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Feature Article

The Virtual Human: Towards a Global Systems Biology of Multiscale,
Distributed Biochemical Network Models
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Biocentre, The University of Manchester, Manchester, UK

Summary

There is an emerging recognition of the importance of modelling

large-scale biochemical systems, with the ‘digital human’ an

obviously desirable goal. This will then permit researchers to

analyse the behaviour of such systems in silico so as to be able to

perform ‘what-if?’ experiments prior to determining whether they

are actually worthwhile or not, and for understanding whether a

particular model does in fact describe or predict experimental

observations. Existing and developing standards such as SBML are

beginning to permit the principled storage and exchange of

biochemical network models, while environments for effecting

distributed workflows (such as Taverna) will allow us to link

together these models and their behaviour. This allows the local

experts to work on those parts of cellular or organellar biochemistry

on which they have most expertise, while making their results

available to the community as a whole. This kind of architecture

permits the distributed yet integrated goal of an evolving ‘digital

human’ model to be realized.

IUBMB Life, 59: 689–695, 2007

Keywords systems biology; modelling; metabolomics; software;
Taverna.

INTRODUCTION

Most laboratories of biochemistry have and display a

copy of the celebrated wallcharts illustrating the major

metabolic ‘pathways’ (see http://www.expasy.ch/cgi-bin/

show_thumbnails.pl and (1)). These networks are logical

graphs that have as nodes the metabolites that are transformed

and as edges the agents (normally enzymes) that catalyse their

transformation or translocation. In addition there are links

describing the allosteric or other interactions of effectors that

serve to modulate the kinetics of the enzymes with which they

interact. Similar charts describe the various signalling path-

ways that are known.

Since the above is a commonplace, what then is ‘new’ about

the rising interest in what has come to be called Systems Biology

(2 – 6)? One answer lies in the bringing together of the antecedent

tracks of molecular biology and systems modelling (7) (see also

Fig. 1). Another (8 – 12) is the recognition that it is time tomove

from simple qualitative models that merely represent interac-

tions, to models that are integrative and quantitative. Further,

weneed to recognize that it is hard tomakehypotheseswhenyou

do not know about the existence of a particular molecule or

activity or set of interactions, and that data-driven approaches

are consequently likely to deliver more useful advances (13, 14).

A particular kind of example of interactions in metabolism

involves metabolic channelling (15 – 17), where very particular

kinds of experiment are needed to discriminate the different

possible kinetic mechanisms involved (18, 19), each of which

leads to a very different kind of biology.

At the metabolic level, on which this paper concentrates, we

are starting to witness a revolution (11), in which we can begin

to bring together the increasing knowledge of the human

metabolic network (20) with experimental measurements (21 –

26) of the metabolites that it is considered to contain (27). The

metabolic level or metabolome (21, 23, 28) is appropriate since

(i) unlike signalling pathways there are thermodynamic and

stoichiometric constraints that make it easier to relate models

to experiments, and (ii) for fundamental reasons connected

with metabolic control analysis (29 – 31), small changes in the

amount or activity of individual enzymes have little effect on

fluxes but can have large effects on metabolite concentrations

(19, 32), such that the metabolome is typically amplified

relative to the transcriptome and the proteome. It is also and

consequently closer to the phenotype of the organism. Since

regulatory molecules such as transcription factors are nor-

mally assumed to change the concentrations but not the

kinetic constants of the proteins whose expression they induce,

it is easy to add a regulatory layer later.
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WHY MODEL?

Since there will be readers who wonder why the use of

mathematical models might be of any value at all, rather than

concentrating solely on the ‘real thing’ (i.e., ‘wet’ biology), it is

probably worth rehearsing some of the arguments (9). The

main reasons why one would wish to have a mathematical

model of a complex (biological) system include:

. Giving us the ability to test whether the model is accurate,

in the sense that it reflects – or can be made to reflect –

known experimental facts.

