THE VIRTUAL AND UNIVERSAL BRAIDS
VALERIJ G. BARDAKOV

ABSTRACT. We study the structure of the virtual braid group. It
is shown that the virtual braid group is a semi—direct product of
the virtual pure braid group and the symmetric group. Also, it is
shown that the virtual pure braid group is a semi—direct product of
free groups. From these results we obtain a normal form of words
in the virtual braid group. We introduce the concept of a universal
braid group. This group contains the classical braid group and has
as its quotient groups the singular braid group, virtual braid group,
welded braid group, and classical braid group.

Recently some generalizations of classical knots and links were de-
fined and studied: singular links [20, 5], virtual links [15, 12] and welded
links [10].

One of the ways to study classical links is to study the braid group.
Singular braids [1, 5], virtual braids [15, 21], welded braids [10] were
defined similar to the classical braid group. A theorem of A. A. Markov
[4, Ch. 2.2] reduces the problem of classification of links to some alge-
braic problems of the theory of braid groups. These problems include
the word problem and the conjugacy problem. There are generaliza-
tions of Markov’s theorem for singular links [11], virtual links, and
welded links [14].

There are some different ways to solve the word problem for the
singular braid monoid and singular braid group [8, 7, 22]. The solution
of the word problem for the welded braid group follows from the fact
that this group is a subgroup of the automorphism group of the free
group [10]. A normal form of words in the welded braid group was
constructed in [13].

In this paper we study the structure of the virtual braid group V B,.
This is similar to the classical braid group B, and welded braid group
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WB,. The group VB, contains the normal subgroup V P, which is
called the wvirtual pure braid group. The quotient group VB, /V P, is
isomorphic to the symmetric group S,,. In the article we find generators
and defining relations of V P,. Since V' B,, is a semi-direct product of
V P, and S,,, we should study the structure of V P,. It will be proved
that V' P, is representable as the following semi—direct product

VP, =V ) VP =V 3 (Vi (..x(VExV)...),

where V;* is some (in general infinitely generated for ¢ > 1) free sub-
group of V P,. From this result it follows that there exists a normal
form of words in V B,,.

In the last section we define the universal braid group UB, which
contains the braid group B, and has as its quotient groups the singu-
lar braid group SG,, the virtual braid group V B, the welded braid
group W B,,, and the braid group B,. It is known [10] that V' B,, has
as its quotient the group W B,,. It will be proved that the quotient ho-
momorphism maps V' P, into the welded pure braid group W P,. This
homomorphism agrees with the decomposition of this group into the
semi-direct product given by Theorem 2 and by [2, 3].

By Artin’s theorem, B,, is embedded into the automorphism group
Aut(F,) of the free group F,. In [10] it was proved that W B, is also
embedded into Aut(F,). It is not known if it is true that SG,, and
V B,, are embedded into Aut(F},).
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the participants of the seminar “Evariste Galois” at Novosibirsk State
University for their kind attention to my work.

1. DIFFERENT CLASSES OF BRAIDS AND THEIR PROPERTIES

In this section we remind (see references from the introduction) some
known facts about braid groups, singular braid monoids, virtual braid
groups and welded braid groups.

1.1. The braid group and the group of conjugating automor-
phisms. The braid group B,, n > 2, on n strings can be defined as a
group generated by oy, 09,...,0,_1 (see Fig. 1)
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FIGURE 1. Geometric braids representing o; and ;!

with the defining relations

(1) 0i0i110; = 04410041, L= 1,2,...,n =2

(2) O'Z‘O'jZO'jO'Z‘, |Z—j|22

There exists a homomorphism of B,, onto the symmetric group S,, on
n letters. This homomorphism maps o; to the transposition (7,7 + 1),
1 = 1,2,...,n — 1. The kernel of this homomorphism is called the
pure braid group and denoted by P,. The group P, is generated by a;;,
1 <i<j<n (see Fig. 2). These generators can be expressed by the
generators of B,, as follows

_ 2
Qi i+1 = 0y,
-1

_ 2 -1 -
Ajj = 0j-10j-2...0i410; O;1 ... 0; 50,1, 1+1<j<n.

