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The far-field velocity and composition fields of a submerged laminar jet are known to approach a
self-similar solution corresponding to the flow induced by a point source of momentum and scalar.
Previous efforts to improve this far-field description have introduced a virtual origin for the
streamwise coordinate to remedy the singular behavior of the self-similar solution near the jet
origin. The purpose of this note is to show, by means of a perturbative analysis of the point-source
solution, that this virtual origin is in fact the first-order correction to the leading-order description.
The perturbative analysis, which uses the ratiof the streamwise distance to the length of jet
development as an asymptotically large quantity, also indicates that the displaced point source
provides the description in the far field with small relative errors of oxdérfor the round jet and

of order x 193 for the plane jet. The values of the virtual origin are obtained by numerical
integration of the boundary-layer equations in the region of jet development, giving values that
depend on the shape of the jet velocity profile at the exit2@2 American Institute of Physics.
[DOI: 10.1063/1.1473650

The structure of a submerged jet is known to depend onvill be used as an asymptotically large quantity to construct
the value of its associated jet Reynolds numRerFor mod-  the solution in the far field. Investigation of the eigensolu-
erately large values oRe the resulting steady laminar jet tions of the asymptotic descriptions of Schlichting and
remains stable, and can be calculated with errors of ordeBickley™? will reveal that the first-order correction for the
Re 2 by integrating the boundary-layer form of the conser-velocity and composition field is indeed equivalent to the
vation equations. The jet is initially separated from the outeiintroduction of a displaced origin for the point source of
stagnant flow by an annular mixing layer that grows from themomentum and scalar, as originally postulated by Andrade
injector rim. At distances of the order &etimes the initial and Tsief and Andradé. We shall see that, with an appro-
transverse dimension of the jet the effect of viscosity starts t@riate selection for the point-source locatior X, , the re-
reduce significantly the value of the velocity at the axis. Assulting solution describes the velocity and composition in the
shown by Schlichting for the round jeand by Bickley for  far field with small relative errors that are of order? for
the planar jet, the flow downstream from this developmenthe round jet and of order™ 1% for the plane jet. The value
region approaches a self-similar solution corresponding tof x,, which depends only on the shape of the jet velocity
the flow induced by a point source of momentum. profile at the inlet, will be determined by numerical integra-

These asymptotic solutions were verified experimentallytion of the conservation equations in the region of jet devel-
by Andrade and Tsierand Andradé,who measured the dis- opment.
tribution of velocity in a liquid-into-liquid jet. They found We consider the submerged jet formed when an incom-
that the accuracy of the point-source solution can be impressible fluid of density and kinematic viscosity flows
proved by displacing the location of the point source up-into an unconfined space filled with the same fluid. When the
stream from the jet exit. Reynolds numbeRe=U a/v, based on the characteristic

The present short communication is intended to contribexit velocity U, and on the characteristic transverse dimen-
ute further understanding of the far-field description of lami-siona (the initial radius for the round jet and the initial half
nar jets atRe>1. The study considers not only the velocity width for the planar jet is moderately large, then the result-
field but also the mixing process of a passive scalar carriethg jet is steady and slender. The solution can be computed
by the jet with the surrounding stagnant fldidhe distance with the boundary-layer approximation by integrating nu-
from the jet exit scaled with the length of jet development, merically the equations
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au u 19 jau This Schlichting—Squire solutionyy=xFy(7) and Y
U o darl Vo) 2) =x"1Yy(7n) is in fact an exact solution for the boundary-
layer problem(1)—(4), in which the initial conditions(5)
aY A 11 9 j aY have been replaced by a Dirac-delta function for the velocity
U= tv a sialU ) (3 and concentration with a strength given by the integral con-
_ N ditions (6). The solution is not unique: since the problem
with boundary conditions (1)—(4) is translationally invariant, the alternative far-field
. o ’W_o description
r= .a—r—v—ﬁ— ) "
4 h=(X=X )Fo<__),
r—oo:u=Y=0. @ ° X™ %o
(8)
and with initial conditions ak=0 1 v r
X=Xy A x—X,)’

