
comprehensive review of different methods for clustering objects
into synthetic groups in astrophysics, showing that classification
in multi-dimensional parameter space, backed by sophisticated
multivariate statistical tools, leads to a selection of sources that
is more accurate than, for example, the colour–colour method.
In general, we can distinguish two main groups of algorithms:
supervised and unsupervised learning algorithms.

Briefly, supervised algorithms classify data into classes that
have previously been defined and anticipated. The disadvantage
of this method is the requirement to create a training sample
a priori and, at the same time, no possibility to define new classes
of objects. Unsupervised learning algorithms (such as those used
in our analysis) search for clusters of objects characterised by
some pattern in the data and try to discover new classification
schemes without any prior assumptions. The unsupervised algo-
rithm fits the input vector data to a statistical model. The algo-
rithm then tries to optimise the parameters of the model in itera-
tive cycles to find the best fit to the data with an optimised num-
ber of classes. Once the defined satisfactory criteria are fulfilled,
the iterations are stopped. The best known unsupervised learning
algorithms include: (a) expectation-maximisation (Bilmes 1998;
hereafter EM) algorithms – used to deal with complex data struc-
tures, for example, clusters; (b) k-means (Salman et al. 2011) –
whose aim is to assign observations to clusters in which each ob-
servation belongs to the nearest mean; and (c) hierarchical clus-
tering (Balcan et al. 2014) – treating each point as a cluster and
successively merging pairs of clusters recursively until all clus-
ters are merged into one single group that contains all of the
points. An overview of unsupervised approaches used in astron-
omy can be found in D’Abrusco et al. (2012).

Supervised algorithms have already yielded clear achieve-
ments in the selection of different astronomical sources. How-
ever, this approach only allows us to reproduce standard classi-
fications, mostly based on optical colours, which is not optimal
to extract all the relevant information from the data. Therefore,
it is necessary to adopt unsupervised methods to efficiently ex-
tract all the information encoded in the data. The applications
of unsupervised machine-learning algorithms to galaxy classifi-
cation have until now mainly been applied to galaxy spectra. In
particular, Sánchez Almeida et al. (2010) used an unsupervised
k-means cluster analysis algorithm to classify all spectra in the
final Sloan Digital Sky Survey data release 7 (SDSS/DR7). They
identified as many as 17 different classes of galaxies. This would
have been extremely challenging using classical methods due
to the huge number of spectra (∼174 k) to process. The clas-
sification was based on the multidimensional cuts in the space
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of a mixture of features (emission/absorption lines, continuum,
fluxes and errors) making use of 3849 measurements for each
object. The selected classes are well separated in the colour se-
quence and morphological groups. The spectroscopic templates
obtained for each class can be used for redshift measurements
(z< 0.25) as well as to trace morphological and spectroscopic
changes in cosmic time.

Principal component analysis (PCA) has been used to clas-
sify astronomical data based on broadband measurements or as a
tool to clean spectra (e.g. Marchetti et al. 2013, 2017; Wild et al.
2014). Marchetti et al. (2013) used a PCA algorithm to clas-
sify 27 350 optical spectra in the redshift range 0.4< z< 1.0 col-
lected by the VIPERS survey (Public Data Release 1, hereafter
PDR1). The algorithm repaired parts of VIPERS spectra affected
by noise or sky residuals and reconstructed gaps in the spectra.
A classification into four main classes (early, intermediate, late
and starburst galaxies) was carried out, based on a set of orthogo-
nal spectral templates and the three most significant components
(eigen-coefficients) obtained for each galaxy.

In this paper, we introduce a new method of galaxy classi-
fication via an unsupervised learning algorithm applied to the
galaxies observed by the VIMOS Public Extragalactic Redshift
Survey (VIPERS). The VIPERS survey acquired spectra for
∼105 galaxies. For each galaxy, both spectroscopic measure-
ments (redshift, lines, fluxes) and photometric data are provided.
This makes VIPERS a perfect dataset for unsupervised classifi-
cation; it is large enough to separate many different classes on
a statistically sound level, and, at the same time, all the wealth
of the spectroscopic and photometric information can be used to
construct the feature space, and later for the validation process.
Moreover, previous analyses made on the VIPERS data provide
us with additional parameters such as Sérsic indices and physical
properties, obtained by fitting the spectral energy distributions
(SEDs) (stellar mass, star formation rate (SFR), etc.). All these
additional measurements, even when not used for the classifica-
tion itself, can serve for an a posteriori interpretation of physi-
cal properties of different classes. Our method is based on the
multidimensional space defined by the rest-frame luminosities
measured in 12 bands and, additionally, spectroscopic redshift
information.

The availability of spectroscopic data for VIPERS galaxies
allows us to verify how the classes obtained using the broadband
rest-frame photometry are reflected in the spectral properties of
galaxies. We demonstrate that the classification based on our au-
tomatic algorithm and confirmed by spectroscopic features pro-
vides a homogeneous view of different classes of galaxies which
may be used as the starting point to analyse their evolutionary
tracks leading to the formation of today’s galaxy types.

The paper is organised as follows. In Sect. 2, we describe the
sample selection. Section 3 gives an overview of the FisherEM
methodology. In Sect. 4, we present the main results and discuss
their physical meaning. A summary is presented in Sect. 5. We
validate the model and the number of classes in Appendix A, and
discuss the class membership probabilities in Appendix B. We
compared FEM classification to a principal component analysis
(PCA) scheme in Appendix C, and relate FEM classes to Hubble
types given by Kennicutt (1992) in Appendix D.

In our analysis, we used the free statistical environment soft-
ware R31 with the FisherEM package 4 (Bouveyron & Brunet

1 R Core Team (2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, http://www.R-project.org/

2012). Throughout the paper we use a cosmological framework
assuming Ωm = 0.30, ΩΛ = 0.70, and H0 = 70 km s−1 Mpc−1.

2. Data

In this paper, we make use of the final galaxy sample from
the VIMOS Public Extragalactic Redshift Survey2 (VIPERS,
Scodeggio et al. 2018). VIPERS is a spectroscopic survey car-
ried out with the VIMOS spectrograph (Le Fèvre et al. 2003)
on the 8.2 m ESO Very Large Telescope (VLT) aimed at mea-
suring redshifts for ∼100 000 galaxies in the redshift range
0.5–1.2. VIPERS covered an area of ∼23.5 deg2 on the sky, ob-
serving galaxies brighter than iAB = 22.5 at redshifts higher than
0.5 (a pre-selection in the (u−g) and (r−i) colour–colour plane
was used to remove galaxies at lower redshifts). A detailed de-
scription of the survey can be found in Guzzo et al. (2014). The
galaxy target sample was selected from optical photometric cat-
alogues of the Canada–France–Hawaii Telescope Legacy Sur-
vey Wide (CFHTLS-Wide: Mellier et al. 2008; Goranova et al.
2009). The data reduction pipeline and redshift quality system
are described by Garilli et al. (2014).

2.1. The VIPERS dataset

The final data release provides spectroscopic measurements
and photometric properties for 86 775 galaxies (Scodeggio et al.
2018). The associated photometric catalogue consists of mag-
nitudes from the VIPERS Multi-Lamba Survey (Moutard et al.
2016a), combining CFHTLS T0007-based u, g, r, i, z photom-
etry with GALEX FUV/NUV and WIRCam Ks-band observa-
tions, complemented where available by VISTA Z, Y , J, H, K
photometry from the VIDEO survey (Jarvis et al. 2013).

Physical parameters including absolute magnitudes, stel-
lar masses, and SFRs for the VIPERS sample were obtained
via SED fitting with the code LePhare (Arnouts et al. 2002;
Ilbert et al. 2006). The whole multi-wavelength information
available in the VIPERS fields (from UV to NIR) was used, ap-
plying the Bruzual & Charlot (2003) models and three extinc-
tion laws. In addition, absolute magnitudes were computed using
the nearest observed-frame band in order to minimise the depen-
dence on models. The detailed description of the VIPERS data
SED-fitting scheme that we adopted in the present analysis can
be found in Moutard et al. (2016b).

In this work, we make use of the subset of galaxies with
highly secure redshift measurements (with a confidence level
higher than 99%, i.e. with redshift flag 3–4 and 13–14, see
Garilli et al. 2014, for details). This subset contains 52 114 ob-
jects (51 522 galaxies and 592 broad-line AGNs3). They are ob-
served in the redshift range 0.4< z< 1.34 with a mean (median)
redshift of 0.7.

2.2. The multidimensional feature data

Data preparation is a key issue in working with learning algo-
rithms, both supervised and unsupervised. In order to minimise
any biases, maximise homogeneity in the input data, and use
all of the available information, 12 rest-frame magnitudes are

2 See http://vipers.inaf.it
3 Broad-line AGNs were classified by VIPERS team members accord-
ing to visual inspection of spectra. In the following analysis, we refer to
broad-line AGNs as sources attributed with a redshift flag 13–14.
4 The 1 and 99 percentile range of redshift is given. The broad-line
AGNs are observed up to the redshift z∼ 4.5.

A70, page 3 of 25

http://www.R-project.org/
http://vipers.inaf.it


A&A 617, A70 (2018)

chosen: FUV , NUV, u, g, r, i, z, B, V , J, H, and Ks derived from
the SED fitting (see Sect. 2, and Moutard et al. 2016b), as well
as the spectroscopic redshift (Scodeggio et al. 2018). To avoid
grouping galaxies based on differences in their luminosities in-
stead of differences in their SEDs, the data were standarised. We
normalised i-band to unity and transformed each absolute mag-
nitude by the normalisation factor (the redshifts were not trans-
formed as their values are already around unity). This allowed
us to code the data into common numerical range preventing the
algorithm from splitting our sample along any direction with ex-
tended amplitudes.

The normalised parameters, together with the spectroscopic
redshift, are then used to create a multi-parameter space for the
FEM algorithm. The spectroscopic redshift is included in the
parameter space to make the classification sensitive to possi-
ble evolutionary changes with cosmic time. The algorithm could
identify an evolving population in different cosmic epochs as be-
longing to physically different classes. Although this is not the
case for the VIPERS galaxies, where all FEM classes seem to
be preserved throughout the redshift range probed by the survey
(see Sect. 4), we did not want to exclude this option a priori.
However, we verified that if the spectroscopic redshift is not in-
cluded in the parameter space, the FEM classification remains
practically the same.

The global picture of the classification does not suffer signifi-
cantly if we reduce the feature space by one parameter (e.g. spec-
troscopic redshift). However, excluding each single feature has
an impact on the ability of the algorithm to distinguish individ-
ual classes. Feature importance may be statistically determined
by the analysis of the orientation of the discriminative subspace.
The x-axis of a hyperplane separating classes in a latent subspace
is constructed with an 11-degree polynomial and each coefficient
describes how important each feature is for the distinction of
each group. For example, high coefficients of the hyperplane be-
tween red passive classes for FUV and NUV reveal their impor-
tance in distinguishing those groups. Therefore, excluding FUV
and NUV will result in discriminating ten classes with only one
large red passive class leaving the remaining classes unchanged.
The redundancy of selected features and their importance to dis-
tinguish each group will be further discussed by Krakowski et al.
(in prep.).

