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1. Introduction. Let us consider elliptic differential operators of the 
form 

H = - A + q(x)y x £ Rm, 

where the potential q(x) satisfies the following conditions: 
(I) q&Qa(Rm) for some a > 0 ; i.e. 

Mq(x) = I | q{y) \\x- y \*~m-«dy 
J \Z-V\*1 

is uniformly bounded for x £ i ? w . 
(II) For every x(~Rm, x 9e 0, there exists a radial derivative qr(x) 

of q(x) and 

e"11 g((l + e)x) - q{x) | g q0(x) G Qt(Rr) 

holds for 0 < e < e 0 and some/3>0; in particular we have rqr(x) èqo(x); 
hence rqr£.Qp(Rm). 

Under these conditions we shall prove in §2 a very general form 
of the Virial Theorem of quantum mechanics. In §§3 and 4 this theo­
rem will be used to deduce some results on the spectrum of H. 

Let L2(R
m) be the Hubert space of functions which are square-

summable over Rm; the inner product in this space will be denoted 
by ( • , • ), the norm by | • | . 

From condition (I) one can conclude (e.g. Ikebe-Kato [2]): 
(1) The operator H with domain D(H)=H2(R

m) is selfadjoint in 
L2(R

m) (H2(R
m) is the closure of Co(Rm) with respect to the norm 

k | 2 = { Z ; , * Idtyidxfixà^+^sldu/dxjlt+lul*}"*). 
(2) For uGD(H) and qGQa(R

m) we have quEL2(R
m). 

(3) For u, vED(H) we have Au, AvEL2(R
m) and (Au, v) = (u, Av). 

2. The Virial Theorem. 

THEOREM. Let conditions (I) and (II) be satisfied. If X is an eigen­
value of H, u(x) a corresponding eigenfunction, then 

((2g + rqr — 2\)u, u) = 0, 2( — Au, u) = (rqru, u). 
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REMARK. The second equation is known in quantum mechanics as 
the virial theorem. (No proof seems to be known for this general case.) 

PROOF OF THE THEOREM. Without any restriction we may assume 
thatw(x) is real-valued. Since u(x) is an eigenfunction corresponding 
to the eigenvalue X, it follows that 

— Au(x) + q(x)u(x) = Xu(x), 

— Au(ax) + a2q(ax)u(ax) = a2\u(ax). 

Every single term is in Lî(Rm). Multiplication of the first equation by 
u(ax), the second equation by u(x) and integration over Rm yields 

(1 — a2)X I u(x)u(ax)dx 
J Rm 

= I { — u(ax)Au(x) + u(x)Au(ax) + (q(x) — a2q(ax))u(x)u(ax)}dx. 
J Rm 

Since u(x) and u(ax) are elements of H2(R
m)=D(H) it follows from 

(3) that, for a>0, 

F(a) = I {(1 ~" #2)^ + a2q(ax) — q(x)}u(x)u(ax)dx = 0. 
J Rm 

Consequently for any e > 0 we have 

*-*F(l + c) 

= e"1 f { - (2e + e2)\ + (1 + 2e + e2)<?((l + e)x) 
J Rm 

— q(x)}u(x)u((l + e)x)dx 

= f { - (2 + e)X + e-l(q((l + e)x) - q(x)) 
J Rm 

+ 2q((l + e)x) + ej((l + e)x)} u(x)u((\ + e)x)dx = 0; 

hence the limit for e—>0 must also vanish. 
If we are able to show that this limit can be taken under the integral 

sign, we have 

I { - 2X + rqr + 2q) u2{x)dx = {{2q + rqr - 2\)u, u) = 0 
J Rm 

and everything is proved. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



454 JOACHIM WEIDMANN [May 

For every function g(x) of L2(R
m) we have g(ax)*->g(x) in the sense 

of L2{Rm) as a—>l (this is easily shown by means of an approximation 
of g(x) by functions of Co(Rm)). From this and from (2) it follows 
that u((l + e)x)-->u(x) and q((l + e)x)u((l + e)x)—>q(x)u(x) in L2(R

m) 
as €—>0. Since e~1(q((l + e)x)—q(x)) converges to rqr(x) for almost 
every x as e—>0 and is majorized by qo(x) (condition (II)) it follows 
that e~1(^((l+€)x)— q(x))u(x)—>rqr(x)u(x) in L2(R

m) as e—>0. Con­
sequently every term under the integral sign converges in L(Rm)\ 
hence we may take the limit under the integral sign. q.e.d. 

