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Abstract

We show that Bell inequalities can be violated in the macroscopic world. The macroworld violation is
illustrated using an example involving connected vessels of water. We show that whether the violation
of inequalities occurs in the microworld or in the macroworld, it is the identification of nonidentical
events that plays a crucial role. Specifically, we prove that if nonidentical events are consistently
differentiated, Bell-type Pitowsky inequalities are no longer violated, even for Bohm’s example of two
entangled spin 1/2 quantum particles. We show how Bell inequalities can be violated in cognition,
specifically in the relationship between abstract concepts and specific instances of these concepts.
This supports the hypothesis that genuine quantum structure exists in the mind. We introduce a
model where the amount of nonlocality and the degree of quantum uncertainty are parameterized, and
demonstrate that increasing nonlocality increases the degree of violation, while increasing quantum
uncertainty decreases the degree of violation.

Dedication: Marisa always stimulated interdisciplinary research connected to quantum mechanics, and
more specifically she is very enthusiastic to the approach that we are developing in CLEA on quantum
structure in cognition. It is therefore a pleasure for us to dedicate this paper, and particularly the part
on cognition, to her for her 60 th birthday.

1 Introduction

This article investigates the violation of Bell inequalities in macroscopic situations and analyses how this
indicates the presence of genuine quantum structure. We explicitly challenge the common belief that
quantum structure is present only in micro-physical reality (and macroscopic coherent systems), and
present evidence that quantum structure can be present in the macro-physical reality. We also give an
example showing the presence of quantum structure in the mind.

Let us begin with a brief account of the most relevant historical results. In the seventies, a sequence
of experiments was carried out to test for the presence of nonlocality in the microworld described by
quantum mechanics (Clauser 1976; Faraci at al. 1974; Freeman and Clauser 1972; Holt and Pipkin 1973;
Kasday, Ullmann and Wu 1970) culminating in decisive experiments by Aspect and his team in Paris
(Aspect, Grangier and Roger, 1981, 1982). They were inspired by three important theoretical results:
the EPR Paradox (Einstein, Podolsky and Rosen, 1935), Bohm’s thought experiment (Bohm, 1951), and
Bell’s theorem (Bell 1964).

Einstein, Podolsky, and Rosen believed to have shown that quantum mechanics is incomplete, in
that there exist elements of reality that cannot be described by it (Einstein, Podolsky and Rosen, 1935;
Aerts 1984, 2000). Bohm took their insight further with a simple example: the ‘coupled spin-1

2 entity’
consisting of two particles with spin 1

2 , of which the spins are coupled such that the quantum spin vector is
a nonproduct vector representing a singlet spin state (Bohm 1951). It was Bohm’s example that inspired
Bell to formulate a condition that would test experimentally for incompleteness. The result of his efforts
are the infamous Bell inequalities (Bell 1964). The fact that Bell took the EPR result literally is evident
from the abstract of his 1964 paper:
∗To appear in Foundations of Physics, Autumn 2000
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“The paradox of Einstein, Podolsky and Rosen was advanced as an argument that quantum
theory could not be a complete theory but should be supplemented by additional variables.
These additional variables were to restore to the theory causality and locality. In this note
that idea will be formulated mathematically and shown to be incompatible with the statistical
predictions of quantum mechanics. It is the requirement of locality, or more precisely that
the result of a measurement on one system be unaffected by operations on a distant system
with which is has interacted in the past, that creates the essential difficulty.”

Bell’s theorem states that statistical results of experiments performed on a certain physical entity satisfy
his inequalities if and only if the reality in which this physical entity is embedded is local. He believed that
if experiments were performed to test for the presence of nonlocality as predicted by quantum mechanics,
they would show quantum mechanics to be wrong, and locality to hold. Therefore, he believed that
he had discovered a way of showing experimentally that quantum mechanics is wrong. The physics
community awaited the outcome of these experiments. Today, as we know, all of them agreed with
quantum predictions, and as consequence, it is commonly accepted that the micro-physical world is
incompatible with local realism.

One of the present authors, studying Bell inequalities from a different perspective, developed a concrete
example of a situation involving macroscopic ‘classical’ entities that violates Bell inequalities (Aerts 1981,
1982, 1985a,b). This example makes it possible to more fully understand the origin of the violation of
the inequalities, as well as in what sense this violation indicates the presence of quantum structure.

2 Bell Inequalities and Clauser Horne Inequalities

In this section we review Bell inequalities, as well as Clauser and Horne inequalities. We first consider
Bohm’s original example that violates these inequalities in the microworld. Finally we we put forth an
example that violates them in the macroworld.

2.1 Introduction of the Inequalities

Bell inequalities are defined with the following experimental situation in mind. We consider a physical
entity S, and four experiments e1, e2, e3, and e4 that can be performed on the physical entity S.
Each of the experiments ei, i ∈ {1, 2, 3, 4} has two possible outcomes, respectively denoted oi(up) and
oi(down). Some of the experiments can be performed together, which in principle leads to ‘coincidence’
experiments eij , i, j ∈ {1, 2, 3, 4}. For example ei and ej together will be denoted eij . Such a coincidence
experiment eij has four possible outcomes, namely (oi(up), oj(up)), (oi(up), oj(down)), (oi(down), oj(up))
and (oi(down), oj(down)). Following Bell, we introduce the expectation values Eij , i, j ∈ {1, 2, 3, 4} for
these coincidence experiments, as

Eij = +1.P (oi(up), oj(up)) + 1.P (oi(down), oj(down))
−1.P (oi(up), oj(down))− 1.P (oi(down), oj(up))

(1)

From the assumption that the outcomes are either +1 or -1, and that the correlation Eij can be written
as an integral over some hidden variable of a product of the two local outcome assignments, one derives
Bell inequalities:

|E13 − E14|+ |E23 + E24| ≤ 2 (2)

When Bell introduced the inequalities, he had in mind the quantum mechanical situation originally
introduced by Bohm (Bohm 1951) of correlated spin-1

2 particles in the singlet spin state. Here e1 and
e2 refer to measurements of spin at the left location in spin directions a1 and a2, and e3 and e4 refer
to measurements of spin at the right location in spin directions a3 and a4. The quantum theoretical
calculation in this situation, for well chosen directions of spin, gives the value 2

√
2 for the left member

of equation (3), and hence violates the inequalities. Since Bell showed that the inequalities are never
violated if locality holds for the considered experimental situation, this indicates that quantum mechanics
predicts nonlocal effects to exist (Bell 1964).

