
Numer Algor (2017) 75:1141–1159

DOI 10.1007/s11075-016-0235-3

ORIGINAL PAPER

The virtual element method in 50 lines of MATLAB

Oliver J. Sutton1

Received: 20 April 2016 / Accepted: 10 November 2016 / Published online: 3 December 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present a 50-line MATLAB implementation of the lowest order vir-

tual element method for the two-dimensional Poisson problem on general polygonal

meshes. The matrix formulation of the method is discussed, along with the structure

of the overall algorithm for computing with a virtual element method. The purpose

of this software is primarily educational, to demonstrate how the key components of

the method can be translated into code.

Keywords Virtual element method · Polygonal meshes · MATLAB implementation

1 Introduction

The virtual element method, introduced in [6], is a generalisation of the standard

conforming finite element method for the approximation of solutions to partial

differential equations. The method is designed in such a way as to enable the

construction of high order approximation spaces which may include an arbitrary

degree of global regularity [10] on meshes consisting of very general polygonal (or

polyhedral) elements. This cocktail of desirable features has attracted the method

a lot of attention (see, for example, [1, 3, 4, 11, 12, 14, 21, 30]) and is made

possible through the virtual element space of trial and test functions, which is

implicitly defined on each mesh element through local PDE problems. These local

problems are designed in such a way that the virtual element space includes a

� Oliver J. Sutton

ojs4@le.ac.uk

1 Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-016-0235-3&domain=pdf
http://orcid.org/0000-0003-0184-4371
mailto:ojs4@le.ac.uk

1142 Numer Algor (2017) 75:1141–1159

subspace of polynomials of some prescribed degree (referred to as the degree of the

method) alongside other, typically unknown, virtual functions. In this respect, and

like many other conforming approaches to polygonal meshes such as the polygonal

finite element method [18, 27] or BEM-based FEM [22], the virtual element method

falls within the broad class of generalised finite element methods [25]. What sets

the virtual element method apart from these other approaches, however, is that the

extra non-polynomial virtual functions never need to be determined or evaluated in

practice. Instead, they are understood and used solely through certain defining prop-

erties of the virtual element space and through their degrees of freedom, which, along

with the discrete bilinear form, are carefully selected to ensure that the final stiffness

matrix can be directly and exactly computed.

There is a history of short, simple codes being used to demonstrate the practical

implementation details of various aspects of finite element methods. We refer, for

instance, to the ‘Remarks around 50 lines of MATLAB’ paper [2] which presented a

simple and transparent MATLAB implementation of the conforming finite element

method, the 99-line topology optimisation code presented in [23], or the mixed-

FEM implementations presented by [5]. The purpose of these codes is primarily to

demonstrate how the theoretical concepts can be distilled into code, although they

typically fall at the opposite end of the educational spectrum from many other educa-

tional finite element libraries such as FreeFEM++ [16], FEniCS [17], or FEAP [29],

amongst many others, or commercially available ‘black-box’ finite element software

packages. Such software packages are typically designed to hide many of the actual

implementation details of the methods they implement behind an intuitive interface

which may automatically generate the necessary code directly from the weak form of

the problem or simply a description of the physical system. Instead, the focus of these

minimalist codes is on elucidating the ‘behind-the-scenes’ work necessary to con-

struct and solve the matrix form of the method in a specific case. This is a tradition

which we continue here, presenting a 50-line MATLAB implementation of the low-

est order virtual element method for the Poisson problem in 2D on general polygonal

meshes.

To the best of our knowledge, this is the first publicly available implementation

of the virtual element method, although there are various references which discuss

the matrix formulation of the method, see for instance [7, 14, 15]. In particular, [7]

contains detailed explanations of the formulation of the terms in the matrix equations

for the high order virtual element method applied to a reaction-diffusion problem. In

many ways, the work here can be seen as a spiritual successor to [7] in the sense that

while we restrict ourselves to just the linear virtual element method for the Poisson

problem, we take the process one step further and provide a clear, useable MATLAB

implementation of the method. The full code of the implementation is available from

Netlib (http://www.netlib.org/numeralgo/) as the na45 package, and includes several

examples of polygonal meshes.

The remainder of this work is structured as follows. In Section 2, we present the

model problem of the Poisson problem. A very brief introduction to the virtual ele-

ment framework is presented in Section 3, with a discussion of the discrete function

spaces and bilinear forms. The details of the implementation of this method are given

in Section 4, where we derive the matrix form of the discrete problem and show how

http://www.netlib.org/numeralgo/

Numer Algor (2017) 75:1141–1159 1143

this may be computed in practice. Section 5 contains a brief explanation of how to

run the code using MATLAB. Finally, we offer some concluding remarks and ideas

for possible extensions to the code in Section 6.

