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The ViReflow pipeline enables user 
friendly large scale viral consensus 
genome reconstruction
Niema Moshiri1*, Kathleen M. Fisch2,3, Amanda Birmingham2, Peter DeHoff3, 
Gene W. Yeo4,5,6, Kristen Jepsen6, Louise C. Laurent3 & Rob Knight1,7,8,9

Throughout the COVID-19 pandemic, massive sequencing and data sharing efforts enabled the real-
time surveillance of novel SARS-CoV-2 strains throughout the world, the results of which provided 
public health officials with actionable information to prevent the spread of the virus. However, 
with great sequencing comes great computation, and while cloud computing platforms bring high-
performance computing directly into the hands of all who seek it, optimal design and configuration of 
a cloud compute cluster requires significant system administration expertise. We developed ViReflow, 
a user-friendly viral consensus sequence reconstruction pipeline enabling rapid analysis of viral 
sequence datasets leveraging Amazon Web Services (AWS) cloud compute resources and the Reflow 
system. ViReflow was developed specifically in response to the COVID-19 pandemic, but it is general 
to any viral pathogen. Importantly, when utilized with sufficient compute resources, ViReflow can 
trim, map, call variants, and call consensus sequences from amplicon sequence data from 1000 SARS-
CoV-2 samples at 1000X depth in < 10 min, with no user intervention. ViReflow’s simplicity, flexibility, 
and scalability make it an ideal tool for viral molecular epidemiological efforts.

Molecular epidemiology uses viral genome sequences from patient samples to provide real-world public health 
insights about  outbreaks1. Improved throughput of and access to sequencing technologies has dramatically 
increased viral sequence data production: one sequencing run on an Illumina NovaSeq S4 flow cell can yield raw 
viral sequence data from > 1500 patient  samples2, and as of October 2021, over 4 million complete SARS-CoV-2 
genomes have been deposited to the Global Initiative on Sharing All Influenza Data (GISAID) EpiCoV  database3.

In a rapidly-growing pandemic, the time from raw sequence data to results (i.e., high-confidence variant calls 
and consensus sequences) is of utmost importance to implementing public health interventions in real-time. 
However, the sheer magnitude of raw viral sequence data that is collected poses a significant computational 
challenge. Many labs have access to sequencing technologies, but relatively few have experience with high-
performance computing resources. Cloud computing platforms such as Amazon Web Services (AWS) are acces-
sible and relatively inexpensive, but the optimal design and configuration of a cloud compute cluster typically 
requires systems administration expertise, and suboptimal cloud compute configuration can result in delays in 
time-to-results as well as in excess compute costs.

In this article, we present ViReflow, a user-friendly viral consensus sequence reconstruction and analysis 
pipeline enabling rapid analysis of large-scale viral sequence datasets using AWS and the Reflow  system4. Reflow 
was chosen for its ability to automatically dynamically scale resource allocations on AWS without intervention 
from the user. To our knowledge, the only existing tools with similar functionality to ViReflow are V-pipe5, the 
nf-core/viralrecon  pipeline6,  HAVoC7, and  ViralFlow8. A comprehensive pipeline comparison can be found in 
Table 1. In addition to being the only pipeline that supports viral lineage  assignment9 beyond just  Pangolin10 (via 
 VirStrain11), the key benefits of ViReflow over the existing tools are its automatic cloud compute resource scaling 
for rapid cost-optimized parallel processing and its intuitive GUI. ViReflow’s simplicity and ease-of-use is criti-
cal to adoption by public health professionals who may have limited experience with command line interfaces.
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Methods
The ViReflow pipeline was built around Reflow, an incremental cloud-based data processing system developed by 
GRAIL (https:// github. com/ grail bio/ reflow). ViReflow was developed specifically in response to the COVID-19 
pandemic, but it is general to any viral pathogen. ViReflow implements the following standard viral consensus 
sequence workflow: (1) read trimming, (2) read mapping, (3) variant calling, and (4) consensus-sequence call-
ing. ViReflow also implements optional analyses for specific viruses of interest, such as viral lineage calling (e.g. 
Pangolin for SARS-CoV-2). ViReflow extracts the core steps of our production pipeline (https:// github. com/ 
ucsd- ccbb/C- VIEW), implemented directly into AWS, which we have used to process tens of thousands of 
sequences in UC San Diego’s Return to Learn program (https:// retur ntole arn. ucsd. edu)12. It packages these steps 
into a user-friendly tool that makes them accessible without ongoing user input or large-scale computational 
infrastructure, enabling rapid, scalable deployment across institutions.

