
The Virtual Data Grid:
A New Model and Architecture for Data-Intensive

Collaboration

Ian Foster1,2 Jens Vöckler2 Michael Wilde1 Yong Zhao2
1 Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, IL 60439, USA
2 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

{foster,wilde}@mcs.anl.gov, {voeckler,yongzh}@cs.uchicago.edu

Abstract

It is now common to encounter communities
engaged in the collaborative analysis and
transformation of large quantities of data over
extended time periods. We argue that these
communities require a scalable system for
managing, tracing, communicating, and
exploring the derivation and analysis of diverse
data objects. Such a system could bring
significant productivity increases, facilitating
discovery, understanding, assessment, and
sharing of both data and transformation
resources, as well as the productive use of
distributed resources for computation, storage,
and collaboration. We define a model and
architecture for a virtual data grid to address this
requirement. Using a broadly applicable “typed
dataset” as the unit of derivation tracking, we
introduce simple constructs for describing how
datasets are derived from transformations and
from other datasets. We also define mechanisms
for integrating with, and adapting to, existing
data management systems and transformation
and analysis tools, as well as Grid mechanisms
for distributed resource management and
computation planning. We report on successful
application results obtained with a prototype
system called Chimera that implements some of
these concepts, involving challenging analyses of
high-energy physics and astronomy data.

1 Introduction
Much interesting research in data systems is concerned,
directly or indirectly, with facilitating the extraction of
insight from large quantities of data. This problem has

motivated innovative techniques for translating data into
accessible and interpretable forms (relational databases,
metadata, curation), for dealing with large quantities of
data and complex queries (database organization, query
optimisation), and for applying databases to various
classes of problem.

We propose here a more expansive view of data
system architecture based on an integrated treatment of
not only data but also the computational procedures used
to manipulate data and the computations that apply those
procedures to data. This integrated treatment is motivated
by two observations: first, in many communities,
programs and computations are significant resources—
sometimes even more important than data; and second,
understanding the relationships among these diverse
entities is often vital to the execution and management of
user and community activities. We call the result of this
integration a virtual data system, because (among other
things) it allows for the representation and manipulation
of data that does not exist, being defined only by
computational procedures.

In such a virtual data system, data, procedures, and
computations are all first class entities, and can be
published, discovered, and manipulated. Thus we can, for
example, trace the provenance of derived data; plan and
track the computations required to derive a particular data
product; determine whether a requested computation has
been performed previously and whether it is cheaper to
rerun it or to retrieve previously generated data; and
discover computational procedures with desired
characteristics. As we continue to experiment with virtual
data concepts and implementations, we continue to be
surprised by new applications.

Our work is motivated and informed by (1) the
requirements of communities of physical scientists with
whom we work within the GriPhyN project, in domains
such as high energy physics and astronomy, and (2) our
experience developing a prototype virtual data system,
Chimera [11], that is undergoing preliminary evaluation
within several such communities [1]. In this article, we
draw upon this experience both to motivate our approach

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 2003 CIDR Conference

and to permit preliminary evaluation of the effectiveness
of our techniques. But we also reach significantly beyond
this initial prototype to address issues that arise when
creating a virtual data grid (VDG) capable of
encompassing the diverse expertise of large
multidisciplinary communities in a scalable fashion.

The practical realization of the VDG concept
introduces a variety of challenging technical problems
associated with the need to integrate diverse resources
(data, computational procedures, storage systems,
computers) along multiple dimensions (discovery, access,
authorization, provisioning, etc.) and at multiple levels of
abstraction (files, relations, datasets, virtual data, etc.).
We address these challenges by defining (1) general but
powerful abstractions for representing data and
computation, (2) a virtual data schema capable of
representing key entities and relationships, and (3) a VDG
architecture that builds specialized techniques for
representing and maintaining virtual data information on
top of an Open Grid Services Architecture (OGSA)
foundation [9].

Our proposed architecture touches upon issues of
provenance and federation that have been extensively
studied in the data systems community (see Section 7).
However, this article goes beyond previous work in three
respects. First, it makes the case for a new approach to
data system design that embraces a wide spectrum of data
generation and representation modalities. Second, it
presents a comprehensive (although necessarily high-
level) design for a system that realizes this approach.
Third, it presents preliminary large-scale evaluations of
the approach in challenging application scenarios.

The rest of this article is as follows. In Section 2, we
summarize our current understanding of the problem that
we seek to solve. In Section 3 we introduce our virtual
data model. In Section 4, we introduce the key elements
of the VDG architecture. In Section 5, we talk about how
we envision the VDG being used. In Section 6, we
describe the capabilities of our Chimera prototype and
present results from early application experiments. We
discuss related work in Section 7, future directions in
Section 8, and conclude in Section 9.

2 The Virtual Data Problem
We assume a (potentially large) number of both datasets
and procedures. Datasets live in storage systems and are
accessible over the network via service interfaces.
Procedures may live in network-accessible storage
systems and/or be invocable as services. Datasets and
procedures may be curated to varying extents, meaning
that they are subject to validation, documentation,
versioning, etc., and in general have a quality vouched for
by various authorities. All entities may be geographically
distributed, be subject to different access control policies,
and have varying performance characteristics. Users work
individually or collaboratively to invoke procedures,

which may extract information from datasets, update
datasets, and/or create or delete datasets.

2.1 Critical Tasks

We observe that the following tasks can be difficult
and could be facilitated via appropriate tools:

Discovery: locating datasets, transformations, and
computations of interest and value, based on the
information and knowledge accumulated in virtual data
catalogs. (E.g., “I want to search an astronomical database
for galaxies with certain characteristics. If a program that
performs this analysis exists, I won’t have to write one
from scratch.” “I want to apply an astronomical analysis
program to millions of objects. If the program has already
been run and the results stored, I’ll save weeks of
computation.”)