We note that the redundancy of the spectroscopic redshift re-
veals a great potential for future photometric missions such as
Euclid and LSST. In Siudek et al. (2018), we explore the po-
tential use of photometric information solely to classify galax-
ies and estimate their properties. Reliable photometric redshifts
and 12 rest-frame magnitudes obtained by the SED-fitting with
the photo-z scatter σ∼ 0.03, and the outlier rate µ∼ 2% ob-
tained for the VIPERS sample, were used to verify how pre-
cisely the detailed classification could be reproduced if only
photometric data were available. The confirmed accuracy in
recreating galaxy classes: 92%, 84%, 96% for red, green, and
blue classes, respectively, together with the ability to efficiently
separate outliers (stars and broad-line AGNs) based only on
photometric data, demonstrates the potential of our approach in
future large cosmology missions to distinguish different galaxy
classes at z> 0.5.

3. Method – Fisher EM

Unsupervised learning algorithms are used to divide the data
of a priori unknown properties into clusters. In this paper, we
use the FEM (Bouveyron & Brunet 2012) algorithm, which is
an extension of the EM algorithm. The main goal of both

the EM and the FEM classifiers is to maximise the best fit
of the chosen statistical model describing the data by find-
ing the optimal parameters of this model. In the case of the
FEM algorithm, the main assumption is that the data can be
grouped into a common discriminative latent subspace which
is modelled by the discriminant latent mixture (hereafter DLM)
model (Bouveyron & Brunet 2012). This discriminative latent
subspace is defined by linear combinations of the input data (la-
tent variables; Bouveyron & Brunet-Saumard 2014). It is then
optimised to maximise the separation between groups and min-
imise their variance at the same time. The second assumption of
the FEM algorithm is that our data can be separated into an a pri-
ori unknown number of groups, each described by a Gaussian
profile in the multidimensional parameter space. The role of the
FEM algorithm is to find the best fit of these multi-Gaussian pro-
files to the data, optimising both the number of the groups and
their location in the parameter space.

3.1. The performance of the FEM algorithm

Unsupervised learning algorithms start by assigning initial clus-
ter (class) centres, that is, galaxies representative of a given class.
To select the optimal centre points, they are iteratively changed
by assigning either (1) random values, or (2) pre-defined values
obtained from another simpler and faster clustering algorithm.
This is an essential step as classification algorithms yield dif-
ferent classes with each random initialisation, while we want to
obtain final classification results that are as stable as possible.
The randomised initialisation is fraught with the risk of finding
a local probability minimum, which results in the erroneous as-
signment of objects to groups. In order to avoid such a situation,
a random procedure for assigning initial values of function pa-
rameters can be repeated several times, and then the model with
the highest log-likelihood is selected. However, to achieve op-
timal cluster centres, the number of random values needs to be
equal to the number of galaxies.

The second approach described above is the one applied in
our analysis; in particular, for the choice of the initial values,
the k-means++ algorithm is used (Arthur & Vassilvitskii 2007)
to obtain the optimal cluster centres. This algorithm starts from
a random choice of cluster centres among the data points. It then
estimates the distances of all data points from these centres, and
based on a weighted probability proportional to these squared
distances, it selects new centres. This procedure is repeated until
the choice of centres does not change with the next realisation,
i.e. the optimal centres are found. Each initialisation gives a dif-
ferent classification, and each run groups similar galaxies into
clusters, and so, in principle, all of them provide valuable classi-
fications. The problem is then to select which classification is the
best, i.e. which one should be chosen as the final classification.
To overcome this issue, we run the k-means algorithm 15 times
to find the optimal initial parameters. Moreover, this ensures
that we obtain a representative classification, as we are able to
recreate the divisions. As in Sánchez Almeida et al. (2010), the
k-means algorithm could be used for classification purposes it-
self. However, it is not as sophisticated as FEM, as it demands a
pre-defined number of clusters (classes) and it also suffers from
the initialisation problem. Therefore, we used k-means as the
first step to optimise the starting points for a more advanced tool.

Once the starting points of the algorithm have been selected,
the FEM algorithm is executed assuming that: (1) the input pa-
rameters, magnitudes and redshift values, can be projected onto
a latent discriminative subspace with a dimension lower than the
dimension (K) of the observed data, and (2) this subspace (K−1)

A70, page 4 of 25



M. Siudek et al.: The complexity of galaxy populations at z∼ 0.7

is sufficient to discriminate K classes. The algorithm then per-
forms the E (expectation), F (Fisher criterion), and M (maximi-
sation) steps described below that are repeated in each cycle.

In step E, the algorithm calculates the complete log-
likelihood, conditionally to the current value of the Gaussian
mixture model. In practice, this means the calculation of the
probability of each considered object belonging to the groups
predefined by the k-means++ algorithm.

In step F, the DLM model chooses the subspace f in which
the distances between groups are maximised and their internal
scatter is minimised:

f =
(η1 − η2)2

σ2
1 + σ

2
2

, (1)

where η1 and η2 are the mean values of the centres of the anal-
ysed groups, and σ2

1 and σ2
2 are their variances (Fukunaga 1990).

The mean and variance are measured for each group in the ob-
servation space. The algorithm searches for a linear transfor-
mation U, which projects the observation into a discriminative
and low-dimensional subspace d, such that the linear transfor-
mation U of dimension p× d (where p is the dimension of the
original space) aims to maximise a criterion that is large when
the between-class covariance matrix (SB) is large and when the
within-covariance matrix (SW) is small. Since the rank of SB
is at most equal to K−1, where K is the number of classes, the
dimension d of the discriminative subspace is therefore at most
equal to K−1 as well. For details, we refer to Sects. 2.4 and 3.1
in Bouveyron & Brunet (2012).

Subsequently, in step M, the parameters of the multivariate
Gaussian functions are optimised, by maximising the conditional
expectations of the complete log-likelihood, based on the values
obtained in the previous steps (E+F).

The algorithm then comes back to step E, now computing
the probabilities for each object to belong to groups modified in
the last step M.

This procedure is repeated until the algorithm converges ac-
cording to the stopping criterion which is based on the difference
between the likelihoods calculated in the last two steps.

3.2. DLM models for the FEM algorithm

To perform the FEM analysis, it is necessary to choose a model
and the number of groups. There exist different DLM models
that have been created for different applications. Specific models
differ in the numbers of components and their parameters. The
variety of these models then allows them to fit into various situa-
tions. The 12 different DLM models are considered: DkBk, DkB,
DBk, DB, AkjBk, AkjB, AkBk, AkBk, AjBk, AjB, ABk and AB.
The main differences between them is in the number of free pa-
rameters left to be estimated (Bouveyron & Brunet 2012). In the
primary model, DkBk, two components can be distinguished:
Dk and Bk, where Dk is responsible for modelling the variance
of the actual data (by parametrizing the variance of each class
within the latent subspace), and Bk which models the variance
of the noise (i.e. it parametrizes the variance of the class outside
the latent subspace). The other models are in fact submodels of
DkBk in which certain parameters of the Dk and Bk compo-
nents are assumed to be common between and/or within classes.
For example, the DBk model assumes that the variance in a la-
tent subspace is common to all classes, whereas the DkB model
assumes that the variance outside the latent subspace is com-
mon across classes. The combination of these two constraints
(common variance inside and outside the latent subspace to all
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Fig. 1. NUVrK diagrams of FEM classes 9–12. The optimal number of
classes was found to be 12. The error bars correspond to the first and the
third quartile of the galaxy colour distribution, while the two half axes
of the ellipses correspond to the median absolute deviation.

classes) results in the DB model. Therefore, these submodels are
characterised by a lower number of parameters: if our thirteen-
dimensional dataset is divided into 12 groups, the “main” DkBk
model would be characterised by 1024 free parameters, while
the DkB model would be characterised by 1013 parameters, the
DBk model by 298 parameters, the DB model by 287 parame-
ters, down to the simplest AB model with 222 free parameters.
The number of free parameters needed is dictated by the com-
plexity of the input data and the mathematical equations given
in Bouveyron & Brunet (2012). A highly parametrised model re-
quiring the estimation of a large number of free parameters is
preferred for clustering of high-dimensional data. We refer the
reader to Bouveyron & Brunet (2012) for a detailed description
of the DLM family. Comparing the performance and conver-
gence of different models, we find that the VIPERS data are best
parametrised by the DBk model with 298 free parameters.

3.3. The selection of the optimal model and number of
classes

The number of classes is not known a priori, which is one of the
major difficulties in applying unsupervised clustering algorithms
to classify astronomical sources. Defining the optimal number
and model is not trivial. We do not make any a priori assumptions
about galaxy separation, that is, if the data could not be described
by the DLM models, for example because of the non-Gaussian
nature of the datasets, the FEM algorithm simply would not con-
verge. In our work, the best DLM model and the range of pos-
sible class numbers is chosen based on three statistical model-
based criteria: the Akaike Information Criterion (AIC; Akaike
1974), the Bayesian Information Criterion (BIC; Schwarz 1978)
and the Integrated Complete Likelihood (ICL; Baudry 2012, see
Appendix A). These are typical criteria used to evaluate statisti-
cal models (e.g. de Souza et al. 2017), which allow us to select
the best model (DBk) and the approximate number of classes
(9–12; see Appendix A). However, in order to pinpoint the di-
versity of physical properties among VIPERS galaxies, the final
optimal number of classes is based on the flow of the galaxy dis-
tribution among a different number of classes (see Fig. A.2) and
their physical properties (see Fig. 1).
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The analysis of the positions and properties of different
classes on the NUVrK diagrams allows us to verify if the classes
do indeed reveal distinct physical properties. Figure 1 shows the
NUVr diagrams for the classifiers consisting of 9, 10, 11 and
12 groups. As we can see in the figure, the division into groups
for a different number of classes differs, especially in the region
of dusty galaxies indicated by the shaded box. We can see the
emergence of three new classes (classes 5, 6, 8) in the twelve-
group division that were not distinguished by a lower number
of clusters. The physical analysis of these classes (see Sect. 4)
demonstrates that the classifier’s grasp of subtle differences be-
tween groups reveals these classes of dusty star-forming galax-
ies. Therefore, we find that division into 12 classes is physically
motivated and this is also confirmed by analysis of the flow chart
as all 12 classes are naturally separated from bigger groups, in-
cluding separating broad-line AGNs from class 9 in the tenth
iteration (see Fig. A.2). We also found that with 13 classes, we
obtain a worse classification, as the 13th class emerges from
class 11 but does not represent different physical properties with
respect to the 11th class (see Appendix A).