ViReflow is modular: the user can choose amongst popular tools for each step (Fig. 1), and new tools will be 
added as they are developed. Importantly, when utilized with sufficient AWS resources, ViReflow’s overall runtime 
remains below 10 min even when processing one thousand samples. If the user experiences long runtimes due 
to high sequencing depth, the user can optionally provide an upper limit on the number of successfully-mapped 
reads (e.g. based on desired expected coverage), which speeds up read mapping and downstream analyses.

Importantly, ViReflow is simple to install and run. The only ViReflow dependencies are Python (standard 
and cross-platform) and Reflow (distributed via Linux and Mac OS X binary), while ViReflow itself is just a 
single Python script that can be downloaded anywhere on the user’s machine. All other tool dependencies are 
configured automatically within AWS via pre-built minimal Docker containers without any intervention from the 
user, so the user need not install or configure any of the tools in the workflow. To run ViReflow, the user simply 
provides their AWS credentials as well as links to data and then executes ‘reflow run’ on the resulting Reflow 
runfile. The user can execute ViReflow from a command line interface as well as through a simple graphical user 
interface (GUI), which is implemented in native Python via Tkinter (Fig. 2).

Because ViReflow utilizes the Reflow runtime to execute the workflow, AWS compute resource allocations 
are automatically scaled based on each individual run’s needs, and Reflow attempts to execute all samples in a 
given run in parallel. Because the Reflow runtime supports AWS EC2 Spot Instances, ViReflow users can utilize 
unused EC2 capacity at significant discounts compared to the standard On-Demand instances (generally between 
70 and 90% savings)35.

To enable reproducible research, each release version of ViReflow has a corresponding versioned Docker con-
tainer. New ViReflow versions are released as new tools or features are added and as existing tools are upgraded. 

Table 1.  Pipeline comparison. Bold denotes analyses that are optional in ViReflow.

V-pipe nf-core/viralrecon HAVoC ViralFlow ViReflow

Graphical user interface (GUI) No No No No Yes

Amplicon sequencing support No Yes Yes Yes Yes

Workflow tool Snakemake13 Nextflow14 Bash script Python script Reflow

Native cloud compute support None AWS, GCP, Azure None None AWS

Automatic compute resource 
scaling No No No No Yes

Supported read trimmers PRINSEQ15 Cutadapt16,  fastp17,  iVar18 fastp,  Trimmomatic19 fastp fastp, iVar, PRINSEQ, 
 pTrimmer20

Supported read mappers BWA-MEM21 Bowtie222 Bowtie2, BWA-MEM BWA-MEM Bowtie2, BWA-MEM,  HISAT223, 
 Minimap224

Supported variant callers LoFreq25 iVar,  bcftools26 LoFreq iVar FreeBayes27, iVar, LoFreq

Supported viral lineage assign-
ment tools None Pangolin Pangolin Pangolin Pangolin, VirStrain

Supported de novo genome 
assemblers

Haploclique28, SAVAGE29, 
ShoRAH30 minia31, SPAdes32, Unicycler33 None None MEGAHIT34, minia, SPAdes, 

Unicycler

Figure 1.  ViReflow pipeline. Vireflow implements a standard viral consensus sequence reconstruction 
pipeline, with multiple tool choices for each step of the pipeline. The output consensus sequence is produced by 
incorporating high-depth variant calls into the reference genome sequence.

https://github.com/grailbio/reflow
https://github.com/ucsd-ccbb/C-VIEW
https://github.com/ucsd-ccbb/C-VIEW
https://returntolearn.ucsd.edu
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A Reflow runfile produced by ViReflow includes the specific ViReflow version and command that produced it, 
as well as the specific versioned ViReflow Docker container it used. Thus, if the user stores a runfile along with 
its corresponding FASTQ files, the complete analysis can be reproduced verbatim in the future.