Documentation: annotating datasets and procedures
with user-defined and -supplied metadata.

Provenance: determining the validity of data by
accessing an audit trail describing how the data was
produced from the datasets and previous data derivations
on which it depends. (“I’ve discovered some interesting
data, but need to understand the corrections applied when
it was constructed before I can trust it for my purposes.”
“I’ve detected a calibration error in an instrument and
want to know which derived data to recompute.”)

Sharing: of both data and transformation resources,
facilitating the productive use of distributed grid resources
for computation, storage and collaboration.
Productivity: is enhanced by increased sharing and
powerful discovery techniques that make it easier to learn,
both through metadata and example, what data are
available within a community, and how they can be used.

2.2 Goals

Our goal is an integrated, scalable management
solution for a distributed collection of datasets,
procedures, and computer resources. Such a system must
address, derivation, discovery, planning, and estimation:
• Derivation: Track relationships among derived

datasets and the procedures that generate them, in
order to support subsequent querying/navigation of
these relationships.

• Discovery: Locate, and determine how to access, a
dataset or procedure with specified attributes. This is
a conventional metadata search, with the added
wrinkles that attributes of interest may refer to
derivation relationships.

• Planning: Allocate resources (computers, storage,
networks) in response to requests for data products
and procedure invocations. Examples include
replication of popular datasets and procedures, and
reclamation of resources of lesser value.

• Estimation: Determine the cost of executing a
procedure. This information can be vital input to both
provisioning and user query planning decisions.

It may seem that this problem statement introduces
unnecessary complexity by mingling apparently
independent issues. However, there are significant
benefits to treating these issues in an integrated fashion.
For example, resource requirements recorded with
provenance information can be used to guide subsequent
planning decisions, while the identity of the physical
resources used for a particular derivation may be relevant
to subsequent provenance tracking if two executions of
the same program do not generate identical results.

3 Virtual Data Schema
The system that we have developed to address these
requirements comprises two primary components: a
virtual data schema that defines the objects to be
maintained and manipulated within the VDG, and
relationships among these objects; and a virtual data
system that allows an individual or community to
construct and maintain this information in a distributed,
decentralized context. We describe the schema here and
the virtual data system in the next section.

The virtual data schema defines the data objects and
relationships of the virtual data model. An
implementation within a particular virtual data service
instance might be a relational database, object-oriented
database, XML repository, or even a hierarchical
directory such as a file system or LDAP database.

Our virtual data schema defines six classes of objects
(Figure 1). The dataset and replica objects capture
information about datasets, while the transformation
object captures information about the procedure construct.
Both datasets and dataset-valued transformation
arguments are designated as being of a type. The
derivation and invocation objects capture information
about specific instances of a transformation and, in so
doing, also capture provenance relationships. The objects
in Figure 1 capture a provenance relationship between a
dataset foo of type “type2” produced by applying a
transformation prog1 to a dataset fnn.

In more detail, a dataset is the unit of data managed
within our virtual data model. Each dataset has a type,
which specifies various characteristics of the dataset,
including how it is structured or represented on storage or
data servers and what kind of data it contains; replica
allows for datasets with copies at multiple locations [6].

Transformation

type-signature=
prog1(
 in type1 X,
 out type2 Y
)

Dataset

name=foo
type=type2

Derivation

type-signature=
prog1(
 in type1 fnn,
 out type2 foo
)

instance
of

Invocation

when=10am
time=20 secs
locn=U.Chicago

invocation
of

Reads/writes/
creates/deletes

Replica

locn=U.Chicago
physical
replica of

Reads/writes/
creates/deletes

Type

name=type2
repres=<...>

Contains
arguments of

instance
of

Figure 1: Major objects of the virtual data schema.

A transformation is a typed computational procedure
that may take as arguments both strings passed by value
and datasets passed by reference. A transformation may
create, delete, read, and/or write datasets passed as
arguments. We distinguish between a simple
transformation, which acts as a black box, and a
compound transformation, which composes one or more
transformations in a directed acyclic execution graph.

A derivation specializes a transformation by
specifying the actual arguments (strings and/or datasets)
and other information (e.g., in some situations,
environment variable values) required to perform a
specific execution of its associated transformation. A
derivation record can serve both as a historical record of
what was done and as a recipe for operations that can be
performed in the future. In the former case, it may record
a provenance relationship between one or more datasets
and a transformation. For example, the derivation object
depicted in Figure 1 captures the fact that dataset foo was
produced by applying transformation prog1 to dataset fnn.

An invocation specializes a derivation by specifying a
specific environment and context (e.g., date, time,
processor, OS) in which its associated derivation was
executed. Specific dataset replicas can be associated with
a particular invocation for tracking and diagnostic
purposes, to keep a detailed account of provenance in an
environment where datasets can be replicated.

Our data model specifies for each object a set of
required attributes while also allowing for arbitrary
additional attributes to capture application-specific
information. We now describe each object in turn.

3.1 Datasets

The data model that underlies our virtual data system
introduces a dataset abstraction to allow for the tracking
of data in more general forms than “files,” “tables,” etc.,
and to insulate users from low-level data representations.

A dataset is the unit of data manipulated by a
transformation. A primary purpose of the virtual data
system is to track dataset provenance. (We adopt
“dataset” as a generic term without reference to its many
prior meanings and implementations.) A dataset is a unit
of data that may be stored in any of a variety of
containers. Our model includes replicas as a means of
tracking multiple invocations of a derivation and the
resulting datasets.

Depending on community and application, the datasets
manipulated by a transformation might be variously:
• A single file or a set of files that are viewed as a

single logical entity.
• A list of files with an associated offset-length pair

specifying data to be extracted from each file.
• A set of files in a tar archive or some other archive

format.