We should mention that Clauser and Horne derived other inequalities, and it is the Clauser Horne
inequalities that have been tested experimentally (Clauser and Horne 1976). Clauser and Horne consider
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the same experimental situation as that considered by Bell. Hence we have the coincidence experiments
e13, e14, e23 and e24, but instead of concentrating on the expectation values they introduce the coincidence
probabilities p13, p14, p23 and p24, together with the probabilities p2 and p4. Concretely, pij means the
probability that the coincidence experiment eij gives the outcome (oi(up), oj(up)), while pi means the
probability that the experiment ei gives the outcome oi(up). The Clauser Horne inequalities then read:

−1 ≤ p14 − p13 + p23 + p24 − p2 − p4 ≤ 0 (3)

Although the Clauser Horne inequalities are thought to be equivalent to Bell inequalities, they are of
a slightly more general theoretical nature, and lend themselves to Pitowsky’s generalization, which will
play an important role in our theoretical analysis.

2.2 The ‘Entangled Spins 1
2
’ Example

Let us briefly consider Bohm’s original example. Our physical entity S is now a pair of quantum particles
of spin-1

2 that ‘fly to the left and the right’ along a certain direction v of space respectively, and are
prepared in a singlet state ΨS for the spin (see Fig. 1). We consider four experiments e1, e2, e3, e4, that
are measurements of the spin of the particles in directions a1,a2,a3,a4, that are four directions of space
orthogonal to the direction v of flight of the particles. We choose the experiments such that e1 and e2

are measurements of the spin of the particle flying to the left and e3 and e4 of the particle flying to the
right (see Fig. 1).

v

Fig. 1 : The sin-
glet spin state ex-
ample.

We call pi the probability that the experiment ei gives outcome oi(up). According to quantum mechanical
calculation and considering the different experiments, it follows:

p1 = p2 = p3 = p4 =
1
2

(4)

For the Bohm example, the experiment e1 can be performed together with the experiments e3 and e4,
which leads to experiment e13 and e14, and the experiment e2 can also be performed together with the
experiments e3 and e4, which leads to experiments e23 and e24.

Quantum mechanically this corresponds to the expectation value 〈σ1a, σ2b〉 = −a.b which gives us
the well known predictions:

E13 = −cos6 (a1,a3) p13 = 1
2 sin2 6 (a1,a3)

2

E14 = −cos6 (a1,a4) p14 = 1
2 sin2 6 (a1,a4)

2

E23 = −cos6 (a2,a3) p23 = 1
2 sin2 6 (a2,a3)

2

E24 = −cos6 (a2,a4) p24 = 1
2 sin2 6 (a2,a4)

2

(5)

Let us first specify the situation that gives rise to a maximal violation of Bell inequalities. Let a1,a2,a3,a4

be coplanar directions such that 6 (a1,a3) = 6 (a3,a2) = 6 (a2,a4) = 45o, and 6 (a1,a4) = 135o (see Fig.
2).
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a3
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450

a1

a2

Fig. 2 : The violation of Bell inequalities
by the singlet spin state example.

Then we have E13 = E23 = E24 =
√

2
2 and E14 = −

√
2

2 . This gives:

|E13 − E14|+ |E23 + E24| = |
√

2
2 − (−

√
2

2 )|+ |
√

2
2 +

√
2

2 |
= +2

√
2

> +2
(6)

which shows that Bell inequalities are violated. To violate the Clauser Horne inequalities, we need to
make another choice for the spin directions. Let us choose a1,a2,a4 again coplanar with 6 (a1,a2) =
6 (a1,a4) = 6 (a2,a4) = 120◦ and a2 = a3 (see Fig. 3). The set of probabilities that we consider for
the Clauser Horne inequalities is then given by p1 = 1

2 , p2 = 1
2 , p3 = 1

2 , p4 = 1
2 , p12 = 3

8 , p14 = 3
8 , p23 =

0, p24 = 3
8 . This gives:

p14 − p13 + p23 + p24 − p2 − p4 = +1− 0 + 1 + 1− 1− 1
= +1
> 0

(7)

which shows that also the Clauser Horne inequalities are violated (see Fig. 3).

a3

a4

120
0

a1

a2

30
0

Fig. 3 : The violation of Clauser Horne
inequalities by the singlet spin state ex-
ample.

2.3 The ‘Vessels of Water’ Example

We now review an example of a macroscopic situation where Bell inequalities and Clauser Horne inequal-
ities are violated (Aerts 1981, 1982, 1985a,b). Following this, we analyze some aspects of the example in
a new way.

1K 2K

R2R1
S

Fig. 4 : The vessels of water example violating Bell inequalities.
The entity S consists of two vessels containing 20 liters of water
that are connected by a tube. Experiments are performed on both
sides of the entity S by introducing syphons K1 and K2 in the
respective vessels and pouring out the water and collecting it in
reference vesselsR1 andR2. Carefully chosen experiments reveal
that Bell inequalities are violated by this entity S.

Consider an entity S which is a container with 20 liters of transparent water (see Fig. 4), in a state s
such that the container is placed in the gravitational field of the earth, with its bottom horizontal. We
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introduce the experiment e1 that consists of putting a siphon K1 in the container of water at the left,
taking out water using the siphon, and collecting this water in a reference vessel R1 placed to the left of
the container. If we collect more than 10 liters of water, we call the outcome o1(up), and if we collect less
or equal to 10 liters, we call the outcome o1(down). We introduce another experiment e2 that consists of
taking with a little spoon, from the left, a bit of the water, and determining whether it is transparent.
We call the outcome o2(up) when the water is transparent and the outcome o2(down) when it is not.
We introduce the experiment e3 that consists of putting a siphon K3 in the container of water at the
right, taking out water using the siphon, and collecting this water in a reference vessel R3 to the right
of the container. If we collect more or equal to 10 liters of water, we call the outcome o3(up), and if we
collect less than 10 liters, we call the outcome o3(down). We also introduce the experiment e4 which is
analogous to experiment e2, except that we perform it to the right of the container.

