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ABSTRACT: The virtual fields method has been developed for extracting constitutive parameters

from full-field measurements provided by optical non-contact techniques for instance. It is based on

the principle of virtual work written with some particular virtual fields. This paper can be regarded as

a general review summarising some 15 years of developments of this method. The main aspects of

the method are first recalled in the case of both linear and non-linear constitutive equations. They

are then illustrated by some recent relevant examples. Some studies underway as well as relevant

issues to be addressed in the near future are eventually discussed.
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1. Introduction

The practical identification of the parameters gov-

erning the constitutive equations of structural

materials is a key issue in experimental solid

mechanics. It usually relies on performing some

simple mechanical tests such as tensile or bending

tests. In these cases, a closed form solution for the

corresponding mechanical problem provides a direct

link between unknown parameters and measure-

ments which are usually local strain components and

applied loads. However, such a classical approach

suffers from two main drawbacks which can be

summarised as follows:

• The assumptions needed to link directly the

unknown parameters to the load and strains are

usually rather stringent (uniform pressure distri-

bution at the specimens’ ends for the uniaxial

tensile test, for instance). These requirements

are particularly difficult to meet for anisotropic

materials [1, 2], for instance. When heterogeneous

materials are tested (weld, functionally graded

material, etc.), it is even more critical;

• Only a small number of parameters can be deter-

mined with such mechanical tests, hence the need

to perform several tests when the constitu-

tive equations depend on more parameters than

isotropy (anisotropic elasticity, plasticity for

instance).

This statement has led several authors to consider

alternative approaches based on the processing of

heterogeneous strain fields. In this case, both limita-

tions can be overcome. Indeed, if the test is well

designed, the applied loading gives rise to a hetero-

geneous strain field which involves the whole set

of constitutive parameters. Their simultaneous iden-

tification is therefore possible provided that the

heterogeneous field is measured with some suitable

non-contact whole-field measurement technique and

that a robust identification strategy extracting the

parameters from this type of measured data is avail-

able. Full-field measurement techniques such as

digital image correlation, speckle and moiré inter-

ferometry or grid method have recently spread in the

experimental mechanics community, thus leading

their users to wonder about the use of such meas-

urements for identification purpose. The availability

of identification strategies enabling the extraction of

the constitutive parameters is in fact a key issue in

such approaches as there is generally no closed-form

solution allowing a direct link between measure-

ments and unknown parameters. Different approa-

ches have been proposed in the recent past among

which the so-called virtual fields method (VFM).

This paper summarises the 15-year developments of

the method. It will give the main features of this

approach and illustrate its relevancy through a

review of some recent examples of application. One
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of its objectives is also to raise interest from the

mechanics of materials community that is gradually

becoming more and more aware of the potential

of such approach to address difficult mechanical

characterisation issues.

An overview of the problem is proposed in the first

section. The general principles of the VFM are then

given and developed. Two cases are clearly distin-

guished: constitutive equations depending linearly on

the constitutive parameters and non-linear constitu-

tive equations. In the first case, some suitable strat-

egies have been proposed by the co-authors in the

recent past to determine the virtual fields (this deter-

mination is in fact a key point in the method). These

strategies are recalled and explained in the following

sections. A first attempt at a non-linear behaviour

(elasto-plasticity) is also presented together with var-

ious experimental implementations of the method.

2. Overview of the Problem

2.1. Statement of the problem

Let us consider the problem of identification of

parameters governing constituting equations. In

such a problem, the geometry of the specimen is

known. 3D volume displacement fields inside the

solid are measured with a suitable technique such as

tomography or the displacement field is provided

by a suitable optical non-contact technique on the

external surface only. Note that the strain field can be

deduced from the displacement field by numerical

differentiation. The applied loading is measured with

a load cell. The type of constitutive equations is

chosen a priori for its relevancy and the objective here

is to determine the parameters which govern the

constitutive equations. The main difficulty comes

from the fact that the measured displacement or

strain components are generally not directly related

to the unknown parameters. In other words, no

closed-form solution for the displacement, strain and

stress fields is available. The stress, strain and dis-

placement components are linked through the well-

known equations of continuum mechanics, namely

the equations of equilibrium, the strain/displace-

ment relations and the constitutive equations. These

equations are verified at any point of the specimen,

but they do not provide any local link between

measurements and unknown parameters. Such a

problem is often referred to as inverse in the literature

while the direct problem is the usual determination of

the strain/displacement/stress fields assuming that

the constitutive equations, the constitutive parame-

ters, the loading and the geometry are known.

2.2. Different tools to solve the problem

Various methods have been recently proposed in

the literature to solve this inverse problem, namely

the finite element model updating technique [3], the

constitutive equation gap method [4], the equilib-

rium gap method [5], the reciprocity gap method [6]

and the VFM [7]. The most popular one is certainly

the finite element model updating technique which

has been used for identifying parameters driving

linear [8] and mainly non-linear constitutive

equations [9–16]. It consists in constructing a finite

element model of the mechanical test, collecting

displacement or strain components at some nodes

and building up a cost function with the difference

between numerical and experimental displacements

at these nodes. Minimising this cost function with

respect to the unknown constitutive parameters

provides the solution of the problem. It must be

noted at this stage that this method is very general

and flexible. In particular, it does not specifically

require full-field measurements.

This approach exhibits however a number of

shortcomings. First, it is iterative and requires the

solution of a direct calculation for each evaluation of

the cost function. Also, the loading distribution must

be known to feed the finite element model whereas

only the resulting force is generally measured, thus

leading to some assumptions regarding this distri-

bution. If these assumptions are incorrect, a bias on

the identified parameter will exist. An alternative is

to use the measured displacements obtained by full-

field measurements at the boundary of the active area

as input boundary conditions in the finite element

model. However, some equation involving the forces

applied to the specimen is required in addition to be

able to identify the full set of stiffness components,

for instance. And also, the noise on the displacement

measurements will affect the updating routine and

may cause some additional bias.

The development of the VFM has been targeted at

avoiding these drawbacks by taking maximum adv-

antage of the availability of full-field measurements.

3. The VFM: General Principle

The VFM is based on the principle of virtual work

[17]. This principle can be written as follows for a

given solid of volume V

�
Z

V

r : e? dV þ
Z

Sf

�T:u? dSþ
Z

V

f:u? dV ¼
Z

V

qc:u? dV ;

(3.1)
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where r is the actual stress tensor, e? is the virtual

strain tensor, �T is the distribution vector of loading

tractions acting on the boundary, Sf is the part of

the solid boundary where the tractions are applied

(Figure 1), u? is the virtual displacement vector, f is

the distribution of volume forces acting on V, q is the

mass per unit volume and c the acceleration.

A virtual displacement field is actually a test func-

tion for which the previous equation is verified, and a

virtual strain tensor is a strain tensor derived from a

given virtual displacement. An important feature is

the fact that the above equation is verified for any

kinematically admissible virtual field (u?, e�). Kine-

matically admissible means that u? must be con-

tinuous across the whole volume and it must be

equal to the prescribed displacement on the bound-

ary Su where displacements are prescribed (Figure 1).

But this condition is the only one required for ful-

filling Equation (3.1). At this stage, the constitutive

equations are introduced. One can write in the gen-

eral case

r ¼ gðeÞ; (3.2)

where g is a given function of the actual strain com-

ponents. The constitutive parameters are also invol-

ved in g. Equation (3.1) can be written therefore in

this case:

�
Z

V

gðeÞ : e? dV þ
Z

Sf

�T:u? dS ¼
Z

V

qc:u? dV: (3.3)

It is a trivial matter to see that any new virtual field in

Equation (3.3) leads to a new equation involving the

constitutive parameters provided that the actual

strain field is heterogeneous. The VFM relies on this

important property. It is based on Equation (3.3)

written with a given set of virtual fields [7]. This set of

equations is used to extract the unknown constitu-

tive parameters.