2 Model problem

Let � ⊂ ℜ2 be a polygonal domain and consider the Poisson problem

− �u = f in �,

u = g on ∂�, (2.1)

with f ∈ L2(�) and g ∈ H 1/2(∂�). This problem can be written in variational form

as: find u ∈ H 1
g (�) :=

{
w ∈ H 1(�) : w = g on ∂�

}
such that

a(u, v) := (∇u,∇v) = (f, v) =: ℓ(v) ∀v ∈ H 1
0 (�) (2.2)

where (·, ·) denotes the standard L2(�) inner product. This variational problem

possesses a unique solution by the Lax-Milgram lemma.

3 The virtual element method

Let Th be a family of partitions of the domain � into non-overlapping polygo-

nal elements with maximum diameter h whose boundaries are not self-intersecting.

A theoretical analysis of the method, as given in [6], requires certain additional

assumptions on the regularity of the mesh. Although we do not specifically state

the assumptions here, the resulting set of requirements is general enough to include

polygonal elements consisting of an arbitrary (but uniformly bounded) number of

edges, which may also be non-convex. Moreover, recent work in [9] suggests that

these mesh requirements may be relaxed even further to include meshes with arbi-

trarily small edges. To simplify the implementation, we restrict the mesh to include

only elements which contain their own centroid, as defined in (4.4). We note that this

class of elements includes those with co-planar edges, as commonly found in locally

refined meshes with hanging nodes, and even non-convex elements.

The vertices of a polygonal element E with NE edges are denoted by νi for i =

1, . . . , NE , and we adopt the convention that the edge ei connects vi and vi+1, where

the indices are understood to wrap within the range 1 to NE .

3.1 Virtual element function spaces

The discrete function space is defined to be

Vh := {vh ∈ H 1
g (�) : vh|E ∈ V E

h for all E ∈ Th}

where the local space V E
h on the element E can be understood through the following

three properties:

1144 Numer Algor (2017) 75:1141–1159

• V E
h includes the space PE of physical-frame polynomials on E with total degree

≤ 1 as a subspace.
• Any function in V E

h can be uniquely identified by its values at the vertices of

E, which are taken to be the degrees of freedom of the space. We note that this

implies that the dimension of the space V E
h is equal to NE .

• Every function in V E
h is a linear polynomial on each edge of E.

The subspace of linear polynomials provides the approximation power of the virtual

element space, and is responsible for the accuracy of the method. On triangular ele-

ments, the space consists entirely of these linear polynomials, and thus, the method

reduces to the standard linear finite element method. However, on more general -

shaped polygonal elements, the space will also include other, implicitly defined,

‘virtual’ functions, cf. (3.3). The method is designed in such a way that these will

never need to be explicitly computed or evaluated and are instead understood solely

through their values at the vertices of E, which we take to be the degrees of free-

dom of the space V E
h . In this respect, the virtual element space can be seen as a

straightforward generalisation of the standard linear conforming finite element space

on triangles to more general shaped elements.

The first observation we make about this space is that just the properties outlined

above allow us to compute the Ritz projection �E : V E
h → PE of any function

in the local virtual element space V E
h onto the subspace of linear polynomials. This

projection is defined for vh ∈ V E
h by the conditions

{
(∇(�Evh − vh),∇p)0,E = 0 for all p ∈ PE,

�Evh = vh,
(3.1)

where wh := 1
NE

∑NE

i=1 wh(vi) denotes the average value of wh at the vertices of E.

This second condition is necessary to fix the constant part of �Evh and is clearly

computable for any vh ∈ V E
h from just its degrees of freedom.

From (3.1), the divergence theorem, and the fact that the Laplacian of a linear

function is zero, we have that, for any vh ∈ V E
h and p ∈ PE ,

(∇�Evh, ∇p)0,E = (∇vh, ∇p)0,E =
∑

e∈∂E

∫

e

vhne · ∇pds, (3.2)

where ne denotes the unit normal vector to the edge e directed out of the element E.

The final expression on the right hand side here can be exactly evaluated since vh is a

linear polynomial on each edge of E, entirely determined by its values at the vertices,

while the gradient of the linear polynomial p is a known constant. By picking a basis

for the polynomial space PE , (3.2) can be written as a matrix problem which can be

solved to find the coefficients of �Evh with respect to this polynomial basis. We will

come back to this in Section 4, although for now we just rely on the fact that this

projection is computable.

Numer Algor (2017) 75:1141–1159 1145

The actual definition of the virtual element space which we use here is the lowest

order space introduced in [6], given by

V E
h := {v ∈ H 1(E) : �v = 0, v|∂E ∈ C0(∂E),

v|e ∈ Pe for each e ∈ ∂E}, (3.3)

where Pe denotes the space of linear polynomials on the edge e. The fact that the

vertex values can be used as degrees of freedom to describe this space is proven in [6].

The global degrees of freedom for Vh are simply taken to be the value of the func-

tion at each vertex in the mesh, thus imposing the continuity of the ambient space.

The degrees of freedom at vertices on the domain boundary are fixed in accordance

with the boundary condition. The dimension of the global virtual element space Vh

shall be denoted by N .