The group P, is the semi—direct product of the normal subgroup
U, which is a free group with free generators ai,, asp, ..., an—1,, and
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FIGURE 2. The geometric braid a;;

P, _1. Similarly, P,_; is the semi—direct product of the free group U,,_;
with free generators a;,_1,a2,-1,...,0n,—2,—1 and P,_», and so on.
Therefore, P, is decomposable (see [17]) into the following semi—direct
product

Pn:UnN(Un,lx(...N(ngUQ))...), Uiﬁﬂfl, i:2,3,...,n.

The group B, has a faithful representation as a group of automor-
phisms of Aut(F;,) of the free group F,, = (x1,22,...,x,). In this case
the generator o;, i = 1,2,...,n — 1, defines the automorphism

-1
T T Tip1 2
0; @ Tiy1 > Ty,
€Ty — xy, l#l,l—i—l

By theorem of Artin [4, Theorem 1.9], an automorphism 3 from
Aut(F),) lies in B, if and only if 3 satisfies the following conditions:

1) B(z:) = a; ' 2y ai, 1 < <,

2) B(z1wg ... xTy) = T1To . . . Ty,
where 7 is a permutation from S,, and a; € F,,.
An automorphism is called a conjugating automorphism (or a permutation—
conjugating automorphism according to the terminology from [10]) if
it satisfies to condition 1). The group of conjugating automorphisms
C,, is generated by ¢; and automorphisms «;, @ = 1,2,..., n—1, where

Ty — Tit1,
(07 Ljy1 > Ty,
T — Iy, I #1,1+ 1.
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It is not hard to see that the automorphisms «; generate the symmetric
group S,, and, hence, satisfy the following relations

(3) QG Qi1 O = Qi gy, 0 =1,2,.0.,mn — 2,
(4) ooy = agag, =g > 2,
(5) d=1i=1,2,....,n— 1

The group C,, is defined by relations (1)—(2) of B, relations (3)—(5) of
Sy, and the mixed relations (see [10, 19])

(6) ;o5 =050, |i—j]>2,
(7) Oi Qg1 O = Qi1 QG 0411, 1= 1,2,...,m— 2,
(8) Oit1 03 Qg1 = Q; 044104, 1=1,2,...,n—2.

If we consider the group generated by automorphisms €;;, 1 < @ #

7 < n, where
Ti— s, 1F ]
it 7 j R ‘7

/ T — Iy, ! 7é ?,

then we get the group of basis—conjugating automorphisms Cb,. The
elements of Cb, satisfy condition 1) for the identical permutation ,
i. e., map each generator x; to the conjugating element. J. McCool [18]
proved that Cb,, is defined by the relations (from here different letters

stand for different indices)

(9) €ij €kl = €kl Eij)
(10) €ij €kj = Ekj €ij>
(11) (€35 €x7) Eir = €ir (€45 €xy)-
The group C, is representable as the semi—direct product: C, =
Cb, xS, where S, is generated by the automorphisms oy, as, ..., a,_1.

The following equalities are true (see [19]):
Eiitl = 00, ', Eip1; =07,
Eij = Q1 QG 9. Qi1 &1 Qi1+ QG201 1< J,
€ji = Q1 Qg . Qi1 QG €1 O Qi1 .. Qj_p (i1 1 < J.

The structure of Cb,, was studied in [2, 3]. There it was proved that
Cb,,, n > 2, is decomposable into the semi—direct product

Cbn = Dn—l X (Dn_g X ( ..o X (D2 X Dl)) .. .),

of subgroups D;, 7 = 1,2,...,n—1, generated by €;111, €412, - - -, it14
E1,i41> €241, - - > Eii+1- Lhe elements €411, €412, ..., €1, generate
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a free group of rank ¢. The elements €y 11, €241, ..., €ii+1 generate a
free abelian group of rank .

The pure braid group P, is contained in Cb,, and the generators of
P, can be written in the form

_ -1 -1 -
Qi i+1 = 5,5‘71‘_;'_1 g’i-f—l,i’ 1 = ]., 2, e, — ].,
Qi = €j-1,i€j—2i - - - Eitly (%’ €ji )5i+1,z‘ s €50 C 15 T
_gj_l,j gj—27j82+17j (81] 6]1 )€Z+1,j"‘€j—2,j 8]—1,]7 2 S Z+]. <J S n.