The choice of the virtual fields is a key issue in the

method. Their number and their type depend in fact

on the nature of g in Equation (3.2). Two cases must

be distinguished:

• in the first case, such as linear elasticity, some

cases of damage or non-linear elasticity, the con-

stitutive equations depend linearly on the con-

stitutive parameters. It will be shown below that

in this case, writing Equation (3.3) with as many

virtual fields as unknowns leads to a linear system

which directly provides the parameters after

inversion, provided that the actual strain field is

heterogeneous and the virtual fields are inde-

pendent. Note that linear viscoelasticity is inclu-

ded in this case but the virtual fields must be

complex, as shown in Section 8. The choice of the

virtual fields follows in this first case a precise

strategy discussed in Section 4.

• in the second case, the constitutive equations are

not linear functions of the constitutive param-

eters. This case occurs in elasto-plasticity for

instance. The identification strategy relies in this

case on the minimisation of a residual constructed

with Equation (3.3), as illustrated in Section 9.

4. Case of Constitutive Equations
Depending Linearly on the Constitutive
Parameters: Choice of the Virtual Fields

4.1. Introduction

The case of constitutive equations linearly depending

on the constitutive parameters is important as the

latter may be directly retrieved in this case. The fol-

lowing subsections describe some possible choices for

the virtual fields in this case: virtual fields chosen by

hand, so-called special virtual fields and eventually

special virtual fields which minimise noise effects. Let

us choose the example of linear elasticity for this

purpose. In this case and using the usual contracted

rule for the indices, the constitutive equations can be

written

ri ¼ Qijej; ði; jÞ 2 ½1;2; . . .;6�: (4.1)

Introducing the above constitutive equations in

Equation (3.1) where the case of statics is considered

for the sake of simplicity (c ¼ 0 in Equation 3.3), the

principle of virtual work may be written as:Z
V

Qijeje
�
i dV ¼

Z
Sf

�T:u� dS: (4.2)

If the material is heterogeneous, it is possible to

parameterise the spatial dependance of the stiffness

components with respect to the space variables,

Su 

Sf 

T

Figure 1: Solid of any shape loaded on its boundary
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either in a discrete or continuous way (see for

instance Grédiac et al. [18], and Section 10). Here, for

the sake of simplicity, let us assume that all the Qij

values are constant across V. Therefore,

Qij

Z
V

eje
�
i dV ¼

Z
Sf

�T:u� dS: (4.3)

Any new virtual field provides a new linear equation

of the type of Equation (4.3), then writing this

equation with as many virtual fields as unknowns

eventually provides the following linear system

where the constitutive parameters are unknown

PQ ¼ R; (4.4)

where P is a square matrix, Q a vector whose com-

ponents are the Qijs and R is a vector whose com-

ponents are the virtual works of the applied forces

computed for the whole set of virtual fields. It can

be checked that the equations in system 4.4 are

independent provided that the actual strain field is

heterogeneous and the virtual strain fields inde-

pendent [18]. This approach was the only one

available until the special virtual fields presented

below. With such an approach, the question of the

optimal choice of the virtual fields remains open as

the number of virtual fields leading to a final system

of the type of system is a priori infinite, thus leading

to the search of some guidelines to help find opti-

mal ones, meaning that a relevant criterion has to

be chosen. In the present problem, an important

feature is the fact that data processed are collected

by a measurement device. They are therefore noisy

and they lead to a bias in the determination of the

parameters as the inversion of P for solving sys-

tem 4.4 may magnify this noise and may lead to

incorrectly identified parameters if P is ill-condi-

tioned [19].

The effect of noise is related to the condition

number of matrix P in Equation (4.4). It is the ratio

of the largest singular value of P to the smallest [19].

The effect of noise on the inversion of matrix P is

normally minimised if the condition number is

equal to 1. Such a property is obtained if matrix P in

Equation (4.4) is equal to identity (P ¼ I). This can

be achieved with a relevant choice of the virtual

fields which are called special virtual fields in this

case.

4.2. Empirically defined virtual fields

As a first attempt, the virtual fields can be selected

empirically, following some rules such as zeroing

some of the integrals in Equation (4.3), and there-

fore some components in matrix P involved in

system 4.4. This approach is however not com-

pletely satisfactory as the determination of the vir-

tual fields (which directly influence the stability of

the solution found in case of noisy data) is some-

what arbitrary (see Grédiac and Vautrin [20] for

instance). This has led the authors to find some

guidelines to propose a more systematic construc-

tion of these virtual fields, as shown in the follow-

ing section.

4.3. Special virtual fields

An orthotropic elastic law is considered herein for

the sake of simplicity. The constitutive equation

only depends on four parameters Q11, Q22, Q12 and

Q66. In this case, Equation (4.3) can be written as

follows:

Q11

Z
V

e1e
�
1 dV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼1 m3

þQ22

Z
V

e2e
�
2 dV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0 m3

þQ12

Z
V

ðe1e
�
2þ e2e

�
1ÞdV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 m3

þQ66

Z
V

e6e
�
6 dV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0 m3

¼
Z

Sf

�TðM;nÞ:u�ðMÞdS: (4.5)

Constructing virtual fields leading matrix P to be equal

to I means that they must be such that one of the

integrals in Equation (4.5) is equal to 1 whereas

the remaining ones are equal to zero, as shown below

the brackets under each term of Equation (4.5). For

instance, a first virtual field must be found so that the

coefficient of Q11 above is equal to one and the

remaining ones are equal to zero. Three other virtual

fields must be found so that the location of the ‘1’

moves from one integral to another. With these four

virtual fields, system 4.4 becomes

Q ¼ R (4.6)

as P ¼ I. The unknown parameters are directly found

if the special virtual fields are known. The question of

the practical construction of the special virtual fields

arises therefore at this stage. Two ways have been

investigated by the authors in the recent past. A first

idea is to expand the virtual displacement fields with

a set of functions such as monomials for instance. In

the case of an in-plane problem, one can write in this

case:

u�1 ¼
Pm
i¼0

Pn
j¼0

Aijx
iyj

u�2 ¼
Pp
i¼0

Pq
j¼0

Bijx
iyj:

8>>><
>>>: (4.7)
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Coefficients Aij and Bij of these monomials fully

define the special virtual fields. A second possibility is

to define the virtual fields in a piecewise form, using

an approach similar to the construction of the actual

displacement field in the finite element method. This

leads to ‘virtual elements’ defining the virtual fields

completely from the virtual degrees of freedom (dofs)

of the virtual nodes and appropriate shape functions.

One can write

u� ¼ FU�; (4.8)

where u� is a vector containing the virtual displace-

ments u�1 and u�2, F is a 2 · p matrix containing the

shape functions of the virtual element, U� is a vector

containing the virtual dofs which define the special

virtual fields in this case. Its size depends on the

nature of the shape functions and on the number of

virtual elements.

Either the polynomial coefficients or the virtual

nodal displacements are determined writing that the

virtual field is special:

• one integral in Equation (4.5) is equal to one and

the three remaining ones are equal to zero. This

leads to a set of four linear equations where the

coefficients or the virtual nodal displacements are

unknown;

• the virtual field is kinematically admissible,

meaning that the virtual displacements along Su

are zero. This provides an additional set of linear

equations the number of which depends on the

problem.

Some additional conditions can be added. For

instance, if measurements are not available on some

part of the specimen, a virtual field which is different

on both areas of the specimen (area where measure-

ments are available and area where they are not)

must be defined. The idea is to construct solid rigid

like virtual fields on the second area. The virtual

strain components are therefore zero in this case and

the internal virtual work is consequently zero too,

thus cancelling the contribution of this area in

Equation (4.5). Such a situation is described in

Grédiac et al. [21].

An important feature must be underlined at this

stage. The number of equations used for the deter-

mination of the special virtual fields is limited

whereas the number of unknowns is not as this latter

only depends on m, n, p and q in Equation (4.7) (or

on the number of virtual elements if piecewise virtual

fields are used). The number of equations may

therefore be less than the number of unknowns:

special virtual fields are in fact not unique and an

infinite number may be found. This extra freedom is

used in the following section to minimise noise effect

on identified values.

