
METHODS ARTICLE
published: 11 June 2013

doi: 10.3389/fninf.2013.00010

The irtual rain: a simulator of primate brain network
dynamics

Paula Sanz Leon1*, Stuart A. Knock2, M. Marmaduke Woodman 1, Lia Domide 3, Jochen Mersmann 4,
Anthony R. McIntosh 5 and Viktor Jirsa 1*

1 Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
2 Department of Neurology, BrainModes Group, Charité University of Medicine, Berlin, Germany
3 Codemart, Cluj-Napoca, Romania
4 CodeBox GmbH, Stuttgart, Germany
5 Rotman Research Institute at Baycrest, Toronto, ON, Canada

Edited by:

Daniele Marinazzo, University of

Gent, Belgium

Reviewed by:

Ingo Bojak, University of Reading,

UK

Hans Ekkehard Plesser, Norwegian

University of Life Sciences, Norway

Laurent U. Perrinet, Centre National

de la Recherche Scientifique, France

*Correspondence:

Paula Sanz Leon and Viktor Jirsa,

Institut de Neurosciences des

Systèmes, Aix Marseille

Université, 27, Bd. Jean Moulin,

13005 Marseille, France

e-mail: paula.sanz-leon@univ-amu.fr;

viktor.jirsa@univ-amu.fr

We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network

simulations using biologically realistic connectivity. This simulation environment enables
the model-based inference of neurophysiological mechanisms across different brain scales

that underlie the generation of macroscopic neuroimaging signals including functional
MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from

an integrative software platform including a supporting framework for data management

(generation, organization, storage, integration and sharing) and a simulation core written
in Python. TVB allows the reproduction and evaluation of personalized configurations of

the brain by using individual subject data. This personalization facilitates an exploration

of the consequences of pathological changes in the system, permitting to investigate
potential ways to counteract such unfavorable processes. The architecture of TVB supports

interaction with MATLAB packages, for example, the well known Brain Connectivity
Toolbox. TVB can be used in a client-server configuration, such that it can be remotely

accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical

user interface. TVB is also accessible as a standalone cross-platform Python library and
application, and users can interact with the scientific core through the scripting interface

IDLE, enabling easy modeling, development and debugging of the scientific kernel. This

second interface makes TVB extensible by combining it with other libraries and modules
developed by the Python scientific community. In this article, we describe the theoretical

background and foundations that led to the development of TVB, the architecture and
features of its major software components as well as potential neuroscience applications.

Keywords: connectome, neural masses, time delays, full-brain network model, virtual brain, large-scale simulation,

web platform, python

1. INTRODUCTION
Brain function is thought to emerge from the interaction of

large numbers of neurons, under the spatial and temporal con-

straints of brain structure and cognitive demands. Contemporary

network simulations mainly focus on the microscopic and meso-

scopic level (neural networks and neural masses representing

a particular cortical region), adding detailed biophysical infor-

mation at these levels of description while too often losing

perspective on the global dynamics of the brain. On the other

hand, the degree of assessment of global cortical dynamics,

across imaging modalities, in human patients and research sub-

jects has increased significantly in the last few decades. In

particular, cognitive and clinical neuroscience employs imag-

ing methods of macroscopic brain activity such as intracere-

bral measurements, stereotactic Encephalography (sEEG) (von

Ellenrieder et al., 2012), Electroencephalography (EEG) (Nunez

and Srinivasan, 1981; Nunez, 1995; Niedermeyer and Lopes

Da Silva, 2005), Magnetoencephalography (MEG) (Hämäläinen,

1992; Hämäläinen et al., 1993; Mosher et al., 1999), and func-

tional Magnetic Resonance Imaging (fMRI) (Ogawa et al., 1993,

1998; Logothetis et al., 2001) to assess brain dynamics and evalu-

ate diagnostic and therapeutic strategies. Hence, there is a strong

motivation to develop an efficient, flexible, neuroinformatics

platform on this macroscopic level of brain organization for

reproducing and probing the broad repertoire of brain dynamics,

enabling quick data analysis and visualization of the results.

The Virtual Brain (TVB) is our response to this need. On the

one hand, it provides a general infrastructure to support multi-

ple users handling various kinds of empirical and simulated data,

as well as tools for visualizing and analyzing that data, either via

internal mechanisms or by interacting with other computational

systems such as MATLAB. At the same time it provides a simula-

tion toolkit to support a top–down modeling approach to whole

brain dynamics, where the underlying network is defined by its

structural large-scale connectivity and mesoscopic models that

govern the nodes’ intrinsic dynamics. The interaction with the

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 1

NEUROINFORMATICS

V B

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00010/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PaulaSanz_Leon&UID=22421
http://community.frontiersin.org/people/MichaelWoodman/40494
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LiaDomide&UID=82601
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JochenMersmann&UID=82672
http://community.frontiersin.org/people/AnthonyMcIntosh/7299
http://community.frontiersin.org/people/ViktorJirsa/4334
mailto:paula.sanz-leon@univ-amu.fr; viktor.jirsa@univ-amu.fr
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

dynamics of all other network nodes happens through the con-

nectivity matrix via specific connection weights and time delays,

where the latter make a significant contribution to the biological

realism of the temporal structure of dynamics.

Historically, Jirsa et al. (2002) first demonstrated neural field

modeling on a spherical brain hemisphere employing EEG and

MEG forward solutions to obtain simulation imaging signals. In

this work, homogeneous (translationally invariant) connectivity

was implemented along the lines of Jirsa and Haken (1996, 1997);

Bojak and Liley (2010) yielding a neural field equation, which

has its roots in classic works (Wilson and Cowan, 1972, 1973;

Nunez, 1974; Amari, 1975, 1977). At that time more detailed

large-scale connectivity of the full primate brain was unavail-

able, hence the homogeneous connectivity scaled up to the full

brain was chosen as a first approximation (Nunez, 1974). The

approach proved successful for the study of certain phenomena

as observed in large-scale brain systems including spontaneous

activity (Wright and Liley, 1995; Robinson et al., 2001, 2003;

Breakspear et al., 2003; Rowe et al., 2004; Freyer et al., 2011),

evoked potentials (Rennie et al., 1999, 2002), anesthesia (Liley

and Bojak, 2005), epilepsy (Breakspear et al., 2006), sensori-

motor coordination (Jirsa and Haken, 1996, 1997), and more

recently, plasticity (Robinson, 2011) [see Deco et al. (2008) and

Jirsa (2004) for a review].

Careful review of this literature though shows that these mod-

els mostly emphasize the temporal domain of brain organization,

but leave the spatiotemporal organization untouched. This may

be understood by the fact that the symmetry of the connectivity

imposes constraints upon the range of the observable dynamics.

This was pointed out early by Jirsa et al. (2002) and a sug-

gestion was made to integrate biologically realistic DTI based

connectivity into full brain modeling efforts. Large scale brain

dynamics are basically expected to reflect the underlying anatomi-

cal connectivity between brain areas (Bullmore and Sporns, 2009;

Deco et al., 2011), even though structural connectivity is not the

only constraint, but the transmission delays play an essential role

in shaping the brain network dynamics also (Jirsa and Kelso,

2000; Ghosh et al., 2008; Knock et al., 2009; Jirsa et al., 2010).

Recent studies (Pinotsis et al., 2012) have systematically inves-

tigated the degree to which homogeneous approximations may

serve to understand realistic connection topologies and have con-

cluded that homogeneous approximations are more appropriate

for mesoscopic descriptions of brain activity, but less well suited

to address full brain network dynamics. All this underscores the

need to incorporate realistic connectivity into large scale brain

network models. Thus the simulation side of TVB has evolved out

of a research program seeking to identify and reproduce realistic

whole brain network dynamics, on the basis of empirical connec-

tivity and neural field models (Jirsa and Stefanescu, 2010; Deco

et al., 2011).

1.1. MODELING

In line with these previous studies, TVB incorporates a biologi-

cally realistic, large-scale connectivity of brain regions in the pri-

mate brain. Connectivity is mediated by long-range neural fiber

tracts as identified by tractography based methods (Hagmann

et al., 2008; Honey et al., 2009; Bastiani et al., 2012), or obtained

from CoCoMac neuroinformatics database (Kötter, 2004; Kötter

and Wanke, 2005; Bakker et al., 2012). In TVB, the tract-lengths

matrix of the demonstration connectivity dataset is symmetric

due to the fiber detection techniques used to extract the infor-

mation being insensitive to directionality. On the other hand,

the weights matrix is asymmetric as it makes use of directional

information contained in the tracer studies of the CoCoMac

database. Such details are specific to the connectivity demonstra-

tion dataset included in the distribution packages of TVB. The

symmetry (or lack thereof) is neither a modeling constraint nor

an imposed restriction on the weights and tract-length matrices.

The general implementation for weights and tract lengths are full

nodes × nodes matrices without any symmetry restrictions.

Two types of structural connectivity are distinguished in TVB,

that is long- and short-range connectivity, given by the connec-

tivity matrix and the folded cortical surface, respectively. The

connectivity matrix defines the connection strengths and time

delays via finite signal transmission speed between two regions

of the brain. The cortical surface allows a more detailed spa-

tial sampling resulting in a spatially continuous approximation

of the neural activity as in neural field modeling (Deco et al.,

2008; Coombes, 2010; Bressloff, 2012). When using neural mass

models, building the network upon the surface allows for the

application of arbitrary local connectivity kernels which rep-

resent short-range intra-cortical connections. Additionally, net-

works themselves can be defined at two distinct spatial scales

yielding two types of simulations (or brain network models):

surface-based and region-based. In the former case, cortical and

sub-cortical areas are shaped more realistically, each vertex of the

surface is considered a node and is modeled by a neural popula-

tion model; several nodes belong to a specific brain region, and

the edges of the network have a distance of the order of a few

millimeters. The influence of delayed activity coming from other

brain regions is added to the model via the long-range connectiv-

ity. In the latter case of nodes only per region, the connectome

itself is used as a coarser representation of the brain network

model. The networks comprise discrete nodes, each of which

models the neural population activity of a brain region and the

edges represent the long-range connectivity (interregional fibers)

on the order of a few centimeters. Consequently, in surface-based

simulations both types of connectivity, short- and long-range,

coexist whereas in region-based simulations one level of geometry

is lost: the short-range connectivity.

Neural field models have been developed over many years

for their ability to capture the collective dynamics of relatively

large areas of the brain in both analytically and computationally

tractable forms (Beurle, 1956; Wilson and Cowan, 1972, 1973;

Nunez, 1974; Amari, 1975, 1977; Wright and Liley, 1995; Jirsa and

Haken, 1996, 1997; Robinson et al., 1997; Jirsa et al., 2002; Atay

and Hutt, 2006; Bojak and Liley, 2010). Effectively neural field

equations are tissue level models that describe the spatiotempo-

ral evolution of coarse grained variables such as synaptic voltage

or firing rate activity in populations of neurons. Some of these

models include explicit spatial terms while others are formulated

without an explicit spatial component leaving open the possibil-

ity to apply effectively arbitrary local connectivity kernels. The

lumped representation of the dynamics of a set of similar neurons

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

via a common variable (e.g., mean firing rate and mean postsy-

naptic potential) is known as neural mass modeling (Freeman,

1975, 1992; Lopes da Silva et al., 1974). Neural mass models

accounting for parameter dispersion in the neuronal parame-

ters include Assisi et al., 2005; Stefanescu and Jirsa, 2008, 2011;

Jirsa and Stefanescu, 2010. Networks of neural masses, with-

out an explicit spatial component within the mass but with the

possibility to apply local connectivity kernels (e.g., Gaussian or

Laplacian functions) between masses, can be used to approximate

neural field models. Both neural field and neural mass model-

ing approaches embody the concept from statistical physics that

macroscopic physical systems obey laws that are independent of

the details of the microscopic constituents of which they are built

(Haken, 1983). These and related ideas have been exploited in

neurosciences (Kelso, 1995; Buzsaki, 2006).

In TVB, our main interest lies in using the mesoscopic laws

governing the behavior of neural populations and uncovering

the laws driving the processes on the macroscopic brain network

scale. The biophysical mechanisms available to microscopic single

neuron approaches are absorbed in the mean field parameters on

the mesoscopic scale and are not available for exploration other

than through variation of the mean field parameters themselves.

As a consequence, TVB represents a neuroinformatics tool that is

designed to aid in the exploration of large-scale network mecha-

nisms of brain functioning [see Ritter et al. (2013) for an example

of modeling with TVB].

Furthermore, TVB’s approach to multi-modal neuroimaging

integration in conjunction with neural field modeling shares

common features with the work of Bojak et al. (2010, 2011) and

Babajani-Feremi and Soltanian-Zadeh (2010). The crucial differ-

ence is that the structure upon which TVB has been designed rep-

resents a generalized large-scale “computational neural model” of

the whole brain. The components of this large-scale model have

been separated as cleanly as possible, and a specific structure has

been defined for the individual components. This generic struc-

ture is intended to serve the purpose of restricting the form of

models enough to make direct comparison straight forward while

still permitting a sufficiently large class of models to be expressed.