• An index file and a set of data files: for example, a
gdbm database or a set of rows to be extracted, by
primary key, from a SQL database.

• A closure of object references from a persistent
object database.

• A region of a spreadsheet.
For each dataset the virtual data system maintains a

descriptor which tells a transformation how the dataset is
mapped onto a storage service. A dataset’s descriptor
provides the information needed by a transformation to
access and manipulate the dataset’s contents.

 For example, if the dataset’s contents are located in a
single file, then the descriptor can be simply a file name.
If the contents are a slice of a set of files, then the
descriptor will provide both a list of file names and slice
indices. If the dataset’s contents are a set of rows in a
database, then the descriptor will name a database and
specify those rows, and so on. We do not define a fixed
schema for describing dataset representations: a particular
collaboration or user must define a set of descriptor
schemas that are interpretable by its transformations.

3.2 Types

We introduce a type model to facilitate the discovery of
transformations and datasets, enable error checking of
derivation specifications, and guide optimisation.

A dataset has one or more type attributes: exactly one
representational attribute and any number of additional
logical attributes. The value of the representational
attribute specifies the format of the dataset’s type
descriptor, which contains information about how the
dataset is formatted. Type attributes can be thought of as
distinguished metadata attributes that (a) define the
representation of datasets and (b) determine what datasets
can validly be passed as arguments to a transformation.
Type attributes can be defined hierarchically, thus
allowing for specialization. A leaf (sub)type attribute is
referred to as concrete; other (parent) type attributes are
referred to as abstract.

The following rules govern the use of types within the
virtual data system.
1. Any dataset, dataset-value transformation argument,

or dataset-value derivation argument can have
multiple type attributes, from independent type
attribute hierarchies, including, as noted above,
exactly one representational type attribute, and any
number of logical types attributes.

2. Any dataset type attribute must be concrete (i.e., a
leaf node in its type attribute hierarchy); dataset-
value transformation and derivation arguments can
have either abstract or concrete attribute types.

3. Type conformance of datasets to transformation
arguments is defined as follows: when a dataset is
used as a derivation argument, each of its type
attributes must be a concrete subtype of exactly one

type attribute of the associated transformation
argument.

We use the two type attribute hierarchies below to
illustrate these concepts. A dataset might be defined as
having type attributes MultiFileSet and
MonteCarloSimulation, with the first attribute indicating
the dataset’s representation and the second its semantic
content. However, a dataset cannot be defined as being of
the abstract type attribute “EventCollection,” whereas a
transformation argument can.

 FileDataset (abstract, representational)
 File (concrete, representational)
 FileSet (abstract, representational)
 MultiFileSet (concrete, representational)
 TarFileSet (concrete, representational)

 EventCollection (abstract, logical)
 RawEventSet (concrete,logical)
 SimulatedEventSet (abstract, logical)
 MonteCarloSimulation (concrete, logical)
 DiscreteSimulation (concrete, logical)

We note that this type model differs from that of
programming languages and databases in important ways.
It does not describe the detailed contents of files in the
manner that an abstract data type defines the fields of an
object, nor does it, in a strict sense, define the operations
that can be performed on a dataset. Its main purpose is to
support flexible representations of datasets, discovery of
datasets and transformations, and type checking of
derivations. It does, however, employ the concepts of sub-
typing and multiple inheritance from the type models of
programming languages.

3.3 Transformations

We believe that a virtual data system must shield its
users from low-level details of how data and procedures
are represented, so that they can focus on higher-level
questions of how data is produced and transformed. Just
as the dataset provides a typed abstraction for arbitrary
data containers, so the transformation provides a typed
abstraction for arbitrary computational procedures.

We propose a general model for transformations that
will (ultimately) be able to encompass the following:
• An executable for a particular architecture.
• A source program packaged to allow compilation and

installation on a range of platforms.
• A script passed to an interpreter, such awk, perl, or

python, or a command shell
• A set of SQL statements passed to a SQL query

interpreter
• Commands for a general-purpose data manipulation

package, such as SAS or SPSS.
• An application-specific package: e.g., in high energy

physics, scripts in PAW or ROOT, or algorithms in
ATHENA.

• A set of macros or an automation script passed to a
visual application such as Excel.

• A Web service with interface defined by Web
Services Description Language (WSDL).

• An invocation of a COM or COM+ ActiveX object.
A transformation type specification indicates for each

transformation argument its directionality (IN or OUT)
and its type, which may be either “string” or a dataset
type as described above. Type signatures facilitate
discovery, automated checking of interfaces, and
eventually, execution plan optimisation.

Transformations that receive their arguments and input
files via parameter files can defined as two-stage
transformations, where the first stage takes VDL
parameters and places them into a text file, and the second
stage invokes the actual executable, passing it the text file
produced by the first stage. Such couplings can
conveniently be expressed using the “compound
transformation” construct described in [11].

An important issue not yet addressed in our design is
the structured versioning of transformations and
mechanisms for managing compatibility assertions among
different versions. It is important that we be able not only
to track precisely what version of a transformation was
executed to derive a given dataset, but also to express
“equivalence” among different versions.

4 Virtual Data System Architecture
Having defined a virtual data schema, we turn to the
question of how to maintain and provide access to that
information in a distributed, multi-user, multi-institutional
environment, to address our larger goals of scalability,
manageability, and support for discovery and sharing.

