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Abstract 

It is now common to encounter communities 
engaged in the collaborative analysis and 
transformation of large quantities of data over 
extended time periods. We argue that these 
communities require a scalable system for 
managing, tracing, communicating, and 
exploring the derivation and analysis of diverse 
data objects. Such a system could bring 
significant productivity increases, facilitating 
discovery, understanding, assessment, and 
sharing of both data and transformation 
resources, as well as the productive use of 
distributed resources for computation, storage, 
and collaboration. We define a model and 
architecture for a virtual data grid to address this 
requirement. Using a broadly applicable “typed 
dataset” as the unit of derivation tracking, we 
introduce simple constructs for describing how 
datasets are derived from transformations and 
from other datasets. We also define mechanisms 
for integrating with, and adapting to, existing 
data management systems and transformation 
and analysis tools, as well as Grid mechanisms 
for distributed resource management and 
computation planning. We report on successful 
application results obtained with a prototype 
system called Chimera that implements some of 
these concepts, involving challenging analyses of 
high-energy physics and astronomy data. 

1 Introduction 
Much interesting research in data systems is concerned, 
directly or indirectly, with facilitating the extraction of 
insight from large quantities of data. This problem has  

motivated innovative techniques for translating data into 
accessible and interpretable forms (relational databases, 
metadata, curation), for dealing with large quantities of 
data and complex queries (database organization, query 
optimisation), and for applying databases to various 
classes of problem.  

We propose here a more expansive view of data 
system architecture based on an integrated treatment of 
not only data but also the computational procedures used 
to manipulate data and the computations that apply those 
procedures to data. This integrated treatment is motivated 
by two observations: first, in many communities, 
programs and computations are significant resources—
sometimes even more important than data; and second, 
understanding the relationships among these diverse 
entities is often vital to the execution and management of 
user and community activities. We call the result of this 
integration a virtual data system, because (among other 
things) it allows for the representation and manipulation 
of data that does not exist, being defined only by 
computational procedures. 

In such a virtual data system, data, procedures, and 
computations are all first class entities, and can be 
published, discovered, and manipulated. Thus we can, for 
example, trace the provenance of derived data; plan and 
track the computations required to derive a particular data 
product; determine whether a requested computation has 
been performed previously and whether it is cheaper to 
rerun it or to retrieve previously generated data; and 
discover computational procedures with desired 
characteristics. As we continue to experiment with virtual 
data concepts and implementations, we continue to be 
surprised by new applications. 

Our work is motivated and informed by (1) the 
requirements of communities of physical scientists with 
whom we work within the GriPhyN project, in domains 
such as high energy physics and astronomy, and (2) our 
experience developing a prototype virtual data system, 
Chimera [11], that is undergoing preliminary evaluation 
within several such communities [1]. In this article, we 
draw upon this experience both to motivate our approach 
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and to permit preliminary evaluation of the effectiveness 
of our techniques. But we also reach significantly beyond 
this initial prototype to address issues that arise when 
creating a virtual data grid (VDG) capable of 
encompassing the diverse expertise of large 
multidisciplinary communities in a scalable fashion. 

The practical realization of the VDG concept 
introduces a variety of challenging technical problems 
associated with the need to integrate diverse resources 
(data, computational procedures, storage systems, 
computers) along multiple dimensions (discovery, access, 
authorization, provisioning, etc.) and at multiple levels of 
abstraction (files, relations, datasets, virtual data, etc.). 
We address these challenges by defining (1) general but 
powerful abstractions for representing data and 
computation, (2) a virtual data schema capable of 
representing key entities and relationships, and (3) a VDG 
architecture that builds specialized techniques for 
representing and maintaining virtual data information on 
top of an Open Grid Services Architecture (OGSA) 
foundation [9]. 

Our proposed architecture touches upon issues of 
provenance and federation that have been extensively 
studied in the data systems community (see Section 7). 
However, this article goes beyond previous work in three 
respects. First, it makes the case for a new approach to 
data system design that embraces a wide spectrum of data 
generation and representation modalities. Second, it 
presents a comprehensive (although necessarily high-
level) design for a system that realizes this approach. 
Third, it presents preliminary large-scale evaluations of 
the approach in challenging application scenarios. 

The rest of this article is as follows. In Section 2, we 
summarize our current understanding of the problem that 
we seek to solve. In Section 3 we introduce our virtual 
data model. In Section 4, we introduce the key elements 
of the VDG architecture. In Section 5, we talk about how 
we envision the VDG being used. In Section 6, we 
describe the capabilities of our Chimera prototype and 
present results from early application experiments. We 
discuss related work in Section 7, future directions in 
Section 8, and conclude in Section 9. 

2 The Virtual Data Problem  
We assume a (potentially large) number of both datasets 
and procedures. Datasets live in storage systems and are 
accessible over the network via service interfaces. 
Procedures may live in network-accessible storage 
systems and/or be invocable as services. Datasets and 
procedures may be curated to varying extents, meaning 
that they are subject to validation, documentation, 
versioning, etc., and in general have a quality vouched for 
by various authorities. All entities may be geographically 
distributed, be subject to different access control policies, 
and have varying performance characteristics. Users work 
individually or collaboratively to invoke procedures, 

which may extract information from datasets, update 
datasets, and/or create or delete datasets. 