To summarise, using three statistical criteria: AIC, BIC, and
ICL, we originally restricted the optimal number of classes to be
between 9 and 12. After that, we checked the flow of galaxy dis-
tributions for realisations with different numbers of classes and
their physical properties. We concluded that the optimal solution
for classification of the VIPERS dataset is a DBk model with 12
classes (see Appendix A).

4. Results

In this section, the FEM classification of z∼ 0.4 – 1.3 galaxies
is presented. We demonstrate that the 12 classes correspond to
physically different and separate galaxy categories. In the fol-
lowing analysis, different properties of our classes are inves-
tigated to show that our classes actually mirror the sequence
of galaxy types from the earliest (class 1) to the latest types
(class 11) in the redshift range 0.4< z< 1.3. Classes 1–11 all
have very similar redshift distributions (see Table 1), centred
at z∼ 0.7, suggesting that these classes are persistent at least
over the redshift range 0.4< z< 1.3. A different median red-
shift is measured within the 12th class. This class cannot be
placed along the same sequence as the other classes. Class 12
mainly groups high-redshift VIPERS sources (with median red-
shift zmed ∼ 2; see Table 1). Members of this group are mostly
identified as broad-line AGNs according to their redshift flag
(see Sect. 2; ∼95%, and Table 1). Therefore, class 12 is not part
of the galaxy population at z∼ 0.7 that is the focus of this pa-
per, and from now onwards only the first 11 galaxy classes will
be discussed. The global properties of class 12 are presented in
Table 1 and the composite spectrum is shown in Fig. D.2, but
it is not included in the remaining plots. The SED fitting proce-
dure used for VIPERS sources does not include AGN templates.
Therefore, the AGN host properties (stellar mass and SFRs, r−K
colour, as K significantly depends on models) might be wrong.
The classification was performed on the whole sample (i.e. in-
cluding broad-line AGNs, even if they are not the focus of this
paper) to demonstrate the global usefulness of the FEM algo-
rithm and its ability to separate broad-line AGNs and galaxies.
Although the algorithm was able to a separate a class of broad-
line AGNs, only ∼50% of broad-line AGNs at z> 1.3 were as-
signed to this separate class, while the other half were spread
among the star-forming classes 9–11. The fraction of broad-line
AGNs in these classes is however negligible (<5% galaxies in
a given class). This approach allows us to reproduce common

classification schemes, which do not explicitly exclude any
groups of sources. It should be noted that although class 12 can
be expected to be separated based on the use of spectroscopic
redshift as an input parameter, even when the redshift is not in-
cluded in the parameter space (i.e. classification is based only on
rest-frame colours) class 12 is reproduced with an accuracy of
the order of ∼80%.

As mentioned in Sect. 1, standard selection methods are
powerful tools, but are however sensitive only to a few specific
properties. We explored how such a refined classification com-
pares with more standard two- or three-class division of galaxy
population. The FEM classification separates VIPERS galaxies
into eleven classes, which may be assigned to three wider galaxy
categories: (1) red, passive, (2) green, intermediate, and (3) blue,
star-forming. Since our classification was based on colours, the
conventional nomenclature of red (classes 1–3), green (classes
4–6), and blue (classes 7–11) galaxies is applied (see Figs. 2a–c).
As the subsequent analysis demonstrates (Sects. 4.1 and 4.2), the
division between red (passive), green (intermediate), and blue
(star-forming) galaxies is not sharp, as the intermediate groups
(classes 3 and 7) are not purely passive or star-forming in terms
of their global properties. Moreover, we note that a FEM classifi-
cation into two or three main groups is not entirely unequivocal.

We compared our final eleven-class classification with a two-
class FEM separation. The simple separation into two main
clouds (red and blue) is able to distinguish a separate group of
blue star-forming galaxies: 97% of galaxies from classes 7–11
are assigned to the blue cloud and only 3% of green galaxies
(classes 4–6) were found in the blue cloud. At the same time, red
and green galaxies are indistinguishable in the red cloud: 100%
of red galaxies (classes 1–3) were assigned to the red cloud, as
were 97% of green galaxies (classes 4–6).

In the subsequent step, the standard three-class
(red/green/blue) division is compared with the FEM 11-
class classification. As in the case of the two-class division, we
are also not able to separate a red passive population from green
galaxies. Almost all red galaxies assigned to classes 1–3 (99%)
were found in a red group. However, this group is strongly
contaminated by green galaxies: 43% of intermediate galaxies
(classes 4–6) were found in the red cloud. The distinction
between green and blue galaxies is also not obvious. Only 67%
of blue star-forming galaxies (classes 7–11) were assigned to
the blue cloud, while the remaining 33% were found within the
green population.

For the two-class separation, red and green galaxies go to-
gether to form one group only, while for the three-class division,
the green population is split between red and blue galaxies. This
implies that the borderlines between green/blue and red/green
populations are much less sharp than that for the eleven-class
division. Only a more detailed classification can appropriately
yield the division between red, green, and blue populations.

The FEM classification yielded distinct clusters in the
thirteen-dimensional space, although the separation between
classes is smooth. Some galaxies are close to the borders of
different classes, and this is reflected in their lower posterior
probabilities of being members of the class to which they are
assigned. The posterior probability is correlated with the dis-
tance of the sources from the centre of the group in multidimen-
sional space. There is no correlation of probabilities with the
properties of the input data, that is, no dependence of the prob-
ability on the redshift measurement accuracy or luminosity was
found. We assume that the classification, which assigns a proba-
bility of being a member of the class instead of a single class
membership, should be a better approximation of the galaxy
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Fig. 2. Colour–colour(–colour) diagrams of the VIPERS galaxies classified into 11 classes with the FEM algorithm. The error bars correspond to
the first and the third quartile of the galaxy colour distribution, while the two half axes of the ellipses correspond to the median absolute deviation.
Panel a: UV J diagram. The solid line corresponds to the standard separation between quiescent and star-forming galaxies. The area occupied by
CANDELS transition galaxies is shown as a grey shaded area (Pandya et al. 2017). Panel b: NUVrK diagram. The black solid line corresponds
to the separation of red passive galaxies, and the dotted line separates additionally galaxies located in green valley. Galaxies photometrically
classified by their SED type as: (1) early-type (red E and Sa; ETGs), (2) early spiral (ESGs), (3) late spiral (LSGs), and (4) irregular or starburst
(SBGs) following the prescription given in Fritz et al. (2014) are marked with light salmon, gold, violet, and blue, respectively. Panel c: NUVrK
diagram. The black dashed lines corresponds to the division of CFHTLS galaxies into seven groups proposed by Moutard et al. (2016a). The grey
solid line corresponds to the separation of red passive galaxies. The grey dash-dotted lines correspond to upper (lower) limits of the green valley
galaxies proposed by Moutard et al. (2016b). Panel d: 3D diagram. The dotted lines indicate the projection of FEM classes on the bottom plane
(z−K vs. NUV−r).

evolution, as a continuous transition between different groups
(even if they are well separated in the feature space) is expected.
Therefore, each group contains its core representative population
and a (usually small) number of galaxies that are more loosely
mapped to them. A detailed description of the class member-
ship probabilities is given in Appendix B. In the following anal-
ysis, we focus on the representative galaxies, for which the class
membership is not questionable. Our initial sample of 52 114
galaxies was therefore cleaned by excluding objects located in
between adjacent classes, and outliers, based on their probabil-
ity. In particular, 2947 galaxies with low probabilities (<50%) of
being class members, and 1038 objects with high (>45%) proba-
bilities of belonging to a second group were removed. However,
it is worth noting that this leads to the rejection of only 8% of the

sample, therefore demonstrating the robustness of the clustering
process performed with the FEM algorithm.

The resultant final catalogue consists of 47 556 galaxies (and
573 broad-line AGNs). The number of sources in each class, as
well as the basic properties of the FEM classes, are summarised
in Table 1.

4.1. Multidimensional galaxy separation versus standard
methods

The FEM classification allows for a more sophisticated galaxy
separation than the standard two-dimensional (2D) colour–
colour diagrams. The typical classification schemes are mostly
based on tight and linear cuts in the 2D space, while an
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unsupervised approach associates each object to the group
based on its location in the multidimensional space de-
scribing galaxy properties. Colour–colour diagrams, including
NUVrK (Arnouts et al. 2013) and U−V versus V−J (UV J;
Williams et al. 2009), are coarser classifications than the ones
obtained with the multidimensional approach, even if the trends
are continuous. At the same time, the FEM classes correspond
well to the classification schemes based on all these colour–
colour diagrams. FEM classes are able to reproduce the standard
colour–colour separation into passive and star-forming galaxies.
Unsupervised classification further introduces the division into
subclasses, which monotonously change their physical, spectro-
scopic, and morphological properties from class to class. This
reveals the differences within passive, intermediate, and star-
forming galaxy populations. The FEM classification creates a
multidimensional separation cut. The advantage of this approach
is that it is sensitive to a larger number of galaxy properties with
respect to standard classification techniques. For example, as
shown in a subsequent analysis, the three red passive classes are
indistinguishable in the r−K, U−V , and V−J colours, but have
different FUV and NUV properties. Figure 2 presents colour–
colour diagrams: FUV – NUV versus z−K versus NUV−r, NU-
VrK, and UV J, where the median colours for the 11 FEM classes
are shown. The error bars correspond to the first and third quar-
tiles of the galaxy colour distribution, while the semi-major
and minor axes of the ellipses correspond to the normalised
median absolute deviation (NMAD) defined by Hoaglin et al.
(1983), as NMAD= 1.4826 ·median(|P -median (P)|), where P
corresponds to the measured colour reported on each axis.
Classes are labelled according to their NUVrK colour, from the
reddest, class 1, to the bluest, class 11. We note that green
galaxies (classes 4–6) are labelled to follow their r−K colour
change rather than NUV−r, which is more sensitive to dust
obscuration.

The FEM classes may overlap with each other on 2D dia-
grams, and the clear separation may only be revealed when an
additional parameter is added. This is especially relevant for red
passive galaxies (classes 1–3) which are not distinguishable in
the UV J diagrams (see Fig. 2a), and are only partially separated
in the NUVrK diagram (classes 1–2 overlaps, see Figs. 2c and
b). Only when an additional parameter is added to the diagram
(see Fig. 2d) is the clear separation between three classes of red
passive galaxies achieved, and the inhomogeneity of red galaxies
becomes visible.