We introduce the term virtual data catalog (VDC) to
denote a service that maintains information defined by our
virtual data schema. A VDC is, in general, an abstract
notion: while we can imagine a single database that
maintains a coherent, authoritative view of all known
datasets, transformations, derivations, and invocations, the
creation of such a database is rarely likely to be feasible in
our assumed distributed, multi-user, multi-institutional
environment. Instead, VDC contents will typically be
distributed over multiple information resources with
varying degrees of authenticity and coherency. Thus, in
the following we first discuss issues raised by location
and organization, then describe our approach to
establishing authenticity, and finally outline the
infrastructure elements used to support these mechanisms.

4.1 VDC Distribution and Integration

A community’s virtual data catalog information may be
distributed across multiple information repositories in a
variety of ways and for a variety of reasons, including
ownership and curation responsibilities (e.g., archives
owned by different groups or individuals), the need to

integrate with information resources maintained for other
purposes (e.g., a metadata catalog or source code archive),
replication for performance purposes, and a desire by
subgroups or individuals to maintain independent
“overlay” information that enhances information
maintained by other groups.

physics.illinois.edu

DV
srch-muon

TR
cmp

TR
sim

physics.wisconsin.edu

TR
srch

TR
cmpsim

vdp://physics.wisconsin.edu/srch

vdp://physics.illinois.edu/sim

vdp://physics.illinois.edu/cmp

Figure 2: Virtual data hyperlinks between servers

Figure 2 depicts a scenario in which transformation and
derivation records are distributed across two sites. (The
corresponding dataset records are not depicted.) In this
model of a distributed high-energy physics collaboration,
the Wisconsin group is able to define a compound
transformation “cmpsim” composed of two
transformations created and maintained by a remote group
working in llinois. The first stage of the transformation,
“sim”, performs a simulation operation, while “cmp”
compresses the result in a domain-specific manner. In
turn, the Illinois group defines a derivation “srch-muon”
that specifies the parameters needed to invoke the
Wisconsin particle-searching application “srch” for the
particular particle class “muon.”

TR

TR

TR

DV

TR

DV

DV

DV

DV

DV

Collaboration VDS Group VDS

Personal VDS

Personal VDS

DS

DSDS

Figure 3: Provenance hyperlinks between
 virtual data servers

This example shows how distributed collaboration is
facilitated by the capability of inter-catalog references.
When standardized in the manner of uniform resource
locators, such information descriptors can, we feel,
revolutionize the way that knowledge-intensive
distributed collaborations are conducted over large
distances and scales. Such knowledge-enriched hyperlinks
need not be limited to references to remote type and
transformation records. Derivation provenance chains can
also span across servers, as illustrated in Figure 3, with
for example group derivations depending on derivations

TR=transformation
DV=derivation

in a collaboration-wide catalog and personal derivations
depending on those of colleagues. As this type of
technology becomes ubiquitous within and between
collaborations in various disciplines, it will become
possible for a researcher to click on a graph or table in a
scientific paper, and discover in great detail and with high
precision exactly how that dataset was produced.

Hyperlinked provenance information facilitates the
integration and federation of VDC information contained
in multiple catalogs. Given the wide variety of
information sources, information qualities, and
application needs that may be encountered in a virtual
data grid, we can expect a variety of integration/federation
approaches to be useful, ranging from central servers to
federated databases, Google-like systems, and peer-to-
peer structures. Some possibilities are illustrated in Figure
4. Four catalogs (“VDCs”) maintained at different
locations for different purposes and with different scopes
provide direct local access to their contents. In addition, a
variety of federated indexes integrate information about
selected objects from multiple such catalogs. Presumably
such federating indexes would be differentiated according
to their scope (user interest, all community data,
community approved data, etc.), accuracy (depth of index,
update frequency), cost, access control, and so forth.

More generally, we envision that in an effective
collaborative process, data and knowledge definitions will
propagate across, up, and around the web of each virtual
organization’s knowledge servers as information is
created, reprocessed, annotated, validated, and approved
for broader use, trust, and distribution.

TR

TR

TR

DV

TR

DV

DV

DV

DV

DV

Collaboration VDS Group VDS

Personal VDS

Personal VDS

Collaboration-wide
index

Official
collaboration

index

Group Index

Personal
Index

Personal
Index

Personal
Index

Figure 4: Indexing the VDG at multiple levels

4.2 Quality and Security

An important aspect of VDC community process is the
maintenance of information concerning the “quality” of
VDC entries. We use this generic term to indicate various
quantitative and qualitative measures that a community or
individuals may apply concerning such issues as curation,
authorship, authenticity, and timeliness. Some such
measures are tied strongly to process: for example, in a
highly curated collection, each transformation, dataset,
and derivation chain might be assessed, audited, and

approved according to defined procedures. In other cases,
“quality” might correspond to an annotation applied by a
computational procedure, while some users might apply
more ad hoc measures, for example trusting data produced
by certain individuals.

As is the case with other aspects of VDG design, our
goal is to establish basic machinery that can be used to
implement a wide variety of approaches and policies. In
this context, we note that the distributed, multi-user,
multi-institutional nature of the VDG environments
means that, in general, we (a) must introduce automated
and secure techniques for verifying trust and (b) cannot
rely on direct trust relationships among individuals. Thus,
we choose to use cryptographic signatures on VDC
entries and attributes as a means of establishing the
identity of the authority(s) that vouch for their validity.
When embedded in a framework that provides for
establishing root authority(s) and for validating trust
chains, these mechanisms can be used to implement a
wide variety of security models and policies. Similar
mechanisms can be used for access control, as the policies
enforced by a resource “owner” are likely to require
similar recourse to authority.