1.2. The singular braid monoid. The Baez—-Birman monoid [1, 5] or
the singular braid monoid SB, is generated (as a monoid) by elements
0, 07 %, 7,1 =1,2,...,n— 1. The elements 0;, ;' generate the braid

group B,,. The generators 7; satisfy the defining relations

(12) T =TT, |t —j| > 2,

other relations are mixed:

(13) T,0; =0T, |t —j| > 2,

(14) o, =0;7, 1=1,2,...,n—1,

(15) 0;0i41Ti = Tig10; 0ip1, 1=1,2,...,n— 2,
(16) Oip103Tig1 = T; Ojp104, 1 =1,2,...,n—2.

In the work [9] it was proved that the singular braid monoid SB,, is
embedded into the group SG,, which is called the singular braid group
and has the same defining relations as SB,,.

1.3. The virtual braid group and welded braid group. The vir-
tual braid group V' B,, was introduced in [15]. In [21] a shorter system
of defining relations was found, see below. The group V B,, is generated
by o;, pi, i1 =1,2,...,n — 1 (see Fig. 3).

The elements o; generate the braid group B, with defining relations
(1)-(2) and the elements p; generate the symmetric group S,, which is
defined by the relations

(17) Pi Pit1 Pi = Pit1 PiPiv1, = 1,2,...,n — 2,
(18) pi pj = p; pir |1 —jl =2,
(19) pPP=1i=1,2...,n—1.

Other relations are mixed:
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F1GURE 3. The geometric virtual braid p;

(21) Pi Pit1 i = Oig1 Pi Pit1, ©=1,2,...,m — 2.

Note that the last relation is equivalent to the following relation:

Pi+1 Pi Oi41 = O Piy1 Pi-
In the work [12] it was proved that the relations
Pi0it1 03 = 0i41 04 Pit1s Pit1 040541 = Pi Oiy1 05
are not fulfilled in V B,,.
The welded braid group W B,, was introduced in [10]. This group is
generated by o;, a;, i = 1,2,...,n — 1. The elements o; generate the

braid group B,,. The elements «; generate the symmetric group .S,, and
the following mixed relations hold

(22) OéiO'j:O'jOéi, |Z—j|22,
(23) O Qi1 O = Q1 Q; 01, ©=1,2,..0,n — 2,
(24) Oi+10;%i+1 = O 0441 0y, 1= 1, 2, e, — 2.

In the work [10] it was proved that W B,, is isomorphic to the group
of conjugating automorphisms C,,.

Comparing the defining relations of V' B,, with the defining relations
of WB,, we see that W B,, can be obtained from V' B,, by adding some
new relation. Therefore, there exists a homomorphism

vw - VBn — WBn,

taking o; to o; and p; to «; for all .. Hence, W B,, is the homomorphic
image of V B,,.
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In [10] it was proved that the following relation (symmetric to (23))
Oit+1 O Qi1 = A Ay Oy
is true in W B,,. But the following relation is not fulfilled
Q41040441 = 030441 Q4.

The linear representations of V' B,, and W B,, by matrices from GL,,(Z[t,t™])
which extends the well known Burau representation was constructed in
[21]. The linear representation of C,, ~ W B,, it was constructed in [3].
This representation continue (with some conditions on parameters) the
known Lawrence—Krammer representation.

2. GENERATORS AND DEFINING RELATIONS OF THE VIRTUAL PURE
BRAID GROUP

In this section we introduce a virtual pure braid group and find its
generators and defining relations.

Define the map

v:VB, — S,
of V B,, onto the symmetric group .5,, by actions on generators
vie) =v(p) =pi, 1=1,2,...,n—1,

where S, is the group generated by p;. The kernel ker(v) of this map
is called the virtual pure braid group and denoted by V P,. It is clear
that V P, is a normal subgroup of index n! of V' B,. Moreover, since
VP,(S,=eand VB, =VP,-S,, then VB, = VP, xS, i. e., the
virtual pure braid group is the semi—direct product of V' P, and S,,.