. Allowing us to analyse the model in order to understand

which parts of the system contribute most to some desired

(or indeed in the case of diseases or pharmacodynamics

undesired) properties of interest.

. Hypothesis generation and testing, allowing one rapidly to

analyse the effects of manipulating experimental condi-

tions in the model without having to perform complex and

costly experiments (or to restrict the number that are

performed).

. Testing what changes in the model would improve

the consistency of its behaviour with experimental

observations.

In addition, quantitative description of the properties of the

complex network(s) allow one to predict molecular mechan-

ism, macromolecular interactions, the role of ‘external factors’

(e.g., interactions with effectors from ‘other’ pathways),

pathological ‘hot spots’ in the network, sites of action of

perturbations, the effect of combinations of potential drugs

at a system level (33, 34), and effects of interfering locally on

the behaviour at a systems level (e.g., whether there are

compensatory mechanisms using related pathways).

Underlying all of this is the recognition that biological

systems, because of the many nonlinear interactions they

possess, are too complex to understand simply by eyeballing

them, and that it is a lot better and easier to work on a

representation of the system then on the poorly specified

system itself. Clearly, too, there are ethical and practical

limitations to the manipulations that one can do in vivo

anyway!

REPRESENTATION OF BIOCHEMICAL NETWORKS IN A
STANDARD MANNER ALLOWING INTEROPERABILITY

Although the wallchart representation conveys much

useful information, it is hard to reason about it computa-

tionally, and the representation of a biochemical network

used by most systems biologists encodes it in the Systems

Biology Markup Language (SBML; www.sbml.org; (35, 36)).

This is an eXtensible Markup Language (XML) representa-

tion that encodes the representation in a well-defined and

standard manner, that consequently allows one to exchange

such models and to analyse them using appropriate software.

We note too that further standards are emerging for

annotating a model sufficiently to allow others to reproduce

it (37).

CREATING, USING AND ANALYSING SBML MODELS

The next issue is that there are many things that one

might wish to do with a biochemical network model in

SBML, for instance creating it automatically using text

mining (38), editing it (39), merging sub-models (40),

coverting it to a system of ODEs and integrating them

(usually referred to as ‘running the model’) (41), performing

parameter estimation (42 – 46), sensitivity analysis, e.g., (47,

48), the analyses of fluxes (49) and flux balances (50) under

constraints (51), and many other kinds of analyses that we

cannot do at all well, especially on models of any scale.

However, even integrated environments such as Cell Designer

(52) (www.celldesigner.org), COPASI (41) (www.copasi.org),

Cytoscape (53) (www.cytoscape.org) and the SBW (54)

(http://sbw.kgi.edu/) do only a small fraction of what one

might wish to do, and in particular they do not (yet?) use

modern community standards for interoperability and

extensibility. In addition, many of them were not necessarily

designed with very large scale models in mind and cannot

deal sensibly with their visualization (although, importantly,

it is now possible to mark up visualizations in the more

recent versions of SBML (55, 56)). Not only are the elements

of software distributed but so are the data that they might

use (Fig. 2).

DEALING WITH DISTRIBUTED DATA AND TOOLS

Our view of the way to deal with this (10 – 12) is to

recognize that provided that each of these elements expose

themselves as Web Services with suitable semantics (57 – 59),

Figure 1. Some of the differences between molecular biology

and systems biology.
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the problem is then reduced (or at least transformed) into

(a) one of ensuring that the interfaces between the elements

do obey recognized standards with suitable semantic

content, and (b) of providing a software environment in

which one can effect integration by joining together the

elements into suitable workflows (Fig. 2). One such

environment is Taverna (see e.g., 59 – 63) and www.

taverna.sf.net).

TAVERNA, UTOPIA AND ARCADIA: SOFTWARE FOR
DISTRIBUTED NETWORK MODELLING

A major attraction of an environment such as Taverna is

that its elements are loosely coupled. This enables it to be

largely neutral about what these individual elements actually

do (i.e., it is entirely general), provided that they explain

themselves in terms of their interfaces and make their

resources (whether data or tools) available appropriately.