4.3 Infrastructure

The realization of the concepts described above requires a
variety of enabling infrastructure, including mechanisms
for establishing inter-catalog references (and, in general,
for naming VDG entities); establishing identity and
authority; service discovery; virtualizing compute
resources; and so forth. We do not discuss these issues
here except to note that our current prototype builds on
Globus Toolkit v2 technology and that our intention is to
build future systems on the Grid infrastructure defined
within OGSA [9] and implemented by the Globus Toolkit
v3. OGSA and its Web services (WS) foundation together
address issues of naming, service discovery, service
characterization, notification, authentication and
authorization (via the Grid Security Infrastructure [10],
Community Authorization Service [17], and WS security,
perhaps with extensions), and service provisioning and
management, among other critical issues.

An infrastructure component that is vital to our ability
to perform dynamic resource provisioning is an effective
resource virtualization facility. Ideally, such a facility
would allow an arbitrary hardware resource to be
configured to meet the needs of an arbitrary
transformation; the required configuration would then
form part of the description of the transformation, and a
scheduler could take the cost of achieving this
configuration into account when selecting resources. One
approach to realizing this goal is to use hosting
environment technologies such as J2EE and .NET.
However, complex scientific applications also introduce
native compiled code, multiprocessor execution, and other
requirements that conventional hosting environments are

not equipped to deal with. In this context, other
approaches to virtualization can be appropriate, such as
the Condor remote execution facility (system calls are
trapped and returned to the originating site) and the
Globus Toolkit’s Grid Resource Allocation and
Management (GRAM) protocol, which allows, for
example, for application-specific environment variable
settings, prestaging of input data, redirection of standard
output, and poststaging of output data.

5 Application Context and Benefits
We have described our schema for representing virtual
data, and the components and architecture of the VDG.
We can now address our central thesis: namely, that these
constructs can indeed be of benefit to particular data-
intensive user communities. We explain how the virtual
data mechanisms outlined above can be integrated with
(and of benefit to) typical scientific and technical
computing workflows. In particular, we show how our
model ties in to the six key facets of the VDG process
flow: composition, planning, derivation, estimation,
discovery, and sharing (see Figure 5) focusing on
questions of how derivation data is captured, discovered,
used, and managed and discarded.

We start by assuming that we are working within a
community context within which:
• The collaboration has carefully crafted its processing

paradigm and created and defined a set of
transformations that form the basic toolkit of most
application scientists and production engineers.

• Users can extend that toolkit by creating new
transformations, often composing them from existing
transformations.

• Mechanisms to automatically track transformations
are integrated into interactive systems.

• Output datasets produced by the execution of
derivations are automatically marked.
Within this framework, we describe each of these

processes in the sections that follow.

Figure 5: Virtual data process flow

5.1 Composition

We use the term composition to refer to the entire process
of creating virtual data definitions for all of the objects
that make up the virtual data schema: dataset-types,
datasets, transformations, derivations, and invocations.
We envision that this activity will be integrated in both
manual and automated manners.

Production managers—those in a collaboration
responsible for planning large, structured, official
computations, often taking place over months or years—
will carefully structure a space of derivations and submit
requests from that “virtual data” space. Individual
researchers will manually create definitions as needed for
smaller data spaces, and typically request the derivation of
that data shortly after it has been defined. Both user
groups will use VDL to specify these data spaces.

In addition to such “batch” scenarios, we envision
VDL being integrated into interactive analysis tools so
that researchers exploring data spaces in a less structured
fashion have the benefits of a historical log of their recent
data derivation activities. These users can then choose to
snapshot these logs (which could be maintained directly
in a VDC) into a more permanent and well-categorized
and named portion of their virtual data workspace. Over
time, as these definitions accumulate, they become
significant personal and community resources.

5.2 Planning Data Access and Computation

Once derivations are defined in the VDC, users (and
automated production mechanisms) can request that these
virtual datasets be “materialized.” We term the process of
mapping these requests to the Grid “planning,” as it is
suggestive of the database query planning process.

Grid request planning is a challenging research area
that involves tracking the state of both request queues and
grid resources (networks, computing elements, and
storage systems), and being cognizant of the complex and
potentially overlapping resource usage policies set by
both physical and virtual organizations within the Grid.
The planner must allocate resources (computers, storage,
networks) in response to requests for data products and
procedure invocations, and make decisions to replicate
popular datasets and procedures either on demand and/or
via pre-staging [19].

The application of procedures to datasets can be
performed in a variety of ways, including the following.
1. Procedure collocated with data. A dataset may be

accessible via a service interface that supports
specific operations.

2. Ship procedure to data. Alternatively, a dataset may
be accessible via a service interface that allows for
the execution of user-specified procedures: for
example, SQL queries or arbitrary executables. A
user may construct such procedures on the fly, or
retrieve them from another source.

Composition

Estimation

Planning

Discovery

Derivation

execution plans and costs

execution plans
derivation
requests

transformation, dataset-type,
and derivation definiton

updates to dataset and virtual metadata
information

Sharing

dataset and virtual metadata
transfer requests

dataset and virtual metatadata
information

3. Ship data to procedure. A procedure may be
accessible via a service interface that allows for the
upload of datasets to which the procedure is then
applied. A user may construct such datasets on the
fly, or retrieve them from another source.

4. Ship procedure and data to computer. In an
environment in which workloads exceed the capacity
of servers that host data (#1 or #2) or procedures (#1,
#3), it can be useful to be able to integrate additional
computational resources, for example by instantiating
new copies of data or of services.

All four patterns can play a role in a particular community
or application, depending on factors such as resource
availability and performance, the size of datasets, and the
computational and data demands of procedures.

5.3 Estimation

Planning requires that we be able to obtain an estimate of
the cost of executing the data derivation workflow graph
(both computation and data transfer nodes) for each
candidate plan. This information can be vital input not
only for automated request planning but also for user
query planning: interactive users may query the estimator
directly to assess whether or not a particular desired
virtual data product can be computed in the time that the
user is willing to wait for it.