3. Application to spectral theory. By means of the Virial Theorem 
just proved we can now show under suitable conditions on q(x), that 
there are no eigenvalues of H in certain regions of the real line; i.e. 
the spectral resolution of H is continuous in these regions. 

COROLLARY 1. If conditions (I) and (II) are satisfied, and qr(x)^0 
for x(ERm, XT^Q, then H does not have any eigenvalue. 

PROOF. Suppose X is an eigenvalue with the corresponding eigen-
function u 7^0. Since rqr(x)^0 we obtain from the Virial Theorem 

2(Au, u) = 2((q - \)uy u) ^ {(2q - 2X + rqr)u, u) = 0. 

This is a contradiction since for u^O we have (Au, u)<0. 

COROLLARY 2. Let the conditions (I), (II) and rqr(x) ^ — yq(x) 
( 0 < 7 < 2 , x 5^0) be satisfied. Then S has no eigenvalue in [0, °o). 

PROOF. (For 0 < Y ^ 1 a different proof was given in [4].) Let X be 
an eigenvalue, u(x) a corresponding eigenf unction ; then the Virial 
Theorem implies {((2—y)q — 2\)u, u)^0; hence ((2— y)Au—y\u, u) 
^ 0 . This is possible only if X<0. q.e.d. 

Let us now consider the Schrödinger operator of an atom or ion 
with a nucleus of charge Z and n electrons (where the nucleus has 
infinite mass or is supposed to be fixed); the corresponding Schrö­
dinger operator is of the form H where 

n Z 1 

j=i rj izj<k ?jk 

= 0, if at least one of the r3- or r^ vanishes, 

/ 2 \ 1/2 
rih = ^ ]C I XU-l — #3fc-*|2f 
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I t is easy to show that q(x) satisfies conditions (I) and (II) and is 
homogeneous of degree — 1. From Corollary 2 it follows that H has 
no eigenvalue in [0, 00 ). 

This same result holds for every w-particle-operator with Coulomb-
interactions, where the motion of the center of mass is separated out; 
in this case too, the potential is homogeneous of degree —1 (e.g. 
Weidmann [3]). 

4. Remarks on Yukawa-potentials. In nuclear physics so-called 
Yukawa-potentials of the form 

1 
p(r) = — exp(-ar ) 

r 

are used frequently (for a = 0 this reduces to Coulomb-potential). If 
all the potentials in an atom-like system follow such a law, then we 
have the Schrödinger-operator H with 

* bj , _ , bjk 
q(x) = — Z-) — e x P ( ~ a3ro) + Z , — exp(—ay*r#) if rh rjk > 0, 

= 0 if one of the r3- or r# vanishes. 

An easy calculation yields 

n 

rqr(x) ^ — q(x) + 2 afa. 

If X is an eigenvalue, u(x) a corresponding eigenfunction of H, then 
it follows from the Virial Theorem that 

0 = ((2q + rqr - 2X)«, u) 

S (lq — 2X+ J2 VjbAu, u 

= (I A — X + X) <*ih\u,u 

<(i>/fty-x)|«|2; 

hence X < ]C"-i afii* 
For n = 1 this means in particular that there is no eigenvalue greater 

than or equal to ai&i. On the other hand it is known that there is no 
positive eigenvalue at all (e.g. Ikebe [ l ] , Weidmann [4]). In this 
case the upper bound for eigenvalues which we found here is certainly 
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not optimal. For n > 1 it is not known whether there exist positive 
eigenvalues or not; hence it is not known whether the bound 
X)"-i a A 4 1 S °f a n Y importance or not. 
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