4.1.1. The UV J diagram

As proposed by Williams et al. (2009) and confirmed by
many others (e.g. Whitaker et al. 2011; Patel et al. 2012;
van Dokkum et al. 2015), passive and star-forming galaxies oc-
cupy two distinct regions on the UV J diagram. Figure 2a shows
the distribution of the 11 FEM classes on the UV J diagram, with
the standard division between passive and star-forming galax-
ies marked with a black solid line. Passive galaxies (classes
1–3) are redder in U−V and bluer in V−J relative to galax-
ies that are young and dusty, which are red in both U−V and
V−J colours (class 6). Galaxies classified as green intermediate
(classes 4–6) are not as red in U−V , which may indicate that they
still have some active star formation. Galaxies within classes 4
and 5 reproduce remarkably well the CANDELS sample of 1745
massive (>1010 M⊙) transition galaxies observed at 0.5< z< 1.0
on the UV J diagram (see Fig. A1 in Pandya et al. 2017). Star-
forming and transition CANDELS galaxies are not well sep-
arated on the UV J plane; the region occupied by the FEM

classes 6 and 7 is already strongly occupied by the star-forming
sample; therefore, we do not connect them with CANDELS tran-
sition population. Moreover, class 4 is placed in the region of
dust-free CANDELS transition galaxies, whereas class 5 corre-
sponds to the more dusty galaxies (see the distribution of the op-
tical attenuation in Fig. A1 in Pandya et al. 2017). These galax-
ies tend to occupy a transition region populated by galaxies with
a variety of morphologies (Moutard et al. 2016a). Therefore, we
conclude that classes 4 and 5 consist of green intermediate galax-
ies, representing a mixed population in the transition phase be-
tween passive and star-forming categories.

Intermediate galaxies are located in the green valley, a wide
region in the ultraviolet-optical colour magnitude diagram be-
tween the blue and red peaks, and usually they are hard to distin-
guish, as the classical selection criteria are not well defined (e.g.
Salim 2014, and references therein). However, Schawinski et al.
(2014) have already shown the existence of two different popu-
lations of green galaxies with respect to their gas content, sep-
arating intermediate galaxies into green spirals and green el-
liptical populations. The three intermediate FEM classes (4–6)
confirm that the green valley population is not a homogeneous
category of galaxies. Star-forming galaxies (classes 7–11) are
well separated on the UV J diagram, showing bluer U−V and
V−J colours with increasing class number. The median U−V
and V−J colours for 11 FEM classes are given in Fig. 4 and
Table 1.

4.1.2. The NUVrK diagram

Figures 2b,c present the distribution of the 11 FEM classes in
the NUVrK diagram (Arnouts et al. 2013). The NUVrK diagram
is similar to the UV J plane (see Fig. 2a and Sect. 4.1.1), but al-
lows for a better separation between passive and active galaxies.
The NUVrK diagram is also a better indicator of dust obscu-
ration and current versus past star formation activity. Old, qui-
escent galaxies exhibit redder NUV−r colours, while galaxies
with a younger stellar content are bluer. However, the NUV−r
colour is highly sensitive to dust attenuation, meaning that
dusty star-forming galaxies may also show reddened NUV−r
colours (Arnouts et al. 2007; Martin et al. 2007). The vector for
increasing dust reddening acts perpendicularly to the vector of
decreasing specific SFR (defined as the SFR per stellar mass
unit, hereafter sSFR), enabling the degeneracy to be broken.
Therefore, the NUVrK diagram is extensively used to separate
different galaxy types (e.g. Arnouts et al. 2013; Fritz et al. 2014;
Moutard et al. 2016b; Davidzon et al. 2016).

Davidzon et al. (2016) proposed criteria for the selection of
passive and intermediate objects in the NUVrK diagram (black
solid and black dashed lines in Fig. 2b, respectively) based on
VIPERS PDR1 galaxy sample. Moutard et al. (2016b) defined
a slightly different division between quiescent and star-forming
galaxies (black solid line in Fig. 2c), as absolute magnitudes
were derived through SED-fitting with other assumptions. In par-
ticular, the slope of the line separating active and passive galax-
ies in the NUVrK diagram found by Davidzon et al. (2016) is
flatter than the one presented in Moutard et al. (2016b) (slopes
are S = 1.37, S = 2.25, respectively). Both criteria show a simi-
lar behaviour with respect to the FEM classes. Classes 1–2 per-
fectly match the area occupied by red passive galaxies, while
class 3 is close to the separation line between red passive and
the green valley region as defined by Moutard et al. (2016b). As
previously mentioned, class 3 is not purely passive and may rep-
resent the population of red galaxies that have just joined the
passive evolutionary path.
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There is a clear path in the NUVrK diagram along which
the FEM classes are distributed. Figures 2c and b show that
classes 1–3 are placed at the top of the diagram, while classes
7–11 occupy its bottom part with the intermediate area re-
served for classes 4–6. The FEM classification also very closely
follows the photometric selection based on the SED fitting
by Fritz et al. (2014; see points in Fig. 2b, colour-coded accord-
ing to SED type). Almost all FEM red passive galaxies (classes
1–3; ∼98%) are defined as ETGs (red E/Sa) by the SED classi-
fication (ETGs are marked with salmon circles in Fig. 2b), and
most star-forming galaxies (classes 10–11) are classified as ir-
regular or starburst types (∼97%; SBGs marked with blue tri-
angles in Fig. 2b). The intermediate (4–6) and star-forming (7–
9) classes match reasonably well (∼70%) with the early- and
late-type spiral galaxies classified based on their SEDs (ESGs
and LSGs are marked with yellow stars and purple pentagons,
respectively).

The FEM classes (Fig. 2c) also follow very well the classifi-
cation of CFHTLS galaxies proposed by Moutard et al. (2016a).
The region of dusty star-forming galaxies mainly corresponds
to classes 5–6, whereas classes 7–11 are found in the star-
forming area (Moutard et al. 2016a). Galaxies become bluer
(both in NUV−r and r−K; except the r−K colour for interme-
diate galaxies) with increasing class number, that is, classes 7–
11 contain the bluest galaxies. When the stellar populations be-
come older or the amount of dust in galaxies increases, the r−K
colour becomes redder. The green galaxies, members of classes
4–6, are characterised by redder r−K and NUV−r colours rel-
ative to the star-forming cloud (classes 7–11). Only edge-on
galaxies may have the reddest r−K colours (Arnouts et al. 2013;
Moutard et al. 2016a). Therefore, as FEM class 6 shows the
reddest r−K colours, we conclude that its colours may be a
consequence of dust within the disks or their high inclina-
tions. The area of the NUVrK diagram occupied by classes
4 and 5 is placed in the region where Moutard et al. (2016a)
located a morphologically inhomogeneous class of galaxies,
which in our classification may be divided into more homo-
geneous classes. Moutard et al. (2016b) found these galaxies
to be most likely transiting from the star-forming to the pas-
sive population. Class 4 has similar r−K colours to classes
1–3, showing that this class, as already mentioned, is close
to passive galaxies. The top of the diagram is reserved for
classes 1–3, which show the reddest NUV−r colours in the FEM
classification.

Besides the clear differences between the three main classes
(red/green/blue) on the NUVrK diagram, the difference is visible
also within subclasses. The red subclasses show the progressive
reddening in NUV−r colour starting from class 3, and ending in
class 1, as shown in Figs. 2b and c. The clear separation of three
red passive classes is clearly visible in the FUV–NUV colour
(see Fig. 2d). At the same time, there is no significant change
in their r−K colour. Red passive galaxies are populated by old
stellar populations and have little dust, and therefore we do not
expect to distinguish different red passive populations in r−K
colour, which is sensitive to dust obscuration. At the same time,
these subclasses show only small differences in the strengths of
their D4000n (see Fig. 5, and Table 1), suggesting only small
differences in their stellar ages. However, classes 1–3 show sig-
nificant changes in sSFR (see Fig. 6, and Table 1), which may
indicate that star formation contributes more to class 3 than to
the first and second classes.

Figure 3 shows the NUVrK diagram in six redshift bins
spanning the redshift range 0.4< z< 1.0. The colour evolution

of the galaxy populations with redshift is clearly visible.
Madau & Dickinson (2014, and references therein) have already
shown that galaxy properties such as SFR and colour change sig-
nificantly within a galaxy population as a function of redshift.
Figure 3 shows that properties of galaxy types indeed vary with
cosmic time.

Red passive galaxies (classes 1–3) form three different, well-
separated clusters in the NUVrK diagram at z∼ 0.4. When we
move back with cosmic time, classes 1 and 2 tend to progres-
sively merge up to z∼ 1. At z∼ 1, the separation between classes
1 and 2 is less evident. This could be a consequence of the
colour–colour pre-selection sample bias, as at z∼ 1 VIPERS ob-
served only the most massive and the brightest galaxies, but
may also imply that the population of red passive galaxies
was more homogeneous at earlier epochs. Red passive galax-
ies achieve their final morphology at z∼ 1, whereas at higher
redshifts (1< z< 2) the peak of their evolution is expected (e.g.
Bundy et al. 2010). The homogeneity of classes 1 and 2 at z∼ 1,
at least in NUV−r and r−K colours, may therefore indicate that
these groups of red galaxies were inseparable at that epoch with
respect to some of their physical properties, when they still at-
tain their final form (e.g. Cimatti et al. 2004; Glazebrook et al.
2004). The detailed analysis of the physical processes leading to
the separation of three different red passive galaxy classes will
be presented in a forthcoming paper.

4.2. Global properties of FEM classes

A visible separation of 11 classes in the 3D and 2D colour–
colour diagrams may be expected, as the FEM classification
is based on the normalised absolute magnitudes and, therefore,
colours. In this section, we examine properties that were not in-
cluded in the parameter space used for the automatic classifi-
cation. Below we investigate morphological, spectral, mass, and
star formation properties of the different FEM classes to examine
whether or not there is a correspondence between our classifica-
tion and these properties.

The distributions of main properties along the 11 FEM
classes are shown in Figs. 5 and 6, and summarised in
Table 1. In particular, the following features were derived for
VIPERS galaxies: Sérsic index (n; calculated for VIPERS sam-
ple by Krywult et al. 2017), equivalent widths of [OII]λ3727,
the strength of the 4000 Å break (D4000n, as defined by
Balogh et al. 1999), and physical properties derived from SED
fitting: stellar masses, and sSFR (calculated by Moutard et al.
2016b). The following analysis is based on the median values
of these parameters derived for each class. The error bars corre-
spond to the first and third quartiles of the galaxy property dis-
tribution.

To trace the change of spectral properties along the FEM
classes, the strength of the 4000 Å break and equivalent width
of [OII]λ3727 of individual galaxies in each FEM class is mea-
sured. Figure 5 shows the weakening of the median 4000 Å
break, and the increasing of the median EW([OII]λ3727) with
increasing class number. Galaxies within classes 1–3 have
D4000n greater than 1.5 (dashed line in Fig. 5), and simultane-
ously display negligible emission in [OII]λ3727, while galaxies
within classes 7–11 have strong emission in the [OII]λ3727 line,
and a 4000 Å break lower than 1.5. The threshold for D4000n at
1.5, dividing actively star-forming and passive galaxy popula-
tions, has been found by Kauffmann et al. (2003) for local Uni-
verse and extended to higher redshift by Vergani et al. (2008).
This cut allows us to associate galaxies hosting old stellar
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Fig. 3. NUVrK diagrams of the 11 FEM classes in six different redshift bins spanning the redshift range 0.4< z< 1.0. The error bars correspond to
the first and the third quartiles of the galaxy colour distribution, while the two axes of the ellipses correspond to the median absolute deviations.
The fraction of galaxies in each class is given in the legend.

populations with no sign of star formation activity to classes 1–
3, and younger objects with stronger on-going star formation to
classes 7–11. The more detailed description of the spectral prop-
erties of the 11 FEM classes is presented in Sect. 4.4.