Likewise, the paradigms presented during the last few years in this

line of research (Sotero et al., 2007; Sotero and Trujillo-Barreto,

2008) could potentially be reproduced, tested and compared in

TVB. The mathematics underlying our model-based approach

have been partially described in various original articles (Deco

et al., 2011; Deco and Jirsa, 2012) and will be reviewed in more

detail in future articles.

1.2. INFORMATICS

From an informatics perspective, a large-scale simulation project

requires a well defined yet flexible workflow, i.e., adaptable

according to the users profiles. A typical workflow in TVB

involves managing project information, uploading data, setting

up simulation parameters (model, integration scheme, output

modality), launching simulations (in parallel if needed), ana-

lyzing and visualizing, and finally storing results and sharing

output data.

The web interface allows users without programming knowl-

edge to access TVB to perform customized simulations (e.g.,

clinicians could use their patient’s data obtained from DTI stud-

ies). In addition, it enables them to gain a deeper understanding

of the theoretical approaches behind the scenes. On the other

hand, theoreticians can design their own models and get an idea

of their biophysical realism, their potential physiological applica-

tions and implications. As both kinds of users may work within

the same framework, the interplay of theory and experiment

or application is accelerated. Additionally, users with stronger

programming skills benefit from all the advantages provided by

the Python programming language: easy-to-learn, easy-to-use,

scriptable and with a large choice of scientific modules (Oliphant,

2006).

TVB has been principally built in the Python programming

language due to its unique combination of flexibility, existing

libraries and the ease with which code can be written, docu-

mented, and maintained by non-programmers. The simulation

core, originally developed in MATLAB, was ported to Python

given its current significance in the numerical computing and

neuroscience community and its already proven efficiency for

implementing modeling tools (Spacek et al., 2008).

Simulations benefit from vectorized numerical computations

with NumPy arrays and are enhanced by the use of the num-

expr package. Although this allows rather efficient single simu-

lations, the desire to systematically explore the parameter spaces

of the neural dynamic models, and to compare many connectiv-

ity matrices, has lead to the implementation of code generation

mechanisms for the majority of the simulator core—producing

C code for both native CPU and also graphics processing units

(GPU), leading to a significant speed up of parameter sweeps and

parallel simulations (5x from Python to C, 40x from C to GPU).

Such graphics units have become popular in scientific computing

for their relatively low price and high computing power. Going

forward, the GPU implementation of TVB will require testing and

optimization before placing it in the hands of users.

This article intends to give a comprehensive but non-

exhaustive description of TVB, from both technical and scientific

points of view. It will describe the framework’s architecture, the

simulation core, and the user interfaces. It will also provide

two examples, using specific features of the simulator, extracted

from the demo scripts which are currently available in TVB’s

distribution packages.

2. TVB ARCHITECTURE

The architectural model of the system has two main components:

the scientific computing core and the supporting framework with

its graphical user interface. Both software components communi-

cate through an interface represented by TVB-Datatypes, which

are described in section 2.2. In Figure 1 TVB’s architectural details

are illustrated and explained in more depth.

General aspects: TVB is designed for three main deployment con-

figurations, according to the available hardware resources: (1)

Stand Alone; (2) Client-Server or, (3) Cluster. In the first, a local

workstation is assumed to have certain display, computing power

and storage capacity resources. In the second, an instance of

TVB is running on a server connected through a network link

to client units, and thus accessible to a certain number of users.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 1 | The Virtual Brain Architecture: TVB provides two

independent interfaces depending on the interaction with users.

Blocks in the back-end are transparently used by different top application

layers. TVB-Datatypes, are the common language between different

components (analyzers, visualizers, simulator, uploaders). They represent

“active data” in the sense that, when TVB is configured with a database,

data contained in TVB-Datatypes instances are automatically persistent.

Currently the console interface works without the storage layer, keeping

the results just in memory. S-Users need to manually handle data import

and export operations.

In this deployment model, simulations use the back-end server’s

computing power while visualization tasks use resources from

the client machine. The third is similar to the client-server con-

figuration, but with the additional advantage of parallelization

support in the back-end. The cluster itself needs to be configured

separately of TVB.

Based on the usage scenarios and user’s level of program-

ming knowledge, two user profiles are represented: a graphical

user (G-user) and scripting user (S-user). We therefore provide

the corresponding main interfaces based on this classification: a

graphical user interface (web) and a scripting interface (IDLE).

S-users and G-users have different levels of control over different

parts of the system. The profile of S-users is thought to be that of

scientific developers, that is, researchers who can elaborate com-

plex modeling scenarios, add their own models or directly modify

the source code to extend the scientific core of TVB, mostly work-

ing with the scientific modules. They do, nevertheless, have the

possibility to enable the database system. In contrast, G-users

are relatively more constrained to the features available in the

stable releases of TVB, since their profile corresponds more to

that of researchers without a strong background in computational

modeling. The distinction between these two profiles is mainly a

categorization due to the design architecture of TVB. For instance,

we could also think of other type of users who want to work with

TVB’s GUI and are comfortable with programming, and there-

fore they could potentially make modifications in the code and

then see the effect of those when launching the application in a

web browser.

The development of TVB is managed under Agile tech-

niques. In accord therewith, each task is considered as done,

after completing a validation procedure that includes: adding a

corresponding automated unit-test, labeling the task as finished

from the team member assigned to implement the task and fur-

ther tagging as closed from a team member responsible for the

module, which means a second level of testing. Before releas-

ing stable packages, there is a period for manual testing, that

is, a small group of selected users from different institutions

check the main features and functionalities through both inter-

faces. The navigation and workflows scenarios through the web-

based interface are evaluated by means of automated integration

tests for web-applications running with Selenium (http://docs.

seleniumhq.org/) and Apache-JMeter (http://jmeter.apache.org/)

on top of a browser engine. Special effort is being made to provide

good code-coverage, including regression tests. Accordingly, the

simulation engine of TVB has automated unit-tests, to guarantee

the proper and coordinated functioning of all the modules, and

simple programs (demonstration scripts), that permit qualitative

evaluation of the scientific correctness of results.

The development version of TVB is currently hosted on a

private cluster, where we use the version control system svn

(subversion). Additionally, as any large collaborative open-source

project, it is also available in a public repository, using the dis-

tributed version control system git (Chacon, 2009) to make

accessible the scientific core and to gather, manage and inte-

grate contributions from the community. The distribution pack-

ages for TVB come with an extensive documentation, including:

a User Guide, explaining how to install TVB, set up models

and run them; Tutorials, Use Cases and Script Demos, guid-

ing users to achieve predefined simulation scenarios; and a

Developer Guide and API reference. Table 1 provides the links

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 4

http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://jmeter.apache.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

Table 1 | TVB links.

TVB official website http://www.thevirtualbrain.org

Distribution packages http://www.thevirtualbrain.org/register

Public repository https://github.com/the-virtual-brain

User group https://groups.google.com/group/tvb-users/

to: the official TVB website, where distribution packages for Linux

and Mac OS (32 and 64 bits) and Windows (32 bits) are avail-

able for download; the active users group of TVB hosted in

Google Groups, where users can ask questions, report issues and

suggest improvements or new features; and the public reposi-

tory, where the source code of both the framework and scien-

tific library (which contains the simulation engine) are avail-

able.

Installation and System Requirements: When using the web

interface, users are recommended to have a high definition mon-

itor (at least 1600 × 1000 pixels), a WebGL and WebSockets

compatible browser (latest versions of Mozilla Firefox, Apple

Safari or Google Chrome), and a WebGL-compatible graphics

card, that supports OpenGL version 2.0 or higher (Shreiner et al.,

2005).

Regarding memory and storage capacity, for a stand alone

installation a minimum of 8 GB of RAM is recommended. For

multi-users environments 5 GB of space per user is suggested.

This is a storage quota specified by an administrator to manage

the maximum hard disk space per user. As for computing power

one CPU core is needed for a simulation with a small number

of nodes, while simulations with a large number of nodes, such

as surface simulations, can make use of a few cores if they are

available. When the number of launched simulations is larger

than the number of available cores, a serialization is recom-

mended (a serialization mechanism is provided by the supporting

framework through the web user interface by specifying the max-

imum of simultaneous jobs allowed). In order to use the Brain

Connectivity Toolbox (Rubinov and Sporns, 2010), MATLAB or

Octave should be installed, activated and accessible for the current

user.

2.1. TVB FRAMEWORK

The supporting framework provides a database back-end, work-

flow management and a number of features to support collab-

orative work. The latter feature permits TVB to be setup as

a multi-user application. In this configuration, a login system

enables users to access their personal sessions; by default their

projects and data are private, but they can be shared with other

users. The graphical user interface (GUI) is web based, making

use of HTML 5, WebGL, CSS3 and Java Script (Bostock et al.,

2011) tools to provide an intuitive and responsive interface that

can be locally and remotely accessed.

2.1.1. Web-based GUI

TVB provides a web-based interactive framework to generate,

manipulate and visualize connectivity and network dynamics.

Additionally, TVB comprises a set of classic time-series analysis

tools, structural and functional connectivity analysis tools, as well

as parameter exploration facilities which can launch simulations

in parallel on a cluster or on multiple compute cores of a server.

The GUI of TVB has six main working areas: USER, PROJECT,

SIMULATOR, ANALYZE, STIMULUS, and CONNECTIVITY.

In USER, the users manage their accounts and TVB settings.

In PROJECT, individual projects are managed and navigation

tools are provided to explore their structure as well as the data

associated with them. A sub-menu within this area provides

a dashboard with a list of all the operations along with their

current status (running, error, finished), owner, wall-time and

associated data, among other information. In SIMULATOR the

large-scale network model is set up and simulations launched,

additional viewers for structural and functional data are offered

in 2D and 3D, as well as other displays to visualize the results

of a simulation. A history of simulations is also available in this

area. In ANALYZE time-series and network analysis methods

are provided. In STIMULUS, users can interactively create stim-

ulation patterns. Finally, in CONNECTIVITY, users are given

a responsive interface to edit the connectivity matrices assisted

by interactive visualization tools. Figure 2 depicts the different

working areas, as well as a number of their sub-menus, avail-

able through the web UI. A selection of screenshots illustrating

the interface in a web browser is given in Figure 3.

2.1.2. Data management and exchange

One of the goals of TVB is to allow researchers from differ-

ent backgrounds and with different programming skills to have

quick access to their simulated data. Data from TVB can be

exchanged with other instances of TVB (copies installed on differ-

ent computers) or with other applications in the neuroscientific

community, e.g., MATLAB, Octave, The Connectome ToolKit

(Gerhard et al., 2011).

Export: A project created within TVB can be entirely exported

to a .zip file. Besides storing all the data generated within a par-

ticular project in binary files, additional XML files are created to

provide a structured storage of metadata, especially with regard to

the steps taken to set up a simulation, configuration parameters

for specific operations, time-stamps and user account informa-

tion. This mechanism produces a summary of the procedures

carried on by researchers within a project which is used for shar-

ing data across instances of TVB. The second export mechanism

allows the export of individual data objects. The data format used

in TVB is based on the HDF5 format (The HDF Group, 2010)

because it presents a number of advantages over other formats:

(1) huge pieces of data can be stored in a condensed form; (2)

it allows grouping of data in a tree structure; (3) it allows meta-

data assignment at every level; and (4) it is a widely used format,

accessible in several programming languages and applications.

Additionally, each object in TVB has a global unique identifier

(GUID) which makes it easy to identify an object across systems,

avoiding naming conflicts among files containing objects of the

same type.

Import: A set of mechanisms (“uploaders”) is provided in TVB

to import data into the framework, including neuroimaging data

generated independently by other applications. The following for-

mats are supported: NIFTI-1 (volumetric time- series), GIFTI

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 2 | Main working areas of The Virtual Brain ’s web interface: in

USER personal information (account settings) as well as hardware and

software preferences (technical settings) are configured. Through the

PROJECT area users access and organize their projects, data, figures and the

operations dashboard. Input and output simulated data can be exported in

HDF5 format and may be used outside of the framework. Brain network

models and execution of simulations are configured and launched,

respectively in SIMULATOR. In this area results can be immediately analyzed

and visualized to have a quick overview of the current model. A history of

launched simulations is kept to have the traceability of any modifications that

took place in the simulation chain. STIMULUS provides a collection of tools

to build stimulation patterns that will be available to use in the simulations.

Finally, CONNECTIVITY provides an interactive environment to the edit and

visualize connectivity matrices.

(surfaces) and CFF (connectome file). General compression for-

mats, such as ZIP and BZIP2 are also supported for certain

data import routines that expect a set of ASCII text files com-

pressed in an archive. Hence the use of general compression

formats means that preparing datasets for TVB is as simple as

generating an archive with the correct ASCII files, in contrast

to some of the other neuroscientific data formats found else-

where. For instance, a Connectivity dataset (connectome) may be

uploaded as a zip folder containing the following collection of

files: (1) areas.txt, (2) average_orientations.txt, (3) info.txt, (4)

positions.txt, (5) tract_lengths.txt, and (6) weigths.txt. More con-

ventions and guidelines to use each uploader routine can be found

in the User Guide of TVB’s documentation.