4.4. Optimised special virtual fields

Because of noisy data, the measured values of e1, e2

and e6 used for the identification are different

from the actual ones. Some noise is added to

them and the principle of virtual work is only

rigorously verified provided that the noise is sub-

tracted from the measured values. Hence the

expression given in Equation (4.6) would rather be

in reality:

ðI� EÞQ ¼ R; (4.9)

where E is the matrix giving the deviation from the

theoretical equation due to error sources in the

measurements. Therefore, the identified stiffness will

actually be:

Q ¼ Rþ EQ : (4.10)

It is assumed in the following that error sources are

random processes [22, 23]. Thus, the identification

error EQ is a random vector which can be analysed

using statistics. Accordingly, its variance matrix can

be written:

VðQÞ ¼ EðEQ tQ tEÞ; (4.11)

where E(X) denotes the mathematical expectation of

a random vector X and Xt denotes the transpose of

vector X. V(Q) is a matrix which contains along its

diagonal the variances of each identified parameter

Qij, i.e. indicators of uncertainty of the identification.

The off diagonal terms are covariance coefficients

which are useless here.

The optimisation of the virtual fields will aim at

minimising the diagonal components of V(Q). An

orthotropic elastic law is still considered herein for

the sake of simplicity. Minimising V(Q) is used as the

criterion for choosing the four special virtual fields

u�[1], u�[2], u�[3] and u�[4] necessary to identify the

respective four unknown parameters Q11, Q22, Q12

and Q66.

The random process which is used to model error

sources in the measurements is merely an <-valued

Gaussian white noise on <3. It is assumed that three

independent copies of this white noise add to each

component of the actual strain fields in the mea-

surements. In this case of error modelling, it was

shown that the u�[k] fields have to minimise the fol-

lowing functional to be optimal [23]:
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F u�½k�
� �

¼ 1

2
Q2

11 þQ2
22

� �Z
V

e1 u�½k�
� �h i2

dV

�

þ Q2
22 þQ2

12

� �Z
V

e2 u�½k�
� �h i2

dV

þQ2
66

Z
V

e6 u�½k�
� �h i2

dV þ 2 Q12 Q11 þQ22ð Þ½ �

�
Z

V

e1 u�½k�
� �

e2 u�½k�
� �h i

dV

�
: (4.12)

A virtual field which verifies the condition to be

special (this last property includes the kinematical

admissibility) and which minimises the F cost func-

tion is unique. It is the solution of a constrained

minimisation problem, where specialty is the con-

straint and F is the cost function.

The virtual fields are either polynomial functions,

or piecewise defined continuous functions. The vec-

tors composed either of the monomial coefficients or

of the virtual nodal displacements are determined

by solving the constrained minimisation problem,

which can be written finally after deriving its

Lagrangian [23]:

H At

A 0

	 

U�½1� U�½2� U�½3� U�½4�

K½1� K½2� K½3� K½4�

( )

¼
0 0 0 0

Z½1� Z½2� Z½3� Z½4�

� �
; (4.13)

where:

• U�[1], U�[2], U�[3] and U�[4] are the vectors con-

taining either the monomial coefficients or

the virtual nodal displacements of the four vir-

tual fields necessary to identify respectively Q11,

Q22, Q12 and Q66;

• A is a matrix containing the linear constraints

defined by the specialty of the virtual fields;

• H is a matrix such that

F u�½k�
� �

¼ 1

2
U�½k�tHU�½k�

• K[1], K[2], K[3] and K[4] are the Lagrange multi-

pliers;

• Z[1], Z[2], Z[3] and Z[4] are the vectors associated

with the constraints. All their components are

zero except one which is equal to 1 so as to pro-

vide special virtual fields;

• t is transposition.

Solving Equation (4.13) yields the four vectors

U�[1], U�[2], U�[3] and U�[4] from which are deduced

the four virtual fields u�[1], u�[2], u�[3] and u�[4]

necessary to identify respectively Q11, Q22, Q12 and

Q66. However, the problem becomes implicit because

Q11, Q22, Q12 and Q66 are unknown at the beginning

of the procedure and they are involved in the

expression of F(u�[k]). This problem is solved by an

iterative algorithm where the unknown parameters

are replaced by their identified values at each itera-

tion. Random values are input for the first iteration.

Tests show that this algorithm converges in practice

in less than four iterations whatever the choice of

initial values for the unknown parameters [23].

4.5. Optimised piecewise special virtual fields

The objective here is to show how optimised special

virtual fields based on the procedure described above

can be obtained using piecewise functions to expand

them. In this case, the virtual fields are defined

by subdomains. The volume of the specimen V

is divided into p subdomains such that V ¼
V1 [ V2 [ � � � Vp. The left hand side integrals in Equa-

tion (4.5) can be written in this case:

Z
V

e1e
�
1 dV ¼

Xp

i¼1

Z
Vi

e1e
?
1 dV

Z
V

e2e
�
2 dV ¼

Xp

i¼1

Z
Vi

e2e
?
2 dV

Z
V

ðe1e
�
2 þ e2e

�
1ÞdV ¼

Xp

i¼1

Z
Vi

e1e
?
2 þ e2e

?
1

� �
dV

Z
V

e6e
�
6 dV ¼

Xp

i¼1

Z
Vi

e6e
?
6 dV

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(4.14)

where Vi is the volume of each subdomain. The shape

of the subdomains is chosen in such a way that the

virtual displacements u� can be written as an ex-

pansion of shape functions Fi multiplied by the nodal

virtual displacements u?i as in the well-known finite

element method:

u� ¼
Xnnodes

i¼1

Fiu
?
i ¼ Fu?; (4.15)

where nnodes is the number of nodes per subdomain.

The virtual strain components in each subdomain

are determined by differentiating Equation (4.15).

By introducing virtual strains in Equations (4.5) and

(4.14), conditions between the virtual nodal displace-

ments to get special virtual fields are obtained. These

conditions lead to a linear system where Y ? is un-

known

AY? ¼ B: (4.16)

Vector Y ? is the vector of the degrees of freedom of all

the virtual nodes of the virtual subdomains. Matrices

A and B are obtained by assembling the subdomains

used to mesh surface S. It should be emphasised that
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the dimension of unknown vector Y� is kN · 1 where

N is the number of virtual nodes and k is the number

of degrees of freedom for each node. The number of

equations available is the sum of the s special virtual

fields conditions (four in the present approach for an

orthotropic material) and of b boundary conditions. If

s + b is smaller than the number of unknown degrees

of freedom N, matrix P becomes rectangular and one

has to add some other conditions to find the virtual

nodal displacements. These additional conditions

can be arbitrary or may arise from some additional

requirements, like the minimisation of the effect of

noise on the identified data [23] described above.

Piecewise virtual fields present several advantages

over a continuous expansion like polynomials.

Among them, the degree of the shape functions is

generally much lower than that of continuous poly-

nomials, thus reducing the effect of noise carried on

to the final results. The use of shape functions gives

more freedom to construct either one or many pie-

cewise virtual fields over the whole geometry of the

specimen. This is of particular importance for con-

figurations using complex shapes or containing dis-

continuities (holes, cracks, etc.). A third advantage is

that displacement virtual fields have to respect the

C0 continuity only and can therefore allow C1 dis-

continuities between subdomains without intro-

ducing any error in the nodal virtual displacement

calculations, and therefore in the identification of

the constitutive parameters.

5. Elastic Bending Stiffness of
Thin Anisotropic Plates

From an historical point of view, the problem of plate

bending is the first one to be addressed with the

method. In this case, equations defined above

slightly differ as the assumption of a constant

through-thickness strain distribution becomes irrele-

vant. The Love–Kirchhoff assumption describes the

strain distribution in this case [24]. The unknown

parameters are the bending stiffnesses which link

bending moments to curvatures

M1

M2

M6

2
4

3
5 ¼ D11 D12 D16

D12 D22 D26

D16 D26 D66

2
4

3
5 k1

k2

k6

2
4

3
5; (5.1)

where the Dijs are the bending stiffnesses, the Mis are

the generalised bending moments and the kis are the

curvatures defined by:

k1 ¼ �
@2u3

@x2
1

; k2 ¼ �
@2u3

@x2
2

; k6 ¼ �2
@2u3

@x1@x2
; (5.2)

where u3 is the out-of-plane displacement com-

ponent. After some developments which are not

recalled here (full details may be found in Grédiac

and Vautrin [20] or Grédiac et al. [25]), the principle

of virtual work may be written as follows:

D11

Z
S

k1k�1 dSþD22

Z
S

k2k�2 dSþD12

Z
S

k1k�2 þ k2k�1
� �

dS

þD66

Z
S

k6k�6 dSþD16

Z
S

k1k�6 þ k6k�1
� �

dS

þD26

Z
S

k2k�6 þ k6k�2
� �

dS ¼W�
e : (5.3)

In Grédiac and Vautrin [20, 26] for instance, virtual

deflection fields u�3 are defined empirically whereas

they are special in Grédiac et al. [27]. Actual curva-

ture fields can be obtained in practice by differen-

tiation of slope fields measured with a deflectometry

setup [28] or by double differentiation of the

deflection fields [29]. In Grédiac [25] and Grédiac

et al. [30], virtual fields are chosen empirically and

invariant parameters governing the anisotropic

bending law are extracted. In Grédiac and Paris [31]

and Grédiac et al. [32], the loading is no longer

static but dynamic. This requires the inertial term

(third term in Equation 3.1) to be taken into

account.