3.2 Discrete bilinear form

Define the bilinear form aE : H 1(E) × H 1(E) → ℜ to be the restriction of a to the

element E, i.e. aE(v, w) := (∇v, ∇w)0,E for any v,w ∈ H 1(E). Following [6], we

introduce the discrete counterpart aE
h : V E

h × V E
h → ℜ of aE which we define as

aE
h (vh, wh) := (∇�Evh, ∇�Ewh)0,E + SE(vh − �Evh, wh − �Ewh), (3.4)

with

SE(vh, wh) :=

NE∑

r=1

dofr(vh)dofr(wh),

where dofr(vh) denotes the value of the rth local degree of freedom defining vh in V E
h

with respect to some arbitrary (but fixed) ordering1. This means that SE is simply the

Euclidean inner product between vectors of degrees of freedom. Finally, we define

ah(vh, wh) :=
∑

E∈Th

aE
h (vh, wh),

to be the discrete counterpart of a.

Crucial to the method is the observation that the local discrete bilinear forms

satisfy the following two properties [6]:

• Polynomial consistency: for any vh ∈ V E
h and p ∈ PE ,

aE
h (vh, p) = aE(vh, p).

• Stability: there exists a constant Cstab independent of h and E such that

C−1
staba

E(vh, vh) ≤ aE
h (vh, vh) ≤ Cstaba

E(vh, vh),

for any vh ∈ V E
h .

The requirement of polynomial consistency implies that the method satisfies the patch

test commonly used in the engineering literature, expressing the fact that the method

1For instance, this could be achieved simply by numbering the vertices of the polygon E.

1146 Numer Algor (2017) 75:1141–1159

is exact when the solution is a piecewise linear polynomial with respect to the mesh

Th and provides the accuracy of the method. The stability property, on the other hand,

ensures that the discrete bilinear form inherits the continuity and coercivity of the

original variational form a, as proven in [6]. In the final matrix formulation of the

problem, this property can be viewed as ensuring that the problem stiffness matrix is

of the correct rank.

In light of these two properties, the two terms of aE
h are referred to as the con-

sistency and stabilising terms respectively since only the first term is non-zero when

either vh or wh is a polynomial, and thus single-handedly ensures that the polyno-

mial consistency property is satisfied, while the second term ensures that the stability

property is satisfied even when vh or wh are in the kernel of �E . For a proof that

this choice of stabilising term SE does indeed satisfy the stability property, we refer

to [9, 14].

Moreover, both terms of aE
h in (3.4) are computable using just the degrees of

freedom of the virtual element space (to compute the projector �E and to evalu-

ate the stabilising term) and knowledge of the polynomial subspace PE (to evaluate

the consistency term of aE
h , which is made of integrals of polynomials, just like in

a standard finite element method). This will be further demonstrated in Section 4,

where it will also become apparent that this particular virtual element method can

be implemented without requiring any quadrature to compute the stiffness matrix,

although a very simple barycentric quadrature scheme is used to evaluate the forcing

term.

Still following [6], the linear form ℓ on the right-hand side of the variational

problem (2.2) is discretised by ℓh : V E
h → ℜ such that

ℓh(vh) :=
∑

E∈Th

(�E
0 f, vh)0,E, (3.5)

where �E
0 : V E

h → ℜ denotes the L2(E)-orthogonal projection onto constants,

defined for any wh ∈ V E
h to be such that

∫

E

(wh − �E
0 wh)dx = 0.

The discrete problem which we solve can then be written as: find uh ∈ Vh such

that

ah(uh, vh) = ℓh(vh), (3.6)

for all vh ∈ V E
h .

4 Implementation

As with a typical finite element method, we start by introducing the Lagrangian basis

{ϕi}
N
i=1 of Vh with respect to the global set of degrees of freedom, defined by the

property that ϕi(νj) = δij , where δij is the Kronecker delta. We also introduce the

Lagrangian basis of the local virtual element space V E
h on the element E as {ϕE

i }
NE

i=1,

defined by the local equivalent of the same property.

Numer Algor (2017) 75:1141–1159 1147

We will also need a basis for the space PE of local physical frame linear poly-

nomials on each element E. Many choices are possible here, although in keeping

with the convention commonly adopted in the literature on virtual element methods,

we choose the set of scaled monomials of degree 1. These are defined on the element

E as

ME :=

{
m1(x, y) := 1, m2(x, y) :=

x − xE

hE

, m3(x, y) :=
y − yE

hE

}
, (4.1)

where xE and yE respectively denote the x and y coordinates of the centroid of the

element in the standard Cartesian coordinate system, and hE is the diameter of the

element E. We denote by NP = 3 the cardinality of this basis and therefore the

dimension of PE

In the hope of avoiding confusion, we adopt the convention of indexing coeffi-

cients and basis functions in the basis of V E
h using Latin letters, while those of PE

will be indexed using Greek letters.