2.1.3. File storage

The storage system is a tree of folders and files. The actual

location on disk is configurable by the user, but the default

is a folder called “TVB” in the user’s home folder. There is a

sub-folder for each Project in which an XML file containing

details about the project itself is stored. Then for each opera-

tion, one folder per operation is created containing a set of .h5

files generated during that particular operation, and one XML

file describing the operation itself. The XML contains tags like

creation date, operation status (e.g., Finished, Error), algorithm

reference, operation GUID, and most importantly input param-

eters dictionary. Sufficiently detailed information is stored in

the file system to be able to export data from one instance

of TVB and to then import it into another instance, correctly

recreating projects, including all operations and their results.

Even though the amount of data generated per operation varies

greatly, since it depends strongly on the Monitors used and

parameters of the simulation, some rough estimates are given

below:

• A 1000 ms long, region-based simulation with all the default

parameters requires approximatively 1 MB of disk space.

• A 10 ms long, surface-based simulation, using a precalculated

sparse matrix to describe the local connectivity kernel and all

the default parameters, requires about 280 MB.

Users can manually remove unused data using the correspond-

ing controls in TVB’s GUI. In this case, all files related to these

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 3 | UI screenshots. (A) SIMULATOR Area. Having multiple panels

allows a quick overview of previous simulations (left), model parameters for

the currently selected simulation (middle), and summary displays of the data

associated with the currently selected simulation (right). (B) Shows the

interface for editing and visualising the structural connectivity, for one of the

six possible connectivity visualisations. (C) PROJECT Area—operations

dashboard. On the left column, users can compose filters to search through

all the operations on the list.

data are also deleted, freeing disk space. The amount of phys-

ical storage space available to TVB can be configured in the

USER → Settings working area of the GUI—this is, of course,

limited by the amount of free space available on the users

hard drives.

2.1.4. Database management system

Internally, TVB framework uses a relational database (DB),

for ordering and linking entities and as an indexing facil-

ity to quickly look up data. At install time, users can choose

between SQLite (a file based database and one of the most

used embedded DB systems) and PostgreSQL (a powerful,

widely spread, open-source object-relational DB system which

requires a separate installation by users) as the DB engine.

In the database, only references to the entities are stored,

with the actual operation results always being stored in files,

due to size. A relational database was chosen as it provides

speed when filtering entities and navigating entity relationship

trees.

2.2. TVB DATATYPES

In the architecture of TVB, a middleware layer represented by

TVB-Datatypes allows the handling and flow of data between the

scientific kernel and the supporting framework. TVB-Datatypes

are annotated data structures which contain one or more data

attributes and associated descriptive information, as well as meth-

ods for operating on the data they contain. The definition

of a Datatype is achieved using TVB’s traiting system, which

was inspired by the traiting system developed by Enthought

(Enthought, 2001). The traiting system of TVB, among other

things, provides a mechanism for annotating data, that is, associ-

ating additional information with the data which is itself usually

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

a single number or an array of numbers. A complete descrip-

tion of TVB’s traiting system is beyond the scope of this article.

However, in describing TVB’s Datatypes we will give an example

of its use, which should help to provide a basic understanding of

the mechanism.

A number of basic TVB-Datatypes are defined based on

Types that are part of the traiting system, with these traited

Types, in turn, wrapping Numpy data types. For instance,

TVB-FloatArray is a datatype derived from the traiting system’s

Array type, which in turn wraps Numpy’s ndarray. The trait-

ing system’s Array type has attributes or annotations, such as:

dtype, the numerical type of the data contained in the array;

label, a short (typically one or two word) description of what

the Array refers to, this information is used by the support-

ing framework to create a proper label for the GUI; doc, a

longer description of what the Array refers to, allowing the

direct integration of useful documentation into array objects; and

default, the default value for an instance of an Array type. In

the case of a FloatArray, the dtype attribute is fixed as being

numpy.float64.

More complex, higher-level, TVB-Datatypes are then built

up with attributes that are themselves basic TVB-Datatypes. For

example, TVB-Connectivity is datatype which includes multi-

ple FloatArrays, as well as a number of other traited types, such

as Integer and Boolean, in its definition. An example of a

FloatArray being used to define an attribute of a Connectivity can

be seen in Code 1. The high-level Datatypes currently defined in

TVB are summarized in Table 2.

An example indicating the usage and features of TVB-

Datatypes is provided below. When a user uploads a connectivity

dataset through the UI, an instance of a Connectivity datatype is

generated. This Connectivity datatype is one of the required input

arguments when creating an instance of SIMULATOR. As a result

of the execution of a simulation, other TVB-Datatypes are gener-

ated, for instance one or more TimeSeries datatypes. Specifically,

if the simulation is run using the MEG and EEG recording

modalities then TimeSeriesMEG, TimeSeriesEEG, which

are subclasses of TimeSeries, are returned. Both the Connectivity

Code 1 | An instance of TVB’s FloatArray Datatype being used to

define the conduction speed between brain regions as an attribute of

a Connectivity Datatype.

speed = FloatArray(

label = "Conduction speed",

default = numpy.array([3.0]),

doc = """A single number or matrix of conduction speeds for the

myelinated fibre tracts between regions.""")

Table 2 | TVB Datatypes.

Base class datatype Description Derived classes

Connectivity Maps connectivity matrix data Connectivity

Surfaces Covers surface representations CorticalSurface, SkinAir, BrainSkull, SkullSkin,

EEGCap, FaceSurface, Cortex, RegionMapping,

LocalConnectivity

Volumes Wraps volumetric data ParcellationMask, StructuralMRI

Sensors Wraps sensors data used in different acquisition techniques to

generate physiological recordings

SensorsEEG, SensorsMEG, SensorsInternal

ProjectionMatrix Wraps matrices defining a linear operator to map the spatial sources

into the leadfield domain

ProjectionRegionEEG, ProjectionSurfaceEEG,

ProjectionRegionMEG

It relates two datatypes: a source of type Connectivity or Surface

and a set of Sensors

ProjectionSurfaceMEG

The matrix is computed using OpenMEEG. (Gramfort et al., 2010)

Equations Commonly used functions for defining local connectivity kernels and

stimulation patterns

SpatialPattern Contains patterns mainly used as stimuli. It makes use of Equation

datatypes

SpatioTemporalPattern, StimuliRegion,

StimuliSurface, SpatialPatternVolume

TimeSeries One of the most important TVB-Datatypes. Derived classes wrap

measurements recorded under different acquisition modalities

TimeSeriesRegion, TimeSeriesSurface,

TimeSeriesVolume, TimeSeriesEEG, TimeSeriesMEG

Graph Wraps results from a covariance analysis or results from BCT

analyzers

Covariance, ConnectivityMeasure

MappedValues Wraps a single value computed from a TimeSeries object

ModeDecomposition Wraps results from matrix factorization analysis (i.e., PCA and ICA) PrincipalComponents, IndependentComponents

Spectral Wraps results from frequency analysis FourierSpectrum, WaveletCoefficients,

ComplexCoherenceSpectrum

Specifications about the requirements to build a TVB-Datatype can be found in the documentation of the distribution packages.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

and TimeSeries datatypes are accepted by a range of appropriate

analysis and visualization methods.

Further, TVB-Datatypes have attributes and metadata which

remains accessible after exporting in TVB format. The meta-

data includes a technical description of the data (storage size

for instance) as well as scientifically relevant properties and use-

ful documentation to properly interpret the dataset. In the shell

interface, the attributes of TVB-Datatype can be accessed by their

key-names in the same way as Python dictionaries.

2.3. TVB SIMULATOR

The simulation core of TVB brings together a mesoscopic model

of neural dynamics with structural data. The latter defines both

the spatial support (see Figure 4), upon which the brain net-

work model is built, and the hierarchy of anatomical connectivity,

that determines the spatial scale represented by the structural

linkages between nodes (Freeman, 1975). Simulations then recre-

ate the emergent brain dynamics by numerically integrating this

coupled system of differential equations. All these entities have

their equivalent representation as classes either in the sci-

entific MODULES or datatypes, and are bound together in an

instance of the Simulator class. In the following paragraphs

we describe all the individual components required to build a

minimal representation of a brain network model and run a simu-

lation, as well as the outline of the operations required to initialize

a Simulator object and the operations of the update scheme.

2.3.1. Coupling

The brain activity (state variables) that has been propagated over

the long-range Connectivity pass through these functions before

entering the equations of a Model describing the local dynam-

ics. A Coupling function’s primary purpose is to rescale the

incoming activity to a level appropriate to the population model.

The base Coupling class as well as a number of different cou-

pling functions are implemented in the COUPLING module, for

instance Linear and Sigmoidal.

FIGURE 4 | Demonstration datasets exist in TVB for the anatomical

structure on which simulations are built, including a triangular mesh

surface representation of the neocortex (A) and white matter fiber

lengths (B). However, new data from structural imaging such as MRI, DTI,

and DSI for individual subjects, as well as data from the literature can be

used and wrapped in a TVB-Datatype.

2.3.2. Population models

A set of default mesoscopic neural models are defined in TVB’s

MODELS. All these models of local dynamics are classes derived

from a base Model class.

We briefly discuss the implemented population models in

order of increasing complexity. They include a generic two

dimensional oscillator, a collection of classical population mod-

els and two recently developed multi-modal neural mass models.

Below, N refers to the number of state variables or equations

governing the evolution of the model’s temporal dynamics; M

is the number of modes and by default M = 1 except for the

multi-modal models.

The Generic2dOscillator model (N = 2) is a generic

phase-plane oscillator model capable of generating a wide range

of phenomena observed in neuronal population dynamics, such

as multistability, the coexistence of oscillatory and non-oscillatory

dynamics, as well as displaying dynamics at multiple time

scales.

The WilsonCowan model (Wilson and Cowan, 1972)

(N = 2) describes the firing rate of a neural population con-

sisting of two subpopulations (one excitatory and the other

inhibitory). It was originally derived using phenomenological

arguments. This neural mass model provides an intermediate

between a microscopic and macroscopic level of description of

neural assemblies and populations of neurons since it can be

derived from pulse-coupled neurons (Haken, 2001) and its con-

tinuum limit resembles neural field equations (Jirsa and Haken,

1996).

The WongWang model (Wong and Wang, 2006) represents

a reduced system of N = 2 coupled non-linear equations, orig-

inally derived for decision making in two-choice tasks. The

BrunelWang model (Brunel and Wang, 2001, 2003) is a mean

field model derived from integrate-and-fire spiking neurons and

makes the approximation of randomly distributed interspike

intervals. It is notable that this population model shows only

attractor states of firing rates. It has been extensively used to

study working memory. Its complexity resides in the number of

parameters that it uses to characterize each population (N = 2).

These parameters correspond to physical quantities that can be

measured in neurophysiology experiments. The current imple-

mentation of this model is based on the approach used in (Deco

and Jirsa, 2012).

The JansenRit model (Jansen and Rit, 1995) is a deriva-

tive of the Wilson-Cowan model and features three coupled

subpopulations of cortical neurons: an excitatory population of

pyramidal cells interacting with two populations of interneu-

rons, one inhibitory and the excitatory. This model can produce

alpha activity consistent with that measured in EEG, and is

capable of simulating evoked potentials (Jansen et al., 1993). It

displays a surprisingly rich and complex oscillatory dynamics

under periodic stimulation (Spiegler et al., 2010). Each popu-

lation is described by a second order differential equation. As a

consequence the system is described by a set of N = 6 first order

differential equations.

The StefanescuJirsa2D and StefanescuJirsa3D

models (Stefanescu and Jirsa, 2008; Jirsa and Stefanescu, 2010;

Stefanescu and Jirsa, 2011) are neural mass models derived from a

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

globally coupled population of neurons of a particular kind. The

first one has been derived from coupled FitzHugh-Nagumo neu-

rons (FitzHugh, 1961; Nagumo, 1962), which, with N = 2, are

capable of displaying excitable dynamics, as well as oscillations.

The second is derived from coupled Hindmarsh-Rose neurons

(Hindmarsh and Rose, 1984), which are also capable of pro-

ducing excitable and oscillatory dynamics, but with N = 3 have

the additional capability of displaying transient oscillations and

bursts. The two Stefanescu-Jirsa models show the most complex

repertoire of dynamics (including bursting and multi-frequency

oscillations). They have been derived using mean field tech-

niques for parameter dispersion (Assisi et al., 2005) and have an

additional dimension, the mode M, which partitions the dynam-

ics into various subtypes of population behavior. These models

are therefore composed of 12 (N = 4, M = 3) and 18 (N = 6,

M = 3) state variables, respectively.