Clearly, for the container of water being in state s, experiments e1 and e3 give with certainty the
outcome o1(up) and o3(up), which shows that p1 = p3 = 1. Experiments e2 and e4 give with certainty
the outcome o2(up) and o4(up), which shows that p2 = p4 = 1.

The experiment e1 can be performed together with experiments e3 and e4, and we denote the coinci-
dence experiments e13 and e14. Also, experiment e2 can be performed together with experiments e3 and
e4, and we denote the coincidence experiments e23 and e24. For the container in state s, the coincidence
experiment e13 always gives one of the outcomes (o1(up), o3(down)) or (o1(down), o3(up)), since more than
10 liters of water can never come out of the vessel at both sides. This shows that E13 = −1 and p13 = 0.
The coincidence experiment e14 always gives the outcome (o1(up), o4(up)) which shows that E14 = +1
and p14 = +1, and the coincidence experiment e23 always gives the outcome (o2(up), o3(up)) which shows
that E23 = +1 and p23 = +1. Clearly experiment e24 always gives the outcome (o2(up), o4(up)) which
shows that E24 = +1 and p24 = +1. Let us now calculate the terms of Bell inequalities,

|E13 − E14|+ |E23 + E24| = | − 1− 1|+ |+ 1 + 1|
= +2 + 2
= +4

(8)

and of the Clauser Horne inequalities,

p14 − p13 + p23 + p24 − p2 − p4 = +1− 0 + 1 + 1− 1− 1
= +1 (9)

This shows that Bell inequalities and Clauser Horne inequalities can be violated in macroscopic reality.
It is even so that the example violates the inequalities more than the original quantum example of the
two coupled spin-1

2 entities. In section 5 we analyze why this is the case, and show that this sheds new
light on the underlying mechanism that leads to the violation of the inequalities.

3 The Inequalities and Distinguishing Events

In the macroscopic example of the vessels of water connected by a tube, we can see and understand why
the inequalities are violated. This is not the case for the micro-physical Bohm example of coupled spins.
Szabo (pers. com.) suggested that the macroscopic violation of Bell inequalities by the vessels of water
example does not have the same ‘status’ as the microscopic violation in the Bohm example of entangled
spins, because events are identified that are not identical. This idea was first considered in Aerts and
Szabo, 1993. Here we investigate it more carefully and we will find that it leads to a deeper insight into
the meaning of the violation of the inequalities.

Let us state more clearly what we mean by reconsidering the vessels of water example from section
2.3, where we let the experiments e1, e2, e3 and e4 correspond with possible events A1(up) and A1(down),
A2(up) and A2(down), A3(up) and A3(down) and A4(up) and A4(down). This means that event A1(up)
is the physical event that happens when experiment e1 is carried out, and outcome o1(up) occurs. The
same for the other events. When event A1(up) occurs together with event A3(down), hence during the
performance of the experiments e12, then it is definitely a different event from event A1(up) that occurs
together with event A4(up), hence during the performance of the experiment e14. Szabo’s idea was that
this ‘fact’ would be at the origin of the violation of Bell inequalities for the macroscopic vessel of water
example. In this sense the macroscopic violation would not be a genuine violation as compared to the
microscopic.
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Of course, one is tempted to ask the same question in the quantum case: is the violation in the
microscopic world perhaps due to a lack of distinguishing events that are in fact not identical? Perhaps
what is true for the vessels of water example is also true of the Bohm example? Let us find out by
systematically distinguishing between events at the left (of the vessels of water or of the entangled spins)
that are made together with different events at the right. In this way, we get more than four events, and
unfortunately the original Bell inequalities are out of their domain of applicability. However Pitowsky
has developed a generalization of Bell inequalities where any number of experiments and events can be
taken into account, and as a consequence we can check whether the new situation violates Pitowsky
inequalities. If Pitowsky inequalities would not be violated in the vessels of water model, while for the
microscopic Bohm example they would, then this would ‘prove’ the different status of the two examples,
the macroscopic being ‘false’, due to lack of correctly distinguishing between events, and the microscopic
being genuine. Let us first introduce Pitowsky inequalities to see how the problem can be reformulated.

3.1 Pitowsky Inequalities

Pitowsky proved (see theorem 1) that the situation where Bell-type inequalities are satisfied is equivalent
to the situation where, for a set of probabilities connected to the outcomes of the considered experiments,
there exists a Kolmogorovian probability model. Or, as some may want to paraphrase it, the proba-
bilities are classical (Pitowsky 1989). To put forward Pitowsky inequalities, we have to introduce some
mathematical concepts. Let S be a set of pairs of integers from {1, 2, ..., n} that is,

S ⊆ {{i, j} | 1 ≤ i < j ≤ n} (10)

Let R(n, S) denote the real space of all functions f : {1, 2, ..., n}∪S 7→R. We shall denote vectors in R(n, S)
by f = (f1, f2, ...fn, ...fij , ...), where the fij appear in a lexicographic order on the i, j′s. Let {0, 1}n be
the set of all n-tuples of zeroes and one’s. We shall denote elements of {0, 1}n by ε = (ε1, ε2, ..., εn) where
εj ∈ {0, 1}. For each ε ∈ {0, 1}n let uε be the following vector in R(n, S):

uεj = εj 1 ≤ j ≤ n (11)
uεij = εiεj {i, j} ∈ S (12)

The classical correlation polytope C(n, S) is the closed convex hull in R(n, S) of all 2n possible vectors
uε, ε ∈ {0, 1}n:

Theorem 1 (Pitowsky, 1989) Let p = (p1, ..., pn, ..., pij , ...} be a vector in R(n, S). Then p ∈ C(n, S)
if there is a Kolmogorovian probability space (X,M, µ) and (not necessarily distinct) events A1, A2, ..., An ∈
M such that:

pi = µ(Ai) 1 ≤ i ≤ n pij = µ(Ai ∩Aj) {i, j} ∈ S (13)

Where X is ..., M is the space of events and µ the probability measure

To illustrate the theorem and at the same time the connection with Bell inequalities and the Clauser
Horne inequalities, let us consider some specific examples of Pitowsky’s theorem.