Define the following elements

Nit1 = pi0; N1 = pidiaa pi =05 pi, i=1,2,...,n—1,
Aij = Pj=1Pj=2 - - - Pit1 Nijit1 Pig1 - - - Pj—2 Pj—1,
)\ﬂ = pj,1 pj*Q - Pit1 )\i+1,’i Pitl - - - pj*2 pjfl, 1 S 1< j —1 S n—1.
Obviously, all these elements belong to V P, and have the following

geometric interpretation (Fig. 4, 5)
The next lemma holds

Lemma 1. Let 1 <1 < j < n. The following conjugating rules are
fulfilled in VB,,:
1)fork<i—lori<k<j—1ork>j

Pk Nij Pl = Nijs Pr Nji P = Ajii

2) Pi—1 /\ij Pi-1 = )\i—l,ja Pi—1 >\ji Pi—1 = >\j,i—1;
3) fori<j—1
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FIGURE 4. The geometric virtual braid A\;; (1 <i < j <mn)

FIGURE 5. The geometric virtual braid A;; (1 <i < j <n)

Pi i1 Pi = i1, Pi Nij Pi = Ai g,
Pi )\H—l,i pi = )\i,i+1> Pi )\ji pi = )\j,z'+1;
4) fori+1<y
Pi—1 Aij Pj—1 = Nij—1, Pj—1Nji Pj—1 = Aj-14
9) pj Nij Pi = Nij+1s PjAji Pj = Ajrie
Proof. We consider only the rules containing \;; for i < j (the remain-
ing rules can be considered analogously). Recall that
Aij = Pj=1Pj=2 - - - Pit1 Niit1 Pig1 - - - Pj—2 Pj—1-
If £k <i—1ork > jthen p; is permutable with p;, piy1,...,p;-1 in

view of relation (18) and with o; in view of relation (20). Hence, py is
permutable with \;;.



10 BARDAKOV

Let i <k < j—1. Then
Pk Nij Pk = Pk (D1 -+ - Pht2 Phtd Ph - - - Pitd Nisitd Pitd - - - Ph Phtl Pht2 - - - Pi1) P
Permuting pi, to A; ;41 when it is possible, we get

Pi—1 - Prt2 (Pk Pt P) - - - Pit1 Nisi1 Pis1 - - - (P Prt1 PE) Ptz - - - Pj—1-

Using the relation py pxi1 px = pr+1 Pk Prs1, rewrite the last formula as
follows:

Pi—-1 - -+ Pk+2 Pk+1 Pk (Pht1 Pr—1 - - - Pit1 Aijit1 Pitl - -+ Pr—1 Pht1) X

X Pk PlA1 P2 - - Pim1 = Pj—1 - - - Pk (Ph1 Nik Prt1) Pl - - - Pj—1-
In view of the case considered earlier, we have

Pr+1 Aik PRl = ik
and, hence,
Pi—1 - Pk (Pt Nik Pit1) P - - - Pj—1 = Nij-

Thus, the first rule from 1) is proven.
2) Consider

Pi—1 Aij Pie1 = Pi-1(Pj—1Pj=2 - -+ Pit1 Nisit1 Pit1 - - - Pj—2 Pj1) Pi-1-

Using relation (18), let as permute p;—1 to A;;4+1 when it is possible.
We get

(25) Pi—1 /\ij Pi-1 = Pj-1---Pit2 Pz’+1(,0i71 Aiit1 pifl) Pit1Pi42 - - - Pj—2-
The expression in the brackets can be rewritten in the following form
i1 Nisit1 Pic1 = Pic1 Pi O) " Pici = Pic1 PiC; " Picipi Pi-

Using the relation o; Yo 1 pi = pio1pi o, L (it follows from (21)) and
(18), (19), we obtain

pic1 pi (07 pic1 pi) pi = pi1 (pi picr pi) 07 pi =
= (pi—l pi—l) Pi Pi—1 Ui__ll Pi = Pi >\i—1,i Pi-
Then from (25) we obtain
Pi—1 >\ij Pi—-1 = >\i—1,j-
Therefore, the desired relations are proven.