2.3.3. Integrators

The base class for integration schemes is called Integrator, an

INTEGRATORS module contains this base class along with a set of

specific integration scheme classes for solving both deterministic

and stochastic differential equations. The specific schemes imple-

mented for brain network simulations include the Euler and

Heun methods. The 4th-order Runge-Kutta (rk4) method is

only available for solving ordinary differential equations (ODEs),

i.e., deterministic integration, given that there are various vari-

ants for the stochastic version of the method, differing rates of

convergence being one of the points that several attempts of cre-

ating a stochastic adaptation fail at [see Burrage et al. (2004)

for an overview]. Therefore, this method is available for drawing

example trajectories in the interactive phase-plane plot tool.

2.3.4. Noise

Noise plays a crucial role for brain dynamics, and hence for

brain function (McIntosh et al., 2010). The NOISE module con-

sists of two base classes: RandomStream that wraps Numpy’s

RandomState class and Noise. The former provides the ability

to create multiple random streams which can be independently

seeded or set to an explicit initial state. The latter is the base

class from which specific noises, such as white and colored (Fox

et al., 1988), are derived. In TVB’s implementation Noise enters

as an additional term within the stochastic integration schemes,

and can be either an Additive or Multiplicative process

(Klöden and Platen, 1995). As well as providing a means to gener-

ate reproducible stochastic processes for the integration schemes,

the related classes in NOISE are used to set the initial conditions

of the system when no explicit initial conditions are specified.

2.3.5. Monitors

The data from a simulation is processed and recorded while

the simulation is running, that is, while the differential equa-

tions governing the system are being integrated. The base class

for these processing and recording methods is the Monitor

class in the MONITORS module. We consider two main types

of online-processing: (1) raw or low-level; and (2) biophysical

or high-level. The output of a Monitor is a 4-dimensional

array (which can be wrapped in the corresponding TimeSeries

datatype), i.e., a 3D state vector as a function of time. For

the first kind of Monitors these dimensions correspond to

[time, state variables, space, modes] where “space” can be either

brain regions or vertices of a cortical surface plus non-cortical

brain regions. The number of state variables as well as the num-

ber of modes strictly depend on the Model. For the second kind

of Monitors, the dimensions are [time, 1, sensors, 1]. The sim-

plest form of low-level Monitor returns all the simulated data,

i.e., time points are returned at the sampling rate correspond-

ing to the integration scheme’s step size and all state variables

are returned for all nodes. All other low-level Monitors per-

form some degree of down-sampling, such as returning only a

reduced set state variables (by default the variables of interest of

a Model), or down-sampling in “space” or time. Some vari-

ations include temporally sub-sampled, spatially averaged and

temporally sub-sampled, or temporally averaged. The biophysical

Monitors instantiate a physically realistic measurement pro-

cess on the simulation, such as EEG, MEG, SEEG or BOLD. For

the first two, a ProjectionMatrix is also required. This matrix

maps source activity (“space”) to sensor activity (“sensors”).

OpenMEEG (Gramfort et al., 2010) was used to generate the

demonstration projection matrix, also known as lead-field or gain

matrix, that corresponds to the EEG/MEEG forward solution.

The forward solution modeling the signals from depth electrodes

is based on the point dipole model in homogeneous space (Sarvas,

1987). The BOLD monitor is based on Buxton and Frank (1997)

and Friston et al. (2000). Figure 5 summarizes the fundamental

blocks required to configure a full model, launch a simulation and

retrieve the simulated data.

In most neural mass models there is a state variable represent-

ing some type of neural activity (firing rate, average membrane

potential, etc.), which serves as a basis for the biophysical moni-

tors. The state variables used as source of neural activity depend

both on the Model and the biophysical space that it will be pro-

jected onto (MEG, EEG, BOLD). Given a neural mass model with

a set of state variables, G-Users can choose which subset of state

variables will be fed into a Monitor (independently for each

monitor). However, how a given Monitor operates on this sub-

set of state variables is an intrinsic property of the monitor. Users

with programming experience can, of course, define new moni-

tors according to their needs. Currently, there is not a mechanism

providing automatic support for general operations over state

variables before they are passed to a monitor. As such, when the

neural activity entering into the monitors is anything other than

a summation or average over state variables then it is advised to

redefine the Model in a way that one of the state variables actually

describes the neural activity of interest.

2.3.6. Outline of the simulation algorithm

The Simulator class has several methods to set up the

spatiotemporal dimensions of the input and output arrays,

based on configurable attributes of the individual

components such as integration time step (e.g., INTE-

GRATORS.HeunDeterministic.dt), structural spatial

support (e.g., connectivity.Connectivity or surfaces.

CorticalSurface) and transmission speed (e.g., connec-

tivity.Connectivity .speed) as well as a cascade of specific

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 5 | Diagram of the configurable elements for building a brain

network model and launching a simulation. TVB can incorporate cortical

connectivity information from an individual’s tractographic and cortical

geometry data. The Connectivity object contains matrices defining the

connection strengths and time delays via finite signal transmission speed

between all regions, while the folded Cortical Surface mesh provides the

spatial support for finer resolution models. In the latter case a Local

Coupling defines the interaction between neighboring nodes. In its simplest

form local connectivity is spatially invariant, however, support exists for

spatial inhomogeneity. Signal propagation via local connectivity is

instantaneous (no time delays), which is a reasonable approximation

considering the short distances involved. Together, the cortical surface with

its local connectivity, the long-range connectivity matrix, and the neural mass

models defining the local dynamics define a full brain network model.

Additionally, stimulation can be applied to a simulation. The stimulation

patterns are built in terms of spatial and temporal equations chosen

independently. For region-based network models, it is only possible to build

time dependent stimuli since there is not a spatial extent for a region node.

However, node-specific weightings can be set to modulate the intensity of

the stimulus applied to each node. For surface-based models, equations with

finite spatial support are evaluated as a function of distance from one or more

focal points (vertices of the surface), where the equation defines the spatial

profile of the stimuli. The neural source activity from both region or

surface-based approaches can be projected into EEG, MEG and BOLD

(Buxton and Frank, 1997; Friston et al., 2000) space using a forward model

(Breakspear and Jirsa, 2007).

configuration methods to interface them. The Simulator

class coordinates the collection of objects from all the modules

in the scientific library needed to build the network model and

yield the simulated data. To perform a simulation a Simulator

object needs to be: (1) configured, initializing all the individual

components and calculating attributes based on the combination

of objects passed to the Simulator instance; and (2) called in

a loop to obtain simulated data, i.e., to run the simulation (see

Code 2). The next paragraphs list the main operations of the

simulation algorithm.

Initializing a Simulator

1. Check if the transmission speed was provided.

2. Configure the Connectivity matrix (connectome). The

delays matrix is computed using the distance matrix and

the transmission speed. Get the number of regions.

3. Check if a Surface is provided.

4. Check if a stimulus pattern is provided.

5. Configure individual components: Model, Integrator,

Monitors. From here we obtain integration time

step size, number of statevariables, number

of modes.

6. Set the number of nodes (region-based or surface-based

simulation). If a Surface was given the number of nodes

will correspond to the number of vertices plus the num-

ber of non-cortical regions, otherwise it will be equal to the

number of regions in the Connectivity matrix.

7. Spatialise model parameters if required. Internally, TVB uses

arrays for model parameters, if the size of the array for a

particular parameter is 1, then the same numerical value is

applied to all nodes. If the size of the parameter array is N,

where N is the number of nodes, the parameter value for each

node is taken from the corresponding element of the array of

parameter values.

8. If applicable, configure spatial component of stimulation

Patterns (requires number of nodes).

9. Compute delays matrix in integration time steps.

10. Compute the horizon of the delayed state, that is the

maximum delay in integration time steps.

11. Set the history shape. The history state contains the activ-

ity that propagates from the delayed state to the next.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

12. Determine if the Integrator is deterministic or stochas-

tic. If the latter, then configure the Noise and the integration

method accordingly.

13. Set initial conditions. This is the state from

which the simulation will begin. If none is provided, then

random initial conditions are set based on the ranges of the

model’s state variables. Random initial conditions are fed to

the initial history array providing the minimal state of the

network with time-delays before t = 0. If initial conditions

are user-defined but the length along the time dimension

is shorter than the required horizon, then the history

array will be padded using the same method of described for

random initial conditions.

14. Configure the monitors for the simulation. Get variables

of interest.

Calling a Simulator

1. Get simulation length.

2. Compute estimates of run-time, memory usage and storage.

3. Check if a particular random state was provided (random

seed). This feature is useful for reproducibility of results, for

instance, getting the same stream of random numbers for the

Noise.

4. Compute the number of integration steps.

5. If the simulation is surface-based, then get attributes required

to compute Local Connectivity kernel.

6. Update state loop:

a. Get the corresponding coupled delayed activity. That is,

compute the dot product between the weights matrix

(connectome) and the delayed state of the coupling

variables, transformed by a (long-range) Coupling

function.

b. Update the state array. This is the numerical integration,

i.e., advancing an integration time step, of the differential

equations defining the neuron model. Distal delayed activ-

ity, local instantaneous activity and stimulation are fed to

the integration scheme.

c. Update the history.

d. Push state data onto the Monitors. Yield any processed

time-series data point if available.

As a working example, in Code 2, we show a code snippet which

uses TVB’s scripting interface and some of the classes and mod-

ules we have just described to generate one second of brain

activity. The for loop in the example code allows scripting users to

receive time-series data as available and separately for each of the

monitors processing simulated raw data. In this implementation,

at each time step or certain number of steps, data can be directly

stored to disk, reducing the memory footprint of the simula-

tion. Such a feature is particularly useful when dealing with larger

simulations. Likewise, data can be accessed while the simulation

is still running, which proves to be advantageous for modeling

paradigms where one of the output signals is fed back to the net-

work model as stimulation for instance (see the paragraph about

Dynamic modeling in section 3).

Code 2 | Script example to simulate 1 second of brain activity. Output

is recorded with two different monitors.

from tvb.simulator.lab import *

#Initialise a Model, Connectivity and Global Coupling

oscilator = models.Generic2dOscillator()

white_matter = connectivity.Connectivity()

white_matter.speed = numpy.array([4.0]) # [mm/ms]

white_matter_coupling = coupling.Linear(a=0.0042)

#Initialise an Integrator

heunint = integrators.HeunDeterministic(dt=2**-4)

#Initialise some Monitors with period in physical time

mon_raw = monitors.Raw()

mon_tav = monitors.TemporalAverage(period=2**-2)

what_to_watch = (mon_raw, mon_tav)

#Initialise a Simulator object

sim = simulator.Simulator(model = oscilator,

connectivity = white_matter,

coupling = white_matter_coupling,

integrator = heunint,

monitors = what_to_watch)

Configure the Simulator object

sim.configure()

LOG.info("Starting simulation...")

raw_data, raw_time = [], []

tavg_data, tavg_time = [], []

Call the Simulator object -- Run simulation

for raw, tavg in sim(simulation_length=2**10):

if not raw is None:

raw_time.append(raw[0])

raw_data.append(raw[1])

if not tavg is None:

tavg_time.append(tavg[0])

tavg_data.append(tavg[1])

LOG.info("Finished simulation.")

2.4. ANALYZERS AND VISUALIZERS

For the analysis and visualisation of simulated neuronal dynamics

as well as imported data, such as anatomical structure and exper-

imentally recorded time-series, several algorithms and techniques

are currently available in TVB. Here we list some of the algo-

rithms and methods that are provided to perform analysis and

visualization of data through the GUI.

Analyzers are mostly standard algorithms for time-series and

network analysis. The analyzers comprise techniques wrapping

functions from Numpy (Fast Fourier Transform (FFT), auto-

correlation, variance metrics), Scipy (cross-correlation), scikit-

learn (ICA) (Pedregosa et al., 2011) and matplotlib-mlab (PCA)

(Hunter, 2007). In addition, there are specific implementations

of the wavelet transform, complex coherence (Nolte et al., 2004;

Freyer et al., 2012) and multiscale entropy (MSE) (Costa et al.,

2002, 2005; Lake and Moorman, 2011).

Visualizers are tools designed to correctly handle specific

datatypes and display their content. Representations currently

available in the GUI include: histogram plots (Figure 6A);

interactive time-series plots, EEG (Figure 6C); 2D head topo-

graphic maps (Figure 6B); 3D displays of surfaces and animations

(Figure 6D) and network plots. Additionally, for shell users there

is a collection of plotting tools available based on matplotlib and

mayavi (Ramachandran and Varoquaux, 2011).

3. PERFORMANCE, REPRODUCIBILITY, AND FLEXIBILITY

3.1. TESTING FOR SPEED

In the context of full brain models there is no other platform

against which we could compare the performance results for TVB

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 6 | Continued

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 6 | Visualizers. (A) Histogram of a graph metric as a function

of nodes in the connectivity matrix. (B) A 2D projection of the head.

The color map represents a graph metric computed on the connectivity

matrix. (C) EEG visualizer combines a rendered head surface, an overlay

with the sensors positions and an interactive time-series display. (D) An

animated display of the spatiotemporal pattern applied to the cortical

surface. Red spots represent the focal points of the spatial component

of the stimulus.

and define a good ratio run-time/real-time. As a first approxima-

tion a simple network of 74 nodes, whose node dynamics were

governed by the equations of the Generic2dOscillator

model (see Code 3) was implemented in the Brian spik-

ing neural network simulator. The integration step size was

0.125 ms (dt = 2−3 ms) and the simulation length was 2048 ms.