With these two bases at our disposal, we can now derive the matrix form of the

discrete problem (3.6). Expanding the virtual element solution uh as

uh =

N∑

i=1

Uiϕi,

problem (3.6) can be rewritten using the definitions (3.4) of aE
h and (3.5) of ℓh as:

find U ∈ ℜN such that

N∑

i=1

Ui

∑

E∈Th

(
(∇�Eϕi,∇�Eϕj)0,E + SE(ϕi − �Eϕi, ϕj − �Eϕj)

)
=

∑

E

(�E
0 f, ϕj)0,E

for j = 1, . . . , N . This may be expressed in matrix form as KU = F where

Kj,i =
∑

E∈Th

(
(∇�Eϕi , ∇�Eϕj)0,E + SE(ϕi − �Eϕi , ϕj − �Eϕj)

)
, Fj =

∑

E

(�E
0 f, ϕj)0,E,

for i, j = 1, . . . , N . Since both these terms are defined through sums over elements,

the obvious way to compute the entries of K and F is by computing the non-zero

local contributions from each element E in the form of the local stiffness matrix

KE ∈ ℜNE×NE
and local forcing vector FE ∈ R

NE
, given by

KE
j,i = (∇�EϕE

i ,∇�EϕE
j)0,E+SE(ϕE

i −�EϕE
i , ϕE

j −�EϕE
j), FE

j := (�E
0 f, ϕE

j)0,E,

(4.2)

for i, j = 1, . . . , NE , and adding them into the corresponding entries of K and F .

This, of course, dictates that the overall structure of a virtual element method

implementation will be much the same as for a standard finite element method, as

outlined in Algorithm 1. The key point of departure from the standard finite ele-

ment method is in how the element stiffness matrices should be calculated. Firstly,

the computation of the local stiffness matrices relies on first computing the local

1148 Numer Algor (2017) 75:1141–1159

Ritz projector �E on each element. Secondly, where the implementation of a con-

ventional finite element might rely on a mapping to a reference element, no such

equivalent process is possible here because the mesh elements are allowed to be

general (possibly non-convex) polygons.

The main code of the implementation is shown in Listing 1. In the remainder

of this section, we dissect the code to highlight how the various steps outlined in

Algorithm 1 can be implemented in code. Much of the matrix formulation presented

in this section is similar to that in [7], although here we focus specifically on the case

of the lowest order method and take the process a step further to include the details

of how each step is accomplished in the code. The full code also relies on several

auxiliary functions:

• square domain rhs.m: contains the definition of the forcing function

f (x, y) = 15 sin(πx) sin(πy),

• square domain boundary condition.m: contains the definition of the

Dirichlet boundary condition

g(x, y) = xy sin(πx),

• L domain rhs.m: contains the definition of the forcing function

f (x, y) = 0,

• L domain boundary condition.m: contains the definition of the Dirich-

let boundary condition

g(r, θ) = r2/3 sin

(
2θ − π

3

)
,

where r and θ are the standard polar coordinates centred at the origin
• plot solution.m: produces a MATLAB figure containing a plot of the

approximate solution uh. Note that this plot is generated using the values of

uh at the vertices of the mesh, which are interpolated by the MATLAB patch

function to produce a surface.

The implementations of these functions are available as the package na45 in the

NUMERALGO library from Netlib, along with the vem.m file shown in Listing 1

Numer Algor (2017) 75:1141–1159 1149

Listing 1 The file vem.m, implementing the virtual element method

and various sample mesh files, illustrated in Fig. 1. Examples of how to use the code

are given in Section 5.

4.1 The polygonal mesh

The mesh is loaded into a structure named mesh from a binary MATLAB .mat file

(the path to which is specified by the input parameter mesh filepath) containing

a matrix named vertices which specifies the coordinates of a mesh vertex on

each row, a cell array named elements containing vectors of indices indicating the

1150 Numer Algor (2017) 75:1141–1159

(A)

(D)

(B)

(E)

(C)

(F)

Fig. 1 The sample meshes available along with the code

vertices which make up each element in an anti-clockwise order around the element,

and a vector named boundary containing the indices of the vertices which lie on

the boundary of the mesh. Illustrated in Fig. 1 are several examples of such meshes,

available alongside the code from NETLIB. This information can also be generated

in the same format using the Voronoi mesh generator PolyMesher [28], also written

in MATLAB.

4.2 Initialisation

The input arguments to the code are mesh filepath which contains the path to

the mesh file, as described above, the function handle rhs which is a handle to

a function implementing the forcing function of the PDE, and the function handle

boundary condition, which should be a handle to a function implementing

the boundary condition of the PDE. Examples of such input arguments are given in

Section 5.

The initialisation step of the code (lines 1–22) simply sets up various variables

which will be useful to us later. In the interests of efficiency, we use a sparse

matrix K to represent the stiffness matrix. In this step, we also define the cell array

linear polynomials containing three pairs of numbers indicating the degree

Numer Algor (2017) 75:1141–1159 1151

of the associated polynomial in the x and y directions. Thus, the index of a specific

polynomial in this array is taken to be the index of the polynomial in the basis ME .