3) The first formula follows from the definitions of A; ;11 and A1 ;.
Let us consider

pi Aij pi = pi (Pj—l Pj—2 - Pit1 Nijit1 Pit1 - - Pj—2 pjfl) Pi-
Permuting p; to \; ;11 when it is possible, we obtain

PiNij Pi = Pj—1- - Piy2 (pi pit1 ALl Pig1 Pi) Pit2 - Pj-1-



THE VIRTUAL AND UNIVERSAL BRAIDS 11

Rewrite the expression in the brackets as follows

Pi Pit Nisi1 Pt Pi = Pi i1 pi (071 Pigt pi) = pi pir (pi Pt pi) 0331 =
= Pi Pi+1 Pit1 Pi Pit1 T;11 = Pit1 04y
Hence,

Pi Nij Pi = Pj—1 -+ - Pis2 (Pit1 0531) Pit2 -+ Pj—1 = Niy1j-
Therefore, the desired relations are proven.

4) follows from the relation p? ; = e and the definition of \;;.
5) is an immediate consequence of the definition of \;;. O

Corollary 1. The group S, acts by conjugation on the set {\g |1 <
k # 1 <n}. This action is transitive.

In view of Lemma 1, the subgroup (\y; | 1 < k #1 < n) of VP, is
normal in V B,,. Let us prove that this group coincides with V' P, and
let us find its generators and defining relations. For this purpose we
use the Reidemeister—Schreier method (see, for example, [16, Ch. 2.2]).

Let my; = pr_1 pr—2 ... p; for | < k and my; = 1 in other cases. Then

the set
Ay = {Hmk,jkll <k < k}

k=2
is a Schreier set of coset representatives of VP, in VB,

Theorem 1. The group V P, admits a presentation with the generators
Aet, 1 < k#1 <n, and the defining relations:

(26) Aij Akt = Akt Aij,

(27) Aki (Akj Aij) = (Aig Akj) Ay
where distinct letters stand for distinct indices.

Proof. Define the map = : VB, — A,, which takes an element w €
V B,, into the representative w from A,,. In this case the element ww !
belongs to V P,,. By Theorem 2.7 from [16] the group V' P, is generated
by
Sna = Aa- (Aa)™h,

where A runs over the set A, and a runs over the set of generators of
V B,.

It is easy to establish that s, = e for all representatives A and
generators p;. Consider the generators

Shos = Aoy - (A_pi>_1‘
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For A = e we get s.,, = 0ip; = AL .. Note that Ap; is equal to )\_pZ in

1,041
S,.. Therefore,
Sno; = Maip) A7
From Lemma 1 it follows that each generator s, ,, is equal to some Ay,
1 <k #1<n. By Corollary 1, the inverse statement is also true, i. e.,
each element )y is equal to some generator sy ,,. The first part of the
theorem is proven.

To find defining relations of V P, we define a rewriting process 7. It
allows us to rewrite a word which is written in the generators of V B,
and presents an element in V P, as a word in the generators of V P,.
Let us associate to the reduced word

__ €1 €2 S —
u=aj'aP...a’, eg==x1, ap € {01,002, ..., 0n_1,P1,02 - Pn-1}s

the word

(W) = Sk 0y Skaaz -+ Sk
in the generators of V P,, where k; is a representative of the (j — 1)th
initial segment of the word w if €; = 1 and k; is a representative of the

Jth initial segment of the word u if ¢; = —1.
By [16, Theorem 2.9], the group V P, is defined by relations

rux = T(AT, AT, A eA,,

where 7, is the defining relation of V B,,.

Denote by
1 =0i041 0,055 0, o)
the first relation of V B,,. Then

-1 -1 -1
= = — —— S S =
Tle T(Tl) Se,o; 57,0141 SFiGi71,04 —1 2 . — Srl,oiﬂ
0i0i+1 O'/L'O'Z-+1 Ti+1 Uio'i+lo'io—i+10'i i

= /\i_,il—i-l (pi >‘i_+11,i+2 pi) (pi pisa )‘i_,z'1+1 Pi+1 pi)X
X (Pis1 Pi Nig1yiv2 Pi Pir1) (Pit1 Miiv1 Pir1) Nig1ito-
Using the conjugating rules from Lemma 1, we get
Tle = )\z‘_,il-i-l )‘i_,il—&-Q )\i_+11,i+2 Adit1 Adit2 Aigl it
Therefore, the following relation
Aiir1 (M2 Aignive) = (Nigprive Aiir2) Aiita

is fulfilled in V' P,. The Remaining relations r; 5, A € A,, can be
obtained from this relation using conjugation by A~!. By the formulas
from Lemma 1, we obtain relations (27).