2.1 Critical Tasks 

We observe that the following tasks can be difficult 
and could be facilitated via appropriate tools:  

Discovery: locating datasets, transformations, and 
computations of interest and value, based on the 
information and knowledge accumulated in virtual data 
catalogs. (E.g., “I want to search an astronomical database 
for galaxies with certain characteristics. If a program that 
performs this analysis exists, I won’t have to write one 
from scratch.” “I want to apply an astronomical analysis 
program to millions of objects. If the program has already 
been run and the results stored, I’ll save weeks of 
computation.”) 

Documentation: annotating datasets and procedures 
with user-defined and -supplied metadata.  

Provenance: determining the validity of data by 
accessing an audit trail describing how the data was 
produced from the datasets and previous data derivations 
on which it depends. (“I’ve discovered some interesting 
data, but need to understand the corrections applied when 
it was constructed before I can trust it for my purposes.” 
“I’ve detected a calibration error in an instrument and 
want to know which derived data to recompute.”) 

Sharing: of both data and transformation resources, 
facilitating the productive use of distributed grid resources 
for computation, storage and collaboration. 
Productivity: is enhanced by increased sharing and 
powerful discovery techniques that make it easier to learn, 
both through metadata and example, what data are 
available within a community, and how they can be used.  

2.2 Goals 

Our goal is an integrated, scalable management 
solution for a distributed collection of datasets, 
procedures, and computer resources. Such a system must 
address, derivation, discovery, planning, and estimation: 
• Derivation: Track relationships among derived 

datasets and the procedures that generate them, in 
order to support subsequent querying/navigation of 
these relationships. 

• Discovery: Locate, and determine how to access, a 
dataset or procedure with specified attributes. This is 
a conventional metadata search, with the added 
wrinkles that attributes of interest may refer to 
derivation relationships. 

• Planning: Allocate resources (computers, storage, 
networks) in response to requests for data products 
and procedure invocations. Examples include 
replication of popular datasets and procedures, and 
reclamation of resources of lesser value. 

• Estimation: Determine the cost of executing a 
procedure. This information can be vital input to both 
provisioning and user query planning decisions. 



It may seem that this problem statement introduces 
unnecessary complexity by mingling apparently 
independent issues. However, there are significant 
benefits to treating these issues in an integrated fashion. 
For example, resource requirements recorded with 
provenance information can be used to guide subsequent 
planning decisions, while the identity of the physical 
resources used for a particular derivation may be relevant 
to subsequent provenance tracking if two executions of 
the same program do not generate identical results. 

3 Virtual Data Schema 
The system that we have developed to address these 
requirements comprises two primary components: a 
virtual data schema that defines the objects to be 
maintained and manipulated within the VDG, and 
relationships among these objects; and a virtual data 
system that allows an individual or community to 
construct and maintain this information in a distributed, 
decentralized context. We describe the schema here and 
the virtual data system in the next section. 

The virtual data schema defines the data objects and 
relationships of the virtual data model. An 
implementation within a particular virtual data service 
instance might be a relational database, object-oriented 
database, XML repository, or even a hierarchical 
directory such as a file system or LDAP database. 

Our virtual data schema defines six classes of objects 
(Figure 1). The dataset and replica objects capture 
information about datasets, while the transformation 
object captures information about the procedure construct. 
Both datasets and dataset-valued transformation 
arguments are designated as being of a type. The 
derivation and invocation objects capture information 
about specific instances of a transformation and, in so 
doing, also capture provenance relationships. The objects 
in Figure 1 capture a provenance relationship between a 
dataset foo of type “type2” produced by applying a 
transformation prog1 to a dataset fnn. 

In more detail, a dataset is the unit of data managed 
within our virtual data model. Each dataset has a type, 
which specifies various characteristics of the dataset, 
including how it is structured or represented on storage or 
data servers and what kind of data it contains; replica 
allows for datasets with copies at multiple locations [6]. 

Transformation

type-signature=
prog1(
   in type1 X,
   out type2 Y
)

Dataset

name=foo
type=type2

Derivation

type-signature=
prog1(
   in type1 fnn,
   out type2 foo
)

instance
of

Invocation

when=10am
time=20 secs
locn=U.Chicago

invocation
of

Reads/writes/
creates/deletes

Replica

locn=U.Chicago
physical
replica of

Reads/writes/
creates/deletes

Type

name=type2
repres=<...>

Contains
arguments of

instance
of

 

Figure 1: Major objects of the virtual data schema.  

A transformation is a typed computational procedure 
that may take as arguments both strings passed by value 
and datasets passed by reference. A transformation may 
create, delete, read, and/or write datasets passed as 
arguments. We distinguish between a simple 
transformation, which acts as a black box, and a 
compound transformation, which composes one or more 
transformations in a directed acyclic execution graph. 

A derivation specializes a transformation by 
specifying the actual arguments (strings and/or datasets) 
and other information (e.g., in some situations, 
environment variable values) required to perform a 
specific execution of its associated transformation. A 
derivation record can serve both as a historical record of 
what was done and as a recipe for operations that can be 
performed in the future. In the former case, it may record 
a provenance relationship between one or more datasets 
and a transformation. For example, the derivation object 
depicted in Figure 1 captures the fact that dataset foo was 
produced by applying transformation prog1 to dataset fnn. 

An invocation specializes a derivation by specifying a 
specific environment and context (e.g., date, time, 
processor, OS) in which its associated derivation was 
executed. Specific dataset replicas can be associated with 
a particular invocation for tracking and diagnostic 
purposes, to keep a detailed account of provenance in an 
environment where datasets can be replicated. 