The reflection of our classification on different galaxy prop-
erties indicates the robustness of our approach and the fact that
the proposed classification may be able to trace the evolutionary
stages from blue and active to red passive types.

4.2.1. Morphological properties

One way to define the type of a galaxy is to analyse its structure.
In the local Universe, passive galaxies are usually spheroidal,
while star-forming galaxies are irregular or disk shaped (e.g.
Bell et al. 2012). Krywult et al. (2017) showed that this is also
the case for the whole mass distribution (8. log(Mstar/M⊙). 12)
and redshift range (0.4. z. 1.3) of VIPERS galaxies. To de-
scribe the shapes of the light profiles of VIPERS galaxies, the
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Fig. 5. Spectral and morphological properties of the 11 FEM classes:
D4000n, EW([OII]λ3727), and Sérsic index as a function of class num-
ber. The division between red passive and blue active based on D4000n

according to Kauffmann et al. (2003) is marked with a black dashed
line. The range of mean values of Sérsic index for VIPER red passive
and blue star-forming galaxies obtained by Krywult et al. (2017) are
marked with black solid and dashed lines, respectively. The [OII]λ3727
line has not been detected in the majority of galaxies within classes 1–5
(for 96, 91, 85, 59, and 72%, respectively).

Sérsic index is used (n, Sérsic 1963). The index has low values
(n ∼ 1) for spiral galaxies whose disks have surface brightnesses
with a shallow inner profile, and high values (n∼ 3–4) for ellip-
tical galaxies which have surface brightnesses with a steep inner
profile (e.g. Simard et al. 2011; Bell et al. 2012; Krywult et al.
2017).

Krywult et al. (2017) showed that VIPERS disk-shaped
galaxies have Sérsic index mean values in the range
n∼ 0.81 – 1.11, whereas spheroid galaxies are characterised with
average Sérsic indices in the range n∼ 2.42 – 3.69. As shown
in the lower right panel of Fig. 5, there is a very good corre-
lation between the FEM galaxy class and Sérsic index. FEM red
passive galaxies (classes 1–3) have a median Sérsic index n> 3,
indicating a spheroidal shape, while classes 7–11 show a signifi-
cantly lower median Sérsic index n. 1, typical for disk galaxies.
For intermediate classes, the median Sérsic index is n∼ 1.7, con-
firming that classes 4–6 are mainly composed of intermediate
galaxies also in terms of this structure. Krywult et al. (2017)

1 2 3 4 5 6 7 8 9 10 11
9

10

11

lo
g
(M

st
a
r
/M

⊙
)

1 2 3 4 5 6 7 8 9 10 11

Class

−20

−15

−10

lo
g
(s
S
F
R
)
[y
r−

1
]

Fig. 6. SED-dependent properties of the 11 FEM classes: stellar mass
(log(Mstar/M⊙)), and log(sSFR)[yr−1] as a function of class number. The
transition mass found for VIPERS galaxies at z∼ 0.7 by Davidzon et al.
(2013) is shown with a dashed line.

demonstrated the strong correlation between morphology and
galaxy colour, which is also reflected in our studies.

4.2.2. Physical properties

The top panel of Fig. 6 shows the median stellar masses obtained
for the 11 FEM groups. The stellar mass decreases with class
number. Galaxies assigned to classes 7–11 are less massive (with
median stellar mass ∼109.7± 0.3 M⊙) than galaxies within classes
1–3 (median stellar mass ∼1010.8± 0.2 M⊙). The stellar mass
change is much more rapid for star-forming classes (0.3 dex per
class), whereas for red passive classes the median stellar mass is
almost constant (0.05 dex). Our classification follows well the lo-
cation of passive and active galaxy types with respect to the tran-
sition mass. The transition mass separates blue star-forming and
red passive populations, since above the transition mass, red pas-
sive galaxies dominate, and below that mass, star-forming galax-
ies are the most numerous population (e.g. Kauffmann et al.
2003; Vergani et al. 2008; Pannella et al. 2009; Davidzon et al.
2013). Based on the VIPERS dataset, Davidzon et al. (2013)
determined the transition mass to be log(Mstar/M⊙)= 10.6 for
galaxies at z∼ 0.7. Our classification is consistent with this re-
sult. Median stellar masses of galaxies within classes 1–3 are
above the transition mass (marked with the dashed black line in
Fig. 6), while classes 7–11 are located below the transition mass
consistent with the fact that these galaxies are still forming stars.
The intermediate galaxies within class 4 have the median stel-
lar mass which matches the transition mass perfectly. This con-
firms that this is the group of sources that are just entering the
passive evolutionary path. Classes 5–7 have stellar masses just
below the transition mass (1010.5 M⊙) between the red and blue
populations.

Finally, the bottom panel of Fig. 6 shows the change of
sSFR as a function of class number. The FEM classes are
well separated in sSFR, with red passive galaxies (classes
1–3) showing the lowest star formation activity, whereas sources
from the blue classes (7–11) have the highest sSFRs. At the
same time, from Fig. 5 we can see that classes 7–11 have
high EW([OII]λ3727), which is typical for blue star-forming
galaxies (e.g. Cimatti et al. 2002). The sSFR obtained for the
intermediate galaxies (log(sSFR)∼− 9[yr−1]) is in agreement
with the results derived for 1745 CANDELS transition galax-
ies observed at 0.5< z< 1.0 (log(sSFR)∼− 9[yr−1], Pandya et al.
2017). Summarising, the distributions of the physical proper-
ties (see Figs. 4–6, and Table 1) show the trends of global and
systematic changes along the FEM classes. The main spectral,
morphological and physical properties correlate well within and
among the groups, that is, the most massive spheroidal galaxies
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Fig. 7. SFR-stellar mass relation for FEM classification. The median
log(S FR) vs. median log(Mstar/M⊙) for classes 2–11 are shown. The
error bars correspond to the first and third quartile of the galaxy SFR-
stellar mass distribution, while the area of ellipses correspond to the
median absolute deviations. The colours are given as in Fig. 2. The first
class is not plotted due to its very low median SFR. The black solid
line corresponds to the MS trend at z= 0.7 found by Whitaker et al.
(2012), while dashed and dashed-dotted lines correspond to 4×MS ,
and 10×MS to represent active star-forming and starburst galaxies, re-
spectively, following Rodighiero et al. (2011).

populated by old stellar populations are the reddest in compar-
ison to the disk-shaped bluer galaxies hosting younger stellar
contents. This demonstrates that our classification traces the evo-
lutionary phases and galaxy types.

4.3. The SFR−M∗ relation

Galaxies show a correlation between their SFR and stellar mass
at redshifts at least up to z∼ 6 (e.g. Brinchmann et al. 2004;
Noeske et al. 2007; Whitaker et al. 2012; Speagle et al. 2014;
Salmon et al. 2015). This correlation, often called the galaxy
main sequence (MS), is likely connected with the physical mech-
anisms responsible for galaxy growth, regulated by the accretion
of gas from cosmic web and gas feedback (e.g. Bouché et al.
2010).

The SFR dependence on stellar mass for the different FEM
classes is shown in Fig. 7. The black solid line corresponds to the
MS at z= 0.7 according to Whitaker et al. (2012). Whitaker et al.
(2012) have established the slope and the normalisation of the
SFR(M∗) as a function of redshift allowing us to reproduce the
MS trend at z= 0.7, the median redshift of VIPERS galaxies.
Passive galaxies within classes 2–3 (class 1 is not presented in
Fig. 7 due to its very low SFR; log(S FR)=−6.1 [M⊙yr−1]) oc-
cupy an area well below the MS line. The star-forming galax-
ies assigned to classes 7–11 instead follow the tight MS trend,
showing a steady increase in SFR with stellar mass as expected
for the MS at this redshift. Therefore, this confirms classes
7–11 to be representative clusters of star-forming MS galax-
ies. However, we note that most of these median values are
above the solid line. The global offset for star-forming galaxies
could be due to the extinction law and SFH used for SED fit-
ting. The Calzetti et al. (2000) extinction law is characterised by
larger attenuations at longer wavelengths which results in lower
stellar masses compared to other recipes such as Charlot & Fall
(2000) or Lo Faro et al. (2017; for more detailed discussions
we refer to Lo Faro et al. 2017 and Małek et al. in prep.).

Therefore, we relate the offset in the SFR to the method used to
calculate SFR. Whitaker et al. (2012) used the Kennicutt (1998)
relation which assumes a constant SFR. This assumption leads
to the overestimation of the SFR with respect to the other SFHs
in the literature (and with respect to the delayed SFH used for
the SED fitting; e.g. Lo Faro et al. 2017). To summarise, the dif-
ferent models used for VIPERS SED fitting and to obtain the MS
relation have influence on the observed offset in Fig. 7. Galax-
ies assigned to class 8 show a SFR−M∗ relation slightly above
MS. However, we stress that within uncertainties this class is
still consistent with the trend defined by the other classes. The
median SFR of galaxies in class 8 is located at 4×MS (dashed
line), which is attributed to galaxies with enhanced star forma-
tion (Rodighiero et al. 2011). This class is also characterised by
redder r−K colours than, for example, class 7, and a strong Hβ
line, but not one stronger than the Hβ line for class 10 (see
Fig. 9).

4.4. Spectral properties

In this section, the spectral properties of the photometrically mo-
tivated classes are presented. To compare the spectral properties
to the classification scheme, the stacked spectra for each of the
11 FEM classes were derived. The spectra were co-added in nar-
row redshift bins (δz= 0.1 from 0.4 to 1.0) in the same way as
described in Siudek et al. (2017). Firstly, the rest-frame spectra
were re-sampled to a common wavelength grid. Individual spec-
tra were normalised by dividing the flux at all wavelengths by the
scaling factor derived using median flux computed in the wave-
length region 4010<λ(Å)< 4600. The stacked spectra were then
obtained by computing the mean flux from all individual spectra
at all wavelengths in the common wavelength grid, and rescaled
by multiplying the flux at all wavelengths by an average value of
scaling factors of the individual spectra. Given the large sample
of VIPERS galaxies, the constructed stacked spectra are char-
acterised by a signal-to-noise ratio (S/N) high enough to detect
absorption lines that are undetectable on typical, individual spec-
tra (e.g. the Hδ line; see details in Siudek et al. 2017).

Figures 8 and 9 show the stacked spectra of the 11
FEM classes in six redshift bins spanning the redshift range
0.4< z< 1.0. The stacked spectra show that there is a gradual
change as a function of class number. The lines go from ab-
sorption (in the first class) to strong emission (in the eleventh
class).