This network was evaluated without time delays and using

a random sparse connectivity matrix. Execution times were

about 4.5 s in Brian and 15 s in TVB. In contrast, when

heterogeneous time delays were included, running times of

the simulations implemented in Brian increased considerably

(approximately 6.5x) whereas in TVB they hardly changed

(approximately 1.2x). Simulations were run on a CPU Intel®

Xeon® W3520 @ 2.67 GHz. These results, although informa-

tive, expose the fact that the architectures of TVB and the Brian

simulator are different and therefore they have been optimized

accordingly to serve distinct purposes from a modeling point

of view.

To assess the performance of TVB in terms of simulation

timings, we also ran simulations for all possible combinations

of two parameters: simulation length and integration time step

(Figure 7A). We made the following estimates: it takes on aver-

age 16 s to compute 1 s of brain network dynamics [at the region

level, with an integration time step of 0.0625 ms (dt = 2−4 ms)

and including time delays of the order of 20 ms which amounts to

store about 320 past states per time step] on CPUs Intel ®Xeon

®X5672 @ 3.20 GHz, CPU cache of 12 MB and Linux kernel

3.1.0-1-amd64 as operating system. In Figure 7B we quantify how

running times increase as a function of the integration time step

in 64 s long (region-based) simulations for two different sizes of

the connectivity matrix.

Code 3 | State equations of the generic plane oscillator as scripted to

run the simulation in the Brian simulator. The description of the

parameters are explained in the API documentation and will be

discussed in the context of dynamical systems elsewhere.

model equations

eqs = ’’’

dV/dt = d * tau * (alpha * W - f * V**3 + e * V**2 + I)

dW/dt = d * (a + b * V + c * V**2 - beta * W) / tau

’’’

In general, human cortical connectomes are derived from

anatomical parcellations with a variable number of nodes, from

less than 100 to over a few thousands nodes (Zalesky et al., 2010).

Preliminary results of simulations (data not shown) using con-

nectivity matrices of different sizes (16, 32, 64, 128, 256, 512,

1024, 2048, and 4096 nodes) and a supplementary parameter

(transmission speed that has an effect on the size of the history

array keeping the delayed states of the network) indicate that there

is a quadratic growth of the running times for networks with more

than 512 nodes. Since performance depends on a large num-

ber of parameters which have an effect on both memory (CPU

cache and RAM) and CPU usage, and therefore resulting run-

ning times arise from the interaction between them, we see the

need to develop more tests to stress in particular memory capacity

and bandwidth in order to fully understand the aforementioned

behavior.

In Future Work we talk about the approaches to bench-

mark and improve the execution times of simulations. For the

present work we have restricted ourselves to present performance

results looking at the parameters that have the strongest effect on

simulations timings.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 7 | (A) As expected for fixed time-step schemes, execution

times scale linearly with the number of integration steps. We used

seven values of simulation lengths (1, 2, 4, 8, 16, 32, and 64 s) and

five values of integration time step (dt = 2−2 = 0.25, dt = 2−3 = 0.125,

dt = 0.0625 = 2−4, dt = 0.03125 = 2−5, and dt = 0.015625 = 2−6 ms). For

each possible combination 100 simulations were performed. The network

model consisted of 74 nodes (with two state variables and one mode

per node). Numerical integration was based on Heun’s stochastic

method. We plot the average execution time with the error bars

representing the standard deviation over simulations. The inset shows a

narrower range for simulation lengths between 1 and 4 s. Axes units

and color code are the same as those displayed in the main plot.

(B) Here, execution times are shown as a function of the integration

time step size, dt, for two different number of nodes (solid and dashed

lines correspond to connectivity matrices of 64 and 128 nodes,

respectively) for a specific conduction speed (4 mm/ms) and simulation

length (64 s). Both axes are in logarithmic scale with base 2. In this

case, halving dt or doubling the number of nodes in the connectivity

matrix, N, doubles the running time. However, as mentioned in the text,

for larger networks execution times seem to grow quadratically as a

function of the number of nodes in the network. Further tests need to

be developed to understand this behavior.

3.2. REPRODUCIBILITY OF RESULTS FROM THE LITERATURE

Ghosh et al. (2008) and Deco et al. (2009) demonstrated the

important role of three large-scale parameters in the emergence

of different cluster synchronization regimes: the global coupling

strength factor, time-delays (introduced via the long-range con-

nectivity fiber tract lengths and a unique transmission speed)

and noise variance. They built parameter space maps using the

Kuramoto synchronization index. Here, using TVB’s scripting

interface, we show it is easily possible to build a similar scheme

and perform a parameter space exploration in the coupling

strength (gcs) and transmission speed (s) space. The Connectivity

upon which the large-scale network is built was the demonstra-

tion dataset. It is bi-hemispheric and consists of 74 nodes, i.e.,

37 regions per hemisphere. It includes all the cortical regions but

without any sub-cortical structure such as the thalamic nuclei.

Its weights are quantified by integer values in the range 0–3. The

evolution of the local dynamics were represented by the model

Generic2dOscillator, configured in such a way that a single iso-

lated node exhibited 40 Hz oscillations (Figure 8). The variance

of the output time-series was chosen as a simple, yet informa-

tive measure to represent the collective dynamics (Figure 9A) as

a function of the parameters under study. Results are shown in

Figure 9B. Parameter sweeps can also be launched from TVB

web-interface (see Figure 10 for an illustration).

Currently TVB provides two scalar metrics based on the vari-

ance of the output time-series to perform data reduction when

exploring a certain parameter space. These are Variance of the

nodes Variances and Global Variance. The former zero-centers

the output time-series and computes the variance over time of

the concatenated time-series of each state variable and mode for

each node and subsequently the variance of the nodes variances

is computed. This metric describes the variability of the tem-

poral variance of each node. In the latter all the time-series are

zero-centered and the variance is computed over all data points

contained in the output array.

With this example we intended to expose the possibility to

reproduce workflows, i.e., modeling schemes, found in the liter-

ature. TVB is a modeling platform providing a means of cross-

validating scientific work by encouraging reproducibility of the

results.

3.3. HIGHER-LEVEL SIMULATION SCENARIOS USING STIMULATION

PROTOCOLS

As one possible use case, we have set up an example based on the

scheme used in McIntosh et al. (2010). The goal is to demonstrate

how to build stimulation patterns in TVB, use them in a simu-

lation, obtain EEG recordings of both the activity similar to the

resting state (RS) and to evoked responses (ER), and finally make

a differential analysis of the complexity of the resulting time-series

by computing MSE.

In vision neuroscience, the two-stream hypothesis (Schneider,

1969) suggests the existence of two streams of information pro-

cessing, the ventral and the dorsal stream. In one of these path-

ways, the ventral stream, the activity from subcortical regions

project to V1 and the activity propagates to the temporal cortices

through V2 and V4 (Goodale and Milner, 1992). We systemat-

ically stimulated the area corresponding to the primary visual

cortex (V1) to demonstrate the functioning of TVB stimulation

Patterns and observed how the activity elicited by a periodic rect-

angular pulse propagates to neighboring regions, especially V2.

Benefiting from TVB’s flexibility we show in Figure 11 that

it is possible to systematically stimulate a specific brain region

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 15

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 8 | Phase portrait using TVB’s interactive phase plane

tool (accessible from both shell and graphical interfaces): the

blue line corresponds to a trajectory of a single oscillator

node isolated and without noise, 4th order Runge-Kutta

integration scheme. In the bottom panel, the corresponding

trajectories of both the v(t) and w(t) state variables of the

model are shown. The activity exhibits oscillations at

approximately 40 Hz.

FIGURE 9 | (A) The activity of individual regions are illustrated in colored

lines. The black line represents the average activity over the network nodes.

Here brain regions are weakly coupled changing both the collective and local

dynamics of the network. (B) Using TVB scientific library as a python module

we can conveniently run thousands of simulations in parallel on a cluster.

Note that TVB parallelizes different tasks e.g., simulations and analyses,

taking advantage of multi-core systems, however, it does not parallelize the

processes themselves. Simultaneous simulations allow for a systematic

parameter space exploration to rapidly gain insights of the whole brain

dynamics repertoire. In this plot, the magnitude and color scale correspond to

one the variance computed over all the elements of the N-dimensional output

array (Global Variance). Simulations were performed on a cluster based on

the Python demo scripts available in the release packages. On of the major

strengths of The Virtual Brain is that G-Users are enabled to launch parameter

sweeps through the UI without the need to know how to submit parallel jobs

(see Figure 10).

(e.g., V1) and to highlight the anatomical connection to its target

region (e.g., V2) by observing the arrival of the delayed activity;

analyze the responses of the model; handle multi-modal simu-

lated data; and extract metrics from computationally expensive

algorithms to characterize both the “resting” and “evoked”

states.

Currently, TVB permits the stimulation and read-out of activ-

ity from any brain area defined in the anatomical parcellation

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 10 | One of TVB’s major strengths is the capability to launch

parallel simulations through the UI. We show a screenshot of the

resulting display when sweeping across two different parameters of the

Generic2dOscillator model. Here each data point represents two metrics:

size is mapping the Global Variance and color corresponds to the Variance

of the nodes Variance. These results provide a topography of the stability

space allowing users to distinguish, and thus select, combinations of

critical parameters values.

used to derive the connectome. This modeling example was

built imposing a strong restriction on the number of regions

to stimulate, since global dynamics can quickly become com-

plex. Additionally, to demonstrate the many scenarios that can

be set up in TVB, we simulated the same brain network model

under the influence of a stimulus, first without noise (Figure 11A:

using Heun deterministic method) and then with white noise

(Figure 11B: using Heun stochastic method). The first approach

makes it easier to see the perturbations induced by the stimulus

and the propagation of activity from one region to the other. The

second approach is a more realistic representation of the neural

activity.

Results of the proposed modeling protocol are presented in

Figure 12 where the EEG traces from channel Oz for the resting

and evoked states are shown together with the MSE estimates.

Scripts to reproduce results from Figures 11, 12 are available

in the distribution packages of TVB.

With the availability of surface-based simulations the challenge

of replicating topographic maps of different sensory systems, such

as those found in the primary visual cortex (Hinds et al., 2009),

could be addressed.

3.4. DYNAMIC MODELING

From both the shell and web interface it is possible to exploit

another feature of TVB: namely, simulation continuation, i.e.,

a simulation can be stopped allowing users to modify model

parameters, scaling factors, apply or remove stimulation or spatial

constraints (e.g., local connectivity), or make any other change

that does not alter the spatiotemporal domain of the system or

its output (integration step, transmission speed and spatial sup-

port) and then resumed without the need of creating a new

Simulator instance. Furthermore, this capability opens the

possibility to dynamically update the simulation at runtime. Such

a dynamic approach leads toward an adaptive modeling scheme

where stimuli and other factors may be regulated by the ongoing

activity (this last feature can be handled only from the scripting

interface for the moment).

4. DISCUSSION

We have presented the architecture and usage of TVB, a neu-

roinformatics platform developed for simulations of network

models of the full brain. Its scientific core has been developed

by integrating concepts from theoretical, computational, cogni-

tive and clinical neuroscience, with the aim to integrate neu-

roimage modalities along with the interacting mesoscopic and

macroscopic scales of a biophysical model of the brain. From a

computational modeling perspective TVB constitutes an alterna-

tive to approaches such as the work of Riera et al. (2005) and

more recently that of Valdes-Sosa et al. (2009), as well as other

relevant studies mentioned in the main text of this article. From

a neuroinformatics perspective, TVB lays the groundwork for

the integration of existing paradigms in the theory of large-scale

models of the brain, by providing a general and flexible frame-

work where the advantages and limitations of each approach may

be determined. It also provides the community with a technol-

ogy, that until now had not been publicly available, accessible

by researchers with different levels and backgrounds, enabling

systematic implementation and comparison of neural mass and

neural field models, incorporating biologically realistic connec-

tivity and cortical geometry and with the potential to become

a novel tool for clinical interventions. While many other envi-

ronments simulate neural activity at the level of neurons (Brian

simulator, MOOSE, PCSIM, NEURON, NEST, GENESIS) (Hines

and Carnevale, 2001; Gewaltig and Diesmann, 2007; Goodman

and Brette, 2008; Ray and Bhalla, 2008; Pecevski et al., 2009;

Brette and Goodman, 2011), even mimicking a number of spe-

cific brain functions (Eliasmith et al., 2012), they, most impor-

tantly, do not consider the space-time structure of full brain

connectivity constraining whole brain neurodynamics, as a cru-

cial component in their modeling paradigm. Other approaches to

multi-modal integration such as Statistical Parametric Mapping

(SPM) perform statistical fitting to experimental data at the level

of a small set of nodes (Friston et al., 1995, 2003; David et al.,

2006; Pinotsis and Friston, 2011) [i.e., they are data-driven as in

Freestone et al. (2011)], thus diverging from our approach that

could be categorized as a purely “computational neural modeling”

paradigm as described in Bojak et al. (2011). From this perspec-

tive, the goal is to capture and reproduce whole brain dynamics by

building a network constrained by its structural large-scale con-

nectivity and mesoscopic models governing the nodes intrinsic

dynamics.