We note that the ordering imposed in the code coincides with the ordering in (4.1),

although this choice is arbitrary.

Some extra element-specific initialisation also takes place within the loop over all

mesh elements to compute various geometric properties of each element. The vector

vert ids contains the global indices of the vertices forming the element E with

an anti-clockwise ordering. As well as providing us with a means of looking up the

coordinates of the vertices using the mesh structure, this also provides us with a

very simple way to identify the global index of a particular local degree of freedom.

This is possible because the indices of the degrees of freedom of the global virtual

element space can be taken to be just the global indices of their associated vertices.

Similarly, the local indices of the vertices of the element E dictate the local index of

the associated degree of freedom. Therefore, the ith entry in the vector vert ids

provides the global index of the ith local vertex and therefore also the global index

of its associated local degree of freedom. Having access to this ‘local to global’

mapping is absolutely crucial when trying to assemble the global stiffness matrix

and forcing vector from their local counterparts. When implementing more complex

methods this sort of bookkeeping can quickly become very cumbersome, although

here we are able to exploit the very simple arrangement of the degrees of freedom.

Because of this property, we use the variable n sides to represent both the number

of sides of E and equivalently the number of local degrees of freedom of V E
h .

The variable area denotes |E| and is computed using the formula

|E| =
1

2

∣∣∣∣∣∣

NE∑

i=1

xiyi+1 − xi+1yi

∣∣∣∣∣∣
, (4.3)

where (xi, yi) are the coordinates of the vertex νi , and the indexing is understood

to wrap within the range 1 to NE . In the code this is accomplished using the utility

function mod wrap, which modifies the standard mod function to produce output in

the range 1 to NE rather than the range 0 to NE − 1. This modification to the mod

function is necessary because arrays in MATLAB start at index 1, not 0. The centroid

(xE, yE) of the element is stored in the vector centroid and calculated using the

usual formula:

xE = 1
6|E|

∑NE

i=1(xi + xi+1)(xiyi+1 − xi+1yi),

yE = 1
6|E|

∑NE

i=1(yi + yi+1)(xiyi+1 − xi+1yi),
(4.4)

where the indices are again to be understood to wrap within the range 1 to NE .

In the code, we are able to combine some of the calculations which are necessary

to find the area and centroid by storing the terms of the sum (4.3) in the vector

area components.

1152 Numer Algor (2017) 75:1141–1159

4.3 The Ritz projection and local stiffness matrix

We focus initially on computing �EϕE
i for a single basis function ϕE

i . Since �EϕE
i ∈

PE ⊂ V E
h , we have two different possible expansions for the projection �EϕE

i ,

either in the basis of PE or in that of V E
h :

�EϕE
i =

NP∑

α=1

ai,αmα =

NE∑

j=1

si,jϕ
E
j . (4.5)

Recalling (3.2) and using the fact that ∇mβ is a constant vector for the linear poly-

nomial mβ , we find that

NP∑

α=1

ai,α(∇mα, ∇mβ)0,E =

NE∑

j=1

∫

ej

vhnej
· ∇mβds

=

NE∑

j=1

|ej |

2
(ϕE

i (νj) + ϕE
i (νj+1))nej

· ∇mβ

=
|ei |nei

+ |ei−1|nei−1

2
· ∇mβ ,

for any mβ ∈ ME , where in the last equality we have used the Lagrangian property

of the basis functions ϕE
i at the vertices of E to determine that ϕE

i is only non-zero

on the two edges ei and ei−1 which meet at the vertex νi . As shown in [13], this can

be further simplified to

NP∑

α=1

ai,α(∇mα, ∇mβ)0,E =
1

2
|̂ei |nêi

· ∇mβ ,

where we have denoted by êi the line segment connecting the vertices νi−1 and νi+1,

and nêi
is the unit normal to êi such that nêi

· nej
≥ 0 for j = i, i − 1 (Fig. 2).

Fig. 2 An illustration of the

labelling of the various

geometric attributes on each

element. Vertices are labelled as

νi , the edge connecting νi to

νi+1 is denoted by ei , and êi

denotes the line segment

connecting νi−1 and νi+1. The

outward unit normal in each

case is denoted by n with the

appropriate subscript

Numer Algor (2017) 75:1141–1159 1153

In view of this, and following [7], we introduce the matrix G ∈ ℜNP×NP and the

vector Bi ∈ ℜNP such that

Gβ,α = (∇mα, ∇mβ)0,E, Bβ,i =
1

2
|̂ei |nêi

· ∇mβ ,

to encode the conditions above. The problem here is that the first row (and column) of

G and Bi are zero, since the gradient of a constant function is zero, and therefore, G is

rank deficient. This is overcome by using the second condition in the definition (3.1)

of �E , defining

G̃β,α =

{
1

NE

∑NE

j=1 mα(νj) if β = 1,

Gβ,α otherwise,
B̃β,i =

{
1

NE if β = 1,

Bβ,i otherwise.