Our data model specifies for each object a set of 
required attributes while also allowing for arbitrary 
additional attributes to capture application-specific 
information. We now describe each object in turn. 

3.1 Datasets 

The data model that underlies our virtual data system 
introduces a dataset abstraction to allow for the tracking 
of data in more general forms than “files,” “tables,” etc., 
and to insulate users from low-level data representations.  

A dataset is the unit of data manipulated by a 
transformation. A primary purpose of the virtual data 
system is to track dataset provenance. (We adopt 
“dataset” as a generic term without reference to its many 
prior meanings and implementations.) A dataset is a unit 
of data that may be stored in any of a variety of 
containers. Our model includes replicas as a means of 
tracking multiple invocations of a derivation and the 
resulting datasets. 

Depending on community and application, the datasets 
manipulated by a transformation might be variously: 
• A single file or a set of files that are viewed as a 

single logical entity. 
• A list of files with an associated offset-length pair 

specifying data to be extracted from each file. 
• A set of files in a tar archive or some other archive 

format. 



• An index file and a set of data files: for example, a 
gdbm database or a set of rows to be extracted, by 
primary key, from a SQL database. 

• A closure of object references from a persistent 
object database. 

• A region of a spreadsheet. 
For each dataset the virtual data system maintains a 

descriptor which tells a transformation how the dataset is 
mapped onto a storage service. A dataset’s descriptor 
provides the information needed by a transformation to 
access and manipulate the dataset’s contents.  

 For example, if the dataset’s contents are located in a 
single file, then the descriptor can be simply a file name. 
If the contents are a slice of a set of files, then the 
descriptor will provide both a list of file names and slice 
indices. If the dataset’s contents are a set of rows in a 
database, then the descriptor will name a database and 
specify those rows, and so on. We do not define a fixed 
schema for describing dataset representations: a particular 
collaboration or user must define a set of descriptor 
schemas that are interpretable by its transformations. 

3.2 Types 

We introduce a type model to facilitate the discovery of 
transformations and datasets, enable error checking of 
derivation specifications, and guide optimisation.  

A dataset has one or more type attributes: exactly one 
representational attribute and any number of additional 
logical attributes. The value of the representational 
attribute specifies the format of the dataset’s type 
descriptor, which contains information about how the 
dataset is formatted. Type attributes can be thought of as 
distinguished metadata attributes that (a) define the 
representation of datasets and (b) determine what datasets 
can validly be passed as arguments to a transformation. 
Type attributes can be defined hierarchically, thus 
allowing for specialization. A leaf (sub)type attribute is 
referred to as concrete; other (parent) type attributes are 
referred to as abstract.  

The following rules govern the use of types within the 
virtual data system. 
1. Any dataset, dataset-value transformation argument, 

or dataset-value derivation argument can have 
multiple type attributes, from independent type 
attribute hierarchies, including, as noted above, 
exactly one representational type attribute, and any 
number of logical types attributes. 

2. Any dataset type attribute must be concrete (i.e., a 
leaf node in its type attribute hierarchy); dataset-
value transformation and derivation arguments can 
have either abstract or concrete attribute types. 

3. Type conformance of datasets to transformation 
arguments is defined as follows: when a dataset is 
used as a derivation argument, each of its type 
attributes must be a concrete subtype of exactly one 

type attribute of the associated transformation 
argument. 

We use the two type attribute hierarchies below to 
illustrate these concepts. A dataset might be defined as 
having type attributes MultiFileSet and 
MonteCarloSimulation, with the first attribute indicating 
the dataset’s representation and the second its semantic 
content. However, a dataset cannot be defined as being of 
the abstract type attribute “EventCollection,” whereas a 
transformation argument can. 

 

    FileDataset (abstract, representational) 
        File (concrete, representational) 
        FileSet (abstract, representational) 
            MultiFileSet (concrete, representational) 
            TarFileSet (concrete, representational) 
 

    EventCollection (abstract, logical) 
        RawEventSet (concrete,logical) 
        SimulatedEventSet (abstract, logical) 
            MonteCarloSimulation (concrete, logical) 
            DiscreteSimulation (concrete, logical) 
 

We note that this type model differs from that of 
programming languages and databases in important ways. 
It does not describe the detailed contents of files in the 
manner that an abstract data type defines the fields of an 
object, nor does it, in a strict sense, define the operations 
that can be performed on a dataset. Its main purpose is to 
support flexible representations of datasets, discovery of 
datasets and transformations, and type checking of 
derivations. It does, however, employ the concepts of sub-
typing and multiple inheritance from the type models of 
programming languages.  

3.3 Transformations 

We believe that a virtual data system must shield its 
users from low-level details of how data and procedures 
are represented, so that they can focus on higher-level 
questions of how data is produced and transformed. Just 
as the dataset provides a typed abstraction for arbitrary 
data containers, so the transformation provides a typed 
abstraction for arbitrary computational procedures. 

We propose a general model for transformations that 
will (ultimately) be able to encompass the following: 
• An executable for a particular architecture. 
• A source program packaged to allow compilation and 

installation on a range of platforms. 
• A script passed to an interpreter, such awk, perl, or 

python, or a command shell 
• A set of SQL statements passed to a SQL query 

interpreter 
• Commands for a general-purpose data manipulation 

package, such as SAS or SPSS. 
• An application-specific package: e.g., in high energy 

physics, scripts in PAW or  ROOT, or algorithms in 
ATHENA. 