The case n = 4 and S = {{1, 3} , {1, 4} , {2, 3} , {2, 4}}. The condition p ∈ C(n, S) is then equivalent to
the Clauser-Horne inequalities (see (3)):

0 ≤ pij ≤ pi ≤ 1
0 ≤ pij ≤ pj ≤ 1 i = 1, 2 j = 3, 4
pi + pj − pij ≤ 1

−1 ≤ p13 + p14 + p24 − p23 − p1 − p4 ≤ 0
−1 ≤ p23 + p24 + p14 − p13 − p2 − p4 ≤ 0
−1 ≤ p14 + p13 + p23 − p24 − p1 − p3 ≤ 0
−1 ≤ p24 + p23 + p13 − p14 − p2 − p3 ≤ 0

(14)

6



The case n = 3 and S = {{1, 2}, {1, 3}, {2, 3}}. We find then the following inequalities equivalent to the
condition p ∈ C(n, S):

0 ≤ pij ≤ pi ≤ 1
0 ≤ pij ≤ pj ≤ 1 1 ≤ i < j ≤ 3
pi + pj − pij ≤ 1

p1 + p2 + p3 − p12 − p13 − p23 ≤ 1 ≤ 0
p1 − p12 − p13 + p23 ≤ 0
p2 − p12 − p23 + p13 ≤ 0
p3 − p13 − p23 + p12 ≤ 0

(15)

It can be shown that these inequalities are equivalent to the original Bell inequalities (Pitowsky 1989).

3.2 The Genuine Quantum Mechanical Nature of the Macroscopic Violations

Let us now introduce a new situation wherein the events are systematically distinguished. For the vessels
of water example, we introduce the following events: Event E1 corresponds to the physical process of
experiment e1, leading to outcome o1(up), performed together with experiment e3 leading to outcome
o3(up). Event E2 corresponds to the physical process of experiment e1 leading to outcome o1(up),
performed together with experiment e4, leading to outcome o4(up). In order to introduce the other
events and avoid repetition, we abbreviate event E2 as follows:

E2 = [O(e1) = o1(up) & O(e4) = o4(up)]

The other events can then be written analogously as:

E3 = [O(e2) = o2(up) & O(e3) = o3(up)] E4 = [O(e2) = o2(up) & O(e4) = o4(up)]
E5 = [O(e3) = o3(up) & O(e1) = o1(up)] E6 = [O(e3) = o3(up) & O(e2) = o2(up)]
E7 = [O(e4) = o4(up) & O(e1) = o1(up)] E8 = [O(e4) = o4(up) & O(e2) = o2(up)]

(16)

The physical process of the joint experiment e13 corresponds then to the joint event E1∧E5, the physical
process of the joint experiment e14 to the joint event E2∧E7, the physical process of the joint experiment
e23 to the joint event E3 ∧ E6, and the physical process of the joint experiment e24 to the joint event
E4 ∧ E8.

Having distinguished the events in this way, we are certain the different joint experiments give rise to
real joint events. We can now apply Pitowsky’s theorem to the set of events E1, E2, E3, E4, E5, E6, E7, E8, E1∧
E5, E2 ∧ E7, E3 ∧ E6, E4 ∧ E8.

Suppose that there is an equal probability of experiment e1 being performed with e3 or e4, and
similarly for the joint performance of e2 with e3 or e4. According to this assumption, the observed
probabilities are:

p(E1) = p(E5) = 0
p(E2) = p(E3) = p(E4) = p(E6) = p(E7) = p(E8) = 1

2
p(E1 ∧ E5) = 0

p(E2 ∧ E7) = p(E3 ∧ E6) = p(E4 ∧ E8) = 1
4

(17)

The obtained probability vector is then p = (0, 1
2 ,

1
2 ,

1
2 , 0,

1
2 ,

1
2 ,

1
2 , 0,

1
4 ,

1
4 ,

1
4 ). Applying Pitowsky’s ap-

proach, we could directly calculate that this probability vector is contained in the convex hull of the
corresponding space, and hence as a consequence of Pitowsky’s theorem it allows a Kolmogorovian prob-
ability representation (Aerts and Szabo 1993). This means that after the distinction between events has
been made, the vessels of water example no longer violates Pitowsky inequalities. An important question
remains: would the violation of the inequalities similarly vanish for the microscopic spin example? Let
us, exactly as we have done in the vessels of water example, distinguish the events we are not certain we
can identify, for the case of the correlated spin situation. Again we find 8 events: Event E1 corresponds
to the physical process of experiment e1 leading to outcome o1(up), performed together with experiment
e3, leading to outcome o3(up). Analogously, events E2, E3, E3, E4, E5, E6, E7, E8 are introduced.
Again, the physical process of the joint experiment e13 corresponds then to the joint event E1 ∧ E5, the
physical process of the joint experiment e14 to the joint event E2 ∧ E7, the physical process of the joint
experiment e23 to the joint event E3 ∧ E6, and the physical process of the joint experiment e24 to the
joint event E4 ∧ E8.
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Suppose that directions a1 or a2, as well as a3 or a4, are chosen with the same probability at both
sides. According to this assumption the observed probabilities are:

pi = p(Ei) = 1
4 1 ≤ i ≤ 8

p15 = p(E1 ∧ E5) = 1
4sin2 6 (a1,a3) = 3

16
p27 = p(E2 ∧ E7) = 1

4sin2 6 (a1,a4) = 3
16

p36 = p(E3 ∧ E6) = 1
4sin2 6 (a2,a3) = 0

p48 = p(E4 ∧ E8) = 1
4sin2 6 (a2,a4) = 3

16

(18)

The question is whether the correlation vector p = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
16 ,

3
16 , 0,

3
16 ) admits a Kol-

mogorovian representation. To answer this question, we have to check whether it is inside the corre-
sponding classical correlation polytope C(8, S). There are no derived inequalities for n = 8, expressing
the condition p ∈ C(n, S). Lacking such inequalities we must directly check the geometric condition
p ∈ C(n, S). We were able to do this for the vessels of water example because of the simplicity of the
correlation vector, but we had no general way to do this. It is however possible to prove the existence of
a Kolmogorovian representation in a general way:

Theorem 2 Let events E1, E2, ..., En and a set of indices S be given such that non of the indices appears
in two different elements of S. Assume that for each pair {i, j} ∈ S the restricted correlation vector
p{i,j} = (p(Ei), p(Ej), p(Ei∧Ej)) has an (X{i,j}, µ{i,j}) Kolmogorovian representation. Then the product
space (X{i1,j1} ×X{i2,j2} × ...×X{i|S|,j|S|}, µ{i1,j1} × µ{i2,j2} × ...× µ{i|S|,j|S|}) provides a Kolmogorovian
representation for the whole correlation vector p.