All composite spectra of galaxies assigned to classes
1–3 are dominated by absorption lines and show weak emis-
sion lines. We can clearly see the strong 4000 Å break, G-band
(4304 Å), and Balmer lines over most of the redshift range,
even if some of these features are not observed at z> 0.8 be-
cause of the wavelength range 5500–9500 Å of VIPERS spectra;
see Scodeggio et al. (2018) for details. The strong absorption
lines for these features are typical for early-type galaxies (e.g.
Worthey et al. 1994; Worthey & Ottaviani 1997; Gallazzi et al.
2014; Siudek et al. 2017). Therefore, we conclude that the spec-
tral properties indicate that galaxies in classes 1–3 consist of old
stellar populations. From Fig. 8, we can see that the Hδ line
is getting stronger with redshift for all three red passive galaxy
classes, which may be simply indicating that stellar populations
are getting older as time passes. There is also a change in the
relative strength of the CaII H (3969 Å) and CaII K (3934 Å)
lines, as the CaII K line dominates at z∼ 1, while the CaII
H line dominates at lower redshifts, especially for galaxies in
class 3. The CaII K line dominates in galaxies with old stellar
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Fig. 8. Stacked spectra of VIPERS galaxies among FEM classes 1–6 in different redshift bins. Rest-frame composite spectra were normalised in
the region 3600<λ< 4500 Å. The most prominent spectral lines are marked with vertical solid lines with labels.

populations, whereas CaII H dominates when the younger stars
appear.

Spectra of the green group (classes 4–6) show properties in-
between the red and blue populations (see also Vergani et al.
2017). The representative stacked spectra of classes 4 and 5 are
characterised by strong emission in the [OIII]λλ4959, 5007 dou-
blet with no or little sign of the recombination line Hβ at redshift
range 0.4< z< 0.7. Since a high ratio of [OIII]λλ4959, 5007 to
Hβ lines is an indication of AGN photo-ionisation, this sug-
gests that a non-negligible fraction of galaxies in these classes
may host a Seyfert nucleus. However, this is not confirmed
by the localisation of classes 4 and 5 on the BPT diagram
(see Sect. 4.4.3), even if only galaxies within redshift range
0.4< z< 0.7 are considered. Therefore, we are not able to con-
clude whether those galaxies host a Seyfert nucleus or not. The
stacked spectra of intermediate galaxies within class 6 show
diagnostic lines (e.g. [OII]λ3727, [NeIII]λ3869, Hβ) in emis-
sion. There is also a hint of star formation activity in the in-
termediate classes (4–6) revealed by detectable emission in the
[NeIII]λ3869 line in all redshift ranges (Ho & Keto 2007).

The stacked spectra of galaxies in classes 7–11 show that
they are undergoing a significant level of star formation, in-
dicated by prominent emission lines, like the [OII]λ3727 or
Hβ lines, and a weak 4000 Å break (e.g. Mignoli et al. 2009;
Haines et al. 2017). The emission lines are getting stronger with

increasing class number of star-forming galaxies. The possibility
of AGNs is further discussed in Sect. 4.4.3. In this paper, we fo-
cus on general properties of the whole classification scheme. The
detailed properties and evolutionary trends of the FEM classes
will be discussed in future papers.

4.4.1. The comparison of FEM classes with Kennicutt’s Atlas

To better define the morphological and spectral types of each
of the 11 FEM classes, we compare their representative stacked
spectra with those of galaxies of different Hubble types as
given by Kennicutt (1992). Kennicutt’s Atlas consists of 55 inte-
grated spectra of nearby galaxies, covering the wavelength range
3650<λ[Å]< 7100 with a resolution of 5–8 Å, grouped accord-
ing to their morphological and spectral types. Kennicutt (1992)
provides a set of individual normal and peculiar galaxies fol-
lowing the Hubble sequence, from giant ellipticals (NGC1275)
to dwarf irregulars (Mrk35). We compared the 11 FEM classes
with the Atlas by assigning to each FEM class the best spectrum
in the Atlas based on the χ2 minimisation. The 11 FEM classes
tend to follow the Hubble sequence as classes 1–3 show morpho-
logically earlier types than the other classes. Stacked spectra of
galaxies in classes 7–11 are quite well reproduced by the spiral,
irregular, and emission-line galaxies (Sc, Im), whereas spectra of
Sb galaxies best fit the stacked spectra of intermediate galaxies
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(classes 4–6), and the template spectrum of Sab galaxy fits the
representative stacked spectra of classes 1–3. The detailed com-
parison of spectral properties of the 11 FEM classes to the spec-
tral Atlas of Kennicutt (1992) is discussed in Appendix D.

4.4.2. Comparison to principal component analysis (PCA)
classification of VIPERS galaxies

In this section, we compare the FEM classification to a classifica-
tion scheme used within the VIPERS survey by Marchetti et al.
(2013), based on the PCA technique applied to spectra of
VIPERS galaxies. The PCA-based algorithm divided VIPERS
galaxies into 15 different clusters based on the first three eigen
coefficients (θ−φ diagram). The PCA classification distinguished
eight groups among the red and intermediate galaxy types from
E to Sc, and seven classes of more active starburst galax-
ies. We find that our classification follows the track found
by Marchetti et al. (2013), since the reddest, early-type galax-
ies fall in the region of the bottom left edge of the φ−θ diagram,
and with increasing θ and φ, the number of the FEM class is
increasing, which implies that galaxies are bluer (see Fig. C.1).

We find that ∼70% of early-type galaxies selected with PCA
(PCA classes 1–2 contain E and Sa galaxies) are distributed
in the FEM classes 1–3. This indicates the similarities in the

capability of separation of ETGs, especially the oldest ones, in
the VIPERS dataset by both methods. The dusty spiral galaxies,
Sb4,6 (with E(B−V)> 0.4; Kinney et al. 1996), assigned to PCA
classes 3–6 are spread among various FEM classes, with the ma-
jority of them (∼70%) being located in the FEM classes 7–11.
Almost all Sc galaxies (∼95%) selected by PCA (PCA classes
7–8) are assigned to the FEM classes 9–11. The spiral galax-
ies with smaller amounts of dust, Sb1,2 (with E(B − V)< 0.2;
Kinney et al. 1996), within PCA classes 9–13, are also found
among FEM classes 10–11 (∼80% of them).

This shows that there is a global agreement between the FEM
and PCA classification schemes. However, it should be noted
that these two classification schemes, being based on different
input data (photometric data for FEM, and spectroscopic for
PCA), are not fully coherent with each other and therefore do
not show precisely the same patterns. In Appendix C it is shown
how well, using the derived eigenvalues for VIPERS PDR1, the
FEM classes are separated in the θ−φ PCA diagram.

4.4.3. The Baldwin, Phillips & Terlevich diagram

To differentiate star-forming galaxies from AGNs, we checked
the distributions of the intermediate and star-forming galaxies
(classes 4–11) on the diagnostic diagram for emission-line
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galaxies. The distribution of VIPERS galaxies in the
BPT (Baldwin et al. 1981) diagram is shown in Fig. 10. We
are able to separate LINERS and Seyferts based on their emis-
sion line ratios. We measured emission lines on individual spectra
within the redshift range 0.4< z< 1.3 assigned to classes 4–11,
and the Hβmeasurements were corrected for an average absorp-
tion component. The distribution of VIPERS galaxies assigned
to classes 4–10 indicates that those galaxies are star-forming
galaxies. Class 11 is placed in the composite area (SF/Sy2 in
Fig. 10), which may indicate that it contains AGNs. The con-
tamination by broad-line AGNs has no influence on our result,
as only line measurements of galaxies within redshift range
0.4< z< 1.0 and redshift flag 3–4 are included (i.e. excluding the
flags corresponding to broad-line AGN). However, AGNs are
very rare among low-mass galaxies (the median stellar mass of
galaxies within class 11 is ∼109 M⊙), therefore, we suspect that
these might be low-metallicity galaxies. However, both these
options (AGN contributions and low-metallicity galaxies) are
consistent with the spectroscopic properties of this group (see
Sect. 4.4), as the spectra show strong emission lines.

5. Summary

In this paper, a new approach to galaxy classification is intro-
duced, based on the thirteen-dimensional parameter space built
from 12 absolute magnitudes and the spectroscopic redshift. An
unsupervised classifier based on the FEM algorithm blindly sep-
arated 52 114 VIPERS galaxies into 12 classes. The model se-
lection (DBk) and the determination of the optimal number of
classes were based on statistical criteria (BIC, AIC and ICL;
see Appendix B) and found to be in the range 9–12. Subse-
quently, the final class number (12) was decided based on the
analysis of the galaxy flow with a changing number of groups
(see Fig. A.2), and the interpretation of physical properties of
classes in different realisations (see Fig. 1). All these techniques

resulted in the same model and an optimal number of 12 classes
in the VIPERS dataset. These classes follow a well-defined se-
quence from the earliest to the latest types, separating galaxies
into three major groups: red, green, and blue. The FEM classi-
fication automatically finds groups that share physical and spec-
tral properties, beyond the features used for classification pur-
poses. Galaxies are not unequivocally assigned to a single class,
but the probability of belonging to each group is given. Such an
approach is more realistic as the transition between classes can
be continuous. In spite of this, a majority of galaxies (92%) in
the sample have high (>50%, with <45% second best probabil-
ity) probabilities of belonging to the selected group. We obtain
three main classes: red, green, and blue, which can be further
separated into subclasses: three red, three green, and five blue,
and an additional class 12, which consists of outliers. For class
12, 95% of its members are broad-line AGNs according to the
visual classifications by the VIPERS team (Garilli et al. 2014).
Their median redshift is zmed ∼ 2, which removes this class from
the global picture of VIPERS galaxy types observed up to z∼ 1.

We demonstrated that our approach leads to a new clas-
sification scheme allowing us to track galaxy evolutionary
paths. The main advantage of this approach is the ability to
distinguish 11 galaxy types, which share physical and spec-
tral properties not used in the classification procedure. The
presented separation between different galaxy types differs
from traditional selection methods based mainly on the bi-
modal distribution in colours (e.g. Bell et al. 2004; Balogh et al.
2004b; Franzetti et al. 2007), spectral properties (e.g., Hα
Balogh et al. 2004a), [OII]λ3727 emission (Mignoli et al.
2009), 4000 Å break (Kauffmann et al. 2003; Vergani et al.
2008), and SFH (Brinchmann et al. 2004).

