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of laminar jets

Antonio Revuelta and Antonio L. Sánchez
Area de Meca´nica de Fluidos, Departamento de Ingenierı´a Mecánica, Universidad Carlos III de Madrid,
28911 Legane´s, Spain

Amable Liñán
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The far-field velocity and composition fields of a submerged laminar jet are known to approach a
self-similar solution corresponding to the flow induced by a point source of momentum and scalar.
Previous efforts to improve this far-field description have introduced a virtual origin for the
streamwise coordinate to remedy the singular behavior of the self-similar solution near the jet
origin. The purpose of this note is to show, by means of a perturbative analysis of the point-source
solution, that this virtual origin is in fact the first-order correction to the leading-order description.
The perturbative analysis, which uses the ratiox of the streamwise distance to the length of jet
development as an asymptotically large quantity, also indicates that the displaced point source
provides the description in the far field with small relative errors of orderx23 for the round jet and
of order x210/3 for the plane jet. The values of the virtual origin are obtained by numerical
integration of the boundary-layer equations in the region of jet development, giving values that
depend on the shape of the jet velocity profile at the exit. ©2002 American Institute of Physics.
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The structure of a submerged jet is known to depend
the value of its associated jet Reynolds numberRe. For mod-
erately large values ofRe the resulting steady laminar je
remains stable, and can be calculated with errors of o
Re22 by integrating the boundary-layer form of the cons
vation equations. The jet is initially separated from the ou
stagnant flow by an annular mixing layer that grows from
injector rim. At distances of the order ofRe times the initial
transverse dimension of the jet the effect of viscosity start
reduce significantly the value of the velocity at the axis.
shown by Schlichting for the round jet1 and by Bickley2 for
the planar jet, the flow downstream from this developm
region approaches a self-similar solution corresponding
the flow induced by a point source of momentum.

These asymptotic solutions were verified experimenta
by Andrade and Tsien3 and Andrade,4 who measured the dis
tribution of velocity in a liquid-into-liquid jet. They found
that the accuracy of the point-source solution can be
proved by displacing the location of the point source u
stream from the jet exit.

The present short communication is intended to cont
ute further understanding of the far-field description of lam
nar jets atRe@1. The study considers not only the veloci
field but also the mixing process of a passive scalar car
by the jet with the surrounding stagnant fluid.5 The distance
from the jet exit scaled with the length of jet development,x,
1821070-6631/2002/14(6)/1821/4/$19.00
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will be used as an asymptotically large quantity to constr
the solution in the far field. Investigation of the eigenso
tions of the asymptotic descriptions of Schlichting a
Bickley1,2 will reveal that the first-order correction for th
velocity and composition field is indeed equivalent to t
introduction of a displaced origin for the point source
momentum and scalar, as originally postulated by Andra
and Tsien3 and Andrade.4 We shall see that, with an appro
priate selection for the point-source location,x5xo , the re-
sulting solution describes the velocity and composition in
far field with small relative errors that are of orderx23 for
the round jet and of orderx210/3 for the plane jet. The value
of xo , which depends only on the shape of the jet veloc
profile at the inlet, will be determined by numerical integr
tion of the conservation equations in the region of jet dev
opment.

We consider the submerged jet formed when an inco
pressible fluid of densityr and kinematic viscosityn flows
into an unconfined space filled with the same fluid. When
Reynolds numberRe5Uoa/n, based on the characterist
exit velocity Uo and on the characteristic transverse dime
sion a ~the initial radius for the round jet and the initial ha
width for the planar jet!, is moderately large, then the resu
ing jet is steady and slender. The solution can be compu
with the boundary-layer approximation by integrating n
merically the equations
1 © 2002 American Institute of Physics
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with boundary conditions

r 50:
]u

]r
5v5

]Y

]r
50,

~4!
r→`:u5Y50.

and with initial conditions atx50

0<r<1:u2ui~r !5Y2150,
~5!

r .1: u5Y50.