This theorem shows that if the distinctions that we have explained are made, the inequalities correspond-
ing to the situation will no longer be violated. This also means that we can state that the macroscopic
violation, certainly with respect to the distinction or identification of events, is as genuine as the micro-
scopic violation of the inequalities.

4 The Violation of Bell Inequalities in Cognition

In this section we show how Bell inequalities are violated in the mind in virtue of the relationship between
abstract concepts and specific instances of them. We start with a thought experiment that outlines a
possible scenario wherein this sort of violation of Bell inequalities reveals itself. This example was first
presented in Aerts and Gabora 1999. We then briefly discuss implications for cognition.

4.1 How Concepts Violate Bell inequalities

To make things more concrete we begin with an example. Keynote players in this example are the two
cats, Glimmer and Inkling, that live at our research center (Fig. 5). The experimental situation has been
set up by one of the authors (Diederik) to show that the mind of another of the authors (Liane) violates
Bell inequalities. The situation is as follows. On the table where Liane prepares the food for the cats is
a little note that says: ‘Think of one of the cats now’.

Fig 5: Inkling (left) and Glimmer (right).
This picture was taken before Glimmer
decided that the quantum cat superstar
life was not for him and started to remove
his bell.

To show that Bell inequalities are violated we must introduce four experiments e1, e2, e3 and e4. Ex-
periment e1 consists of Glimmer showing up at the instant Liane reads the note. If, as a result of the
appearance of Glimmer and Liane reading the note, the state of her mind is changed from the more
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general concept ‘cat’ to the instance ‘Glimmer’, we call the outcome o1(up), and if it is changed to the
instance ‘Inkling’, we call the outcome o1(down). Experiment e3 consists of Inkling showing up at the
instant that Liane reads the note. We call the outcome o3(up) if the state of her mind is changed to the
instance ‘Inkling’, and o3(down) if it is changed to the instance ‘Glimmer’, as a result of the appearance
of Inkling and Liane reading the note. The coincidence experiment e13 consists of Glimmer and Inkling
both showing up when Liane reads the note. The outcome is (o1(up), o3(down)) if the state of her mind
is changed to the instance ‘Glimmer’, and (o1(down), o3(up)) if it changes to the instance ‘Inkling’ as a
consequence of their appearance and the reading of the note.

Now it is necessary to know that occasionally the secretary puts bells on the cats’ necks, and occasion-
ally she takes the bells off. Thus, when Liane comes to work, she does not know whether or not the cats
will be wearing bells, and she is always curious to know. Whenever she sees one of the cats, she eagerly
both looks and listens for the bell. Experiment e2 consists of Liane seeing Inkling and noticing that she
hears a bell ring or doesn’t. We give the outcome o2(up) to the experiment e2 when Liane hears the
bell, and o2(down) when she does not. Experiment e4 is identical to experiment e2 except that Inkling
is interchanged with Glimmer. The coincidence experiment e14 consists of Liane reading the note, and
Glimmer showing up, and her listening to whether a bell is ringing or not. It has four possible outcomes:
(o1(up), o4(up)) when the state of Liane’s mind is changed to the instance ‘Glimmer’ and she hears a
bell; (o1(up), o4(down)) when the state of her mind is changed to the instance ‘Glimmer’ and she does
not hear a bell; (o1(down), o4(up)) when the state of her mind is changed to the instance ‘Inkling’ and
she hears a bell and (o1(down), o4(down)) when the state of her mind is changed to the instance ‘Inkling’
and she does not hear a bell. The coincidence experiment e23 is defined analogously. It consists of Liane
reading the note and Inkling showing up and her listening to whether a bell is ringing or not. It too has
four possible outcomes: (o2(up), o3(up)) when she hears a bell and the state of her mind is changed to
the instance ‘Inkling’; (o2(up), o3(down)) when she hears a bell and the state of her mind is changed to
the instance ‘Glimmer’; (o1(down), o3(up)) when she does not hear a bell and the state of her mind is
changed to the instance ‘Inkling’ and (o1(down), o3(down)) when she does not hear a bell and the state
of her mind is changed to the instance ‘Glimmer’. The coincidence experiment e24 is the experiment
where Glimmer and Inkling show up and Liane listens to see whether she hears the ringing of bells. It
has outcome (o2(up), o4(up)) when both cats wear bells, (o2(up), o4(down)) when only Inkling wears a
bell, (o2(down), o4(up)) when only Glimmer wears a bell and (o2(down), o4(down)) when neither cat
wears a bell.

We now formulate the necessary conditions such that Bell inequalities are violated in this experiment:

(1) The categorical concept ‘cat’ is activated in Liane’s mind.

(2) She does what is written on the note.

(3) When she sees Glimmer, there is a change of state, and the categorical concept ‘cat’ changes to the
instance ’Glimmer’, and when she sees Inkling it changes to the instance ’Inkling’.

(4) Both cats are wearing bells around their necks.

The coincidence experiment e13 gives outcome (o1(up), o3(down)) or (o1(down), o3(up)) because indeed
from (2) it follows that Liane will think of Glimmer or Inkling. This means that E13 = −1. The
coincidence experiment e14 gives outcome (o1(up), o4(up)), because from (3) and (4) it follows that she
thinks of Glimmer and hears the bell. Hence E14 = +1. The coincidence experiment e23 also gives
outcome (o2(up), o3(up)), because from (3) and (4) it follows that she thinks of Inkling and hears the
bell. Hence E23 = +1. The coincidence experiment e24 gives (o2(up), o4(up)), because from (4) it follows
that she hears two bells. Hence E24 = +1. As a consequence we have:

|E13 − E14|+ |E23 + E24| = +4 (19)

The reason that Bell inequalities are violated is that Liane’s state of mind changes from activation of the
abstract categorical concept ‘cat’, to activation of either ‘Glimmer’ or ‘Inkling’. We can thus view the
state ‘cat’ as an entangled state of these two instances of it.