5.4 Derivation

Derivation refers to the process of running
transformations with specified arguments to produce
specific datasets. Derivation is conducted by workflow
management systems that dispatch computation and/or
data transfer requests to specific grid sites and monitor
their completion, dispatching nodes of the workflow
graph when predecessor dependencies have completed.
An example of such a scheduler is the Condor DAGman.

This process produces the invocation records in the
virtual data schema that record details for each execution
of a derivation—data, time, execution site, and execution
environment (OS, processor type, host name, etc).

The automated planning and derivation of large and
complex workflows can be an important productivity
multiplier, permitting users to explore aspects of their data
space that were previously inaccessible due to the large
burden of planning and managing such computations. The
promise is that tasks that were previously both
computationally intense and exceedingly difficult to plan,
execute, monitor, and correct, now become automated.
The goal is that the Grid becomes like an enormously
powerful workstation, and the virtual data catalog an
invaluable source of recipes to run on that facility.

5.5 Discovery

Discovery is the process of locating, and determining how
to access, a dataset or procedure with specified attributes.
The capabilities of conventional metadata searches are

enhanced in the VDG by the added possibilities that
attributes of interest may refer to derivation relationships
and that users may wish to search for data that may exist
as “data” and/or in terms of recipes for generating that
data. The dataset type, through its more precise
characterization of semantics, representation, and
interface, further enhances the precision of searching for
data and procedure.

6 Experiences
The vision and system design presented in this paper are
the outgrowth of our problem domain analysis and
implementation and application experience within the
GriPhyN project [2]. Within GriPhyN, we have
implemented two generations of the Chimera Virtual Data
System, and have applied it to challenge problems derived
from the large-scale scientific collaborations that are
collaborators in GriPhyN. We describe here these two
implementations and survey the current application work
in progress. More detail on the system design and
implementation can be found in [11] and on one of the
major application efforts in [1].
We used a first version, Chimera-0, to study the database
schema needed to represent provenance relationships.
This version (as well as its successor, Chimera-1) was
aimed at representing transformations that consisted of
single invocations of executable programs under a POSIX
model of program execution. (The POSIX model implies
an executable that resides in a file, which is passed
arguments both on the command line and via named
“environment variables”, and which can access files
through the open() system call.) The Chimera-0 schema
consisted of a basic mapping of the POSIX execution
semantics into a “transformation” object, with each
invocation being a separate object.

Using this mechanism, we were able to create
Chimera database definitions for a high energy physics
collision event simulation application that consisted of
four separate program executions with intermediate and
final results passing between the stages as files. For the
last two stages the files were in fact object-oriented
database files from a commercial OODBMS product.

We learned from this effort what is needed to describe
accurately applications with complex parameters and
behaviour. We also created “canonical” applications that
mimic arbitrary argument passing conventions and file
I/O behaviour, and used these to create large application
dependency graphs to validate our provenance tracking
mechanism [11].

We have also addressed a larger challenge problem
from astrophysics, namely the analysis of data from the
Sloan Digital Sky Survey via the application of the
MaxBCG galaxy cluster detection algorithm. This work
[1] involved a much larger volume, a more realistic
workload, and more complex data dependency tracking.
We created and executed dependency graphs for

searching for galaxy clusters in the entire currently
available survey, creating about 5000 derivations. We
processed one third of the current survey data collection,
using workflow DAGs with as many as several hundred
executable nodes, across a grid consisting of almost 800
hosts spread across four sites, and using as many as 120
hosts in a single workflow.

We are currently implementing challenge problems
involving more interactive analysis processing models
than these large, batch-oriented challenges. For both
ATLAS and CMS, we are prototyping environments in
which we can track data produced in a set of multi-stage
simulations, iterate in an unstructured manner over a
small number of changeable analysis codes, select and
filter interesting events, produce “cut sets” of events that
meet certain physics properties, produce a series of
histograms from the final analysis, and combine these cut
sets into graphs that visualize interesting properties and
relationships in the data. The data representations in these
challenges include files, relational databases, and
persistent object repositories, enabling us to test ideas for
handling what we refer to as “multi-modal” data. Our goal
is to be able to produce, for each data point in the final
graph, a detailed data lineage report on the datasets that
contributed to the creation of that point.

7 Related Work
The importance of documenting provenance is well
known [18]. Our work builds on preliminary explorations
within GriPhyN [3, 12]. There are also relationships to
work in database systems [4, 5, 19] and versioning [15].
Cui and Widom [7, 8] record the relational queries used to
construct materialized views in a data warehouse, and
then exploit this information to explain lineage. Our work
can leverage these techniques, but differs in two respects:
first, data may not be stored in databases and the
operations used to derive data items may be arbitrary
computations; second, we address issues relating to the
automated generation and scheduling of the computations
required to instantiate data products.

Early work on conceptual schemas [12] introduced
virtual attributes and classes, with a simple constrained
model for the re-calculation of attributes in a relational
context. Subsequent work produced an integrated system
for scientific data management called ZOO [13], based on
a special-purpose ODBMS that allowed for the definition
of “derived” relationships between classes of objects. In
ZOO, derivations can be generated automatically based
on these relationships, using either ODBMS queries or
external transformation programs. Chimera is more
specifically oriented to capturing the transformations
performed by external programs, and does not depend on
a structured data storage paradigm or on fine-grained
knowledge of individual objects that could be obtained
only from an integrated ODBMS.

We can also draw parallels drawn between Chimera
and workflow [14, 16] and knowledge management
systems that allow for the definition, discovery, and
execution of (computational) procedures.

Our thoughts on large-scale maintenance of
community knowledge have similarities to, and are in part
inspired by, Semantic Web concepts [3], although our
application domain has unique characteristics.
We view as a significant open issue the question of how
query optimisation techniques can be applied to planning
issues that arise in VDGs. To date, work in this area has
focused on lower-level scheduling issues relating for
example to data movement [19].