The indexj takes the valuej 50 for the planar configuration
and j 51 for the round jet. The spatial coordinates and
velocity components are scaled with their characteristic v
ues in the region of jet development, leading to a formulat
independent of the Reynolds number. Thus,x and r are the
streamwise and transverse coordinates scaled withRe aand
a, respectively, and the axial and radial velocity compone
u andv are scaled withU05@J/(r212 jp ja11 j )#1/2 andn/a,
with J denoting here the momentum flux of the jet. T
initial velocity distribution ui(r ) at x50 depends on the
shape of the jet velocity profile. Cases of interest include t
of a uniform profile (ui51) and that of a fully developed
Poiseuille profile (ui5A15/8(12r 2) for j 50 and ui

5)(12r 2) for j 51). In ~3!, S represents the transpo
Schmidt number for the passive scalar.

Radial integration of~2! and~3! yields the integral con-
servation laws for momentum and scalar flux

E
0

`

2 j r ju2dr 5
1

q E0

`

2 j r juYdr 51, ~6!

which are satisfied by the solution of~1!–~3!. In the formu-
lation, the constantq5*0

12 j r juidr is proportional to the ini-
tial volume flux, becomingq51 for the initially uniform
velocity profile andq5A5/6 (j 50) andq5)/2 ( j 51) for
Poiseuille flow.

The solution to~1!–~5! far downstream from the regio
of jet development, i.e., forx@1, becomes self-similar, an
corresponds at leading order to that generated by a po
source of momentum and scalar located atx50.1,2,5 For the
round jet,1,5 where the appropriate self-similar coordinate
h5r /x, the description of the velocity and compositio
fields requires the introduction of the stream functionc
5xF0(h) and of the scalar concentrationY5x21Y0(h) into
~1!–~4! to give F0-1F09(F021)/h1F08(12F01hF08)/h

2

50; F0(0)5(F08/h)8(0)5F08(`)50 and (hY081SF0Y0)8
50; Y08(0)5Y0(`)50. Integrating the above problems wit
the additional constraints 2*0

`F08
2/hdh5(2/q)*0

`F08Y0dh
51 arising from~6! yields1,5
e
l-
n

ts

at

t-

F05
4h2

64/31h2 and Y05
~2S11!q/8

~113h2/64!2S . ~7!

This Schlichting–Squire solutionc5xF0(h) and Y
5x21Y0(h) is in fact an exact solution for the boundar
layer problem~1!–~4!, in which the initial conditions~5!
have been replaced by a Dirac-delta function for the veloc
and concentration with a strength given by the integral c
ditions ~6!. The solution is not unique: since the proble
~1!–~4! is translationally invariant, the alternative far-fie
description

c5~x2xo!F0S r

x2xo
D ,

~8!

Y5
1

x2xo
Y0S r

x2xo
D ,

corresponding to a point source located atx5xo , is also an
exact solution of the boundary-layer problem. Expanding~8!
for x@1 with use made of the original self-similar coord
nate h5r /x yields c5xF0(h)2xo@F0(h)2hF08(h)#
1O(x21) and Y5x21Y0(h)1x22xo@Y0(h)1hY08(h)#
1O(x23), indicating that the displacementxo , to be calcu-
lated, amounts to a relative correction of orderx21 to the
far-field Schlichting–Squire solution.

An improved description for the far field requires co
sideration of perturbations to the point-source solution. Si
Schlichting–Squire solution@xF0 ,x21Y0# is an exact solu-
tion to ~1!–~4!, the first-order correction must be necessar
an eigensolution of the problem. One therefore seeks s
tions to ~1!–~4! obtained by adding an eigensolution of th
form Cm@x12lmFm ,x212lmYm# to Schlichting–Squire solu-
tion, whereCm is an arbitrary constant.6 The eigenvalueslm

and eigenfunctions@Fm(h),Ym(h)# are obtained by solving
the linear perturbation equations

Fm-1Fm9 ~F021!/h1Fm8 @12F01~21lm!hF08#/h2

1~12lm!Fm~hF092F08!/h250 ~9!

and

~hYm8 !8/S1F0Ym8 1~11lm!F08Ym

52Y0Fm8 2~12lm!Y08Fm , ~10!