Our main results are as follows: We present a new unsuper-
vised approach to galaxy classification based on the multidimen-
sional space of absolute magnitudes and the spectroscopic red-
shift, which does not introduce any a priori defined cuts. We find
three red, three green, and five blue classes which are distributed
along a well-defined path in multidimensional space. The bor-
ders between classes are not sharp; the probability of belonging
to a given class is associated to each galaxy. However, the prob-
abilities of belonging to a given class are high (∼80%) and, in
spite of the presence of outliers, the classes are well separated
in the feature space and are therefore more faithfully representa-
tive of the full complexity of the galaxy population at these red-
shifts. We show the evolution of the 11 classes over the redshift
range 0.4< z< 1.0. We demonstrate that there are significant dif-
ferences in physical and spectral properties between galaxies
classified as red/green/blue FEM classes and their subclasses.
We find a very good correlation between the FEM classes and
spectroscopic classes in the Atlas of Kennicutt (1992). The 11
FEM groups follow the path from the earliest to the latest galaxy
types.

In particular, the following FEM class properties were found:
Classes 1–3 host the reddest spheroidal-shape galaxies show-
ing no sign of star formation activity and dominated by old
stellar populations (as testified by their strong 4000 Å breaks).
Classes 4–6 host intermediate galaxies whose physical prop-
erties, such as colours, sSFR, stellar masses, and shapes, are
intermediate relative to red, passive, and blue, active galax-
ies. These intermediate galaxies have more concentrated light
profiles and lower gas contents than star-forming galaxies (as
indicated by the Sérsic index, and EW(OII)). This tendency
is also observed for intermediate galaxies observed in the lo-
cal Universe (Schiminovich et al. 2007; Schawinski et al. 2014).
Classes 7–11 contain the star-forming galaxies. The blue cloud
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of disk-shaped galaxies is actively forming new stars and
are populated by young stellar populations (as indicated by
the weak 4000 Å break). Class 11 may consist of low-metallicity
galaxies, or AGNs according to its localisation on the BPT dia-
gram.

Automatic unsupervised classifications are becoming an in-
valuable tool in the current era of information deluge. The FEM
algorithm can also be applied to photometric samples with com-
parable efficiency in distinguishing a full panoply of galaxy
types (Siudek et al. 2018). With the increasing number of deep
surveys, such as Euclid and LSST, such algorithms may allow us
to study galaxy formation and evolution across the lifetime of the
Universe. The presented classification scheme has great poten-
tial, as we can ascertain the class to which a galaxy or a galaxy
region belongs. Based on defined classes, different stellar popula-
tions can be traced and galaxies within structures can be classified.
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Appendix A: Determination and validation of the

number of classes

The AIC, BIC, and ICL are standard criteria widely used in ma-
chine learning algorithms to evaluate the statistical model.

– AIC – The Akaike information criterion penalises the log-
likelihood by γ(M), where M is the used model and γ is the
number of parameters in this model (Akaike 1974). The AIC
is used to select the best model from the available pool. Us-
ing this criterion, we search for the model closest to reality
with a minimum number of parameters. It was first intro-
duced to cosmology by Takeuchi (2000).

– BIC – The Bayesian information criterion is the most
popular criterion which penalises likelihood by γ(M)

2 log(n),
where M is the used model and n is the number of
observations (Schwarz 1978). BIC is analogous to AIC
(Bouveyron & Brunet 2012), but is derived from Bayesian
statistics.

– ICL – The integrated complete likelihood penalises the
log-likelihood by

∑n
i= 1
∑K

k= 1 tiklog(tik) in order to favour
well-separated models, where k is the number of mixture
components, i is the number of observables, and t is the pos-
terior probability (Baudry 2012).

In this paper, all three criteria are applied. They allow us to
compare different DLM models and define the optimal number
of groups in the data. The AIC and BIC are widely used pe-
nalised likelihood criteria, while ICL is an alternative approach,
which starts with the BIC criterion and adds a so-called en-
tropy component (the sum of posterior probability memberships
given by

∑
i

∑
j ppijln(ppij), where ppij is the i’s posterior prob-

ability membership in j-group). Therefore, the scoring between
AIC/BIC cannot be directly compared to ICL scoring.

Each criterion (AIC, BIC and ICL) consists of two parts:
the former increases the score for models with increasingly well
separated groups, and the other is responsible for penalising an
excessive number of groups. Otherwise, the division which re-
ceives the highest score would be the one in which every ob-
ject was a separate group (Bouveyron & Brunet 2012). Based
on the received scores the optimal number of groups can be
chosen.

The change of BIC (AIC is not shown as it mostly gives
the same scoring as the BIC criterion) and ICL scoring for dif-
ferent numbers of classes and models is shown in Fig. A.1.
The algorithms were unable to converge (and therefore unable
to calculate the scoring) for some combinations of numbers of
classes and models, resulting in discontinuities in the DkBk and
DkB curves. Although the DkB and DkBk models have higher
AIC/BIC scores, we did not decide to use them. The DkBk
model is unstable for more than 11 components, where it is ex-
pected to achieve a maximum (i.e. the most preferable number
of classes) and therefore the optimum number of classes can-
not be specified. The similar situation is observed for the DkB
model, which is unstable for steps 11 and 12 and for this rea-
son it is impossible to state its behaviour and find the maximum.
Based on Fig. A.1 we can see that the AIC/BIC scores for the
DBk and DB models are very similar. However, when we con-
sider the ICL scores, we see significant differences in favour of
the DBk model. Therefore, we decided to use the DBk model
which gives the best scoring among all the three criteria. For a
detailed description of the DBk model see Bouveyron & Brunet
(2012). According to Fig. A.1, the BIC scores increase steadily
as the number of classes is increased, up to a limit of 12
classes. The scores do not continue to increase for models with
more than 12 classes, and so we consider 12 classes to be the
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Fig. A.1. Results of model and number of classes chosen based on the
BIC and ICL criterion. Number of components corresponds to number
of classes.

optimal choice. The ICL criterion achieves its maximum score
for nine classes. The ICL scores decrease rapidly from step 9
to step 10, and declines further to 12 classes. Above this num-
ber, the model score (as in case the of BIC criterion) practi-
cally does not change. Based on the analysis of the BIC, AIC,
and ICL criteria, we conclude that the optimum model is the
DBk model with approximately nine (according to the ICL
criterion) or twelve (according to the AIC and BIC criteria)
classes.

In Fig. A.2 we present the flow chart of 52 114 VIPERS
galaxies. This includes those objects with low probabilities of
being members of any class, which are less than 1% of our
sample at the first step and less than 10% of our sample at the
twelfth step). These are visible as thin lines that correspond to
several dozen objects, which in all cases are a small percent-
age (3%) of all galaxies in a given group. In order to select
the optimal number of classes, the galaxy flow between clas-
sifications was checked at each step, from one single class up to
thirteen classes. Each step corresponds to the number of classes
into which the VIPERS galaxies were classified (i.e. notation s2
corresponds to the second step and division into two classes).
Figure A.2 shows that some classes (e.g. cls1, where 1 corre-
sponds to the first class) are well separated in the very early
steps (cls1 is basically unchanged for s4–13), while others (e.g.
s12cls7) are formed from a mixture of galaxies from different
classes from the previous steps. This is also mirrored by their
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Fig. A.2. Dependence of galaxy distribution on the number of classification steps. The galaxy flow beginning from one single class up to the
classification with thirteen classes is shown. The step number (equal to the number of classes) followed by the class number is given (s2cls1,
where s2 corresponds to the second step, division into two classes, while cls1 corresponds to the first class).

posterior membership probabilities, as well-defined classes (e.g.
s12cls1) have high membership probabilities, while “flowing”
classes (e.g. s12cls7) are characterised by lower probabilities.
The new classes distinguished between steps 10 and 12 (12cls6,
12cls8, 12cls12) are characterised by relatively small numbers of
galaxies (see Fig. B.1) and tend to separate beside the main linear
trend formed by s9cls1–s9cls9 (see the first panel in Fig. 1). In
particular, class 12cls12 is separated in step 10 (s10cls10), while
in steps 11 and 12 the classes containing dusty star-forming
galaxies (s12cls5, s12cls6, and s12cls8) are distinguished. Based
on the physical properties of these newly separated classes in

s11–12 (see Fig. 1), we found each of them to be representa-
tive of distinct galaxy types, and therefore, we found 12 classes
as the optimal number of galaxy types reflecting a full panoply
of VIPERS dataset. We also verified that forcing the algorithm
to separate one more additional group (step 13) does not lead
to formation of a well-defined (with respect to physical galaxy
properties, see Fig. A.3) new class (s13cls12), which emerges
from 12cls11, however do not reveal distinct properties at least
in its colours.

A detailed description of the diagram A.2 will be discussed
in Krakowski et al. in prep.
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Fig. A.3. NUVrK diagrams of FEM classes 1–13. The error bars corre-
spond to the first and the third quartile of the galaxy colour distribution,
while the two half axes of the ellipses correspond to the median absolute
deviation.

Appendix B: Class membership probabilities

The FEM algorithm assigns each VIPERS galaxy to one of the
12 classes. However, the classification does not provide sharp
borders between classes. The class membership probability is
based on the distance of an object from the centre of the class
in the multidimensional feature space. Therefore, each galaxy
is characterised by the posterior probability of it belonging to
a particular class. This has allowed us to quantify the number
of galaxies with problematic classifications that could belong to
two or more classes with roughly similar probabilities.

In our case, the classes found by the FEM algorithm are well
defined, as the majority of their members are well separated from
the neighbouring classes. This is reflected by the majority of
galaxies having a high probability of being a member of the class
to which they are assigned. Therefore, almost all galaxies (94%)
have high probabilities (>50%) of belonging to their assigned
class. The remaining 6% are outliers, which do not fall into any
class.

Among the 94% of “well classified” galaxies (with >50%
probability of class membership) 2% also have >45% probabil-
ity of belonging to the second-best class, implying that those
galaxies are midway between two classes. Although the num-
bers of sources at the borders of the classes (1038) and other
outliers (2947) is very small (in total 8% of the sample), we ex-
clude them from the final set used to analyse properties of the
FEM classes.

The distributions of class membership probabilities for each
class are presented in Fig. B.1 (marked with dark blue). The
probability distribution for the final sample, including only
objects with a high first-best probability (>50%) and a low
second-best probability (<45%) is marked with light blue.
Following Krakowski et al. (2016) and Kurcz et al. (2016), the
influence of increasingly severe probability cuts on the qual-
ity of the estimated global properties of each class is checked.
No significant improvement in purity or derived properties was
found when adopting more severe cuts. Even for the purest sam-
ple, including only galaxies with class membership probabilities
higher than 80%, the global properties of each class (reaching
the highest deviation for colours, but not greater than 0.3σ) re-
main in a broad agreement with those obtained when less severe
cuts are applied. As more severe cuts (with class membership

probabilities higher than 80%) do not change our results, but re-
duce significantly the number of objects (to 56% of the sample),
in this paper, we applied less severe cuts (high first-best and low
second-best class membership probabilities).