To demonstrate ViReflow’s scalability, we benchmarked it using SARS-CoV-2 amplicon sequencing data 
produced using the SWIFT v2 protocol on an Illumina NovaSeq 6000. In brief, in one experiment, 342 biologi-
cal samples were sequenced with paired end 150 basepair (PE150) reads across two lanes of an SP300 run to 
an average count of 2.85 million read pairs per sample. In a second experiment, 2,607 biological samples were 
sequenced PE150 across four lanes of an S4 flow cell to an average read count of 4.58 M read pairs per sample. 
We ran ViReflow in the default uncapped mode for the 342-sample run, and we ran ViReflow with a cap of 2 
million successfully-mapped reads for the 2607-sample run. Due to library normalization issues, the sequenc-
ing depth varied considerably among samples, so the overall runtime (the maximum runtime across samples) 
was multiple hours long. In order to better study how ViReflow scales purely as a function of number of FASTQ 
pairs (n), we selected the single highest-depth sample from the 342-sample run and randomly subsampled its 
reads to produce FASTQ pairs with 1000 × depth (500× R1 and 500× R2 as matched pairs) n = 1, 10, 100, 1000, 
and 10,000 times to simulate multiple sequencing runs with the exact same sequencing depth. To account for 
stochasticity, we performed 10 technical replicates for each n, with the exception of n = 10,000, for which we only 
performed a single replicate due to cost constraints. We only allowed ViReflow to launch “standard” AWS EC2 
instance types (A, C, D, H, I, M, R, T, and Z), capped at 96 vCPUs per instance. ViReflow v1.0.9 was executed 
in single-threaded mode (−t 1) using its default parameters. Our default AWS EC2 vCPU limit was too low to 
process datasets with over 100 samples, so we had to request increases in our vCPU and volume storage limits: to 
analyze n samples, we needed a vCPU limit of slightly more than n vCPUs and a volume storage limit of slightly 
more than 5n GB. FASTQ pairs were subsampled using  seqtk36 v1.3. Runtimes were measured using the Linux 
‘time’ utility, and total costs were obtained from AWS using Nutanix Beam. We utilized the NC_045512.2 
SARS-CoV-2 reference genome and the SWIFT v2 primers. Our Reflow configuration file only allows “standard” 
AWS EC2 instance types (A, C, D, H, I, M, R, T, and Z).

To assess the quality of the consensus sequences produced by ViReflow, we turned to the ViralFlow manu-
script, in which Dezordi et al.8 utilized a public dataset of 86 Brazilian SARS-CoV-2 Illumina paired-end ampli-
con sequencing libraries to compare the accuracy of consensus sequences produced by ViralFlow and HAVoC, 
and they demonstrated that ViralFlow had equal or improved accuracy with respect to HAVoC on all samples. We 
executed ViReflow v1.0.19 and ViralFlow v0.0.6, both single-threaded using their respective default parameters, 
on this exact dataset (EMBL-EBI study accession PRJEB47823). Due to the relatively low depth of the dataset, 
as per the ViralFlow documentation, both tools were run with a “minimum depth threshold” (for calling bases 

Figure 2.  ViReflow Graphical User Interface (GUI).
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in the consensus sequence) of 5. To account for expected deviation in low-coverage regions at the ends of the 
genome, we compared consensus genome sequences between the start of ORF1a and the end of N with respect 
to the reference SARS-CoV-2 genome (i.e., positions 265–29,533).