(4.6)

Therefore, the coefficients ai,α can be calculated by solving the (full rank) matrix

equation

G̃ai = B̃i .

Defining the matrix B̃ ∈ ℜNP×NE
such that its ith column is the vector B̃i ∈ ℜNP ,

we obtain the matrix equation

G̃� = B̃,

where � ∈ ℜNP×NE
is the matrix representation of the Ritz projector �E , taking a

vector of coefficients of a function expressed in terms of the basis of V E
h to a vector

of coefficients of the basis of PE , and has ai as its ith column.

We also introduce the matrix D ∈ ℜNE×NP with Di,α := dofi(mα) as a one-way

‘change of basis’ matrix for re-expressing polynomials in terms of the basis of V E
h .

It is easy to check from (3.2) that we may use D as a shortcut to compute G and G̃,

since

G = BD, G̃ = B̃D,

meaning we can compute the projection matrix as

� = (B̃D)−1B̃. (4.7)

Since � transforms a vector of coefficients representing a function expressed in the

basis of V E
h into a vector of coefficients of the basis of PE , the matrix D� then

corresponds the same projector although with the resultant polynomial expressed in

terms of the basis of V E
h .

Finally, we can compute the local stiffness matrix as

KE = �⊤G � + (I − D�)⊤(I − D�), (4.8)

where I ∈ ℜNE×NE
denotes the identity matrix. The first term of this sum corre-

sponds to the consistency term of the discrete bilinear form, and the second term

corresponds to the stabilising term.

The code which computes the matrix form of the local Ritz projector and the

local stiffness matrix is given in lines 23–41 of Listing 1. The first task (lines 23–24

of Listing 1) is to initialise the two matrices D and B representing their namesakes

D ∈ ℜNE×NP and B ∈ ℜNP×NE
. For each of these matrices, we can immediately

calculate the elements corresponding to the constant polynomial basis function m1.

In the case of D, every element of the first column contains the value 1 since the

1154 Numer Algor (2017) 75:1141–1159

constant function is 1 everywhere, while it may be observed from (4.6) that every

element in the first row of B is equal to NE − 1.

However, the remaining elements of D and B must be computed separately for

each of the basis polynomials with total degree equal to 1, and for each local degree

of freedom. Computing the entries of D is a straightforward task, since it just involves

evaluating the basis monomials at the vertices of the polygon.

For the entries of B, however, we must evaluate the second expression in (4.6).

The quantity |̂ei |nêi
is simple to calculate, since it is just the vector

|̂ei |nêi
= (yi+1 − yi−1, xi−1 − xi+1)

⊤

due to the anti-clockwise orientation of the vertices around E. In the code, this result

is stored in the variable vertex normal, so named because it can be interpreted

as a weighted normal vector at the vertex νi . Again, the indices here are understood

to wrap within the range 1 to NE .

To compute the entries of B we also need to evaluate ∇mβ . Since mβ is a linear

polynomial, its gradient is simply a constant vector, and from the definition of ME

it is clear that

∇m2 = (h−1
E , 0)⊤, ∇m3 = (0, h−1

E)⊤,

and hence by representing the polynomial degree of mβ in the x and y

directions using a vector with one entry 1 and one entry 0, as in the cell array

linear polynomials, the gradient can be very simply calculated by just divid-

ing by hE .

With the matrices D and B computed, we are in a position to use (4.7) to calculate

the matrix � representing the projector �E , as shown on line 37 of Listing 1, and

stored in the variable projector. Consequently, with D, B and � at our disposal,

the local stiffness matrix can be computed as in (4.8).

The final step of this section is to add the elements of the local stiffness matrix

to the positions in the global stiffness matrix corresponding to the associated global

degrees of freedom. This is accomplished on line 41 through the local to global

mapping discussed in Section 4.2.

4.4 The local forcing vector

To calculate the local forcing vector given in (4.2), we must first compute the

projection �E
0 f . By definition, this satisfies

∫

E

�E
0 f dx =

∫

E

f dx,

which, because we are projecting to constants, can be simplified to

�E
0 f =

1

|E|

∫

E

f dx ≈ f (xE, yE),

where in the last relation we have used the barycentric quadrature rule on the polygon

to approximate the integral. Since we are only considering the linear virtual element

method, this is sufficiently accurate to ensure the optimal order of convergence in

Numer Algor (2017) 75:1141–1159 1155

the H 1(�) norm. It is the use of this quadrature which produces the requirement in

Section 3 that the element must contain its own centroid. Clearly, more general inte-

gration methods are possible (for example by triangulating the element or using more

advanced techniques such as [19, 20, 24, 26]), although for the sake of simplicity this

is not something we pursue here. Since each basis function of V E
h is defined to be 1

at a single vertex and 0 at the others, we can express

FE
j =

∫

E

ϕE
j �E

0 f dx ≈

∫

E

f (xE, yE)

NE
dx =

|E|

NE
f (xE, yE).