Let us consider the next relation of V B,,:

ry =000, oy, |i—jl>2.
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For it we have
—1 1
T2 = T(TQ) = Se,0; 557,05 S Sﬁ,aj =

0i0j0; 0%

- )‘i_,il-&-l A;;+1 )‘i,z‘+1 )‘j,j+1-
Hence, the relation
iyt Njjr1 = Ajjg1 Niig1, |1 — J > 2
holds in V P,. Conjugating this relation by all representatives from A,
we obtain relations (26).

Let us prove that only trivial relations follow from all other relations
of VB,. It is evident for relations (17)—(19) defining the group S,
because s, ,, = e for all A € A,, and p;.

Consider the mixed relation (21) (relation (20) can be considered
similarly):

T3 = Oit1 Pi Pi+1 Ui_l Pit1 Pi-
Using the rewriting process, we get
—1
r3e=1(r3) = Se g, 5— =
3, ( 3) 50041 0i+1pipi+10;170'i
= Ao (Pi pist Niie1 Pig1 pi) = Aijipn Mgz = €.
Therefore, V P, is defined by relations (26) —(27). O

3. THE STRUCTURE OF THE VIRTUAL BRAID GROUP

From the definition of V P, and Lemma 1 it follows that VB, =
VP, xS,, i e, VB, is the splittable extension of the group V P, by
S,. Consequently, we have to study the structure of the virtual pure
braid group V P,. Let us define the subgroups
Vi = (M i1y A2itts oo Aiit 13 it 1,15 Ak 1,2, - -5 Aig1i), € = 1,2,...,n—1,

of VP,. Each V; is a subgroup of V P,;;. Let V* be the normal closure
of V; in V P, 1. The following theorem is the main result of this section.

Theorem 2. The group V P,, n > 2, is representable as the semi—direct
product

VP, =V ) VP, 1=V x (V' yx(..x(VFxV"))..),
where V' is a free group of rank 2 and V¥, i =2,3,...,n— 1, are free

infinitely generated subgroups.

Let us prove the theorem by induction on n. For n = 2, we have
VP =V, = Vl*

and, by Theorem 1, the group V; is free generated by Ao and Ag;.
To make the general case more clear consider the case n = 3.
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3.1. The structure of V P;. By Theorem 1, the group V P; is gener-
ated by subgroups V;, V5 and defined by the relations

A2 (A13 A23) = (A2 A13) A1z, Ao (Aaz Aig) = (A1g Ags) Aot

A3 (A2 As2) = (As2 A12) A1z, Azt (As2 A12) = (A2 Ag2) Ast,

Aoz (A21 As1) = (As1 A21) A2sy Asz (As1 A21) = (A1 As1) Ase.
From these relations we obtain the next lemma.

Lemma 2. In V P the following equalities hold:
1)

A2 Y12 -1 A2 —A12 A2 —1 y—A12
A" = A" Mg Agg, A5 = Asa Asi Agg 7 AgsT = Mg Aas Asa Ay Agy

)\’\1_21 =\ A )\’\1_21 /\)‘1_21 =\ Az A1 A /\’\1_21 =\ A AT Ao Aoz A
13 32 M3 N32 31 32 31132, 23 32 13 N\32 23 A3y
2)

A A -1 A A A o Mg
A3t = A5 Aoz Az, A3t = Asi Az Az, ATST = Aas A Azt Aoz Az,

At 1 At At At At A5 1
21 __ - 21 21 __ 21 21 21 -
where a® stand for b~ ab.

Proof. The first and second relations from 1) immediately follow from
the third and forth relations of V P; (see the relations before the lemma).
Similarly, the first and second relations from 2) immediately follow from
the fifth and sixth relations of V P;.

Further, from the first and second relations of V P; we obtain

- —A12 Aol —A21

Using the proved formulas for )\i‘f and /\é\?fl, we get the third formulas
from 1) and 2) respectively.