• A set of macros or an automation script passed to a 
visual application such as Excel. 

• A Web service with interface defined by Web 
Services Description Language (WSDL). 

• An invocation of a COM or COM+ ActiveX object. 
A transformation type specification indicates for each 

transformation argument its directionality (IN or OUT) 
and its type, which may be either “string” or a dataset 
type as described above. Type signatures facilitate 
discovery, automated checking of interfaces, and 
eventually, execution plan optimisation. 

Transformations that receive their arguments and input 
files via parameter files can defined as two-stage 
transformations, where the first stage takes VDL 
parameters and places them into a text file, and the second 
stage invokes the actual executable, passing it the text file 
produced by the first stage. Such couplings can 
conveniently be expressed using the “compound 
transformation” construct described in [11]. 

An important issue not yet addressed in our design is 
the structured versioning of transformations and 
mechanisms for managing compatibility assertions among 
different versions. It is important that we be able not only 
to track precisely what version of a transformation was 
executed to derive a given dataset, but also to express 
“equivalence” among different versions. 

4 Virtual Data System Architecture 
Having defined a virtual data schema, we turn to the 
question of how to maintain and provide access to that 
information in a distributed, multi-user, multi-institutional 
environment, to address our larger goals of scalability, 
manageability, and support for discovery and sharing. 

We introduce the term virtual data catalog (VDC) to 
denote a service that maintains information defined by our 
virtual data schema. A VDC is, in general, an abstract 
notion: while we can imagine a single database that 
maintains a coherent, authoritative view of all known 
datasets, transformations, derivations, and invocations, the 
creation of such a database is rarely likely to be feasible in 
our assumed distributed, multi-user, multi-institutional 
environment. Instead, VDC contents will typically be 
distributed over multiple information resources with 
varying degrees of authenticity and coherency. Thus, in 
the following we first discuss issues raised by location 
and organization, then describe our approach to 
establishing authenticity, and finally outline the 
infrastructure elements used to support these mechanisms. 

4.1 VDC Distribution and Integration 

A community’s virtual data catalog information may be 
distributed across multiple information repositories in a 
variety of ways and for a variety of reasons, including 
ownership and curation responsibilities (e.g., archives 
owned by different groups or individuals), the need to 

integrate with information resources maintained for other 
purposes (e.g., a metadata catalog or source code archive), 
replication for performance purposes, and a desire by 
subgroups or individuals to maintain independent 
“overlay” information that enhances information 
maintained by other groups. 
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Figure 2: Virtual data hyperlinks between servers 

Figure 2 depicts a scenario in which transformation and 
derivation records are distributed across two sites. (The 
corresponding dataset records are not depicted.) In this 
model of a distributed high-energy physics collaboration, 
the Wisconsin group is able to define a compound 
transformation “cmpsim” composed of two 
transformations created and maintained by a remote group 
working in llinois. The first stage of the transformation, 
“sim”, performs a simulation operation, while “cmp” 
compresses the result in a domain-specific manner. In 
turn, the Illinois group defines a derivation “srch-muon” 
that specifies the parameters needed to invoke the 
Wisconsin particle-searching application “srch” for the 
particular particle class “muon.” 
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Figure 3: Provenance hyperlinks between 
                virtual data servers 

This example shows how distributed collaboration is 
facilitated by the capability of inter-catalog references. 
When standardized in the manner of uniform resource 
locators, such information descriptors can, we feel, 
revolutionize the way that knowledge-intensive 
distributed collaborations are conducted over large 
distances and scales. Such knowledge-enriched hyperlinks 
need not be limited to references to remote type and 
transformation records. Derivation provenance chains can 
also span across servers, as illustrated in Figure 3, with 
for example group derivations depending on derivations 

TR=transformation 
DV=derivation 



in a collaboration-wide catalog and personal derivations 
depending on those of colleagues. As this type of 
technology becomes ubiquitous within and between 
collaborations in various disciplines, it will become 
possible for a researcher to click on a graph or table in a 
scientific paper, and discover in great detail and with high 
precision exactly how that dataset was produced. 

Hyperlinked provenance information facilitates the 
integration and federation of VDC information contained 
in multiple catalogs. Given the wide variety of 
information sources, information qualities, and 
application needs that may be encountered in a virtual 
data grid, we can expect a variety of integration/federation 
approaches to be useful, ranging from central servers to 
federated databases, Google-like systems, and peer-to-
peer structures. Some possibilities are illustrated in Figure 
4. Four catalogs (“VDCs”) maintained at different 
locations for different purposes and with different scopes 
provide direct local access to their contents. In addition, a 
variety of federated indexes integrate information about 
selected objects from multiple such catalogs. Presumably 
such federating indexes would be differentiated according 
to their scope (user interest, all community data, 
community approved data, etc.), accuracy (depth of index, 
update frequency), cost, access control, and so forth. 

More generally, we envision that in an effective 
collaborative process, data and knowledge definitions will 
propagate across, up, and around the web of each virtual 
organization’s knowledge servers as information is 
created, reprocessed, annotated, validated, and approved 
for broader use, trust, and distribution. 