obtained from~1!–~3! with the homogeneous boundary co
ditions Fm(0)5(Fm8 /h)8(0)5Fm8 (`)5Ym8 (0)5Ym(`)50
obtained from~4!. Nontrivial solutions to~9! and~10! can be
found for an infinite discrete set of eigenvalueslm5m(m
11)/251,3,6,10,15,... . Note that once the value oflm and
the functionFm are determined by integrating numerical
~9!, the accompanying functionYm is determined uniquely as
the particular solution to~10!. The first eigensolution@F0

2hF08 ,2x22(Y01hY08)#, which satisfies identically the in
tegral constraints*0

`F08F18/hdh5*0
`(F08Y11F18Y0)dh50

obtained from~6!, is the x-derivative to the Schlichting–
Squire functions. Comparison with the expansions given
~8! indicates that this first eigensolution corresponds to
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uncertainty in the location of the origin, with the value
C152xo representing the unknown upstream displacem
of the point source.

The same uncertainty appears in general in any do
stream expansion for a boundary-layer flow when the ini
conditions are not imposed.6 For instance, for the Blasiu
boundary layer over a flat plate, whose eigenproblem w
solved numerically by Libby,7 the value ofxo is of the order
of the characteristic length of the Navier–Stokes region
the plate leading edge. For the laminar jet, the displacem
of the point source is of the order of the characteristic len
of jet development, giving a value ofxo of order unity that
can be easily incorporated to provide~8! for the corrected
far-field description. Note that, since this is also an ex
solution of~1!–~4!, its perturbations must be associated w
the second eigenvaluel253 obtained from~9!. Therefore,
with the apropriate choice for the virtual origin, equations~8!
give the boundary-layer far-field solution for the jet wi
small relative errors of orderx23. Note that the effect of
streamwise diffusion, which is neglected in the bounda
layer approximation, causes perturbations to the axial ve
ity of order x21 Re22. Sufficiently far downstream, thes
perturbations become larger than the departures from s
larity associated with the second eigenvalue,l253, which
give perturbations to the axial velocity of orderx24.

The asymptotic solution for the planar jet atx@1 paral-
lels that given above for the round jet. In this case (j 50),
the appropriate selfsimilar coordinate isz5ar /x2/3,2 where
the numerical coefficienta51/(2•31/3) is introduced to sim-
plify the notation. The selfsimilar stream functionc
5x1/3f 0(z)2 and scalarY5x21/3y0(z) must be employed in
this case, where the functions

f 056a tanhz and y05
q sech2S z

3aBS S11,
1

2D , ~11!

are determined by integrating (3a f 091 f 0f 08)850; f 0(0)
5 f 09(0)5 f 08(`)50 and (3ay08/S1 f 0y0)850; y08(0)
5y0(`)50, obtained from~1!–~4!, subject to the additiona
constraints*0

`a f 08
2dz5q21*0

`y0f 08dz51 emerging from~6!.
Here, the prime denotes differentiation with respect to
similarity coordinatez andB() represents the Beta function

To seek a correction to the Bickley asympto
description@x1/3f 0 ,x21/3y0#, which is an exact solution to
~1!–~4!, one considers perturbations of the for

Cm@x1/32lmf m ,x21/32lmym#, a development that leads to th
linear equations

a f m-1 1
3 f 0f m9 1~ 2

3 1lm! f 08 f m8 1~ 1
3 2lm! f 09 f m50 ~12!

and

aym9 /S1 1
3 f 0ym8 1~ 1

3 1lm! f 08ym

52~ 1
3 2lm!y08 f m2y0f m8 , ~13!

to be solved with boundary conditionsf m(0)5 f m9 (0)
5 f m8 (`)5ym8 (0)5ym(`)50. It is worth pointing out that
the same eigenvalue problem arises in the study of pertu
tions to the self-similar radial jet. The solution was det
nt
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mined analytically by Riley,8 who found that nontrivial solu-
tions exist for lm5m(2m11)/351,10/3,21/3,12,55/3,...
with the first eigenfunction@x22/3( f 022z f 08)/3,x24/3(y0

12zy08)/3# being thex-derivative of Bickley solution. As
before, this first correction, which satisfies the integral co
ditions *0

` f 08 f 18dz5*0
`( f 08y11 f 18y0)dz50 arising from ~6!,

is due to an upstream displacementC152xo of the origin,
and reflects the fact that the alternative solution

c5~x2xo!1/3f 0S ar

~x2xo!2/3D ,

~14!