The formulas for conjugation by Aj; and A, can be obtained anal-
ogously. (l

Note that there exists an epimorphism
@3 : VPg S VPQ,

which takes the generators of Vo = (A3, Aag, A31, As2) into the unit and
fixes the generators of V) = (A2, Ag1). The kernel of this epimorphism
is the normal closure of V5 in V P, i. e., ker(ps) = V5.

Let u be the empty word or a reduced word beginning with a non-zero
power of Ao and representing an element from V. Let Asa(u) = A,
= u~ A3y u. We call this element the reduced power of the generator s,
with the power u. Analogously, if v is the empty word or a reduced word
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beginning with a non-zero power of \y; and representing an element
from Vi, then we put Az (v) = A3 and call this element the reduced
power of generator A3; with the power v.

Lemma 3. The group V5 is a free group with generators \i3, Ao and
all reduced powers of A3y and A3s.

Proof. To prove the lemma we can use the Reidemeister—Shreier method,
but it is simpler to use the definitions of normal closure and semi-direct
product. Evidently, the group V5" is generated by the elements

w w w w
13, A2z, Azps Az, w E VAL

In view of Lemma 2, it is sufficient to take from these elements only
A13, A9z and all reduced powers of the generators A3; and Ass.

The freedom of V5" follows from the representation of V' Ps as the
semi—direct product. Indeed, since V; (V5 = e, V1V5® = V P5, then
V Py = V' xV;. In this case the defining relations of V P are equivalent
to the conjugating rules from Lemma 2. Therefore, all relations define
the action of the group V; on the group V. Since there are no other
relations, this means that V4 and V5" are free groups. U

As a consequence of this Lemma, we obtain the normal form of
words in V P3. Any element w from V P3 can be written in the form
w = wywy, where w is a reduced word over the alphabet {\%!, A5} and
ws is a reduced word over the alphabet {A\f, A5, As1(u)*h, Aaa(v)*1},
where A31(u), Az2(v) are reduced powers of the generators Az; and Az
respectively.

3.2. The proof of Theorem 2. Now, we introduce the following no-
tation. By /\;‘j denote any A;; or A\j; from V P,.

Lemma 4. For every n > 2 there exists a homomorphism
p: VP, — VP, 4

which takes the generators \j;, i =1,2,...,n — 1, to the unit and fires
other generators.

Proof. 1t is sufficient to prove that all defining relations go to the defin-
ing relations by a such defined map. For the defining relations of V P, 4
it is evident. If the relation of commutativity (see relation (26)) con-
tains some generator of V,,_; then by acting with ¢, it turns to the
trivial relation. Let us consider the left hand side of relation (27). We
see that it contains every index two times. Hence, if this part includes
some generator of V,,_; (i. e., one of the indices is equal to n) then
some other generator contains the index n. Therefore, there are two
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generators of V,,_; in the left hand side of the relation. Since the right
hand side contains all generators from the left hand side, then by acting
with ¢,, this relation turns to the trivial relation. U

Lemma 5. The following formulas are fulfilled in the group V P,:

1A = A, maz{i,j} < maz{k, 1}, e = +1;

Aij Aij _ A _ AL o

2) Ny = )‘kj])"ik)\kj17 Ny = )‘kjl)\ik)‘kjj Ji<j<korj<i<ek
A i A A . L

3) N? = Mg s At = A D Akidkg, 1< J <k orj <i<Kk;

Aij B e o . .
4) Ajk] = )\ik)‘jk)‘kj)‘ikl/\kj 7 )‘jk] = )\jk k )\Z’jl/\jk/\kj/\ija 1< ) <
korj<i<ek,
where, as usual, different letters stand for different indices.

Proof. The formula 1) immediately follows from the first relation of
Theorem 1.
Consider relation (27) from Theorem 1:
Aki (Akj Aij) = (Aij Akj) Ak
Note that the indices of generators are connected by one of the inequal-
1ties:
a) k<j<i,b)j<k<i,c)i<j<k,
d)j<i<k e k<i<yj fli<k<yj.
If the indices are connected by inequality @) or b) then from (27) we
obtain
Ayt = )\?fj Aei Ay
and it is the first formula from 2).
If the indices in relation (27) are connected by inequality c) or d) we
obtain
Al = Mg M A
and it is the first formula from 3).
If indices in relation (27) are connected by inequality e) or f) then