8 Future Directions
Looking beyond the ideas and designs proposed here, we
already envision both significant new capabilities that
further elevate the level at which users interact with
computing resources and practical extensions to make the
proposed design more realistic and usable.

We envision that our future work will yield powerful
general-purpose browsers that, within scientific and
knowledge-intensive disciplines, are capable of making
the discovery process as easy to use as today’s Internet
search engines, but with the added precision of formal
queries on precisely specified interfaces.

The most significant new area that we intend to
explore is that of extending our virtual information base
into a knowledge base. Using knowledge representation,
search, and inference techniques, we envision raising the
level of interaction with the VDG to a domain-cognizant
model in which searches and work requests are specified
in the terminology and concepts of the domain(s) whose
data, transformations, and knowledge are maintained in
the VDS. The design proposed here will serve as a
powerful base on which to conduct these explorations.

We plan other extensions designed to make our design
more robust and usable. These include the following:

1) A model for tracking the provenance of datasets
that reside in relational or object-oriented databases at a
fine level of granularity. This is especially relevant in
light of the case that is being made to have large
collaborations keep all data assets, online, in a database.

2) A model for representing equivalence and similarity
between data products. For example, two datasets created
by the same derivation at different points in time may not
be bitwise identical, but may be equivalent in their
behaviour and semantics for a certain class of
transformations.

We intend to explore the commonalities between code
and data, and the similarity of our system for tracking data
dependencies and those for tracking code (source) code
and executable dependencies (e.g., “make”). An ideal
system would integrate or even unify these concepts and
mechanisms.

We also seek to explore a concept we call “virtual
datasets,” in which multiple datasets refer to different
overlaid subsets of the same physical storage elements.
This construct raises difficult issues of storage
management and garbage collection.

Among the hard problems that need to be addressed
and solved to bring this work to fruition are the following:
• Integrating provenance tracking mechanisms into

existing tools, both general (such as SAS, SPSS,
Excel, etc) and specialized, such as the ROOT and
PAW analysis environments for high energy physics.

• Dealing with “update” as an operation a proc can
perform on a DS; this maintains provenance but
looses re-createability unless there is a transaction log
for some type of undo operation.

• Implementing large shared catalog that can be
accessed across an enterprise-scale collaboration,
with scalability and availability

9 Conclusions
We have argued that at least in scientific and technical
computing (and we suspect elsewhere), an increased focus
on both data-intensive and collaborative approaches to
problem solving leads to a need to manage the data,
procedures, and computations performed by a community
as an integrated and interrelated whole.

We have outlined the essential architectural elements
of a virtual data grid system designed to address this
requirement. This architecture defines a virtual data
schema to represent the principal shared objects and the
relationships among those objects, and a set of supporting
mechanisms for managing the maintenance of this
information. From a database perspective, VDGs not only
represent a novel application domain but also introduce
new technical problems in such areas as provenance.
From a distributed systems perspective, VDGs have the
attractive property of being able to leverage Grid systems
in an interactive but disciplined fashion.

 We have also described a prototype virtual data
system, Chimera, and its application to scientific data
analysis problems. Initial results with the Chimera
prototype suggest that at least some of the benefits we
claim for virtual data systems can be realized in practice.

Clearly this article only scratches the surface in terms
of what it means to create and apply usable virtual data
grids. We have defined what seems to be a workable
architecture and demonstrated feasibility in real
applications, but further study is required before we can
determine whether or not such systems really do
accelerate the problem solving process, and whether our
architectural constructs can scale as required.

Acknowledgements
We gratefully acknowledge helpful discussions with
Adam Arbree, Raj Bose, Peter Buneman, Rick

Cavanaugh, Peter Couvares, Ewa Deelman, Catalin
Dumitrescu, Greg Graham, Carl Kesselman, Miron Livny,
Alain Roy, and our colleagues on GriPhyN, iVDGL and
PPDG. This research was supported in part by the
National Science Foundation under contract ITR-0086044
(GriPhyN), and by the Mathematical, Information, and
Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38
(Data Grid Toolkit).

Appendix A – Chimera Virtual Data
Language Version 1
We present a slightly simplified version of the core
elements of the currently implemented Chimera virtual
data language (VDL): those that allow us to represent the
definition of transformations and their execution, and see
how these enable the tracking of data derivation and
provenance. We show the textual version of VDL here; an
XML version is also implemented for machine-to-
machine interfaces. A basic transformation looks like this:

TR t1(output a2, input a1, none env="100000",
none pa="500")
{
 argument parg = "-p "${none:pa};
 argument farg = "-f "${input:a1};
 argument xarg = "-x -y ";
 argument stdout = ${output:a2};
 application = "/usr/bin/app3";
 profile env.MAXMEM = ${none:env};
}

Derivations represent the execution of a
transformation with a specific set of arguments: in other
words, a procedure invocation. A derivation of
transformation t1 above might look like this:

DV d1->example1::t1(
 a2=@{output:"run1.exp15.T1932.summary"},
 a1=@{input:"run1.exp15.T1932.raw"},
 env="20000",
 pa="600");

When a derivation uses as input the output of a
previous derivation, a dependency graph is created. The
VDL records the information necessary to capture this
dependency. In the following example, file2, the output of
trans1 produced by derivation usetrans1, is used as the
input to trans2 in derivation usetrans2. This is the essence
of data provenance tracking in Chimera.