We end this section by saying that we apologize for the pun on Bell’s name, but it seemed like a good
way to ring in these new ideas.
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4.2 The Nonlocality of Concepts

Our example shows that concepts in the mind violate Bell inequalities, and hence entail nonlocality in the
sense that physicists use the concept. This violation of Bell inequalities takes place within the associative
network of concepts and episodic memories constituting an internal model of reality, or worldview. We
now briefly investigate how this cognitive source of nonlocality arises, and its implications for cognition
and our understanding of reality.

As a first approximation, we can say that the nonlocality of stored experiences and concepts arises
from their distributed nature. Each concept is stored in many memory locations; likewise, each location
participates in the storage of many concepts. In order for the mind to be capable of generating a stream of
meaningfully-related yet potentially creative remindings, the degree of this distribution must fall within
an intermediate range. Thus, a given experience activates not just one location in memory, nor does it
activate every memory location to an equal degree, but activation is distributed across many memory
locations, with degree of activation falling with distance from the most activated one. Fig. 6 shows
schematically how this feature of memory is sometimes modeled in neural networks using a radial basis
function (RBF) (Hancock et al., 1991; Holden and Niranjan, 1997; Lu et al. 1997; Willshaw and Dayan,
1990).

Fig 6: Highly schematized diagram of a
stimulus input activating two dimensions
of a memory or conceptual space. Each
vertex represents a possible memory loca-
tion, and black dots represent actual lo-
cation in memory. Activation is maximal
at the center k of the RBF, and tapers off
in all directions according to a Gaussian
distribution of width s.

Memory is also content addressable, meaning that there is a systematic relationship between the content
of an experience, and the place in memory where it gets stored (and from which material for the next
instant of experience is sometimes evoked). Thus not only is it is not localized as an episodic memory
or conceptual entity in conceptual space, but it is also not localized with respect to its physical storage
location in the brain.

4.3 The Relationship between Nonlocality and Degree of Abstraction

The more abstract a concept, the greater the number of other concepts that are expected to fall within
a given distance of it in conceptual space, and therefore be potentially evoked by it. For example, Fig. 7
shows how the concept of ‘container’ is less localized than the concept of ‘bag’. The concept of ‘container’
does not just activate concepts like ‘cup’, it derives its very existence from them. Similarly, once ‘cup’
has been identified as an instance of ‘container’, it is forever after affected by it. To activate ‘bag’ is
to instantaneously affect ‘container’, which is to instantaneously affects the concept ‘thing’, from which
‘container’ derives it’s identity, and so forth.

Fig 7: A four-dimensional hypercube that schematically
represents a segment of memory space. The stimulus di-
mensions ‘MADE OF PAPER’, ‘FLIMSY, ‘HAS HOLES’
and ‘CONCAVE’ lie on the x1, x2, x3, and x4 axes re-
spectively. Three concepts are stored here: ‘cup’, ‘bag’,
and ‘bag with holes’. Black-ringed dots represent centers
of distributed regions where they are stored. Fuzzy white
ball shows region activated by ‘cup’. Emergence of the
abstract concept ‘container’ implicit in the memory space
(central yellow region) is made possible by the constrained
distribution of activation.
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An extremely general concept such as ‘depth’ is probably even more nonlocalized. It is latent in mental
representations as dissimilar as ‘deep swimming pool’, ‘deep-fried zucchini’, and ‘deeply moving book’;
it is deeply woven throughout the matrix of concepts that constitute one’s worldview. In (Gabora
1998, 1999, 2000) one author, inspired by Kauffman’s (1993) autocatalytic scenario for the origin of life,
outlines a scenario for how episodic memories could become collectively entangled through the emergence
of concepts to form a hierarchically structured worldview. The basic idea goes as follows. Much as
catalysis increases the number of different polymers, which in turn increases the frequency of catalysis,
reminding events increase concept density by triggering abstraction-the formation of abstract concepts or
categories such as ‘tree’ or ‘big’-which in turn increases the frequency of remindings. And just as catalytic
polymers reach a critical density where some subset of them undergoes a phase transition to a state where
there is a catalytic pathway to each polymer present, concepts reach a critical density where some subset
of them undergoes a phase transition to a state where each one is retrievable through a pathway of
remindings events or associations. Finally, much as autocatalytic closure transforms a set of molecules
into an interconnected and unified living system, conceptual closure transforms a set of memories into
an interconnected and unified worldview. Episodic memories are now related to one another through a
hierarchical network of increasingly abstract – and what for our purposes is more relevant – increasingly
nonlocalized, concepts.

4.4 Quantum Structure and the Mind

Over the past several decades, numerous attempts have been made to forge a connection between quantum
mechanics and the mind. In these approaches, it is generally assumed that the only way the two could
be connected is through micro-level quantum events in the brain exerting macro-level effects on the
judgements, decisions, interpretations of stimuli, and other cognitive functions of the conscious mind.
From the preceding arguments, it should now be clear that this is not the only possibility. If quantum
structure can exist at the macro-level, then the process by which the mind arrives at judgements, decisions,
and stimulus interpretations could itself be quantum in nature.

We should point out that we are not suggesting that the mind is entirely quantum. Clearly not all
concepts and instances in the mind are entangled or violate Bell inequalities. Our claim is simply that
the mind contains some degree of quantum structure. In fact, it has been suggested that quantum and
classical be viewed as the extreme ends of a continuum, and that most of reality may turn out to lie
midway in this continuum, and consist of both quantum and classical aspects in varying proportions
(Aerts 1992; Aerts and Durt 1994).

5 The Presence of Quantum Probability and Bell Inequalities

We have seen that quantum and macroscopic systems can violate Bell inequalities. A natural question
that arises is the following: is it possible to construct a macroscopical system that violates Bell inequalities
in exactly the same way as a photon singlet state will? Aerts constructed a very simple model that does
exactly this (Aerts 1991). This model represents the photon singlet state before measurement by means
of two points that live in the center of two separate unit spheres, each one following its own space-time
trajectory (in accordance with the conservation of linear and angular momentum), but the two points
in the center remain connected by means of a rigid but extendable rod (Fig. 8). Next the two spheres
reach the measurement apparatuses. When one side is measured, the measurement apparatus draws one
of the entities to one of the two possible outcomes with probability one half. However, because the rod is
between the two entities, the other entity at the center of the other sphere is drawn toward the opposite
side of the sphere as compared with the first entity. Only then this second entity is measured. This is
done by attaching a piece of elastic between the two opposite points of the sphere that are parallel with
the measurement direction chosen by the experimenter for this side. The entity falls onto the elastic
following the shortest path (i.e.. orthogonal) and sticks there. Next the elastic breaks somewhere and
drags the entity towards one of the end points (Fig. 9). To calculate the probability of the occurrence
of one of the two possible outcomes of the second measurement apparatus, we assume there is a uniform
probability of breaking on the elastic. Next we calculate the frequency of the coincidence counts and
these turn out to be in exact accordance with the quantum mechanical prediction.
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a

b

Fig 8: Symbolic representation of the sin-
glet state in the model as two dots in the
centers of their respective spheres. Also
shown is the connecting rod and the mea-
surement directions chosen at each loca-
tion a and b.