6. In-Plane Anisotropic Stiffnesses

6.1. Overview

Soon after the initial study on bent plates, the first

applications of the VFM to the in-plane anisotropic

stiffness components of composite plates were

launched. The very first attempt focused on a

standard double notched shear specimen taken from

an American Society for the Testing of Materials

(ASTM) standard, also called the Iosipescu specimen

[33]. The idea was to determine the in-plane shear

modulus by relating the average shear stress to the

average shear strain derived from full-field meas-

urements [34] and attempts were also made at using

displacements at the boundary of the gauge section

instead of the average shear strain over the surface,

which did not prove so successful from a practical

point of view. Soon after that, a T-shaped specimen

was specifically designed to try to balance the con-

tribution of the different stress components to opti-

mise identifiability. This was performed through

topological optimisation and a criterion on the

stress components [35]. The experimental imple-

mentation was reasonably successful but the quality

of the full-field measurements was not sufficient to
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provide very good results [36]. Several other con-

figurations were then examined, mainly using

simulated data, among which the three-point

bending test on thick specimens [37] which again

did not prove very successful from an experimental

point of view.

The two main configurations that have been more

extensively studied by the authors are now reported

in more detail. But first, a short description of the

full-field measurement technique used in most of the

cases presented in the following is given.

6.2. Full-field measurements with the
grid method

The displacement fields required for the model

identification are measured using an optical method

called the grid method [38–40]. A grid pattern is

deposited onto the surface of the specimen [41]. The

grid period is 100 lm. Images of the undeformed

and deformed gratings are digitised through a 1280 ·
1024 CCD camera connected to a PC. The objective

of the camera is set such that a period of the grid is

sampled by approximately 4 pixels.

6.2.1. Printing of the grid
The spatial carrier consists in the superposition of

horizontal and vertical black lines printed over a

white surface, with a natural spatial frequency f0 ¼ 10

lines per mm. This has been achieved by applying the

procedure detailed in Piro and Grédiac [41].

6.2.2. Characterisation of the
displacements by a phase modulation
At any state, the digitised light at a given pixel M0 is

the light reflected by a material point M determined

by its position (X, Y) in the reference Cartesian frame

(O, i, j). Its intensity can be written:

IðX;YÞ ¼ I0 1þ c frng ½2pXF:iþ 2pYF:j�f g; (6.1)

where:

• I0 is the local intensity bias,

• c is the contrast,

• frng is a 2p-periodic continuous function, which

is normally a sinusoid possibly with some higher

harmonics at relatively low amplitude,

• ‘.’ denotes the dot product,

• 2pF.R is called the phase of function frng,

• F is the spatial frequency vector. It is orthogonal

to the grid lines and its amplitude is the spatial

frequency of the grid. If the grid lines are vertical,

they are parallel to j, meaning that the spatial

frequency vector can be written as F ¼ (f0, 0). If

the grid lines are horizontal, they are parallel to i,

meaning that the spatial frequency vector can be

written as F ¼ (0, f0).

When a load is applied, there is a deformation of

the structure and the grid is also deformed. From the

undeformed to the deformed state, the phase of the

function ‘frng’ at pixel M0 varies as:

D/ ¼ �2pu1ðX;YÞF:i� 2pu2ðX;YÞF:j; (6.2)

where u(X, Y) is the displacement vector at (X, Y).

Accordingly, the first component u1(X, Y) of the

displacement is calculated from the phase of the

‘frng’ function for the vertical lines, the second

component u2(X, Y) for the horizontal lines. The

phase fields are computed by using the spatial phase

shifting method implemented in a Matlab routine

[38, 42].

6.2.3. Measurement of the displacement fields
The u1(X, Y) and u2(X, Y) displacement components

relative to the unloaded reference condition are cal-

culated from the respective phase differences D/1 (for

vertical lines) and D/2 (for horizontal lines) intro-

duced by the deformation:

u1ðX;YÞ ¼ �
p

2p
D/1ðX;YÞ; (6.3)

u2ðX;YÞ ¼ �
p

2p
D/2ðX;YÞ; (6.4Þ

where p ¼ 0.1 mm. The resolution of the method, i.e.

the smallest displacement which can be measured in

absolute value, depends on the measurement noise.

The noise is a random variable which adds to the

phase during the calculation [42]. Its mean is 0 and

its standard deviation is denoted r/.

Of the current experiments, r/ was at most 2p/100,

meaning that the resolution of the method for

measuring displacements was at worst 1 lm. This was

evaluated by taking two images of the undeformed

grid and calculating the standard deviation of the

detected phase. The spatial resolution, i.e. the

smallest distance which separates two indepen-

dent displacement values, equaled two periods ¼
0.2 mm ¼ 8 pixels.

6.2.4. Computation of strain fields
In practice, it is difficult to get strain fields with a

sharp spatial resolution because measured displace-

ment fields are noisy due to the incertitude of optical

set-ups.
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Noise can be processed using filtering. Several

approaches are available. One of the most famous

consists of applying a square convolution kernel over

the image for smoothing it. However, this technique

can fail with experimental data near the edges of the

specimen or around small area where data are miss-

ing or significantly altered. In these areas, local

defects in the measurements are widespread but not

eliminated. It is therefore rather improbable that the

principle of virtual work can be applied to such

derived strain fields. This is why strain fields obtained

with this filtering approach from experimental dis-

placement fields, and then processed with the VFM,

can yield aberrant values for stiffness parameters as

was the case in [43] for instance.

An alternative approach consists of fitting the data

with 2D polynomial functions by least square mini-

misation [44]. It is possible to compute the poly-

nomial function by minimising the deviation from

measured displacements only at locations where

there are no defects using a weighted least square

approach. Finally, missing data are interpolated with

the computed polynomial functions. Such an algo-

rithm was implemented in Matlab for fitting the

measured displacement fields.

6.3. Thick composite rings

This application concerns the measurement of the

through-thickness stiffness components of thick

composite rings cut from thick tubes obtained from

filament winding. This type of structure is used for

underwater applications (casing for electronic meas-

urement devices, for instance). The tubes undergo

very high external pressure loads and must therefore

be thick enough to withstand these loads. In this case

however, through-thickness stiffness components are

required to calculate the response of the tube and

because of the cylindrical symmetry of the tube,

standard tests based on rectangular coupons are

extremely difficult to perform.

The alternative is to use a simple diametral com-

pression test, measure full-field strains and use the

VFM. A first theoretical and numerical study was

released a few years ago [45] and the experimen-

tal implementation has just been completed very

recently. The mechanical set-up is shown in Figure 2.

Two back-to-back cameras have been used in order to

take into account both the out-of-plane movements

that create parasitic hydrostatic strains because of

the change in magnification caused by the lens and

the possible non-uniform strain distribution due

to the fixture misalignment. This has proved abso-

lutely necessary, as was demonstrated in [46]. All

displacement maps have therefore been obtained by

averaging the back-to-back data.

The displacement field was measured over a spe-

cific area of the ring with the grid method (see

Figure 2). If the whole ring had been considered,

a lot of pixels of the camera would have been lost

because of the cylindrical geometry, hence the

arrangement shown in Figure 2. However, the

position of the instrumented area has been selected

in order to optimise the identifiability of the dif-

ferent stiffness components [46]. The displacement

maps have been fitted by a 4th order polynomial

and the strains derived from the expression of

the polynomials. Typical strain maps are given in

Figure 3.