TR

TR

TR

DV

TR

DV

DV

DV

DV

DV

Collaboration VDS Group VDS

Personal VDS

Personal VDS

Collaboration-wide
index

Official
collaboration

index

Group Index

Personal
Index

Personal
Index

Personal
Index

 
Figure 4: Indexing the VDG at multiple levels 

4.2 Quality and Security 

An important aspect of VDC community process is the 
maintenance of information concerning the “quality” of 
VDC entries. We use this generic term to indicate various 
quantitative and qualitative measures that a community or 
individuals may apply concerning such issues as curation, 
authorship, authenticity, and timeliness. Some such 
measures are tied strongly to process: for example, in a 
highly curated collection, each transformation, dataset, 
and derivation chain might be assessed, audited, and 

approved according to defined procedures. In other cases, 
“quality” might correspond to an annotation applied by a 
computational procedure, while some users might apply 
more ad hoc measures, for example trusting data produced 
by certain individuals. 

As is the case with other aspects of VDG design, our 
goal is to establish basic machinery that can be used to 
implement a wide variety of approaches and policies. In 
this context, we note that the distributed, multi-user, 
multi-institutional nature of the VDG environments 
means that, in general, we (a) must introduce automated 
and secure techniques for verifying trust and (b) cannot 
rely on direct trust relationships among individuals. Thus, 
we choose to use cryptographic signatures on VDC 
entries and attributes as a means of establishing the 
identity of the authority(s) that vouch for their validity. 
When embedded in a framework that provides for 
establishing root authority(s) and for validating trust 
chains, these mechanisms can be used to implement a 
wide variety of security models and policies. Similar 
mechanisms can be used for access control, as the policies 
enforced by a resource “owner” are likely to require 
similar recourse to authority. 

4.3 Infrastructure 

The realization of the concepts described above requires a 
variety of enabling infrastructure, including mechanisms 
for establishing inter-catalog references (and, in general, 
for naming VDG entities); establishing identity and 
authority; service discovery; virtualizing compute 
resources; and so forth. We do not discuss these issues 
here except to note that our current prototype builds on 
Globus Toolkit v2 technology and that our intention is to 
build future systems on the Grid infrastructure defined 
within OGSA [9] and implemented by the Globus Toolkit 
v3. OGSA and its Web services (WS) foundation together 
address issues of naming, service discovery, service 
characterization, notification, authentication and 
authorization (via the Grid Security Infrastructure [10], 
Community Authorization Service [17], and WS security, 
perhaps with extensions), and service provisioning and 
management, among other critical issues. 

An infrastructure component that is vital to our ability 
to perform dynamic resource provisioning is an effective 
resource virtualization facility. Ideally, such a facility 
would allow an arbitrary hardware resource to be 
configured to meet the needs of an arbitrary 
transformation; the required configuration would then 
form part of the description of the transformation, and a 
scheduler could take the cost of achieving this 
configuration into account when selecting resources. One 
approach to realizing this goal is to use hosting 
environment technologies such as J2EE and .NET. 
However, complex scientific applications also introduce 
native compiled code, multiprocessor execution, and other 
requirements that conventional hosting environments are 



not equipped to deal with. In this context, other 
approaches to virtualization can be appropriate, such as 
the Condor remote execution facility (system calls are 
trapped and returned to the originating site) and the 
Globus Toolkit’s Grid Resource Allocation and 
Management (GRAM) protocol, which allows, for 
example, for application-specific environment variable 
settings, prestaging of input data, redirection of standard 
output, and poststaging of output data. 

5 Application Context and Benefits 
We have described our schema for representing virtual 
data, and the components and architecture of the VDG. 
We can now address our central thesis: namely, that these 
constructs can indeed be of benefit to particular data-
intensive user communities. We explain how the virtual 
data mechanisms outlined above can be integrated with 
(and of benefit to) typical scientific and technical 
computing workflows. In particular, we show how our 
model ties in to the six key facets of the VDG process 
flow: composition, planning, derivation, estimation, 
discovery, and sharing (see Figure 5) focusing on 
questions of how derivation data is captured, discovered, 
used, and managed and discarded. 

We start by assuming that we are working within a 
community context within which: 
• The collaboration has carefully crafted its processing 

paradigm and created and defined a set of 
transformations that form the basic toolkit of most 
application scientists and production engineers. 

• Users can extend that toolkit by creating new 
transformations, often composing them from existing 
transformations. 

• Mechanisms to automatically track transformations 
are integrated into interactive systems. 

• Output datasets produced by the execution of 
derivations are automatically marked. 
Within this framework, we describe each of these 

processes in the sections that follow. 

Figure 5: Virtual data process flow 

5.1 Composition 

We use the term composition to refer to the entire process 
of creating virtual data definitions for all of the objects 
that make up the virtual data schema: dataset-types, 
datasets, transformations, derivations, and invocations. 
We envision that this activity will be integrated in both 
manual and automated manners.  

Production managers—those in a collaboration 
responsible for planning large, structured, official 
computations, often taking place over months or years—
will carefully structure a space of derivations and submit 
requests from that “virtual data” space. Individual 
researchers will manually create definitions as needed for 
smaller data spaces, and typically request the derivation of 
that data shortly after it has been defined. Both user 
groups will use VDL to specify these data spaces. 

In addition to such “batch” scenarios, we envision 
VDL being integrated into interactive analysis tools so 
that researchers exploring data spaces in a less structured 
fashion have the benefits of a historical log of their recent 
data derivation activities. These users can then choose to 
snapshot these logs (which could be maintained directly 
in a VDC) into a more permanent and well-categorized 
and named portion of their virtual data workspace. Over 
time, as these definitions accumulate, they become 
significant personal and community resources.  