This provides a win-win for all those who are developing such

data resources or tools since any developer can then make

their resources available in a manner that does not require one

to load complex programs with obscure dependencies, and

that they can be run on any platform. The utility or otherwise

of such resources is then simply reflected in the use to which

they are put by the community.

The latest versions of Taverna also allow one to

configure them in a way that enables access to more

specialized resources. Thus SBML is itself supported by

libSBML http://sbml.org/software/libsbml/, a software li-

brary that has been developed to read, write, manipulate

and validate SBML files and data streams. libSBML has

been implemented in C and Cþþ but is also provided with

language bindings in, e.g., Python, Matlab and Java. In

recent work (64) we have enabled Taverna to work with

libsbml, allowing the automation and integration of systems

biology modelling (of models encoded in SBML) within

Taverna workflows (Fig. 3).

In a similar vein, UTOPIA (e.g., 65 – 67) and www.

utopia.cs.manchester.ac.uk) is an architecture and software

environment that allows the high-level visualization of in silico

experiments and models, and can work seamlessly with

Taverna and with other software that makes its resources

available as Web Services. We are strongly engaged in the

integration of Systems Biology models into these environ-

ments as the ARCADIA project.

LINKING SBML SUB-MODELS

The idea, then, is that if the different groups with specific

expertise in particular areas of cell or organ(ellar) biology

can develop sub-models, we can eventually merge them into

more complete and complex models of the whole, provided

that we describe them properly in a way that forces them to

obey a standardized set of semantics (37, 40). Both the

models themselves, and the results of running the models

(e.g., if they both share the same compartment such as

‘serum’), can be merged together given the appropriate

architecture. This is again a win-win for both developers and

Figure 2. Some examples of activities that one might wish to perform on a metabolic (or other biochemical) model encoded in

SBML. Items of software that perform one or more of these ‘modules’ or processes (A) sometimes exist somewhere but do only a

fraction of what one might wish. Preferably one would stitch them together into an automated workflow such as that in (B) that

would carry out the analyses serially. One such environment for doing this is Taverna.

DISTRIBUTED VIRTUAL HUMAN NETWORK MODEL 691
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users, since everyone gets to contribute their expertise to the

whole. Emerging data compilations on biochemical kinetic

parameters (68) and the availability of detailed data on

protein concentrations (69) (www.proteinatlas.org) will

greatly enhance the ease of populating these models.

Similarly, upcoming social workflow sites such as myExperi-

ment (www.myexperiment.org) will allow the principled

sharing of the models, as well as the workflows and

submodels used in their generation, whether as work-in-

progress or (as with the curated repositories such as

www.biomodels.net (70)) when published formally.

CONCLUDING REMARKS

Although modern systems biology is in its infancy, it has a

clear agenda, and one that strikes at the heart of what

Figure 3. The Taverna workflow system, showing (A) available services, the ‘advanced model explorer’ and a particular

workflow (created by Peter Li) that allows one to download and visualize a Systems Biology model from the www.biomodels.net

database. (B) The results of running the workflow (after choosing a particular model).
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biochemists wish to do, i.e., to understand the biochemical

workings of biological systems. However, to quote Henrik

Kacser (71), ‘‘But one thing is certain: to understand the whole

you must look at the whole’’. This means that we must

integrate the efforts of the entire community who wish to

participate in this great endeavour. The ‘digital human’ (in

various flavours – see, e.g., http://europhysiome.org/ and (72)

for a couple) will in time come to be seen as more significant

than the human genome sequence in terms of the new biology

it brings. Now is the time to start preparing it.
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Note
A larger and more comprehensive model of the human metabolic network

has just been published by Goryanin and colleagues Ma H, Sorokin A,

Mazein A, Selkov A, Selkov E, Demin O and Goryanin I (2007). The

Edinburgh human metabolic network reconstruction and its functional

analysis. Mol. Syst. Biol., 3, 135.
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