TR trans1(output a2, input a1)
{ argument stdin = ${input:a1};
 argument stdout = ${output:a2};
 application = "/usr/bin/app1";
}

TR trans2(output a2, input a1)
{
 argument stdin = ${input:a1};

 argument stdout = ${output:a2};
 application = "/usr/bin/app2";
}

DV usetrans1->trans1(a2=@{output:"file2"},
a1=@{input:"file1"});

DV usetrans2->trans2(a2=@{output:"file3"},
 a1=@{input:"file2"});

Three simple transformations, and the fourth
transformation, trans4, which is a compound
transformation composed of calls to trans1, 2, and 3:

TR trans1(output a2, input a1) {
 argument = "...";
 argument stdin = ${input:a1};
 argument stdout = ${output:a2};
 application = "/usr/bin/app1";
}

TR trans2(output a2, input a1) {
 argument = "...";
 argument stdin = ${input:a1};
 argument stdout = ${output:a2};
 application = "/usr/bin/app2";
}

TR trans3(input a2, input a1, output a3)
{
 argument parg = "-p foo";
 argument farg = "-f "${input:a1};
 argument xarg = "-x -y -o "${output:a3};
 argument stdin = ${input:a2};
 application = "/usr/bin/app3";
}

TR trans4(input a2,
 input a1,
 inout a5=@{inout:"anywhere":""},
 inout a4=@{inout:"somewhere":""},
 output a3)
{
 call trans1(a2=${output:a4}, a1=${a1});
 call trans2(a2=${output:a5}, a1=${a2});
 call trans3(a2=${input:a5},
 a1=${input:a4}, a3=${output:a3});
}

Another transformation, trans5, which is a compound
transformation composed of the simple transformation
trans1 and the compound transformation trans4:

TR trans5(input a2,
 input a1,
 inout a4=@{inout:"someplace":""},
 output a3)
{
 call trans1(a2=${output:a4}, a1=${a1});
 call trans4(a2=${input:a4}, a1=${a2},
 a3=${a3});
}

Appendix B - Chimera Virtual Data Catalog Schema – VDL 1.0

 REFERENCES

1. Annis, J., Zhao, Y., Voeckler, J., Wilde, M.,

Kent, S. and Foster, I., Applying Chimera
Virtual Data Concepts to Cluster Finding in the
Sloan Sky Survey. in SC'2002, (2002).

2. Avery, P. and Foster, I. The GriPhyN Project:
Towards Petascale Virtual Data Grids, 2001.
www.griphyn.org.

3. Berners-Lee, T., Hendler, J. and Lassila, O. The
Semantic Web. Scientific American.

4. Buneman, P., Khanna, S., Tajima, K. and Tan,
W.-C., Archiving Scientific Data. in ACM
SIGMOD International Conference on
Management of Data, (2002).

5. Buneman, P., Khanna, S. and Tan, W.-C., Why
and Where: A Characterization of Data
Provenance. in International Conference on
Database Theory, (2001).

6. Chervenak, A., Deelman, E., Foster, I., Guy, L.,
Hoschek, W., Iamnitchi, A., Kesselman, C.,
Kunszt, P., Ripeanu, M., Schwartzkopf, B.,
Stockinger, H., Stockinger, K. and Tierney, B.,
Giggle: A Framework for Constructing Scalable
Replica Location Services. in SC'02, (2002).

7. Cui, Y. and Widom, J., Practical Lineage
Tracing in Data Warehouses. in 16th
International Conference on Data Engineering,
(2000), 367–378.

8. Cui, Y., Widom, J. and Wiener, J.L. Tracing the
Lineage of View Data in a Warehousing
Environment. ACM Transactions on Database
Systems, 25 (2). 179–227.

9. Foster, I., Kesselman, C., Nick, J. and Tuecke, S.
The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration, Globus Project, 2002.
www.globus.org/research/papers/ogsa.pdf.

10. Foster, I., Kesselman, C., Tsudik, G. and Tuecke,
S. A Security Architecture for Computational
Grids. in ACM Conference on Computers and
Security, 1998, 83-91.

11. Foster, I., Voeckler, J., Wilde, M. and Zhao, Y.,
Chimera: A Virtual Data System for
Representing, Querying, and Automating Data
Derivation. in 14th Conference on Scientific and
Statistical Database Management, (2002).

12. Ioannidis, Y.E. and Livny, M. Conceptual
Schemas: Multi-faceted Tools for Desktop
Scientific Experiment Management.
International Journal of Cooperative
Information Systems, 1 (3). 451-474.

13. Ioannidis, Y.E., Livny, M., Gupta, S. and
Ponnekanti, N., ZOO : A Desktop Experiment
Management Environment. in 22th International
Conference on Very Large Data Bases, (1996),
Morgan Kaufmann, 274-285.

14. Leymann, F. and Altenhuber, W. Managing
Business Processes as an Information Resource.
IBM Systems Journal, 33 (2). 326–348.

15. Marian, A., Abiteboul, S., Cobena, G. and
Mignet, L., Change-Centric Management of
Versions in an XML Warehouse. in 27th
International Conference of Very Large Data
Bases, (2001).

16. Mohan, C., Alonso, G., Gunthor, R. and Kamath,
M. Exotica: A Research Perspective on
Workflow Management Systems. Data
Engineering Bulletin, 18 (1). 19-26.

17. Pearlman, L., Welch, V., Foster, I., Kesselman,
C. and Tuecke, S., A Community Authorization
Service for Group Collaboration. in IEEE 3rd
International Workshop on Policies for
Distributed Systems and Networks, (2002).

18. Williams, R., Bunn, J., Moore, R. and Pool, J.
Interfaces to Scientific Data Archives, Center for
Advanced Computing Research, California
Institute of Technology, 1998.

19. Woodruff, A. and Stonebraker, M. Supporting
Fine-Grained Data Lineage in a Database
Visualization Environment, Computer Science
Division, University of California Berkeley,
1997.