The same hoop-wound glass-epoxy ring has been

tested nine times and between two consecutive tests,

the ring has been taken out of the rig and put back

again. The strain fields have been processed using

piecewise optimised virtual fields. The results are

reported in Table 1.

The results are very satisfactory when compared

with reference data. In particular, the coefficients of

variation exhibit the same trend as the coefficients

of sensitivity to noise that are output from the VFM

with noise optimisation. They can be considered as

a confidence index for the different components

identified. It must also be pointed out that the ref-

erence values are only generic data for a unidirec-

tional glass-epoxy composite as no reference test can

be undertaken for this configuration. The rather

high shear modulus is rather surprising but might be

cause by very high fibre volume fraction. In any

case, the procedure has proved very powerful to

obtain stiffness data otherwise extremely difficult to

measure.

Figure 2: Thick composite ring in compression with the two

cameras set
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6.4. Shear-bending test on rectangular coupons

Another configuration extensively studied by the

authors is the bending-shear loading of a rectangu-

lar coupon. This test is derived from the Iosipescu

fixture (ASTM standard with a double V-notched

specimen [33]) that is used to measure the shear

modulus of orthotropic composites. Following

an initial study mentioned previously [34], it was

devised that by removing the notches on the

specimen, a heterogeneous stress/strain field can be

obtained that may enable the simultaneous identi-

fication of the four in-plane stiffness component. A

first feasibility study based on simulated data and

using empirical virtual fields confirmed this opinion

[47].

This test consists of loading a straight rectangular

beam using the Iosipescu fixture (Figure 4). The

V-notches in the classical geometry of the Iosipescu

specimen [33] were removed and the length between

the supports was increased [21, 43, 48]. Optimised

piecewise virtual field were used here. The virtual

mesh defined over the specimen is divided into three

areas: S1, S2 and S3 (Figure 4).

The virtual displacement field was imposed as rigid

body like over S1 and S3. Regarding S2, the area of

interest, it is meshed with 3 · 7 rectangles. Thus, it is

composed of 32 virtual nodes.

The four nodes located on the left side of S2 are

constrained to have a zero displacement value so as

to ensure continuity with S1. The horizontal dis-

placement of the nodes located on the right hand

side of S2 was also fixed to zero and the vertical

displacements were constrained to be constant over

the whole height of this edge, ensuring continuity

between S2 and S3. An example of obtained virtual

fields is given in Figure 5.

Figure 3: Experimental strain fields (F ¼ 20 kN)

Table 1: Identified rigidities of the hoop-wound glass-epoxy

ring using the improved set-up with two cameras

Test no.

QRR

(GPa)

QQQ

(GPa)

QRQ

(GPa)

QSS

(GPa)

1 13.1 48.3 3.08 6.77

2 12.6 45.4 2.04 6.93

3 15.7 46.0 2.26 6.88

4 13.3 44.6 1.92 6.36

5 9.46 49.4 3.8 6.96

6 10.9 47.2 3.86 6.41

7 10.1 45.9 2.44 7.1

8 8.44 39.6 2.2 6.54

9 8.95 41.9 2.03 7.12

Average 11.4 45.4 2.62 6.78

Coefficient of variation 29% 10% 29% 4%

Engineering constants ERR EQQ mQR GRQ

11.3 GPa 44.8 GPa 0.23 6.78 GPa
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The displacement maps have been fitted by 7th

order polynomials which were then used to compute

the strain maps. Typical strain maps have been

plotted in Figure 6. The identification results are

reported in Table 2. They have been obtained using

four unidirectional glass-epoxy specimens with loads

up to a given value (here, 700 N) so that the shear

response remains linear [43, 48].

The results are very satisfactory, considering that

the panel used for the reference test was not the same

as that for the VFM tests. It has been checked that the

coefficients of variation are consistent with the noise

amplification factors from the VFM, thus giving a

confidence index for the different values identi-

fied. This application is certainly ripe for industrial

transfer.

7. Extension to Non-Linear Shear
Behaviour of Composites

It is well known that unidirectional polymer matrix

composites exhibit a significant non-linear behaviour

in shear. The objective here is to extend the approach

presented in the previous section to take into account

this material non-linearity in shear. First attempts

at this problem using empirical virtual fields [50]

and then, polynomial special fields [51] have been

released using simulated data. The experimental

application is more recent [43, 48]. There, the non-

linear response in shear has been modelled using the

model developed in [51] that writes the shear stress–

strain relationship as:

r6 ¼ Q0
66e6 � Ke6he6 � e0

6i
þ; (7.1)

where K and e0
6 are the parameters driving the model;

e0
6 is the threshold from which the non-linearity ini-

tiates; ÆXæ+ means X when X ‡ 0, 0 otherwise.

Considering that the three other elastic stiffness

components are already known from the approach of

Figure 4: Bending/shear test based on the Iosipescu fixture

Figure 5: Optimised piecewise virtual fields used for the

identification of stiffness parameters

Figure 6: Strain fields computed from measured displacement

fields (load: 700 N)

Table 2: Identified parameters with the Iosipescu fixture

Q11 Q22 Q12 Q66

Standard tests

Average (GPa) 44.9 12.2 3.86 3.68

Coefficient of variation (%) 0.7 2.8 2.4 8.6

Virtual fields method

Average (GPa) 39.7 10.4 3.03 3.65

Coefficient of variation (%) 6.6 23.2 13.1 2.41
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Section 6.4, only a pure shear virtual field is consid-

ered (see the fourth one in Figure 5) to process the

data and retrieve the parameters driving the shear

model.

Feeding Equation (4.5) with the non-linear model

and the pure shear virtual field, only Q0
66, e0

6 and K are

involved in the principle of virtual work. Accordingly,

K and e0
6 should satisfy the following equality [43]:

CðK; e0
6Þ ¼ Q0

66

Z
S2

e6 dS� K

Z
S2

e6he6 � e0
6i
þ dSþ PL

e
¼ 0:

(7.2)

However, this equation does not yield a linear

system of equations here. Moreover, Equation (7.2) is

not fulfilled in practice because the model considered

here is only an approximation of the actual non-

linear behaviour. Therefore, the identification of e0
6

and K is achieved by minimising the sum of the

CðK; e0
6Þ

� �2
computed for all the load steps, using the

least square method.

Four specimens were loaded up to 2000 N using the

set-up described in Section 6.4. Displacement fields

were measured every 25 N and strain fields were

derived using polynomial fitting (Figure 6). Stiffness

parameters were identified for a load of 700 N (see

Section 6.4) and the non-linear parameters were

identified using all the strain maps. Identified values

of the non-linear model are reported in Table 3.

These results are very satisfactory and confirm the

feasibility of the VFM to identify non-linear models.

However, the authors are fully aware that this is only

a first approach and that more work is needed to

address more complex models taking into account

the unloading, the dissipation, the permanent

strains, etc. This remains very much an open problem

for future research.

8. Application to Damping Measurement
of Thin Plates

As mentioned in Section 5, a first successful applica-

tion of the VFM in dynamics concerned the identi-

fication of anisotropic stiffness components of thin

composite plates [31, 32]. This work was recently

extended to the measurement of material damping

from vibration of thin plates.

8.1. Theoretical summary

Let us consider a rectangular thin plate. Its thickness

is h (Figure 7). The plate is clamped at point O as seen

in Figure 7, which is the origin of the coordinate

system. Let us now suppose that this point is trans-

lated along the z-axis sinusoidally with time (inertial

excitation). This arrangement is an extension of the

experimental study of vibrating plates reported in

Giraudeau et al. [52].