The code to compute this and store the result in the appropriate positions in the global

forcing vector is on line 42 of Listing 1.

4.5 Applying the boundary conditions

The final step involves condensing the degrees of freedom associated with the bound-

ary of the domain out of the linear system using the boundary condition, solving the

resulting matrix equation, and re-applying the boundary data to the computed solu-

tion. This part of the procedure is exactly the same as for a standard finite element

method, but for completeness we briefly review the process here.

Using the subscript B to denote the indices of degrees of freedom on ∂� and I to

denote those in the interior of �, the matrix problem KU = F can be expressed as
[

KII KIB

KBI KBB

] [
UI

UB

]
=

[
FI

FB

]

where KIB = K⊤
BI by the symmetry of the bilinear form. Therefore, since UB is

known, we find UI by solving the problem

KIIUI = FI − KIBUB .

This is realised on lines 46–47 of the code, where we only store the result of solv-

ing the matrix system to the positions of the vector u which correspond to internal

degrees of freedom while the values of the boundary degrees of freedom are set

separately on line 48.

The final line of the code uses the auxiliary function plot solution, also pro-

vided in the NETLIB package, to plot the vertex values of the virtual element solution

and the mesh using MATLAB’s patch function.

Remark 1 (More general boundary conditions) Problems involving more general

boundary conditions can also be implemented in a similar manner as for the finite

element method. Suppose that the domain boundary is split into two components ŴD

and ŴN such that ŴD ∪ ŴN = ∂� and ŴD ∩ ŴN = ∅. Consider a problem posed

with mixed type boundary conditions such that, for sufficiently regular Neumann

boundary data gN ,

−�u = f in �,

u = 0 on ŴD,

n · ∇u = gN on ŴN .

(4.9)

1156 Numer Algor (2017) 75:1141–1159

The case of mixed boundary conditions involving non-homogeneous Dirichlet data

can also be handled as shown above. The weak form of this problem then reads: find

u ∈ H 1
ŴD

(�) such that

(∇u,∇v) = (f, v) −

∫

ŴN

gNvds ∀v ∈ H 1
ŴD

(�),

where H 1
ŴD

(�) denotes the subspace of H 1(�) consisting of functions with vanish-

ing trace on ŴD . A virtual element method for this problem can then be written as:

find uh ∈ Vh such that

ah(uh, vh) = ℓh(vh) −

∫

ŴN

gNvhds ∀vh ∈ Vh,

where ah and ℓh are as before and Vh denotes a virtual element space incorporating

the homogeneous Dirichlet boundary data on ŴD . The left and right-hand sides of

this problem can still be evaluated exactly since vh is a known linear polynomial on

each edge of the mesh and gN is a known function on ŴN . Consequently, only the

extra vector corresponding to the term on the Neumann part of the boundary would

need to be computed in the code to implement mixed boundary conditions.

Remark 2 (Extension to three spatial dimensions) Implementing the virtual element

method for problems in three spatial dimensions on polyhedral meshes requires the

use of the so-called enhanced virtual element spaces introduced in [1]. In these mod-

ified local function spaces, it becomes possible to compute the local L2-orthogonal

projection of virtual element functions onto the polynomial subspace on each mesh

element and face. The matrix formulation of this method and the algorithm for

computing the L2-orthogonal projection operator is discussed in [7]. These projec-

tion operators are required to evaluate the right hand side of (3.2) when computing

the local Ritz projection. This is because a virtual element function in three spatial

dimensions is not a polynomial on each (in general polygonal) face of the element,

but rather belongs to a virtual element space defined on that planar face.

5 Sample usage

The full code is available as the na45 package in the NUMERALGO library from

Netlib. The software is distributed as a compressed archive file, and can be installed

be decompressing the file to produce the directory “vem 50lines”, which contains

the code. More information is provided in the README.txt file, contained in the

package.

As described in Section 4, two different implementations of the right hand side

forcing function and boundary condition are provided with the code. The first of these

is designed for use on a square-shaped domain, while the second is designed for use

on an L-shaped domain. The sample solution on the square-shaped domain is shown

in Fig. 3a on the Voronoi mesh of Fig. 1c. This figure can be produced by navigating

to the directory containing the file vem.m within MATLAB and executing

Numer Algor (2017) 75:1141–1159 1157

(A) (B)

Fig. 3 The virtual element approximations to the solutions of the two sample problems supplied with the

code

vem(’meshes/voronoi.mat’, @square domain rhs,

@square domain boundary condition);

to provide the code with an appropriate mesh, forcing function, and bound-

ary condition. The other sample meshes of the square domain could equiv-

alently be used here by simply changing the first argument in the func-

tion call to be the path to the desired mesh. For instance, replacing the

first argument with ’meshes/triangles.mat’, ’meshes/squares.mat’,

’meshes/smoothed-voronoi.mat’, or ’meshes/non-convex.mat’

would use the meshes shown in Fig. 1a, b, d, e, respectively.