A= N i A
Using the formula from 2), we obtain
AT = N g Aji A A

and it is the first formula from 4).
The formulas of conjugations by elements )\i_jl can be established
similarly.
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Assume that the theorem is proven for the group V P,_;. Hence, any
element w € V P,_; can be written in the form

*
W = W Wy... W9, W; €V,

where each word w; is a reduced word over the alphabet consisting of
generators /\fil, 1 <k <i—1, and reduced powers of generators Mg,
1 < k < i—1, and their inverse. Let us define reduced powers of
generators in the group V.* ;. We say that the element A\,;(w) = A%,
is the reduced power of the generator A\, if w is the empty word or a
word written in the normal form and begining with a reduced power
of some generator Ay, or its inverse.
The statement about decomposition as the semi—direct product V P, =

V¥ x VP,_y is quite evident. It remains to find generators of V* and
prove its freedom.

Lemma 6. The group V,’_, is a free group. It is generated by iy, Aoy,
s An—1,n and all reduced powers of the generators Api, An2, - .., Apn—1-

Proof. The proof is similar to that of Lemma 3. From Lemma 5 it
follows that this set is the set of generators of V,* ;. Further, since the
set of defining relations of V P, is equivalent to the set of conjugating
formulas defining the action of VP,_; on V,* ,, only trivial relations
are fulfilled in V' ;. O

Theorem 2 follows from these results.

As a consequence of this theorem we obtain the normal form of words
in VB,,.

Corollary 2. Every element from V B,, can be written uniquely in the
form

W=wWy... Wyq A, NE N, w; €V,

where w; is a reduced word in generators, reduced powers of generators
and their inverse.

The homomorphism defined above of the virtual braid group onto
the welded braid group agrees with the decomposition from Theorem 2
and with the decomposition of C,, ~ W B,, described in the first section.

Corollary 3. The homomorphism pyw : VB, — W B, agrees with
the decomposition of these groups, i. e., it maps the group V P, onto
Cb,, ~ WP, and the factors V;* onto the factors D;, 1 =1,2,...,n—1.
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4. THE UNIVERSAL BRAID GROUP

Let us define the universal braid group UB,, as the group with gen-
erators 01,09, ...,0,_1, C1,C2, ..., Cy1, defining relations (1)—(2), the
relations:

Ci Cj = Cj G, i —j] > 2,
and the mixed relations:
CO0; =056 |Z—j| Z 2.

Recall (see [6]) that Artin’s groups of the type I is called the group
A with generators a;, ¢ € I, and the defining relations

a; G5 Qi ... = Qj Q3 Qj ..., Z,] S ],

where words from the left and right hand sides consist of m;; alternating
letters a; and a;.

Proposition 1. 1) The group UB,, has as a subgroup the braid group
B,.

2) There exist surjective homomorphisms
Qus : UBn — SGn, Quv - UBn — VBn, YUB UBn — Bn
3) The group UB,, is Artin’s group.
Proof. 1) Evidently, there exists a homomorphism B, — UB,. On
the other hand, assuming ¥ (o;) = o, ¥(¢;) = e, i = 1,2,...,n — 1,
we obtain the retraction ¢ of UB,, onto B,. Therefore, the subgroup
(01,09,...,0,_1) of UB, is isomorphic to the braid group B,.
2) Let us define the map ¢pg as follows
(PUS(O'i) = 0y, (PUS(Ci) = T, 1= 1, 2, o — 1.
Comparing the defining relations of UB,, and SG,, we see that this
map is a homomorphism. Analogously, we can show that the map
03 /== 0y, Cj —— Pi,
is extendable to the homomorphism ¢y and the map
Oi =04, Gi— 6,
is extendable to the homomorphism 5.

3) immediately follows from the defining relations of UB,, and the
definition of Artin’s group. U

It should be noted that none of the groups SG,, VB,,, WB, (in the
natural presentations) is not Artin’s group.

The following questions naturally arise in the context of the results
obtained above.
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Problems. 1) Solve the word and conjugacy problems in UB,,
n > 2.
2) Is it possible to give some geometric interpretation for elements of
UB,, similar to the geometric interpretation for elements of the braid
groups B, SG,, VB,, UB,?
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