Also, the extension of neuronal level modeling to large brain

structures requires vast supercomputers to emulate the large

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 11 | (A) The upper left blue panel shows the raw traces of nodes V2

and V1; the latter stimulated with a rectangular pulse of width equal to 5 ms

and repetition frequency of 1 Hz. Signals are normalized by their

corresponding maximum value. The right blue panel show the signals for a

shorter period of time. Amplitudes are not normalized to emphasize the

relative difference between the two regions. Middle panels illustrate the

stimulus pattern. Lower red panels display the activity as projected onto EEG

space and recorded from channels Oz and O1. The default EEG cap in TVB

consists of 62 scalp electrodes distributed according to the 10–20

international system (Klem et al., 1999). In this simulation a deterministic

integration scheme was employed to obtain the time-series of neural activity,

since noise was not applied to the model’s equations. (B) The same

description as in (A) applies. The main difference with the previous

simulation is that here white noise was added to the system.

number of complex functional units. Focusing on the brain’s

large-scale architecture, in addition to the dimension reduction

accomplished through the mean field methods applied on the

mesoscopic scale, TVB allows for computer simulations on the

full brain scale on workstations and small computing clusters,

with no need to use supercomputing resources.

The simulator component of TVB has the goal of simulat-

ing mesoscopic neural dynamics on large-scale brain networks.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 18

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 12 | The green and blue panels show EEG recordings from

electrode Oz during the resting state , i.e., in the absence of stimulation

and in the stimulated condition, respectively, notice the slow damped

oscillations after stimulus onset at a approximately 10 Hz; the light gray

trace depicts the stimulation pattern. The bottom panel displays multiscale

entropy estimates computed on the Oz time-series at different temporal

scales using the dataset obtained by means of a stochastic integration

scheme.

It does not intend to build brain models at the level of neu-

rons (Goodman and Brette, 2009; Cornelis et al., 2012), how-

ever, it does leverage information from microscopic models to

add detail and enhance the performance of the neural popula-

tion models, which act as building blocks and functional units

of the network. TVB thus represents a unique tool to system-

atically investigate the dynamics of the brain, emphasizing its

large-scale network nature and moving away from the study

of isolated regional responses, thereby considering the function

of each region in terms of the interplay among brain regions.

The primary spatial support (neuroanatomical data) on top of

which the large-scale network model is built has a number of

implications:

1. It constraints the type of network dynamics; dynamics that

could be further related to physiology and behavior (Senden

et al., 2012).

2. It permits a systematic investigation of the consequences of

the particular restrictions imposed by that large-scale structure

and the effect of changes to it.

3. It provides a reliable and geometrically accurate

model of sources of neural activity, enabling realistic

forward solutions to EEG/MEG based on implemen-

tations of boundary element methods (BEM) or other

approaches such as finite difference time domain methods

(FDTD).

On the basis of the literature, theoretical and clinical studies

seeking to better understand and describe certain brain functions

and structure use stimulation as an essential part of their proto-

cols. Stimulation is a way to probe how the system respond under

external perturbations adapting itself to the new environmental

conditions or to categorize responses when stimulation repre-

sents real-life (visual, auditory, motor) sensory inputs. Among

the current features of TVB, the easy generation of a variety of

stimulation patterns is to be recognized as one of its great advan-

tages and contributions to experimental protocol design. TVB

permits the development of simple stimulation routines, allowing

evaluation of the viability and usefulness of certain stimulation

procedures.

TVB represents a powerful research platform, combining

experimental design and numerical simulations into a collabo-

rative framework that allows sharing of results and the integra-

tion of data from other applications. Naturally, this leads to the

potential for an increased level of interaction among researchers

of the broad neuroscience community. In the same direction,

TVB is also an extensible validation platform since it supports

the creation of basic modeling refinement loops, making model

exploration and validation a relatively automated procedure. For

instance, after generating a brain network model, exploring the

system’s parameter space by adjusting parameters of both the

local dynamics and the large scale structure can be achieved with

ease. Further, effects of local dynamics and network structure

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 19

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

can be disentangled by evaluating distinct local dynamic models

on the same structure or the same local dynamic model coupled

through distinct structures. This constrained flexibility makes it

easy for modelers to test new approaches, directly compare them

with existing approaches and reproduce their own and other

researchers’ results. Reproducibility is indeed a required feature to

validate and consequently increase the reliability of scientific work

(Donoho, 2010) and the extensibility of TVB’s scientific compo-

nents, granted by its modular design, provides a mechanism to

help researchers achieve this.

The brain network models of TVB, being built on explicit

anatomical structure, enable modeling investigations of practical

clinical interest. Specifically, whenever a dysfunction or disease

expresses itself as a change to the large scale network structure,

for instance, in the case of lesions in white-matter pathways, the

direct replication of this structural change in TVB’s brain network

models is straight forward.

FUTURE WORK

Regarding performance, of special importance will be to evalu-

ate all the parameters that have an effect on both memory usage

and execution time for surface-based simulations. The reason is

that realistic brain network models are built on top of surface

meshes constructed by thousands of vertices per hemisphere (213

for the TVB demonstration cortical surface) but can easily have

more than 40,000.

Equally important is to develop more tests to generally evalu-

ate the simulation engine, paying close attention to keep the con-

sistency and stability of the algorithms currently implemented.

Another aspect that deserves careful attention is the descrip-

tion of our modeling approach that was largely beyond the scope

of this text. Therefore, the theory underlying the different meth-

ods involved in the development of a generalized framework

for brain network models is to be presented in future scientific

publications.

To allow a most optimal dissemination of knowledge in TVB

we are currently developing a web-based educational platform

that will allow training on the usage of TVB, as well as serve as

a key reference.

As simulations in TVB are built on the large-scale anatomical

structure of the human brain, continued work to integrate new,

reliable, sources of structural data is essential to the progress of

the platform. An obvious future resource in this regard will be

the newly developed database of the Human Connectome Project

(Essen and Ugurbil, 2012; Essen et al., 2012).

INFORMATION SHARING STATEMENT (LICENSE)

The data and software in this study belong to an ongoing project;

it is free software and licensed under the GNU General Public

License version 2 as published by the Free Software Foundation.

The latest releases of The Virtual Brain including the source

code and demo data are free to download from http://www.

thevirtualbrain.org. The source code available in the public repos-

itory includes the latest experimental features regarding GPU

implementation.

ACKNOWLEDGMENTS

Funding: The research reported herein was supported by the

Brain Network Recovery Group through the James S. McDonnell

Foundation and the FP7-ICT BrainScales. Paula Sanz Leon is sup-

ported by a doctoral fellowship from Ministere de la Recherche.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online

at: http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.

2013.00010/abstract

REFERENCES
Amari, S. (1975). Homogeneous nets

of neuron-like elements. Biol.

Cybern. 17, 211–220. doi: 10.1007/

bf00339367

Amari, S. (1977). Dynamics of pat-

tern formation in lateral-inhibition

type neural fields. Biol. Cybern. 22,

77–87. doi: 10.1007/BF00337259

Assisi, C., Jirsa, V., and Kelso, J. (2005).

Synchrony and clustering in het-

erogeneous networks with global

coupling and parameter dispersion.

Phys. Rev. Lett. 94:018106. doi:

10.1103/PhysRevLett.94.018106

Atay, F., and Hutt, A. (2006). Neural

fields with distributed transmis-

sion speeds and long range feed-

back delays. SIAD 5, 670–698. doi:

10.1137/050629367

Babajani-Feremi, A., and Soltanian-

Zadeh, H. (2010). Multi-area

neural mass modeling of eeg

and meg signals. Neuroimage

52, 793–811. doi: 10.1016/

j.neuroimage.2010.01.034

Bakker, R., Wachtler, T., and Diesmann,

M. (2012). Cocomac 2.0 and the

future of tract-tracing databases.

Front. Neuroinform. 6:30. doi:

10.3389/fninf.2012.00030

Bastiani, M., Shah, N. J., Goebel, R.,

and Roebroeck, A. (2012). Human

cortical connectome reconstruction

from diffusion weighted mri: the

effect of tractography algorithm.

Neuroimage 62, 1732–1749. doi:

10.1016/j.neuroimage.2012.06.002

Beurle, R. L. (1956). Properties of a

mass of cells capable of regener-

ating pulses. Philos. Trans. R. Soc.

Lond. B Biol. Sci. 240, 55–94. doi:

10.1098/rstb.1956.0012

Bojak, I., and Liley, D. T. J. (2010).

Axonal velocity distributions

in neural field equations. PLoS

Comput. Biol. 6:e1000653. doi:

10.1371/journal.pcbi.1000653

Bojak, I., Oostendorp, T., Reid, A., and

Kötter, R. (2011). Towards a model-

based integration of co-registered

electroencephalography/functional

magnetic resonance imaging data

with realistic neural population

meshes. Philos. Trans. R Soc.

Lond. A. 369, 3785–3801. doi:

10.1098/rsta.2011.0080

Bojak, I., Oostendorp, T., Reid, A.,

and R, K. (2010). Connecting mean

field models of neural activity to

eeg and fmri data. Brain Topogr. 23,

139–149. doi: 10.1007/s10548-010-

0140-3

Bostock, M., Ogievetsky, V., and

Heer, J. (2011). D3 data-driven

documents. IEEE Trans. Visual.

Comput. Graphics 17, 2301–2309.

doi: 10.1109/TVCG.2011.185

Breakspear, M., and Jirsa, V. (2007).

Handbook of Brain Connectivity

(Understanding Complex Systems) –

Neuronal Dynamics and Brain

Connectivity. Berlin; Heidelberg:

Springer.

Breakspear, M., Roberts, J. A., Terry,

J. R., Rodrigues, S., Mahant, N., and

Robinson, P. A. (2006). A unifying

explanation of primary generalized

seizures through nonlinear

brain modeling and bifurca-

tion analysis. Cereb. Cortex 16,

1296–1313. doi: 10.1093/cercor/

bhj072

Breakspear, M., Terry, J. R., and

Friston, K. J. (2003). Modulation

of excitatory synaptic coupling

facilitates synchronization and

complex dynamics in a biophysical

model of neuronal dynam-

ics. Network 14, 703–732. doi:

10.1088/0954-898X/14/4/305

Bressloff, P. C. (2012). From invasion to

extinction in heterogeneous neural

fields. JMN 2:6. doi: 10.1186/2190-

8567-2-6

Brette, R., and Goodman, D. F. M.

(2011). Vectorized algorithms for

spiking neural network simulation.

Neural Comput. 23, 1503–1535. doi:

10.1162/NECO_a_00123

Brunel, N., and Wang, X.-J. (2001).

Effects of neuromodulation in a

cortical network model of object

working memory dominated by

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 20

http://www.thevirtualbrain.org
http://www.thevirtualbrain.org
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00010/abstract
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00010/abstract
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

recurrent inhibition. J. Comput.

Neurosci. 11, 63–85.

Brunel, N., and Wang, X.-J. (2003).

What determines the frequency of

fast network oscillations with irreg-

ular neural discharges? i. synaptic

dynamics and excitation-inhibition

balance. J. Neurophysiol. 90,

415–430. doi: 10.1152/jn.01095.

2002

Bullmore, E., and Sporns, O. (2009).

Complex brain networks: graph

theoretical analysis of structural

and functional systems. Nat. Rev.

Neurosci. 10, 186–198. doi: 10.1038/

nrn2575

Burrage, K., Burrage, P. M., and Tian,

T. (2004). Numerical methods for

strong solutions of stochastic differ-

ential equations: an overview. Proc.

R. Soc. Lond. A 460, 373–402. doi:

10.1098/rspa.2003.1247

Buxton, R., and Frank, L. (1997). A

model for the coupling between

cerebral blood flow and oxygen

metabolism during neural stimula-

tion. J. Cereb. Blood Flow Metab.

17, 64–72. doi: 10.1097/00004647-

199701000-00009

Buzsaki, G. (2006). Rhythms of the

Brain. Oxford: Oxford University

Press.

Chacon, S. (2009). Pro Git. Berkeley,

CA: Apress.

Coombes, S. (2010). Large-scale neu-

ral dynamics: simple and com-

plex. Neuroimage 52, 731–739. doi:

10.1016/j.neuroimage.2010.01.045

Cornelis, H., Rodriguez, A. L., Coop,

A. D., and Bower, J. M. (2012).

Python as a federation tool for gen-

esis 3.0. PLoS ONE 7:e29018. doi:

10.1371/journal.pone.0029018

Costa, M., Goldberger, A. L., and

Peng, C.-K. (2002). Multiscale

entropy analysis of com-

plex physiologic time series.