Similarly, the sample solution for the L-shaped domain is shown in Fig. 3a. This

plot is produced by calling the vem function with the parameters:

vem(’meshes/L-domain.mat’, @L domain rhs,

@L domain boundary condition);

which corresponds to the standard problem on an L-shaped domain.

6 Conclusions and extensions

We have presented a 50-line MATLAB implementation of the linear virtual element

method introduced in [6] for solving the Poisson problem on polygonal meshes in

two spatial dimensions. The code for this is provided with this paper alongside sev-

eral example polygonal meshes. To the best of our knowledge, this is the first publicly

available implementation of the virtual element method. It is clear from the litera-

ture surrounding the method that its capabilities extend far beyond what is presented

here, although the intention behind this work is to exemplify how the method can be

implemented in practice, in the simplest possible setting. The ideas we present here

1158 Numer Algor (2017) 75:1141–1159

can, however, be generalised to much more complicated situations by applying sim-

ilar processes to compute the various required terms. The possible extensions of this

code are endless: the implementation of higher order methods, more general ellip-

tic operators including lower order terms and non-constant coefficients [8, 14], basis

functions with higher global regularity properties [10], mesh adaptation driven by a

posteriori error indicators [12], or the consideration of time dependent problems [30]

to name but a few.

Acknowledgments The support of the EPSRC whilst producing this work is gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)

and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element

methods. Computers & Mathematics with Applications 66(3), 376–391 (2013)

2. Alberty, J., Carstensen, C., Funken, S.A.: Remarks around 50 lines of Matlab: short finite element

implementation. Numer Algorithms 20(2-3), 117–137 (1999)

3. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of

the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

4. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM:

M2AN 50(3), 879–904 (2016)

5. Bahriawati, C., Carstensen, C.: Three MATLAB implementations of the lowest-order Raviart-

Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5(4), 333–361 (2005).

(electronic)

6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles

of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element

method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

8. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-

order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750

(2016)

9. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability Analysis for the Virtual Element Method. arXiv

(2016)

10. Beirão da Veiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer.

Anal. 34(2), 759–781 (2014)

11. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESIAM:

M2AN 48(4), 1227–1240 (2014)

12. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual

element method. arXiv (2016)

13. Cangiani, A., Manzini, G., Russo, A., Sukumar, N.: Hourglass stabilization and the virtual element

method. Int. J. Numer. Meth. Engng. 102(3-4), 404–436 (2015)

14. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for

elliptic problems. IMA J. Numer. Anal. (2016)

15. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear

elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282, 132–

160 (2014)

16. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 3-4, 251–265 (2012)

http://creativecommons.org/licenses/by/4.0/

Numer Algor (2017) 75:1141–1159 1159

17. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated solution of differential equations by the finite

element method. Springer (2012)

18. Manzini, G., Russo, A., Sukumar, N.: New perspectives on polygonal and polyhedral finite element

methods. Math. Models Methods Appl. Sci. 24(8), 1665–1699 (2014)

19. Mousavi, S.E., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on

irregular convex polygons and polyhedrons. Comput. Mech. 47(5), 535–554 (2011)

20. Mousavi, S.E., Xiao, H., Sukumar, N.: Generalized Gaussian quadrature rules on arbitrary polygons.

Int. J. Numer. Meth. Engng. 82(1), 99–113 (2010)

21. Perugia, I., Pietra, P., Russo, A.: A Plane Wave Virtual Element Method for the Helmholtz Problem.

ESIAM: M2AN 50(3), 783–808 (2016)

22. Rjasanow, S., Weißer, S.: Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal.

50(5), 2357–2378 (2012)

23. Sigmund, O.A.: 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim.

21(2), 120–127 (2001)

24. Sommariva, A., Vianello, M.: Product Gauss cubature over polygons based on Green’s integration

formula. BIT Numer. Math. 47(2), 441–453 (2007)

25. Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element

method. Comput. Methods Appl. Mech. Engrg. 181(1-3), 43–69 (2000)

26. Sudhakar, Y., Moitinho de Almeida, J.P., Wall, W.A.: An accurate, robust, and easy-to-implement

method for integration over arbitrary polyhedra: application to embedded interface methods. J.

Comput. Phys 273, 393–415 (2014)

27. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Meth. Engng.

61(12), 2045–2066 (2004)

28. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh

generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

29. Taylor, R.: FEAP — a finite element analysis program. University of California at Berkeley (2013).

Version 8.4

30. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes.

Numer. Methods Partial Differential Equations 31(6), 2110–2134 (2015)

	The virtual element method in 50 lines of MATLAB
	Abstract
	Introduction
	Model problem
	The virtual element method
	Virtual element function spaces
	Discrete bilinear form

	Implementation
	The polygonal mesh
	Initialisation
	The Ritz projection and local stiffness matrix
	The local forcing vector
	Applying the boundary conditions

	Sample usage
	Conclusions and extensions
	Acknowledgments
	Open Access
	References