The actual strain and stress field across the plate

are considered harmonic at the same frequency as

the excitation movement (linearity assumption). The

VFM is applied using complex virtual fields (i.e. har-

monic virtual fields, at the same frequency as the

excitation movement). Using a very simple damping

model, it may be assumed that the generalised

bending moment can be decomposed into an elastic

bending moment Me and a dissipative bending

moment Md, with

fMeg ¼
Me

1

Me
2

Me
6

2
4

3
5 ¼ D11 D12 0

D12 D11 0
0 0 ðD11 �D12Þ=2

2
4

3
5 � k1

k2

k6

2
4

3
5;

(8.1)

which is the same as Equation (5.1) but for an iso-

tropic material and

fMdg ¼
Md

1

Md
2

Md
6

2
4

3
5¼ jx �

B11 B12 0
B12 B11 0
0 0 ðB11�B12Þ=2

2
4

3
5 � k1

k2

k6

2
4

3
5

(8.2)

with D the stiffness matrix, B the damping matrix, j

defined by j2 ¼ )1, x the excitation pulsation and ki

the components of the curvature field. Feeding this

Table 3: Identified parameters with the Iosipescu fixture

Q0
66 K e0

6

Standard tests

Average 3.68 GPa 86.6 GPa 0.006

Coefficient of variation (%) 8.6 12.8 33

Virtual fields method

Average 3.65 GPa 87.7 GPa 0.004

Coefficient of variation (%) 2.41 8.43 14.2

Figure 7: Rectangular plate under study
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into the principle of virtual work in dynamics (neg-

lecting the volume forces), a final system is obtained

that can be written as:

D11Gr;r þD12Hr;r � B11xGi;r � B12xHi;r

¼ �qhx2

Z
S

ðd þwrÞw�r dS; (8.3)

D11Gi;i þD12Hi;i þ B11xGr;i þ B12xHr;i

¼ �qhx2

Z
S

wiw
�
i dS; (8.4)

where the G and H functions can be written as:

Gp;q ¼ �
Z

S

k1k�1 þ k2k�2 þ
1

2
k6k�6


 �
dS

Hp;q ¼ �
Z

S

k1k�2 þ k2k�1 �
1

2
k6k�6


 �
dS

; (8.5)

where p and q indicate that the Gp,q and Hp,q quan-

tities are calculated using:

• the real or imaginary parts of the actual curva-

tures according to p is r or i;

• the real or imaginary parts of the virtual curva-

tures according to q is r or i.

This approach has been validated using finite ele-

ment simulated data [53, 54]. A very interesting

feature of the method is that it is not sensitive to

damping coming from the clamping area. Also, res-

onance is not compulsory as the whole approach has

been developed with a real representation rather than

a frequency representation. So not only does it pro-

vide material damping (and not modal damping)

but it is possible to sweep frequencies regardless of

resonance, which confers to this approach a great

potential for exploring the frequency dependance of

the damping behaviour.

8.2. Experimental implementation

The experimental set-up is shown in Figure 8. The

excitation is applied by an electrodynamic shaker

connected to a metal rod itself connected to a jig

that has the objective of guiding the movement and

introducing some stiffness. The plate is bolted at

the end of the connection rod so that a sinusoidal

out-of-plane movement is applied to the plate. At

the other end stands a wood panel on which a

cross-line grating has been deposited (2 mm pitch).

The tested plate must have a very smooth and

reflective surface so that an image of the reflection

of the grid can be formed. This image is captured by

a CCD camera looking at the plate through a hole

in the wood panel. When the plate deforms, the

local image of the grid is shifted according to the

slope at the considered point. Therefore, this tech-

nique, often called deflectometry, can give direct

access to slope fields in the two directions of the

grid [28, 55]. An accelerometer placed at the end of

the rod gives the magnitude of the driving move-

ment. In order to capture images at given times,

a flash light is synchronised with the excitation

and triggered to form the images. Therefore, both

in-phase and out-of-phase slope maps can be

captured.

Typical slope maps are given in Figure 9, together

with the deflection field obtained by numerical

integration, for a polycarbonate plate tested at 80 Hz

[56]. Numerical differentiation is also performed to

obtain the curvature fields.

Everything is then fed into Equations (8.3) and

(8.4) using uniform curvature virtual fields [56]. First

results for both Young’s modulus, Poisson’s ratio and

damping factors are reported in Table 4. The damp-

ing factors are defined as:

b11 ¼
B11

D11
b12 ¼

B12

D12
: (8.6)

The reference values for E has been obtained by

cantilever beam vibration, as well as the damping

parameter b11, using logarithmic decrement of the

vibration amplitude. A single beam has been tested

four times, and for each test, the beam was taken

out of the clamp and clamped again. For the plate,

the same methodology was applied (same plate, four

independent tests).

These first results are rather satisfactory but a lot of

work is still needed to take advantage of the full

potential of the very novel technique, in particular

for anisotropic plates.

Figure 8: Experimental set-up for inertial excitation and

deflectometry
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9. Application to Elasto-Plastic Behaviour

9.1. Introduction

The identification of elasto-plastic constitutive

equations is usually performed using statically

determined tests such as tension or bending on a

rectangular bar, torsion on a thin tube, etc. asso-

ciated with local strain measurements (extenso-

meters, dial gauges or LVDT transducers, strain

gauges, etc.). The development of optical full-field

strain measurements has opened the way for novel

methodologies based on statically undetermined

tests. Most of the time, the identification strategies

rely on finite element model updating as explained

in Section 2.2.

The VFM can be used as an alternative strategy to

extract the parameters of an elasto-plastic constitu-

tive equation on a complex test geometry when full-

field strain data are available. Its main advantage is

that it does not require the use of finite element

calculations and therefore, avoids the problem of

boundary condition and specimen geometry model-

ling. In the following sections, the main features of

the VFM applied to elasto-plasticity are recalled [57].

Furthermore an experimental validation on a simple

application is presented [58].

9.2. Theory

With elasto-plastic constitutive equations, it is not

possible to derive linear equations involving the

unknown parameters as in Equation (4.3). If X denotes

the vector of unknown plastic constitutive parame-

ters, the relationship between strains and stresses is a

non-linear function which can be written as:

rðX; tÞ ¼ Q eðtÞ � epðX; tÞ½ �; (9.1)

where ep is the plastic strain tensor, depending on

time and involving the constitutive parameters. e(t) is

the measured total strain tensor at time t and Q is the

stiffness matrix. It is assumed that the stiffness matrix

is constant all along the test. For identifying X with

the VFM, an iterative procedure is required because

the stress tensor only depends implicitly on the

unknown constitutive parameters through the evo-

lution of plastic strains. The full test is divided in m

load steps denoted ti (i ¼ 1,…,m) when strain fields

are measured. A cost function to minimise is defined

as follows:

• at each load step ti, the field of plastic strain

ep(X, ti) is computed iteratively within the frame-

work of elasto-plasticity, using the plastic strains

computed at the previous steps and the measured

total strain fields [57, 59].

• the deviation from the principle of virtual work is

written in static form at each load step ti using a

set of virtual fields denoted u�j and involving the

measured strains and the unknown parameters X

through the previously computed plastic strains

cklðXÞ ¼ �Qij

Z
V

½eiðtkÞ � ep
i ðX; tkÞ�e�lj dV þ

Z
Sf

TðtkÞ:u�l dS

(9.2)

Figure 9: Experimental in-phase and p/2 lag slope and deflection fields in polycarbonate at 80 Hz

Table 4: Identified parameters from test at 80 Hz,

polycarbonate plate

E (GPa) m b (s)

Reference 4.90 – 1.08 · 10)4

Coefficient of variation (%) 2.3 – 3

Virtual fields method 4.71 0.30 1.08 · 10)4

Coefficient of variation (%) 0.1 0.2 1.9
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• the squares of deviations ckl(X) in Equation (9.2)

are summed for all the virtual fields u
�l and for all

the load steps tk, yielding a cost function invol-

ving implicitly the unknown parameters

CðXÞ ¼
Xm
k¼1

Xn

l¼1

cklðXÞ½ �2

¼
Xm
k¼1

Xn

l¼1

	
� Qij

Z
V

eiðtkÞ � ep
i ðX; tkÞ

� �
: e�lj dV

þ
Z

Sf

�TðtkÞ:u�l dS


2

: (9.3)

The virtual strain fields are chosen a priori.

Unknown parameters X are identified by mini-

mising C(X). The computation is longer than when

the VFM is applied to linear elastic constitutive

equations because iterative algorithms are necessary

to minimise C(X) due to the implicit dependence

on X.