Phys. Rev. Lett. 89:068102. doi:

10.1103/PhysRevLett.89.068102

Costa, M., Goldberger, A. L., and Peng,

C.-K. (2005). Multiscale entropy

analysis of biological signals. Phys.

Rev. E Stat. Nonlin. Soft Matter Phys.

71(2 Pt 1):021906. doi: 10.1103/

PhysRevE.71.021906

David, O., Kilner, J. M., and Friston,

K. J. (2006). Mechanisms of

evoked and induced responses

in MEG/EEG. Neuroimage

31, 1580–1591. doi: 10.1016/

j.neuroimage.2006.02.034

Deco, G., and Jirsa, V. (2012). Ongoing

cortical activity at rest: criticality,

multistability, and ghost attractors.

J. Neurosci. 32, 3366–3375. doi:

10.1523/JNEUROSCI.2523-11.2012

Deco, G., Jirsa, V., and McIntosh, A.

(2011). Emerging concepts for

the dynamical organization of

resting-state activity in the brain.

Nat. Rev. Neurosci. 12, 43–56. doi:

10.1038/nrn2961

Deco, G., Jirsa, V., McIntosh, A.,

Sporns, O., and Kötter, R. (2009).

Key role of coupling, delay, and

noise in resting brain fluctua-

tions. Proc. Natl. Acad. Sci. U.S.A.

106, 10302–10307. doi: 10.1073/

pnas.0901831106

Deco, G., Jirsa, V., Robinson, P. A.,

Breakspear, M., and Friston, K.

(2008). The dynamic brain: from

spiking neurons to neural masses

and cortical fields. PLoS Comput.

Biol. 4:e1000092. doi: 10.1371/

journal.pcbi.1000092

Donoho, D. L. (2010). An invita-

tion to reproducible computational

research. Biostatistics 11, 385–388.

doi: 10.1093/biostatistics/kxq028

Eliasmith, C., Stewart, T. C., Choo, X.,

Bekolay, T., DeWolf, T., Tang, Y.,

et al. (2012). A large-scale model

of the functioning brain. Science

338, 1202–1205. doi: 10.1126/

science.1225266

Enthought, I. (2001). The traits

framework for validation and

event-driven programming in

python. Available online at:

http://code.enthought.com/projects/

traits/

Essen, D. C. V., and Ugurbil,

K. (2012). The future of the

human connectome. Neuroimage

62, 1299–1310. doi: 10.1016/

j.neuroimage.2012.01.032

Essen, D. C. V., Ugurbil, K., Auerbach,

E., Barch, D., Behrens, T. E. J.,

Bucholz, R., et al. (2012). The

human connectome project: a data

acquisition perspective. Neuroimage

62, 2222–2231. doi: 10.1016/

j.neuroimage.2012.02.018

FitzHugh, R. (1961). Impulses and

physiological states in theoreti-

cal models of nerve membrane.

Biophys. J. 1, 445–466. doi: 10.1016/

S0006-3495(61)86902-6

Fox, R., Gatland, I., Rot, R., and

Vemuri, G. (1988). Fast, accu-

rate algorithm for numerical sim-

ulation of exponentially correlated

colored noise. Phys. Rev. A 38,

5938–5940. doi: 10.1103/PhysRevA.

38.5938

Freeman, W. J. (1975). Mass Action in

the Nervous System. New York; San

Francisco; London: Academic press.

Freeman, W. J. (1992). Tutorial on

neurobiology: from single neu-

rons to brain chaos. Int. J. Bif.

Chaos 2, 451–482. doi: 10.1142/

S0218127492000653

Freestone, D. R., Aram, P., Dewar,

M., Scerri, K., Grayden, D. B.,

and Kadirkamanathan, V. (2011).

A data-driven framework for

neural field modeling. Neuroimage

56, 1043–1058. doi: 10.1016/

j.neuroimage.2011.02.027

Freyer, F., Reinacher, M., Nolte, G.,

Dinse, H. R., and Ritter, P. (2012).

Repetitive tactile stimulation

changes resting-state functional

connectivity-implications for treat-

ment of sensorimotor decline.

Front. Hum. Neurosci. 6:144. doi:

10.3389/fnhum.2012.00144

Freyer, F., Roberts, J. A., Becker, R.,

Robinson, P. A., Ritter, P., and

Breakspear, M. (2011). Biophysical

mechanisms of multistability in

resting-state cortical rhythms.

J. Neurosci. 31, 6353–6361. doi:

10.1523/JNEUROSCI.6693-10.2011

Friston, K., Harrison, L., and

Penny, W. (2003). Dynamic

causal modelling. Neuroimage

19, 1273–1302. doi: 10.1016/

S1053-8119(03)00202-7

Friston, K., Holmes, A., Worsley, K.,

Poline, J., Frith, C., and Frackowiak,

R. (1995). Statistical parametric

maps in functional imaging: a gen-

eral linear approach. Hum. Brain

Mapp. 2, 189–210. doi: 10.1002/

hbm.460020402

Friston, K. J., Mechelli, A., Turner,

R., and Price, C. J. (2000).

Nonlinear responses in fMRI:

the balloon model, volterra ker-

nels, and other hemodynamics.

Neuroimage 12, 466–477. doi:

10.1006/nimg.2000.0630

Gerhard, S., Daducci, A., Lemkaddem,

A., Meuli, R., Thiran, J.-P., and

Hagmann, P. (2011). The connec-

tome viewer toolkit: an open source

framework to manage, analyze,

and visualize connectomes. Front.

Neuroinform. 5:3. doi: 10.3389/

fninf.2011.00003

Gewaltig, M., and Diesmann, M.

(2007). NEST (neural simulation

tool). Scholarpedia 2:1430. doi:

10.4249/scholarpedia.1430

Ghosh, A., Rho, Y., McIntosh, A.,

Kötter, R., and Jirsa, V. (2008). Noise

during rest enables the exploration

of the brain’s dynamic repertoire.

PLoS Comput. Biol. 4:e1000196. doi:

10.1371/journal.pcbi.1000196

Goodale, M. A., and Milner, A. D.

(1992). Separate visual path-

ways for perception and action.

Trends Neurosci. 15, 20–25. doi:

10.1016/0166-2236(92)90344-8

Goodman, D. F. M., and Brette, R.

(2008). Brian: a simulator for

spiking neural networks in python.

Front. Neuroinform. 2:5. doi:

10.3389/neuro.11.005.2008

Goodman, D. F. M., and Brette,

R. (2009). The brian simulator.

Front. Neurosc. 3, 192–197. doi:

10.3389/neuro.01.026.2009

Gramfort, A., Papadopoulo, T.,

Olivi, E., and Clerc, M. (2010).

Openmeeg: opensource software

for quasistatic bioelectromagnetics.

Biomed. Eng. Online 9:45. doi:

10.1186/1475-925X-9-45

Hagmann, P., Cammoun, L., Gigandet,

X., Meuli, R., Honey, C. J.,

Wedeen, V. J., et al. (2008).

Mapping the structural core of

human cerebral cortex. PLoS Biol.

6:e159. doi: 10.1371/journal.

pbio.0060159

Haken, H. (1983). Synergetics, an

Introduction: Nonequilibrium Phase

Transitions and Self-Organization

in Physics, Chemistry, and Biology.

3rd Edn. New York, NY: Springer

Verlag.

Haken, H. (2001). Delay, noise and

phase locking in pulse coupled

neural networks. Biosystems 63,

15–20. doi: 10.1016/S0303-2647

(01)00143-5

Hindmarsh, J., and Rose, R. (1984).

A model of neuronal bursting

using three coupled first order

differential equations. Proc. R.

Soc. Lond. Ser. B 221, 87–122. doi:

10.1098/rspb.1984.0024

Hinds, O., Polimeni, J. R., Rajendran,

N., Balasubramanian, M., Amunts,

K., Zilles, K., et al. (2009). Locating

the functional and anatomical

boundaries of human pri-

mary visual cortex. Neuroimage

46, 915–922. doi: 10.1016/

j.neuroimage.2009.03.036

Hines, M. L., and Carnevale, N. T.

(2001). Neuron: a tool for neurosci-

entists. Neuroscientist 7, 123–135.

Hämäläinen, M. S. (1992).

Magnetoencephalography: a tool

for functional brain imaging. Brain

Topogr. 5, 95–102.

Hämäläinen, M. S., Hari, R.,

Ilmoniemi, R. J., Knuutila, J.,

and Lounasmaa, O. V. (1993).

Magnetoencephalography-theory,

instrumentation, and applications

to noninvasive studies of the work-

ing human brain. Rev. Modern

Phys. 65, 413–497. doi: 10.1103/

revmodphys.65.413

Honey, C. J., Sporns, O., Cammoun,

L., Gigandet, X., Thiran, J. P.,

Meuli, R., et al. (2009). Predicting

human resting-state functional

connectivity from structural

connectivity. Proc. Natl. Acad.

Sci. U.S.A. 106, 2035–2040. doi:

10.1073/pnas.0811168106

Hunter, J. D. (2007). Matplotlib: a

2d graphics environment. Comput.

Sci. Eng. 9, 90–95. doi: 10.1109/

mcse.2007.55

Jansen, B., and Rit, V. (1995).

Electroencephalogram and visual

evoked potential generation in a

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 21

http://code.enthought.com/projects/traits/
http://code.enthought.com/projects/traits/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

mathematical model of coupled

cortical columns. Biol. Cybern. 73,

357–366. doi: 10.1007/BF00199471

Jansen, B., Zouridakis, G., and Brandt,

M. (1993). A neurophysiologically-

based mathematical model of

flash visual evoked potentials. Biol.

Cybern. 68, 275–283. doi: 10.1007/

BF00224863

Jirsa, V. (2004). Connectivity and

dynamics of neural information

processing. Neuroinformatics 2,

183–204. doi: 10.1385/NI:2:2:183

Jirsa, V., and Haken, H. (1996). Field

theory of electromagnetic brain

activity. Phys. Rev. Lett. 77, 960–963.

doi: 10.1103/PhysRevLett.77.960

Jirsa, V., and Haken, H. (1997). A

derivation of a macroscopic field

theory of the brain from the quasi-

microscopic neural dynamics. Phys.

D 99, 503–526. doi: 10.1016/S0167-

2789(96)00166-2

Jirsa, V., and Kelso, J. A. (2000).

Spatiotemporal pattern formation

in neural systems with heteroge-

neous connection topologies. Phys.

Rev. E Stat. Phys. Plasmas Fluids

Relat. Interdisciplin. Topics 62(6

Pt B), 8462–8465. doi: 10.1103/

PhysRevE.62.8462

Jirsa, V., Jantzen, K., Fuchs, A., and

Kelso, J. (2002). Spatiotemporal

forward solution of the eeg and

meg using network modeling. IEEE

Trans. Med. Imag. 21, 493–504. doi:

10.1109/TMI.2002.1009385

Jirsa, V., and Stefanescu, R. (2010).

Neural population modes capture

biologically realistic large scale net-

work dynamics. Bull. Math. Biol. 73,

325–343. doi: 10.1007/s11538-010-

9573-9

Jirsa, V., Sporns, O., Breakspear, M.,

Deco, G., and McIntosh, A. R.

(2010). Towards the virtual brain:

network modeling of the intact and

the damaged brain. Arch. Ital. Biol.

148, 189–205.

Kelso, S. (1995). Dynamic Patterns:

The Self-Organization of Brain

and Behavior (Complex Adaptive

Systems). Cambridge, MA: MIT

Press.

Klöden and Platen (1995). Numerical

Solution of Stochastic Differential

Equations. Berlin: Springer.

Klem, G. H., Lüders, H. O.,

Jasper, H. H., and Elger, C.

(1999). The ten-twenty elec-

trode system of the international

federation. the international

federation of clinical neurophys-

iology. Electroencephalogr. Clin.

Neurophysiol. Suppl. 52, 3–6.

Knock, S., McIntosh, A., Sporns,

O., Kötter, R., Hagmann, P., and

Jirsa, V. (2009). The effects of

physiologically plausible con-

nectivity structure on local and

global dynamics in large scale brain

models. J. Neurosci. Methods 183,

86–94. doi: 10.1016/j.jneumeth.

2009.07.007

Kötter, R. (2004). Online retrieval, pro-

cessing, and visualization of primate

connectivity data from the coco-

mac database. Neuroinformatics 2,

127–144. doi: 10.1385/NI:2:2:127

Kötter, R., and Wanke, E. (2005).

Mapping brains without coordi-

nates. Philos. Trans. R. Soc. Lond.

B Biol. Sci. 360, 751–766. doi:

10.1098/rstb.2005.1625

Lake, D. E., and Moorman, J. R. (2011).

Accurate estimation of entropy in

very short physiological time series:

the problem of atrial fibrillation

detection in implanted ventricu-

lar devices. Am. J. Physiol. Heart

Circ. Physiol. 300, H319–H325. doi:

10.1152/ajpheart.00561.2010

Liley, D. T. J., and Bojak, I. (2005).