Y5
1

~x2xo!1/3y0S ar

~x2xo!2/3D ,

corresponding to a point source located atx5xo , is also an
exact solution of~1!–~4!. Since perturbations to~14! can
only be associated with the second eigensolution, the rela
error of this modified solution can be expected to be of or
x210/3.

The asymptotic analysis presented above does not d
mine the value ofxo , which depends on the development
the jet in the regionx;1 corresponding to distances of ord
Re timesa from the jet exit. The value ofxo can be calcu-
lated from xo5 limx→`@x23/(8umax)# ~round jet! and xo

5 limx→`@x2(6a2/umax)
3# ~planar jet!, whereumax is the ve-

locity along the axis calculated from the numerical integ
tions of ~1!–~5!. The result depends on the shape of the i
tial velocity profile ui(r ), e.g.,xo520.230 ~round! and xo

520.190 ~planar! for ui51 and xo520.168 ~round! and
xo520.105 ~planar! for a parabolic profile. Note that the
results for the round jet are in close agreement with the v
uesxo520.225 ~uniform! and xo520.173 ~parabolic! ob-
tained by Andrade and Tsien3 by imposing that the resulting
kinetic-energy flux of the point-source solution at the jet e
be equal to that of the initial jet velocity profile. The sam
criterion applied to the planar jet also yields accurate val

FIG. 1. The velocity profiles for the planar jet~a! and for the round jet~b!
as obtained from numerical integration of~1!–~5! ~solid lines!, from the
solution of the point source atx50 ~thin dashed lines!, and from the solu-
tion of the point source atx5xo ~thick dashed lines!; the scale for the
velocity is indicated above the plots corresponding tox50.4.
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for xo ; e.g.,xo520.192 forui51 andxo520.119 forui

5A15/8(12r 2). The degree of coincidence suggests that
viscous dissipation in the development region does not di
much from that predicted by point-source solution, so t
correcting the kinetic-energy flux at the jet exit suffices
calculate approximately the far-field correction.

It is worth noting that the selection of the virtual orig
for the round jet corresponds to a correction of order unity
the point-source volume flux.9 To see this, one may integrat
~1! to obtain

E
0

`

2prudr 5pq1E
0

x

F~x8!dx8, ~15!

indicating that the volume driven by the jet increases fr
the initial valuepq due to additional fluid that is being en
trained with a rateF(x)52(2prv) r→` , a function calcu-

FIG. 2. The evolution ofY along the axis for the planar jet~a! and for the
round jet ~b! as obtained with an initial parabolic profile from numeric
integration of~1!–~5! ~solid lines!, from the solution of the point source a
x50 ~thin dashed lines!, and from the solution of the point source atx
5xo ~thick dashed lines!.
e
r
t

n

lated in Ref. 9 which decreases for increasing values ox
towards the constant asymptotic valueF58p of Schlichting
solution.1 According to ~8!, at distancesx@1 the volume
flux becomes*0

`2prudr 52pF0(`)(x2xo)58p(x2xo).
Clearly, the volume flux of Schlichting solution,*0

`2prudr
58px, accounts only for the fluid that has been entrain
with the constant asymptotic rateF58p. The virtual origin

xo52F E
0

`

@F/~8p!21#dx1q/8G , ~16!

obtained from ~15! at the following order, corrects this
leading-order result by accounting for the initial volume flu
as well as for the larger entrainment rateF.8p that occurs
in the region of jet developmentx;1.

The asymptotic results given in~8! and ~14! are com-
pared in Figs. 1 and 2 with results of numerical integratio
of ~1!–~5!. Velocity profiles across the jet obtained with a
initial Poiseuille profile at the jet exit are shown in Fig.
The plot indicates that the virtual origin improves consid
ably the leading-order results, so that close agreement
the numerical integrations is observed already at distan
x50.1. The same level of accuracy is obtained for the
scription of the mixing process, as can be seen in Fig
where the evolution of the scalarY along the axis is plotted
for S50.73, as corresponds to the temperature evolution
an air jet. It is remarkable that the virtual origin is the sam
for the velocity and for the scalar, independently of the sca
diffusivity.
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