9.3. Experimental validation

9.3.1. Experimental details
A tensile test is performed on a plane dog bone-

shaped specimen (Figure 10). This statically un-

determined test remains quite simple because in first

approximation, the longitudinal stress only varies as

a function of the longitudinal axis of the specimen

(non-uniform stress state) and the other stress com-

ponents remain small.

The material was 99.5% pure iron. The stress–strain

curves characterised with standard tensile tests were

fitted by the Voce’s non-linear hardening model [61].

It can be written

rVM ¼ r0 þ R0pþ Rinf ½1� expð�bpÞ�; (9.4)

where p is the cumulative plastic strain, rVM is

the Von Mises stress, r0 the initial yield stress, R0 the

linear asymptotic hardening modulus, Rinf and b the

parameters that describe the non-linear curve part at

the knee point (Figure 11). Reference values for those

parameters are given in Table 5 with a confidence

interval.

The full-field measurement technique used in

this application is the grid method (read description

in Section 6.2). However, because of the use of an

imaging lens, the measurements of the in-plane dis-

placements are sensitive to out-of-plane movements

of the specimen, which are non-negligible for this

test because of the testing device itself. Indeed, out-

of-plane movements up to 0.15 mm give rise to

parasitic strains up to 1 · 10)3, which is not com-

patible with the requirements of the experiments

(strain elastic limit of about 1 · 10)3 for this mate-

rial). Therefore, a particular set-up is used to get rid of

this problem. It consists in measuring the displace-

ments on both sides of the specimen using two

cameras. The cameras are positioned symmetrically

with respect to the specimen plane (Figure 10). Thus,

the effects of the out-of-plane movements cancel out

when averaging the phase maps from both cameras.

134 

44
.9

 

x1

L 

x2

230 

R
150

Figure 10: Specimen with mechanical and optical set-up for the application of the virtual fields method to the identification of

plastic constitutive parameters

Figure 11: Comparison of rosette results with the Voce’s

model identified from full-field data
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This procedure has also the advantage of accounting

for possible parasitic bending strains caused by mis-

alignment of the grips, in the same spirit as the

procedure with back-to-back strain gauges used for

the reference tests.

Here also, the measured displacement fields are

fitted using 2D polynomials (Section 6.2). Poly-

nomials of degree 4 are sufficient here because using

further degrees do not increase the fitting accuracy.

The strain field are deduced from the partial deriva-

tive of polynomials.

9.3.2. Identification procedure
In this application, the stress field is assumed to be

plane and uniaxial. Accordingly

r1 ¼ 0
r2 ¼ E½e2 � pðX; tlÞ�
r6 ¼ 0;

8<
: (9.5)

where p(X, tl) is the cumulative plastic strain, com-

puted at each load step tl within the framework

of elasto-plasticity. It involves implicitly the con-

stitutive parameters through an iterative algorithm

[58, 59].

The virtual fields chosen here are uniform long-

itudinal strain fields defined over a small length of

the specimen and rigid body like over the remaining

length of the area of interest (black area in Figure 10).

For any of them, they can be written between abscissa

x2(l) and x2(l + 1)

e�1 ¼ 0
e�2 ¼ 1
e�6 ¼ 0:

8<
: (9.6)

The area of interest of the specimen is shared over n

elements of equal length L/n and of area Sl, yielding n

independent virtual fields. Finally, the cost function

becomes

Cðr0;R0;Rinf ;bÞ¼
Xm
k¼1

Xn

l¼1

ðPL=enÞ�E
R

Sl
½e2�pðtk;XÞ�dS

ðP=ewÞSl

" #2

:

(9.7)

The denominator (P/ew)Si is introduced in order to

provide dimensionless quantities; w is the width of

the cross-section located at the middle of the region

of interest and e is the thickness of the specimen.

9.3.3. Results
A total of 10 strain maps have been recorded (load

levels: 2.6, 4.3, 6.5, 7.8, 8.2, 8.7, 8.9, 9.2, 9.5, 9.7 kN).

The first two are purely elastic. Only the eight others

are processed (thus, m ¼ 8 in Equation 9.7).

A minimisation is performed to find the minimum

of the cost function C(r0, R0, Rinf, b). [100 MPa,

1 GPa, 40 MPa, 1000] are input as initial values in a

Nelder Mead algorithm available in the Matlab soft-

ware within the fminsearch command. This iterative

algorithm converges after 224 iterations using the

default convergence criterion of Matlab. Results are

reported in Table 5 and Figure 11.

It can be noticed that the curve of the identified

model plotted in Figure 11 is in good agreement with

rosette data. However, this procedure obviously

needs to be applied to a more complex test geometry.

Experimental tests are currently on-going to validate

the approach for fully multidirectional stress states.

10. Work Underway

The methodology presented in this paper is very

general and has a great potential for a number of

applications. This section aims at giving a few per-

spectives related to projects underway in the research

groups of the authors.

10.1. Heterogeneous materials

There are a number of situations where at the scale

of the test, the material cannot be considered as

homogeneous. In this case, the mechanical parameters

will be dependent on the space variables and generally,

the standard test methods are at a loss to address this

type of problem. The variations of mechanical prop-

erties can be either the result of the manufacturing of

the material (functionally graded materials, welds,

etc.) or the result of some damaging phenomenon

(impact, fatigue, ageing, etc.). In all cases, the assump-

tion leading to Equation (4.3) does not hold anymore.

Two applications related to this topic are presently

underway.

10.1.1. Application to wood
Because of the living nature of wood, the macro-

scopic mechanical properties vary very significantly

Table 5: Comparison of the identified Voce’s model

parameters with reference values and cost function sensitivities

Parameter

Reference value

(mean ± 2r)

Identified value with the

virtual fields method

r0 127 ± 15 MPa 117.5 MPa

R0 2.46 ± 0.49 GPa 2.34 GPa

Rinf 56.2 ± 13.8 MPa 66 MPa

b 3.37 ± 0.72 · 103 5.24 · 103
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from the centre to the edge and from the top to the

bottom of the log [61]. As a result, small tests speci-

men taken at different locations in the log will give

different stiffness values. If this type of procedure is

used to assess this variability, as in Machado and Cruz

[61], a huge number of specimens is required. More-

over, it is well known in wood mechanics that testing

the properties in the plane transverse to the axis of

the log (the RT plane, as it is often referred to) is

extremely difficult because of the cylindrical sym-

metry of the log.

One possibility to address this problem would be to

perform tests on large panels for which the variation

of stiffness could be parameterised. For instance, let

us imagine that the longitudinal modulus can be

written as a quadratic function of the distance to the

log central axis r

Qll ¼ Q0
ll þ
ðQR

ll � Q0
llÞ

R2
r2; (10.1)

where Q0
ll is the stiffness at the centre, QR

ll is the

stiffness at the edge and R is the log radius. This can

now be input in Equation (4.3) and the unknown

parameters Q0
ll and QR

ll can be taken out of the inte-

grals and identified. Obviously, many other types of

parameterisation can be adopted depending on their

relevance for the specific problem.

Another application concerned the validation of

the procedure described in Section 6.4 to wood

specimens in the LR plane. The main problem here is

that at that scale, the test specimen consists of only a

few growth rings and the stiffness of early and late

wood is very different [62]. Therefore, the average

moduli thus identified might vary depending on the

constitution of the test specimen (number of growth

rings, percentage of early wood). This has been

explored in detail to validate the approach [63].

Finally, the last step would be to identify directly

the stiffness components at the scale of the consti-

tuents, i.e. the growth rings, probably using also

a continuous approach, as suggest the results in

Jernkvist and Thuvander [62]. A full-field strain

measurement technique using micro-grids is pres-

ently being developed to address this issue [64].

10.1.2. Application to impacted
composite plates
Another source of heterogeneity of mechanical

properties is the damage caused by some accidental

loading such as impact. This problem is very

important for thin composite panels used in the

aerospace industry. A great number of studies have

been dedicated in the past to the detection of the

location of the damage using different types of

techniques: infrared thermography, ultrasonic ins-

pection, shearography, lamb waves, etc. However,

these approaches can only give an indication of the

location and size of damage but cannot give precise

information as to the local loss of mechanical per-

formance which is what the design office would

really be interested in in order to design for damage.