There are two ingredients of this model that seem particularly important. First we have the rigid rod,
which shows the non-separable wholeness of the singlet coincidence measurement (i.e. the role of the
connecting tube between the vessels of water, or the associative pathways between concepts). Second,
we have the elastic that breaks which gives rise to the probabilistic nature (the role of the siphon in the
vessels of water, or the role of stimulus input in the mind) of the outcomes. These two features seem more
or less in accordance with the various opinions researchers have about the meaning of the violation of
Bell inequalities. Indeed, some have claimed that the violation of Bell inequalities is due to the non-local
character of the theory, and hence in our model to the ‘rigid but extendable rod’, while others have
attributed the violation not to any form of non-locality, but rather to the theory being not ‘realistic’
or to the intrinsic indeterministic character of quantum theory, and hence to the role of the elastic in
our model. As a consequence, researchers working in this field now carefully refer to the meaning of the
violation as the “non-existence of local realism”. Because of this dichotomy in interpretation we were
curious what our model had to say on this issue. To explore this we extended the above model with the
addition of two parameterizations, each parameter allowing us to minimize or maximize one of the two
aforementioned features (Aerts D., Aerts S., Coecke B., Valckenborgh F., 1995). The question was of
course, how Bell inequalities would respond to the respective parameterizations. We will briefly introduce
the model and the results.

5.1 The Model

The way the parameterized model works is exactly analogous to the measurement procedure described
above, with two alterations. First, we impose the restriction that the maximum distance the rigid rod
can ‘pull’ the second photon out of the center is equal to some parameter called ρ ∈ [0, 1]. Hence
setting ρ equal to 1 gives us the old situation, while putting ρ equal to zero means we no longer have a
correlation between the two measurements. Second, we allow the piece of elastic only to break inside a
symmetrical interval [−ε, ε]. Setting ε equal to 1 means we restore the model to the state it was in before
parameterization. Setting ε equal to zero means we have a classical ‘deterministic’ situation, since the
elastic can only break in the center (there remains the indeterminism of the classical unstable equilibrium,
because indeed the rod can still move in two ways, up or down). In fact, to be a bit more precise, we
have as a set of states of the entity the set of couples

q ∈ Q = {(s1, s2)|s1, s2, c ∈ R3, ||s1 − c|| ≤ ρ, ||s2 + c|| ≤ ρ, ρ ∈ [0, 1]} (20)

Each element of the couple belongs to a different sphere with center c (resp −c due to linear momentum
conservation) and whose radius is parameterized by the correlation parameter ρ. At each side we have a
set of measurements

e1, e2 ∈M = {γn|n ∈ R3, ||n|| = 1, γ ∈ [−ε,+ε], ε ∈ [0, 1]} (21)

The direction n can be chosen arbitrarily by the experimenter at each side and denotes the direction of
the polarizer. (Of course, for the sake of demonstrating the violation of Bell inequalities, the experimenter
will choose at random between the specific angles that maximize the value the inequality takes). The
value that the parameter γ takes represents the point of rupture of the elastic and is unknown in so
far that it can take any value inside the interval [−ε,+ε], and it will do so with a probability that is
uniform over the entire interval [−ε,+ε]. Hence the probability density function related to γ is a constant:
pdf(γ) = 1/2ε. This represents our lack of knowledge concerning the specific measurement that occurred,
and is the sole source of indeterminism. As we will show later, if we take γ to vary within [−1,+1] we have
a maximal lack of knowledge about the measurement and we recover the exact quantum predictions. As
before, the state q of the entity before measurement is given by the centers of the two spheres. The first
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measurement e1 projects one center, say s1 orthogonally onto the elastic that is placed in the direction
a chosen by the experimenter at location A and that can only break in the interval [−ε,+ε]. Because
it will always fall in the middle of the elastic, and because we assume a uniform probability of breaking
within the breakable part of the elastic, the chance that the elastic pulls s1 up is equal to 1/2 (as is the
probability of it going down). Which side s1 is to go depends on the specific point of rupture. Be that
as it may, the experimenter records the outcome on his side of the experiment as ’up’ or ’down’. At the
other side of the experiment, call it location B, s2 is pulled towards the opposite side of s1 because of
the rigid rod connecting the s1 and s2. The maximum distance it can be pulled away from the center is
equal to ρ, and hence the old s2 transforms to s2 = −ρ a. Next, experiment e2 is performed in exactly
the same way as e1. At location B, the experimenter chooses a direction, say b, and attaches the elastic
in this direction. Again s2 is projected orthogonally onto the elastic and the elastic breaks. The main
difference between the first and the second measurement is that s2 is no longer at the center, but rather
at −ρ a.b.

a

b

ρ

ε

−ε

a

b

ρ

ε

−ε

Fig 9: The situation immediately before
and after the measurement at one side
(left in this case) has taken place. In
the first picture the breakable part of the
elastic is shown (i.e. the interval [−ε,+ε]
on the elastic) and the maximum radius
ρ. In the second picture, we see how
the measurement at location a has al-
tered the state at location b because of
the connecting rod.