Appendix C: Comparison of the FEM-based and

PCA-based classifications of the VIPERS

galaxies

To date galaxy classification has been mostly based on
their colours as determined from broad-band photometry (e.g.
Bell et al. 2004; Fritz et al. 2014; Siudek et al. 2017) or from
their spectra (e.g. Balogh et al. 2004a; Marchetti et al. 2013;
de Souza et al. 2017). One of the most common methods used
to distinguish different galaxy populations from their spectra
is the PCA method. In this method, each spectrum is decom-
posed into a set of representative templates, which reproduce
the most important galaxy features (spectral slope and strong
emission lines). This transformation is characterised by orthog-
onal vectors (eigenvectors), which describe the original spectra.
Marchetti et al. (2013) have used the first three eigenvalues (a1,
a2, a3), which have the highest importance in effectively rep-
resenting the data, and provide an optimal input for spectro-
scopic classification. The parameter space was further reduced
to Karhunen-Loéve angles (θ,φ; Karhunen 1947; Connolly et al.
1995). The spread of galaxies on the θ−φ plane allows us to
identify different galaxy types, as redder galaxies have smaller
θ, and φ values, while bluer galaxies are characterised by higher
values (Marchetti et al. 2013). In order to verify how our FEM
classification based on galaxy colours is relevant to spectro-
scopic galaxy classification we investigate the eigencoefficients
for FEM classes and compare the FEM-based and the PCA-
based classes.

The distribution of galaxies belonging to the different FEM
classes in the θ−φ diagram is shown in Fig. C.1. The values of θ
and φwere obtained by Marchetti et al. (2013), who made a clas-
sification of the spectra of the VIPERS galaxies from the PDR-
1 making use of the Kinney–Calzetti templates (Calzetti et al.
1994; Kinney et al. 1996), which we also use for comparison
(see the last panel in Fig. C.1).

We examine the FEM classification of the PCA-based galaxy
types from early types (E) at the bottom, through the star-
forming (Sa and Sb) populations, and up to the Sc galaxies in
the top of the diagram. Lower-z red passive galaxies (classes 1–
3) are tightly located in the bottom edge of the θ−φ diagram, in
the locus of the early-type family of galaxies (θ < 1.6 and φ< 0).
With increasing redshift, the galaxies of classes 1–3 tend to move
to the region of Sa, almost reaching the area where the Sb6 are
placed. This shows how passive galaxies evolve with cosmic
time, showing a hint of star formation activity in earlier epochs
and quenching with cosmic time. Green intermediate galaxies
(classes 4–6) tend to have a similar distribution to sources within
classes 1–3, although they show a larger scatter, especially in
φ, revealing extended star formation activity. This may be at-
tributed to them being in the intermediate stage between red
passive and blue star-forming galaxies. The star-forming galax-
ies (classes 7–11) follow a sequence on the θ−φ diagram ending
with galaxies assigned to class 11 being distributed in the top-
left corner. This area is dominated by the templates of galaxies
which are actively forming new stars (Sb, and Sc). This is espe-
cially significant for classes 10 and 11, since galaxies form a tail
beginning in the area of Sb and Sc templates with a sharp cut in
redshift.
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Fig. B.1. Distribution of the class membership probabilities for all sources (dark blue), and for the final sample of galaxies (with first-best
probability >50% and second-best <45%; in light blue) for each FEM class. The threshold (50%) used to remove outliers in the subsequent
analysis is marked with a blue dashed line. The final number of class members is given in each panel.

The presented good correlations with eigenvalues show that
we can use FEM classification based on rest-frame magnitudes
when galaxy spectra of good quality are not available.

Appendix D: Relation between FEM classes and

Hubble types

One of the methods to classify galaxy optical spectra is to exam-
ine their structures and compare them to the Hubble sequence,
or its variations. Spectral types may be derived through spectral
features or SED fitting (e.g. Sánchez Almeida & Allende Prieto
2013; Conselice et al. 2011). In this paper, we adopt the ap-
proach of Sánchez Almeida & Allende Prieto (2013), and com-
pare optical composite spectra of the 11 FEM classes with the
spectral types defined in the Atlas of Kennicutt (1992). To fit the
observed spectra against models, we first rest-framed the spec-
tra, downgraded their resolution to 14 Å (corresponding to the
typical resolution of VIPERS spectra as shown by Siudek et al.
2017), and normalised the template spectra over the wave-
length range 3800<λ(Å)< 5500. The observed spectra were
stacked within each FEM class in redshift range 0.5< z< 0.6
and normalised in the same wavelength range as the tem-
plates. For each of the 11 representative stacked spectra we
performed a χ2 minimisation over the entire Kennicutt Atlas.
Based on the χ2 we determined the best template for each FEM
class.

Figures D.1 and D.2 show the 11 FEM representative stacked
spectra of VIPERS galaxies observed in the redshift range of
0.4< z< 1.3 (marked with the black solid line). The 1σ stacked
spectrum is marked with a dashed line, and the best template is
over-plotted in red. Red passive galaxies (classes 1–3) show no
difference with respect to their spectral type, since for each rep-
resentative spectrum the best spectral template corresponds to
the Sab type of NGC 3368 galaxy from the Kennicutt Atlas (see
the first three panels in Fig. D.1). The models fit the observed
spectra remarkably well, especially the main features that can be
attributed to old stellar populations, including D4000, Hδ, and
G-band showing no difference with respect to the template spec-
trum. The family of Sab galaxies is dominated by evolved giant
stars, but there can also be found a contribution from younger
stellar populations (Kennicutt 1992). When it comes to their
visual appearance, the Sa group contains non-barred galaxies,
whereas Sb is assigned to barred galaxies, and Sab refers to in-
termediate sources, showing weak signs of a bar (an oval one
in the case of NGC3368 according to Kennicutt 1992). How-
ever, NGC3368 is also classified as unbarred Sa according to
other authors (Sandage 1961; Kormendy & Kennicutt 2004). It
should be noted that the VIPERS stacked spectra of red classes
(1–3) are very well fitted by the templates of E galaxies (espe-
cially with E1 NGC3379). Among the best-fitting templates for
stacked spectra of classes 1–3, types E/S0/Sa dominate. The tem-
plate spectra of elliptical galaxies do not show strong differences
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Fig. C.1. PCA components derived
from VIPERS spectra by Marchetti et al.
(2013) for the 11 FEM classes. VIPERS
PDR1 galaxies are marked with grey
dots. The distribution of 2688, 1428,
2185, 2674, 2201, 598, 3300, 1096,
3630, 7885, 1395 eigen coefficients
for the 11 FEM classes are colour-
coded according to their redshift
values. The location of the Kinney–
Calzetti spectra (Calzetti et al. 1994;
Kinney et al. 1996) for different galaxy
families are marked with white stars
following Marchetti et al. (2013).

with respect to spectra of Sab/Sa/S0 galaxies, as all of them
are dominated by strong absorption lines typical for red galax-
ies with old stellar populations. Those templates present strong
4000 Å breaks and strong absorption lines (G-band, Hδ line) typ-
ical for old stellar populations. The best template was assigned to
Sab mainly because of the best fit to the [OII]λ3727 line, which
is not seen in absorption as in elliptical galaxies according to
spectroscopic Atlas of Kennicutt (1992). However, the spectrum
of this intermediate family appears to have features typical for
old stellar populations (i.e. strong 4000 Å break and strong ab-
sorption line [Hδ]λ4102). The stacked spectra of green galaxies

assigned to class 4 and 5 are best fitted with the template of
the spiral galaxy Sb NGC3327. The classification of NGC3227
galaxy is tentative, as it is classified as a peculiar object within a
family of Sab sources according to de Vaucouleurs et al. (1991).
Kennicutt (1992) has assigned this template as the spectrum
of strongly interacting/merging galaxy with a Seyfert 2 nu-
cleus. Although the BPT diagram (see Fig. 10) does not con-
firm that these galaxies are Seyfert galaxies, we do not exclude
the possibility of AGNs belonging to those groups. Although the
spectra do not present any broad Balmer lines indicating clearly
the presence of active nuclei, the high-excitation emission-lines
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Fig. D.1. Comparison of the 11 FEM stacked spectra in redshift bin 0.5< z< 0.6 with the best-fit template spectra from the spectral Atlas
of Kennicutt (1992).
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Fig. D.2. Continuation of Fig. D.1. The composite spectrum of galaxies within the 12th class is built using only objects observed at z∼ 2. The
wavelength range of spectra in the spectral atlas of Kennicutt (1992) does not cover the observed wavelength range.

combined with red continuum can be interpreted as a signature
of AGN (Kennicutt 1992).

The irregular galaxy NGC3077 template shows the best fit
to the representative stacked spectrum of galaxies in classes 6
and 7. Although some of the templates of Sb and Sc families
show comparable values of χ2, neither of them are able to fit
well the Hβ, [OIII] lines and the 4000 Å break at the same time.
Irregular galaxies do not fall into a regular classification show-
ing some unusual features, mainly involving peculiar asymme-
tries or shapes, however the spectrum of NGC3077 is not dis-
tinguishable from a spectrum of normal Sc galaxy based only
on the spectrum (Kennicutt 1992). Interestingly, according to
Buta et al. (2015), this galaxy appears as an early-type galaxy
in 3.6 µm images with a very scattered dust distribution. The
spectrum is very similar to the spectra of the blue “E+A” galax-
ies, except of the presence of the [NII] and [OII] emission
lines.

Stacked spectra of star-forming galaxies in classes 8 and 9
are well fitted with the spectrum of the Sc galaxy NGC4775. Ac-
cording to the morphological properties, the NGC4775 galaxy
is classified as the late-type spiral galaxy with flocculent spi-
ral arms (Buta et al. 2015). Spectra of the Sc family qualita-
tively differ from those of earlier Hubble types with respect
to their continuum shape, absorption and emission features.

They present strong principal emission lines, like Hβ, and
[OIII].

The stacked spectrum of galaxies assigned to class 10 is best-
fit with a template spectrum of the peculiar I galaxy UGC6697.
This family is built from star-forming galaxies with much
stronger emission lines than the average strengths observed in
Sb or Sc families (3–10 times higher EW(Hα,NII); Kennicutt
1992). Therefore, class 10 represents galaxies which are under-
going global bursts of star formation.

The Im galaxy MK35 fits best the representative stacked
spectrum of class 11. This template characterises an extreme
emission-line galaxy, and might represent a new-born galaxy.
The galaxy is filled with gas and is in the phase of the global
burst of star formation.

The stacked spectrum of broad-line AGNs (class 12) is shown
in the last panel in Fig. D.1, but is not compared to the Atlas
of Kennicutt (1992) due to a lack of broad-line AGN templates.

In conclusion, the 11 FEM classes follow the Hubble se-
quence according to spectroscopic types given by the Atlas
of Kennicutt (1992). Classes 1–3 present spectra typical for
early-type galaxies, while classes 7–11 demonstrate spectra of
actively star-forming galaxies with extreme emission-line galax-
ies in the highest class, with green galaxies showing spectra of
intermediate types.
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