A recent study has been launched by the authors to

try to address this issue. Thin laminated composite

panels are considered here. The idea is to test the

plates in bending and to measure the slope fields

using a deflectometry setup such as that mentioned

in Section 5 [28]. As the location of the damage is not

known a priori, a discrete parameterisation of the

stiffness components seems difficult as it will lead to

a great number of unknowns to be identified. An

alternative is to use a discrete approach by writing the

bending stiffness matrix D as:

D ¼ D0 1þ
Xn

i;j¼1

aijx
iyj

0
@

1
A; (10.2)

where D0 is the stiffness of the undamaged plate and

the aij are the coefficients driving the stiffness

reduction. The procedure now consists in identifying

these aij coefficients, assuming that D0 is known. It

must be emphasised that this is a very first attempt

and that a rather simple parameterisation is selected.

As the project proceeds, this approach will be com-

pleted with a discrete parameterisation which is

much easier to setup once the location of the damage

is determined, even only approximately.

This idea has been tested with slope data obtained

from finite element simulations. The test used here

consists of rectangular panel supported at three cor-

ners and loaded in the middle. A carbon-epoxy cross-

ply laminated panel has been considered and in a

square area of this panel, a bending stiffness reduc-

tion 30% has been introduced by dramatically

reducing the stiffness of a certain number of plies,

simulating an impact damage. Then, the VFM has

been applied to identify the stiffness reduction

function
Pn

i;j¼1 aijx
iyj, with n ¼ 5 in this case. A map

of this function is shown in Figure 12, together with

the reference binary distribution that was input in

the FE model (on the left). It is clear that the identi-

fication is successful both in locating the damage

and in evaluating the stiffness reduction coefficient.

More information can be found in Kim et al. [65].

Experimental validation of this procedure is pres-

ently underway with both artificial damage (insertion

of PTFE films to simulate delamination) and real

impact damage.
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M. Grédiac et al. : The Virtual Fields Method : a Review



10.2. Optimisation of test configurations

Another very important issue in this field is the

design of appropriate test configurations. Indeed,

most of the existing tests have been designed with a

view to obtain uniform and simple stress and strain

fields. When the VFM is used, the tests must on the

contrary exhibit non-uniform distributions and, if

possible, balanced stress contributions. The restric-

tions on shape and loading arrangements are greatly

reduced and a very large design space can be

explored. Only very few attempts have be made in

the literature to optimise the design configuration of

tests based on full-field interpretation. For instance,

Le Magorou et al. [8] optimised the locations of

support points and loading points to balance the

contribution of the different stiffness components

on the response of their panel tested in bending. As

the inverse identification method they use is finite

element model updating, the cost function used for

the optimisation involves finite element calculated

sensitivities. Recent work by some of the authors

shows that it is possible to perform a similar proce-

dure but adapted to the VFM [66].

Another attempt has also been made at optimising

the unnotched Iosipescu specimen presented in Sec-

tion 6.4. The idea here was to use the active gauge

length L and the fibre orientation h as design varia-

bles in order to minimise the following cost function

/ðL; hÞ ¼
ðnx � nyÞ2 þ ðnx � nsÞ2 þ ðny � nsÞ2

3ðn2
x þ n2

y þ n2
s Þ

(10.3)

with

na ¼
ga

Qaa
; a ¼ x; y; s; (10.4)

where gx, gy and gs are the coefficients of sensitivity to

noise related to respectively Q11, Q22 and Q66 [68].

Therefore, the cost function will be minimal when

these three stiffness components will be identified

with the same confidence. Dividing by the sum of the

coefficients is a normalisation procedure to keep the

cost function independent of the actual strain values

(i.e. independent of the force applied). This proce-

dure has been implemented by connecting a finite

element package (here, Ansys) to the virtual fields

routine written in Matlab. A parametric finite ele-

ment model is written in the form of an input ASCII

file, fed into the FE package and the strain results are

then processed by the VFM routine. The g parameters

are then calculated and the cost function evaluated.

The FE input ASCII file is then updated with new

values of the design variables (length and angle) and

the routine run again. The optimisation routine has

been run automatically from Matlab using a Nelder

Mead minimisation algorithm implemented in Mat-

lab (fminsearch function). The procedure has been

launched with different initial values of the design

variables and several solutions have been found. One

of these solutions is L ¼ 40 mm and h ¼ )25�. This

configuration has been tested and compared with the

usual L ¼30 mm and h ¼ 0� on the same glass-epoxy

material as that of Section 6.4. The measurements

have been performed at Airbus UK in Filton using

speckle interferometry and the same Iosipescu con-

figuration as that of Section 6.4. The data processing

is the same as that presented in Chalal et al. [43],

except that the displacement fields are fitted by 7th

order polynomials in order to derive the strains [48].

Figure 12: Reference and identified stiffness reduction coefficient on a carbon-epoxy cross-ply panel

Table 6: Identified stiffness components for both Iosipescu

configurations (usual 0� and optimised )25�)

GPa

30 mm, 0� 40 mm, )25�

Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66

Test 1 43.8 4.00 2.72 3.47 48.3 9.41 2.98 3.94

Test 2 45.7 5.88 3.36 3.57 46.7 9.26 2.35 4.04

Test 3 48.1 6.73 3.33 3.40 44.2 9.15 1.93 4.38

Test 4 47.4 6.60 3.26 3.53 45.9 8.92 2.54 3.82

Test 5 48.8 6.89 3.69 3.48 48.4 8.26 2.27 3.61

Test 6 47.4 9.25 2.85 3.84

Reference 44.9 12.2 3.86 3.68 44.9 12.2 3.86 3.68

Mean 46.8 6.02 3.27 3.49 46.8 9.04 2.49 3.94

Coefficient of

variation (%)

4.3 19.9 10.7 1.9 3.3 4.6 15.5 6.6
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One specimen of each configuration has been tested

several times. The results have been compared in

terms of average and standard deviation. The results

are reported in Table 6 [67].

It is very interesting to note that for the optimised

configuration, the coefficients of variation of the

target stiffness components of the cost function (all

except Q12) are now of the same order (a few per-

cents), which was not the case for the 0� configur-

ation. Also, as a result, the transverse stiffness Q22 is

much better identified with the )25� than with the 0�
configuration. Q12 remains to be improved but this

parameter is always more difficult to identify as its

influence on the actual strain field is smaller than for

the other components (which was the reason why is

was left out in the cost function). This very first result

is very promising and more work along this line is

presently underway.

11. Conclusion

The main aspects of the VFM are presented in this

paper. The ability to extract constitutive parameters

from full-field measurements is illustrated through

various examples. One of the main features of the

method is to mix in the weak form of the equilib-

rium condition some virtual fields which have to be

chosen by the user and actual measured fields pro-

vided by a full-field measurement technique. These

field data are in fact the input of the method. It is

shown that this leads to the direct extraction of the

parameters in the case of constitutive equations

depending linearly on the constitutive parameters

whereas some iterative calculations are required in

the case of non-linear equations. The choice of

the virtual fields is a key issue when using this

approach. It has been thoroughly addressed in the

recent past in the case of linear constitutive equa-

tions. This has first led to the definition of so-called

special virtual fields and then to a choice of these

special virtual fields which reduces the influence of

noisy data on identified parameters. The use of the

method to non-linear equations is more recent and

the question of the optimal choice of the virtual

fields in this case remains clearly open at this stage.

More complicated non-linear equations should also

be examined to assess the applicability of the VFM

in these cases. It must also be underlined that pro-

cessing heterogeneous strain fields gives an extra

freedom in the design of the mechanical tests in

terms of specimen shape and definition of the

loading as the requirement of homogeneous tests is

avoided. This feature is somewhat troublesome as

heterogeneity is no longer a drawback but becomes

here an advantage. Taking full advantage of this

extra freedom is another important issue which has

not been investigated in details till now. Lateral

thinking will be required for the development of

more complex mechanical test fully optimised to

the VFM. This is probably one of the main chal-

lenges which has to be faced in the near future to go

further with this method.
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41. Piro, J.-L. and Grédiac, M. (2004) Producing and trans-

ferring low-spatial-frequency grids for measuring dis-
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