5.2 Planning Data Access and Computation 

Once derivations are defined in the VDC, users (and 
automated production mechanisms) can request that these 
virtual datasets be “materialized.” We term the process of 
mapping these requests to the Grid “planning,” as it is 
suggestive of the database query planning process. 

Grid request planning is a challenging research area 
that involves tracking the state of both request queues and 
grid resources (networks, computing elements, and 
storage systems), and being cognizant of the complex and 
potentially overlapping resource usage policies set by 
both physical and virtual organizations within the Grid. 
The planner must allocate resources (computers, storage, 
networks) in response to requests for data products and 
procedure invocations, and make decisions to replicate 
popular datasets and procedures either on demand and/or 
via pre-staging [19]. 

The application of procedures to datasets can be 
performed in a variety of ways, including the following.  
1. Procedure collocated with data. A dataset may be 

accessible via a service interface that supports 
specific operations. 

2. Ship procedure to data. Alternatively, a dataset may 
be accessible via a service interface that allows for 
the execution of user-specified procedures: for 
example, SQL queries or arbitrary executables. A 
user may construct such procedures on the fly, or 
retrieve them from another source. 
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3. Ship data to procedure. A procedure may be 
accessible via a service interface that allows for the 
upload of datasets to which the procedure is then 
applied. A user may construct such datasets on the 
fly, or retrieve them from another source. 

4. Ship procedure and data to computer. In an 
environment in which workloads exceed the capacity 
of servers that host data (#1 or #2) or procedures (#1, 
#3), it can be useful to be able to integrate additional 
computational resources, for example by instantiating 
new copies of data or of services. 

All four patterns can play a role in a particular community 
or application, depending on factors such as resource 
availability and performance, the size of datasets, and the 
computational and data demands of procedures. 

5.3 Estimation 

Planning requires that we be able to obtain an estimate of 
the cost of executing the data derivation workflow graph 
(both computation and data transfer nodes) for each 
candidate plan. This information can be vital input not 
only for automated request planning but also for user 
query planning: interactive users may query the estimator 
directly to assess whether or not a particular desired 
virtual data product can be computed in the time that the 
user is willing to wait for it. 

5.4 Derivation 

Derivation refers to the process of running 
transformations with specified arguments to produce 
specific datasets. Derivation is conducted by workflow 
management systems that dispatch computation and/or 
data transfer requests to specific grid sites and monitor 
their completion, dispatching nodes of the workflow 
graph when predecessor dependencies have completed. 
An example of such a scheduler is the Condor DAGman. 

This process produces the invocation records in the 
virtual data schema that record details for each execution 
of a derivation—data, time, execution site, and execution 
environment (OS, processor type, host name, etc). 

The automated planning and derivation of large and 
complex workflows can be an important productivity 
multiplier, permitting users to explore aspects of their data 
space that were previously inaccessible due to the large 
burden of planning and managing such computations. The 
promise is that tasks that were previously both 
computationally intense and exceedingly difficult to plan, 
execute, monitor, and correct, now become automated. 
The goal is that the Grid becomes like an enormously 
powerful workstation, and the virtual data catalog an 
invaluable source of recipes to run on that facility. 

5.5 Discovery 

Discovery is the process of locating, and determining how 
to access, a dataset or procedure with specified attributes. 
The capabilities of conventional metadata searches are 

enhanced in the VDG by the added possibilities that 
attributes of interest may refer to derivation relationships 
and that users may wish to search for data that may exist 
as “data” and/or in terms of recipes for generating that 
data. The dataset type, through its more precise 
characterization of semantics, representation, and 
interface, further enhances the precision of searching for 
data and procedure. 

6 Experiences 
The vision and system design presented in this paper are 
the outgrowth of our problem domain analysis and 
implementation and application experience within the 
GriPhyN project [2]. Within GriPhyN, we have 
implemented two generations of the Chimera Virtual Data 
System, and have applied it to challenge problems derived 
from the large-scale scientific collaborations that are 
collaborators in GriPhyN. We describe here these two 
implementations and survey the current application work 
in progress. More detail on the system design and 
implementation can be found in [11] and on one of the 
major application efforts in [1]. 
We used a first version, Chimera-0, to study the database 
schema needed to represent provenance relationships. 
This version (as well as its successor, Chimera-1) was 
aimed at representing transformations that consisted of 
single invocations of executable programs under a POSIX 
model of program execution. (The POSIX model implies 
an executable that resides in a file, which is passed 
arguments both on the command line and via named 
“environment variables”, and which can access files 
through the open() system call.) The Chimera-0 schema 
consisted of a basic mapping of the POSIX execution 
semantics into a “transformation” object, with each 
invocation being a separate object. 

Using this mechanism, we were able to create 
Chimera database definitions for a high energy physics 
collision event simulation application that consisted of 
four separate program executions with intermediate and 
final results passing between the stages as files. For the 
last two stages the files were in fact object-oriented 
database files from a commercial OODBMS product. 

We learned from this effort what is needed to describe 
accurately applications with complex parameters and 
behaviour. We also created “canonical” applications that 
mimic arbitrary argument passing conventions and file 
I/O behaviour, and used these to create large application 
dependency graphs to validate our provenance tracking 
mechanism [11]. 