Understanding the transition to

seizure by modeling the epilepti-

form activity of general anesthetic

agents. J. Clin. Neurophysiol. 22,

300–313.

Logothetis, N. K., Pauls, J., Augath,

M., Trinath, T., and Oeltermann, A.

(2001). Neurophysiological investi-

gation of the basis of the fmri

signal. Nature 412, 150–157. doi:

10.1038/35084005

Lopes da Silva, F. H., Hoeks, A., Smits,

H., and Zetterberg, L. H. (1974).

Model of brain rhythmic activ-

ity. Biol. Cybern. 15, 27–37. doi:

10.1007/BF00270757

McIntosh, A., Kovacevic, N., Lippe, S.,

Garrett, D., Grady, C., and Jirsa,

V. (2010). The development of a

noisy brain. Arch. Ital. Biol. 148,

323–337.

Mosher, J., Leahy, R., and Lewis,

P. (1999). EEG and MEG: for-

ward solutions for inverse meth-

ods. IEEE Trans. Biomed. Eng. 46,

245–259.

Nagumo, J. (1962). An active pulse

transmission line simulating nerve

axon. Proc. IRE. 50, 2061–2070. doi:

10.1109/jrproc.1962.288235

Niedermeyer, E., and Lopes

Da Silva, F., H., (eds.). (2005).

Electroencephalography: Basic

Principles, Clinical Applications, and

Related Fields. Philadelphia, PA:

Lippincott Williams & Wilkins.

Nolte, G., Bai, O., Wheaton, L., Mari,

Z., Vorbach, S., and Hallett, M.

(2004). Identifying true brain inter-

action from eeg data using the

imaginary part of coherency. Clin.

Neurophysiol. 115, 2292–2307. doi:

10.1016/j.clinph.2004.04.029

Nunez, P. (1974). The brain wave

equation: a model for the EEG.

Math. Biosci. 21, 279–297. doi:

10.1016/0025-5564(74)90020-0

Nunez, P., L., (ed.). (1995). Neocortical

Dynamics and Human EEG

Rhythms. New York, NY: Oxford

University Press.

Nunez, P., L., and Srinivasan, R., (eds.).

(1981). Electric Fields of the Brain:

The Neurophysics of EEG. New York,

NY: Oxford University Press.

Ogawa, S., Menon, R. S., Kim, S. G.,

and Ugurbil, K. (1998). On

the characteristics of functional

magnetic resonance imaging of

the brain. Annu. Rev. Biophys.

Biomol. Struct. 27, 447–474. doi:

10.1146/annurev.biophys.27.1.447

Ogawa, S., Menon, R. S., Tank, D. W.,

Kim, S. G., Merkle, H., Ellermann,

J. M., et al. (1993). Functional

brain mapping by blood oxygena-

tion level-dependent contrast mag-

netic resonance imaging. a compar-

ison of signal characteristics with a

biophysical model. Biophys. J. 64,

803–812. doi: 10.1016/S0006-3495

(93)81441-3

Oliphant, T. E. (2006). Guide to NumPy.

Trelgol Publishing.

Pecevski, D., Natschläger, T., and

Schuch, K. (2009). Pcsim: a par-

allel simulation environment for

neural circuits fully integrated with

python. Front. Neuroinform. 3:11.

doi: 10.3389/neuro.11.011.2009

Pedregosa, F., Varoquaux, G.,

Gramfort, A., Michel, V., Thirion,

B., Grisel, O., et al. (2011). Scikit-

learn: machine learning in Python.

JMLR 12, 2825–2830.

Pinotsis, D. A., and Friston, K. J.

(2011). Neural fields, spectral

responses and lateral connec-

tions. Neuroimage 55, 39–48. doi:

10.1016/j.neuroimage.2010.11.081

Pinotsis, D. A., Moran, R. J., and

Friston, K. J. (2012). Dynamic

causal modeling with neu-

ral fields. Neuroimage 59,

1261–1274. doi: 10.1016/j.neuro

image.2011.08.020

Ramachandran, P., and Varoquaux, G.

(2011). Mayavi: 3D visualization of

scientific data. Comput. Sci. Eng. 13,

40–51. doi: 10.1109/mcse.2011.35

Ray, S., and Bhalla, U. S. (2008).

Pymoose: interoperable script-

ing in python for moose. Front.

Neuroinform. 2:6. doi: 10.3389/

neuro.11.006.2008

Rennie, C. J., Robinson, P. A., and

Wright, J. J. (1999). Effects of local

feedback on dispersion of electri-

cal waves in the cerebral cortex.

Phys. Rev. E 59, 3320–3329. doi:

10.1103/PhysRevE.59.3320

Rennie, C. J., Robinson, P. A., and

Wright, J. J. (2002). Unified neuro-

physical model of eeg spectra and

evoked potentials. Biol. Cybern. 86,

457–471. doi: 10.1007/s00422-002-

0310-9

Riera, J., Aubert, E., Iwata, K.,

Kawashima, R., Wan, X., and

Ozaki, T. (2005). Fusing eeg and

fmri based on a bottom-up model:

inferring activation and effective

connectivity in neural masses.

Philos. Trans. R. Soc. Lond. B. Biol.

Sci. 360, 1025–1041. doi: 10.1098/

rstb.2005.1646

Ritter, P., Schirner, M., McIntosh, A.,

and VK, J. (2013). The virtual brain

integrates computational modelling

and multimodal neuroimaging.

Brain Connect. 3, 121–145. doi:

10.1089/brain.2012.0120

Robinson, P., Rennie, C., and Wright,

J. (1997). Propagation and sta-

bility of waves of electrical

activity in the cerebral cortex.

Phys. Rev. E 56, 826–840. doi:

10.1103/PhysRevE.56.826

Robinson, P. A. (2011). Neural field

theory of synaptic plasticity. J.

Theor. Biol. 285, 156–163. doi:

10.1016/j.jtbi.2011.06.023

Robinson, P. A., Rennie,

C. J., Rowe, D. L., O’Connor,

S. C., Wright, J. J., Gordon,

E., et al. (2003). Neurophysical

modeling of brain dynam-

ics. Neuropsychopharmacology 28

(Suppl. 1), S74–S79. doi: 10.1038/

sj.npp.1300143

Robinson, P. A., Rennie, C. J., Wright,

J. J., Bahramali, H., Gordon, E.,

and Rowe, D. L. (2001). Prediction

of electroencephalographic spectra

from neurophysiology. Phys. Rev.

E 63(2 Pt 1):021903. doi: 10.1103/

PhysRevE.63.021903

Rowe, D. L., Robinson, P. A., and

Rennie, C. J. (2004). Estimation

of neurophysiological parameters

from the waking EEG using a bio-

physical model of brain dynamics.

J. Theor. Biol. 231, 413–433. doi:

10.1016/j.jtbi.2004.07.004

Rubinov, M., and Sporns, O. (2010).

Complex network measures of

brain connectivity: uses and

interpretations. Neuroimage 52,

1059–1069. doi: 10.1016/j.neuro

image.2009.10.003

Sarvas, J. (1987). Basic mathe-

matical and electromagnetic

concepts of the biomagnetic

inverse problems. Phys. Med. Biol.

32, 11–22. doi: 10.1088/0031-9155/

32/1/004

Schneider, G. E. (1969). Two visual

systems. Science 163, 895–902. doi:

10.1126/science.163.3870.895

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 22

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

Senden, M., Goebel, R., and Deco,

G. (2012). Structural connec-

tivity allows for multi-threading

during rest: the structure of the

cortex leads to efficient alter-

nation between resting state

exploratory behavior and default

mode processing. Neuroimage

60, 2274–2284. doi: 10.1016/

j.neuroimage.2012.02.061

Shreiner, D., Woo, M., Neider, J.,

and Davis, T. (2005). OpenGL(R)

Programming Guide: The Official

Guide to Learning OpenGL(R).

Version 2, 5th Edn. Addison-Wesley

Professional. Available online

at: http://www.glprogramming.com/

red/about.html

Sotero, R. C., and Trujillo-Barreto,

N. J. (2008). Biophysical model

for integrating neuronal activ-

ity, EEG, fMRI and metabolism.

Neuroimage 39, 290–309. doi:

10.1016/j.neuroimage.2007.08.001

Sotero, R. C., Trujillo-Barreto, N. J.,

Iturria-Medina, Y., Carbonell,

F., and Jimenez, J. C. (2007).

Realistically coupled neural mass

models can generate eeg rhythms.

Neural Comput. 19, 478–512. doi:

10.1162/neco.2007.19.2.478

Spacek, M., Blanche, T., and

Swindale, N. (2008). Python

for large-scale electrophysiol-

ogy. Front. Neuroinform. 2:9. doi:

10.3389/neuro.11.009.2008

Spiegler, A., Kiebel, S. J., Atay, F. M.,

and Knösche, T. R. (2010).

Bifurcation analysis of neu-

ral mass models: impact of

extrinsic inputs and dendritic

time constants. Neuroimage

52, 1041–1058. doi: 10.1016/

j.neuroimage.2009.12.081

Stefanescu, R., and Jirsa, V. (2008).

A low dimensional description of

globally coupled heterogeneous

neural networks of excitatory and

inhibitory. PLoS Comput. Biol.

4, 26–36. doi: 10.1371/

journal.pcbi.1000219

Stefanescu, R., and Jirsa, V. (2011).

Reduced representations of

heterogeneous mixed neural

networks with synaptic coupling.

Phys. Rev. E 83:026204. doi:

10.1103/PhysRevE.83.026204

The HDF Group. (2000-2010).

Hierarchical data format version

5. Available online at: http://www.

hdfgroup.org/

Valdes-Sosa, P. A., Sanchez-Bornot,

J. M., Sotero, R. C., Iturria-

Medina, Y., Aleman-Gomez, Y.,

Bosch-Bayard, J., et al. (2009).

Model driven EEG/fMRI fusion

of brain oscillations. Hum.

Brain Mapp. 30, 2701–2721.

doi: 10.1002/hbm.20704

von Ellenrieder, N., Beltrachini, L., and

Muravchik, C. H. (2012). Electrode

and brain modeling in stereo-EEG.

Clin. Neurophysiol. 123, 1745–1754.

doi: 10.1016/j.clinph.2012.01.019

Wilson, H., and Cowan, J. (1972).

Excitatory and inhibitory

interactions in localized popu-

lations of model neurons. Biophys.

J. 12, 1–24. doi: 10.1016/S0006-

3495(72)86068-5

Wilson, H., and Cowan, J. (1973). A

mathematical theory of the func-

tional dynamics of cortical and tha-

lamic nervous tissue. Kybernetik 13,

55–80. doi: 10.1007/bf00288786

Wong, K.-F., and Wang, X.-J. (2006).

A recurrent network mechanism of

time integration in perceptual deci-

sions. J. Neurosci. 26, 1314–1328.

doi: 10.1523/JNEUROSCI.3733-05.

2006

Wright, J. J., and Liley, D. T. J.

(1995). Simulation of electrocorti-

cal waves. Biol. Cybern. 72, 347–356.

doi: 10.1007/BF00202790

Zalesky, A., Fornito, A., Harding,

I. H., Cocchi, L., Yücel, M.,

Pantelis, C., et al. (2010). Whole-

brain anatomical networks: does

the choice of nodes matter?

Neuroimage 50, 970–983. doi:

10.1016/j.neuroimage.2009.12.027

Conflict of Interest Statement: The

authors declare that the research

was conducted in the absence of any

commercial or financial relationships

that could be construed as a potential

conflict of interest.

Received: 01 March 2013; accepted: 22

May 2013; published online: 11 June

2013.

Citation: Sanz Leon P, Knock SA,

Woodman MM, Domide L, Mersmann J,

McIntosh AR and Jirsa V (2013) The Vir-

tual Brain: a simulator of primate brain

network dynamics. Front. Neuroinform.

7:10. doi: 10.3389/fninf.2013.00010

Copyright © 2013 Sanz Leon, Knock,

Woodman, Domide, Mersmann,

McIntosh and Jirsa. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License, which permits

use, distribution and reproduc-

tion in other forums, provided the

original authors and source are cred-

ited and subject to any copyright

notices concerning any third-party

graphics etc.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 23

http://www.glprogramming.com/red/about.html
http://www.glprogramming.com/red/about.html
http://www.hdfgroup.org/
http://www.hdfgroup.org/
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.3389/fninf.2013.00010
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The Virtual Brain: a simulator of primate brain network dynamics
	Introduction
	Modeling
	Informatics

	TVB Architecture
	TVB Framework
	Web-based GUI
	Data management and exchange
	File storage
	Database management system

	TVB Datatypes
	TVB Simulator
	Coupling
	Population models
	Integrators
	Noise
	Monitors
	Outline of the simulation algorithm

	Analyzers and Visualizers

	Performance, Reproducibility, and Flexibility
	Testing for Speed
	Reproducibility of Results from the Literature
	Higher-Level Simulation Scenarios Using Stimulation Protocols
	Dynamic Modeling

	Discussion
	Future Work
	Information Sharing Statement (License)
	Acknowledgments
	Supplementary Material
	References