Results
In the benchmarking experiment, in the typical anticipated usage range for a sequencing run, 1 to 1000 samples 
at 1000 × depth per sample, given just raw untrimmed sequence data in FASTQ format, the total amount of time 
ViReflow required to perform read mapping, read trimming, variant calling, and consensus-sequence calling 
remained less than 10 min, and the total dollar cost scaled roughly linearly as a function of the total number 
of samples at approximately $0.005 per sample (Table 2). We note that it is also possible to run larger datasets 
that exceed the capacity of current sequencing technology: however, at 10,000 samples, the runtime jumped 
to ~ 3 h, and the dollar cost jumped to $0.12 per sample. Performance was excellent on real-world datasets: on 
the 342-sample NovaSeq run, ViReflow analyzed all 684 FASTQ pairs in under 2.5 h for $59.04 (approximately 
$0.086 per FASTQ pair), and on the 2,607-sample NovaSeq run, using a cap of 2 million successfully-mapped 
reads, ViReflow analyzed all samples in under 1.2 h for $117.48 (approximately $0.045 per sample).

In the quality assessment experiment, in the region of the viral genome that was considered, ViReflow and 
ViralFlow produced identical consensus sequences on 67 of the 86 samples. For the remaining 19 samples, we 
manually inspected all differences between the pairs of consensus sequences in the context of their corresponding 
samtools depth and samtools mpileup results (to gauge the distribution of base calls and gaps in the 
trimmed BAM files at the corresponding positions)37. For all 19 discordant samples, samtools depth and 
samtools mpileup agreed with the ViReflow consensus sequence with respect to the chosen minimum 
depth and minimum alternate allele frequency parameters.

Discussion
ViReflow is a user-friendly, scalable viral consensus sequence reconstruction tool that enables the rapid analysis 
of viral genomic sequencing data. ViReflow allows the user to select from multiple possible tools for each step of 
the pipeline, but without any need for system administration to configure those tools themselves. Importantly, 
in addition to its ability to scale automatically to support the analysis of ultra-large datasets, ViReflow produces 
genome consensus sequences that not only agree with existing pipelines, but which seem to potentially have 
slightly improved accuracy in specific cases when using ViReflow’s default settings, which were selected to provide 
a balance between accuracy and runtime.

We aimed to integrate as many best-practice tools as possible, and due to ViReflow’s modularity of tool 
selection, researchers can fine-tune their specific analyses as desired. Importantly, ViReflow can naturally evolve 
as improved tools for mapping and trimming reads, calling variants, and performing downstream analyses of 
interest (e.g. lineage assignment or abundance quantification) are developed.

ViReflow is available open source at https:// github. com/ niema sd/ ViRefl ow, and it can be used to massively 
scale viral molecular surveillance efforts around the world by bringing high-performance cloud computing 
directly to public health officials and epidemiologists. After initial setup, instructions for which are thoroughly 
documented in the ViReflow repository, researchers can utilize a simple interface in order to execute a viral 
amplicon sequence analysis pipeline on tens, hundreds, or even thousands of samples without needing to worry 
about high-performance computing queues or cloud compute configuration.

Received: 2 November 2021; Accepted: 15 March 2022

Table 2.  Benchmark of ViReflow. ViReflow was executed on 1, 10, 100, 1 K, and 10 K random 1000X depth 
sub-samplings of the single highest-depth sample from a NovaSeq SARS-CoV-2 amplicon sequencing run 
(denoted  withS). ViReflow was also executed on two real NovaSeq runs (denoted  withR), one of which was 
capped at 2 million successfully-mapped reads for each sample (denoted  withC). All executions were run 
single-threaded. Total runtime (seconds) and total cost (US Dollars) across 10 technical replicates are shown 
as Mean (SD) pairs. “N/A” denotes single replicate execution due to high per-replicate compute costs. Specific 
details of tool choices (with versions) for each step of the pipeline can be found in the “Methods” section.

# FASTQ pairs Runtime (s) Cost (USD) Cost/Sample (USD)

1S 284 (4) 0.01 (2 ×  10–18) 0.0100

10S 255 (12) 0.04 (0.003) 0.0041

100S 416 (21) 0.49 (0.024) 0.0049

1000S 491 (9) 5.65 (0.119) 0.0057

10,000S 12,075 (N/A) 1197.53 (N/A) 0.1198

684R 8,267 (N/A) 59.04 (N/A) 0.0863

2607R,C 4,144 (N/A) 117.48 (N/A) 0.0451

https://github.com/niemasd/ViReflow
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