We have also addressed a larger challenge problem 
from astrophysics, namely the analysis of data from the 
Sloan Digital Sky Survey via the application of the 
MaxBCG galaxy cluster detection algorithm. This work 
[1] involved a much larger volume, a more realistic 
workload, and more complex data dependency tracking. 
We created and executed dependency graphs for 



searching for galaxy clusters in the entire currently 
available survey, creating about 5000 derivations. We 
processed one third of the current survey data collection, 
using workflow DAGs with as many as several hundred 
executable nodes, across a grid consisting of almost 800 
hosts spread across four sites, and using as many as 120 
hosts in a single workflow. 

We are currently implementing challenge problems 
involving more interactive analysis processing models 
than these large, batch-oriented challenges. For both 
ATLAS and CMS, we are prototyping environments in 
which we can track data produced in a set of multi-stage 
simulations, iterate in an unstructured manner over a 
small number of changeable analysis codes, select and 
filter interesting events, produce “cut sets” of events that 
meet certain physics properties, produce a series of 
histograms from the final analysis, and combine these cut 
sets into graphs that visualize interesting properties and 
relationships in the data. The data representations in these 
challenges include files, relational databases, and 
persistent object repositories, enabling us to test ideas for 
handling what we refer to as “multi-modal” data. Our goal 
is to be able to produce, for each data point in the final 
graph, a detailed data lineage report on the datasets that 
contributed to the creation of that point. 

7 Related Work 
The importance of documenting provenance is well 
known [18]. Our work builds on preliminary explorations 
within GriPhyN [3, 12]. There are also relationships to 
work in database systems [4, 5, 19] and versioning [15]. 
Cui and Widom [7, 8] record the relational queries used to 
construct materialized views in a data warehouse, and 
then exploit this information to explain lineage. Our work 
can leverage these techniques, but differs in two respects: 
first, data may not be stored in databases and the 
operations used to derive data items may be arbitrary 
computations; second, we address issues relating to the 
automated generation and scheduling of the computations 
required to instantiate data products. 

Early work on conceptual schemas [12] introduced 
virtual attributes and classes, with a simple constrained 
model for the re-calculation of attributes in a relational 
context. Subsequent work produced an integrated system 
for scientific data management called ZOO [13], based on 
a special-purpose ODBMS that allowed for the definition 
of “derived” relationships between classes of objects. In 
ZOO, derivations can be generated automatically based 
on these relationships, using either ODBMS queries or 
external transformation programs. Chimera is more 
specifically oriented to capturing the transformations 
performed by external programs, and does not depend on 
a structured data storage paradigm or on fine-grained 
knowledge of individual objects that could be obtained 
only from an integrated ODBMS. 

We can also draw parallels drawn between Chimera 
and workflow [14, 16] and knowledge management 
systems that allow for the definition, discovery, and 
execution of (computational) procedures. 

Our thoughts on large-scale maintenance of 
community knowledge have similarities to, and are in part 
inspired by, Semantic Web concepts [3], although our 
application domain has unique characteristics. 
We view as a significant open issue the question of how 
query optimisation techniques can be applied to planning 
issues that arise in VDGs. To date, work in this area has 
focused on lower-level scheduling issues relating for 
example to data movement [19]. 

8 Future Directions 
Looking beyond the ideas and designs proposed here, we 
already envision both significant new capabilities that 
further elevate the level at which users interact with 
computing resources and practical extensions to make the 
proposed design more realistic and usable. 

We envision that our future work will yield powerful 
general-purpose browsers that, within scientific and 
knowledge-intensive disciplines, are capable of making 
the discovery process as easy to use as today’s Internet 
search engines, but with the added precision of formal 
queries on precisely specified interfaces. 

The most significant new area that we intend to 
explore is that of extending our virtual information base 
into a knowledge base. Using knowledge representation, 
search, and inference techniques, we envision raising the 
level of interaction with the VDG to a domain-cognizant 
model in which searches and work requests are specified 
in the terminology and concepts of the domain(s) whose 
data, transformations, and knowledge are maintained in 
the VDS. The design proposed here will serve as a 
powerful base on which to conduct these explorations. 

We plan other extensions designed to make our design 
more robust and usable. These include the following: 

1) A model for tracking the provenance of datasets 
that reside in relational or object-oriented databases at a 
fine level of granularity. This is especially relevant in 
light of the case that is being made to have large 
collaborations keep all data assets, online, in a database. 

2) A model for representing equivalence and similarity 
between data products. For example, two datasets created 
by the same derivation at different points in time may not 
be bitwise identical, but may be equivalent in their 
behaviour and semantics for a certain class of 
transformations.   

We intend to explore the commonalities between code 
and data, and the similarity of our system for tracking data 
dependencies and those for tracking code (source) code 
and executable dependencies (e.g., “make”).  An ideal 
system would integrate or even unify these concepts and 
mechanisms. 



We also seek to explore a concept we call “virtual 
datasets,” in which multiple datasets refer to different 
overlaid subsets of the same physical storage elements. 
This construct raises difficult issues of storage 
management and garbage collection. 

Among the hard problems that need to be addressed 
and solved to bring this work to fruition are the following: 
• Integrating provenance tracking mechanisms into 

existing tools, both general (such as SAS, SPSS, 
Excel, etc) and specialized, such as the ROOT and 
PAW analysis environments for high energy physics. 

• Dealing with “update” as an operation a proc can 
perform on a DS; this maintains provenance but 
looses re-createability unless there is a transaction log 
for some type of undo operation. 