5.2 Calculating the Probabilities and Coincidence Counts

There are three qualitatively different parts of the elastic where s2 can end up after projection: the
unbreakable part between [−ρ,−ε], the breakable part between [−ε,+ε] and the unbreakable part between
[+ε,+ρ]. If s2 is in [−ρ,−ε], then it does not matter where the elastic breaks: s2 will always be dragged
’up’ and likewise, if s2 is in [+ε,+ρ], the outcome will always be ’down’. If, however, s2 is in [−ε,+ε],
then the probability of s2 being dragged up is equal to the probability that the elastic breaks somewhere
in [−ρ a.b,−ε]. This is the Lebesgue measure of the interval divided by the total Lebesgue measure of
the elastic:

P (e2 = up|s2 = −ρ a.b) =
ε− ρ a.b

2ε
(22)

This settles the probabilities related to s2. As before, we define the coincidence experiment eij as having
four possible outcomes, namely (oi(up), oj(up)), (oi(up), oj(down)), (oi(down), oj(up)) and (oi(down), oj(down))
(See section 2). Following Bell, we introduce the expectation values Eij , i, j ∈ {1, 2, 3, 4} for these coin-
cidence experiments, as
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Eij = +1.P (oi(up), oj(up)) + 1.P (oi(down), oj(down))
−1.P (oi(up), oj(down))− 1.P (oi(down), oj(up))

(23)

One easily sees that the expectation value related to the coincidence counts also splits up in three
parts.

• −ε < ρ a.b < +ε:

In this case we have P (oi(up), oj(up)) = P (oi(down), oj(down)) = ε−ρ a.b
4ε and P (oi(up), oj(down)) =

P (oi(down), oj(up)) = ε+ρ a.b
4ε . Hence the expectation value for the coincidence counts becomes

E(a,b) = −ρ a.b
ε

(24)

We see that putting ρ = ε = 1 we get E(a,b) = −a.b, which is precisely the quantum prediction.

• ρ a.b ≥ +ε:

In this case we have P (oi(up), oj(up)) = P (oi(down), oj(down)) = 0 and P (oi(up), oj(down)) =
P (oi(down), oj(up)) = 1/2. Hence the expectation value for the coincidence counts becomes

E(a,b) = −1 (25)

• ρ a.b ≤ −ε: In this case we have P (oi(up), oj(up)) = P (oi(down), oj(down)) = 1/2 and P (oi(up), oj(down)) =
P (oi(down), oj(up)) = 0. Hence the expectation value for the coincidence counts becomes

E(a,b) = +1 (26)

5.3 The Violation of Bell Inequalities

Let us now see what value the left hand side of the Bell inequality takes for our model for the specific angles
that maximize the inequality. For these angles a.b = π/4 and a.b = 3π/4, the condition −ε < ρ a.b < ε

is satisfied only if
√

2
2 < ε

ρ . In this case, we obtain :

E(a,b) = −E(a,b′) = E(a′,b) = E(a′,b′) = −ρ
ε

√
2

2
(27)

If, on the other hand we would have chosen ε and ρ such that
√

2
2 ≥ ε

ρ we find:

E(a,b) = −E(a,b′) = E(a′,b) = E(a′,b′) = −1 (28)

We can summarize the results of all foregoing calculations in the following equation:

|E(a,b)− E(a,b′)|+ |E(a′,b) + E(a′,b′)| =
{

2
√

2ρ
ε

ε
ρ >

√
2

2

4 ε
ρ ≤

√
2

2

}
(29)

For ε = 0, we have two limiting cases that can easily be derived: for ρ = 0 the left side of the inequality
takes the value 0, while for ρ 6= 0 it becomes 4.

For what couples ρ, ε do we violate the inequality? Clearly, we need only consider the case ε
ρ >

√
2

2 . Demanding that the inequality be satisfied, we can summarize our findings in the following simple
condition:

ε ≤
√

2 ρ (30)

This result indicates that the model leaves no room for interpretation as to the source of the violation:
for any ρ < 1√

2
, we can restore the inequality by increasing the amount of lack of knowledge on the

interaction between the measured and the measuring device, that is by increasing ε. The only way to
respect Bell inequalities for all values of ε is by putting ρ = 0. Likewise, for any ρ > 1√

2
it becomes

impossible to restore the validity of the Bell inequalities. The inevitable conclusion is that the correlation
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is the source of the violation. The violation itself should come as no surprise, because we have identified
ρ as the correlation between the two measurements, which is precisely the non-local aspect. This is also
obvious from the fact that it is this correlation that makes E(a,b) not representable as an integral of the
form

∫
A(a, λ)B(b, λ) dλ as Bell requires for the derivation of the inequality. What may appear surprising

however, is the fact that increasing the indeterminism (increasing ε), decreases the value the inequality
takes! For example, if we take ε = 0 and ρ = 1, we see that the value of the inequality is 4, which is the
largest value the inequality possibly can have, just as in the case of the vessels of water model.

6 Conclusion

We have presented several arguments to show that Bell inequalities can be genuinely violated in situations
that do not pertain to the microworld. Of course, this does not decrease the peculiarity of the quantum
mechanical violation in the EPRB experiment. What it does, is shed light on the possible underlying
mechanisms and provide evidence that the phenomenon is much more general than has been assumed.

The examples that we have worked out – the ‘vessels of water’, the ‘concepts in the mind’, and
the ‘spheres connected by a rigid rod’ – each shed new light on the origin of the violation of Bell
inequalities. The vessels of water and the spheres connected by a rigid rod examples, show that ‘non-local
connectedness’ plays an essential role in bringing the violation about. The spheres connected by a rigid
rod example shows that the presence of quantum uncertainty does not contribute to the violation of the
inequality; on the contrary, increasing quantum uncertainty decreases the violation.

All three examples also reveal another aspect of reality that plays an important role in the violation
of Bell inequalities: the potential for different actualizations that generate the violation. The state of the
20 liters of water as present in the connected vessels is potentially, but not actually, equal to ‘5 liters’ plus
‘15 liters’ of water, or ‘11 liters’ plus ‘9 liters’ of water, etc. Similarly, we can say that the concept ‘cat’ is
potentially equal to instances such as our cats, ‘Glimmer’ and ‘Inkling’. It is this potentiality that is the
‘quantum aspect’ in our nonmicroscopic examples, and that allows for a violation of Bell-type inequalities.
Indeed, as we know, this potentiality is the fundamental characteristic of the superposition state as it
appears in quantum mechanics. This means that the aspect of quantum mechanics that generates the
violation of Bell inequalities, as identified in our examples, is the potential of the considered state. In
the connected vessels example, it is the potential ways of dividing up 20 liters of water. In the concepts
in the mind example, it is the potential instances evoked by the abstract concept ‘cat’. In the rigid rod
example, it is the possible ways in which the rod can move around its center.
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