• Implementing large shared catalog that can be 
accessed across an enterprise-scale collaboration, 
with scalability and availability 

9 Conclusions 
We have argued that at least in scientific and technical 
computing (and we suspect elsewhere), an increased focus 
on both data-intensive and collaborative approaches to 
problem solving leads to a need to manage the data, 
procedures, and computations performed by a community 
as an integrated and interrelated whole. 

We have outlined the essential architectural elements 
of a virtual data grid system designed to address this 
requirement. This architecture defines a virtual data 
schema to represent the principal shared objects and the 
relationships among those objects, and a set of supporting 
mechanisms for managing the maintenance of this 
information. From a database perspective, VDGs not only 
represent a novel application domain but also introduce 
new technical problems in such areas as provenance. 
From a distributed systems perspective, VDGs have the 
attractive property of being able to leverage Grid systems 
in an interactive but disciplined fashion. 

 We have also described a prototype virtual data 
system, Chimera, and its application to scientific data 
analysis problems. Initial results with the Chimera 
prototype suggest that at least some of the benefits we 
claim for virtual data systems can be realized in practice. 

Clearly this article only scratches the surface in terms 
of what it means to create and apply usable virtual data 
grids. We have defined what seems to be a workable 
architecture and demonstrated feasibility in real 
applications, but further study is required before we can 
determine whether or not such systems really do 
accelerate the problem solving process, and whether our 
architectural constructs can scale as required. 
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Appendix A – Chimera Virtual Data 
Language Version 1 
We present a slightly simplified version of the core 
elements of the currently implemented Chimera virtual 
data language (VDL): those that allow us to represent the 
definition of transformations and their execution, and see 
how these enable the tracking of data derivation and 
provenance. We show the textual version of VDL here; an 
XML version is also implemented for machine-to-
machine interfaces. A basic transformation looks like this:  

 
TR t1( output a2, input a1, none env="100000", 
none pa="500" ) 
{ 
  argument parg = "-p "${none:pa}; 
  argument farg = "-f "${input:a1}; 
  argument xarg = "-x -y "; 
  argument stdout = ${output:a2}; 
  application = "/usr/bin/app3"; 
  profile env.MAXMEM = ${none:env}; 
} 
 

Derivations represent the execution of a 
transformation with a specific set of arguments: in other 
words, a procedure invocation. A derivation of 
transformation t1 above might look like this: 

 
DV d1->example1::t1(  
    a2=@{output:"run1.exp15.T1932.summary"}, 
    a1=@{input:"run1.exp15.T1932.raw"},  
    env="20000", 
    pa="600" ); 
 

When a derivation uses as input the output of a 
previous derivation, a dependency graph is created. The 
VDL records the information necessary to capture this 
dependency. In the following example, file2, the output of 
trans1 produced by derivation usetrans1, is used as the 
input to trans2 in derivation usetrans2. This is the essence 
of data provenance tracking in Chimera. 

 
TR trans1( output a2, input a1 ) 
{  argument stdin = ${input:a1}; 
   argument stdout = ${output:a2}; 
   application = "/usr/bin/app1"; 
} 
 
TR trans2( output a2, input a1 ) 
{ 
  argument stdin = ${input:a1}; 



  argument stdout = ${output:a2}; 
  application = "/usr/bin/app2"; 
} 
 
DV usetrans1->trans1( a2=@{output:"file2"}, 
a1=@{input:"file1"} ); 
 
DV usetrans2->trans2( a2=@{output:"file3"}, 
   a1=@{input:"file2"} ); 
 

Three simple transformations, and the fourth 
transformation, trans4, which is a compound 
transformation composed of calls to trans1, 2, and 3: 
 
TR trans1( output a2, input a1 ) { 
  argument = "..."; 
  argument stdin = ${input:a1}; 
  argument stdout = ${output:a2}; 
  application = "/usr/bin/app1"; 
} 
 
TR trans2( output a2, input a1 ) { 
  argument = "..."; 
  argument stdin = ${input:a1}; 
  argument stdout = ${output:a2}; 
  application = "/usr/bin/app2"; 
} 
 
TR trans3( input a2, input a1, output a3 ) 
{ 
  argument parg = "-p foo"; 
  argument farg = "-f "${input:a1}; 
  argument xarg = "-x -y -o "${output:a3}; 
  argument stdin = ${input:a2}; 
  application = "/usr/bin/app3"; 
} 
 
 
 

TR trans4(input a2, 
          input a1, 
          inout a5=@{inout:"anywhere":""}, 
          inout a4=@{inout:"somewhere":""},  
          output a3 ) 
{ 
  call trans1( a2=${output:a4}, a1=${a1} ); 
  call trans2( a2=${output:a5}, a1=${a2} ); 
  call trans3( a2=${input:a5},     
      a1=${input:a4}, a3=${output:a3} ); 
} 
 

Another transformation, trans5, which is a compound 
transformation composed of the simple transformation 
trans1 and the compound transformation trans4: 

 
TR trans5(input a2, 
          input a1, 
          inout a4=@{inout:"someplace":""},  
          output a3 ) 
{ 
  call trans1( a2=${output:a4}, a1=${a1} ); 
  call trans4( a2=${input:a4}, a1=${a2},  
               a3=${a3} ); 
} 

Appendix B - Chimera Virtual Data Catalog Schema – VDL 1.0 
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