O=sr=<liu—u(r)=Y-1=0,
(5)  corresponding to a point source locatedkatx, , is also an
exact solution of the boundary-layer problem. ExpandB)g
The indexj takes the valug=0 for the planar configuration for x>1 with use made of the original self-similar coordi-
andj=1 for the round jet. The spatial coordinates and thenate »=r/x yields #=xFo(7)—X[Fo(7)—nFs(7)]
velocity components are scaled with their characteristic val--O(x ™) and Y=x"1Yq(7)+x" X[ Yo(n)+ 7Y4(7)]
ues in the region of jet development, leading to a formulation O(x %), indicating that the displacemexy, to be calcu-
independent of the Reynolds number. Thusindr are the lated, amounts to a relative correction of order! to the
streamwise and transverse coordinates scaledRétlmand far-field Schlichting—Squire solution.
a, respectively, and the axial and radial velocity components ~ An improved description for the far field requires con-
u andv are scaled withd ,=[J/(p2' I mla’*))]¥2andv/a,  sideration of perturbations to the point-source solution. Since
with J denoting here the momentum flux of the jet. The Schlichting—Squire solutiofixFq,x'Y,] is an exact solu-
initial velocity distribution u;(r) at x=0 depends on the tion to (1)—(4), the first-order correction must be necessarily
shape of the jet velocity profile. Cases of interest include thagn eigensolution of the problem. One therefore seeks solu-
of a uniform profile ¢;=1) and that of a fully developed tions to(1)—(4) obtained by adding an eigensolution of the
Poiseuille profile (;=15/8(1-r?) for j=0 and u; form Cy[x*~*mF. ,x~*"*mY ] to Schlichting—Squire solu-
=v3(1—r?) for j=1). In (3), S represents the transport tion, whereC,, is an arbitrary constafitThe eigenvalues
Schmidt number for the passive scalar. and eigenfunctiongF (7),Y(7)] are obtained by solving
Radial integration of2) and(3) yields the integral con- the linear perturbation equations
servation laws for momentum and scalar flux

r>1: u=Y=0.

Fr+Fn(Fo— 1)/ p+F/[1—Fo+(2+\y) 7F (1 7?

w o 1 (= . .
fo 2iriu2dr= afo 2irluydr=1, (6) +(1-Ap)Fm(nFo—FHI7?=0 9

which are satisfied by the solution GH—(3). In the formu- and

lation, the constang= [52/r/u;dr is proportional to the ini-
tial volume flux, becomingg=1 for the initially uniform
velocity profile andg=\/5/6 (j=0) andq=v3/2 (j=1) for — —YoF, = (1= X)) Y6F m, (10)
Poiseuille flow.

The solution to(1)—(5) far downstream from the region obtained from(1)—(3) with the homogeneous boundary con-
of jet development, i.e., fox>1, becomes self-similar, and ditions F,(0)=(F//7)'(0)=F/(*)=Y/(0)=Y(*)=0
corresponds at leading order to that generated by a pointbtained from(4). Nontrivial solutions td9) and(10) can be
source of momentum and scalar locatedat0.1?® For the  found for an infinite discrete set of eigenvalues=m(m
round jet> where the appropriate self-similar coordinate is +1)/2=1,3,6,10,15,... . Note that once the valuexgf and
n=r/x, the description of the velocity and composition the functionF,, are determined by integrating numerically
fields requires the introduction of the stream functign (9), the accompanying functiovi,, is determined uniquely as
=xFo(#7) and of the scalar concentratidh=x"1Yy(7) into  the particular solution tq10). The first eigensolutior Fy
(1)—(4) to give F§+F4(Fo—1)/n+Fi(1—Fo+ nFo)/ 7 —nFy,— X %(Yo+ 7Y()], which satisfies identically the in-
=0; Fo(0)=(Fy/n)'(0)=F4(*)=0 and (pYy+SFyYo)'  tegral constraints[yF\Fi/ndn=[5(FY1+F;Y)dn=0
=0; Yg(0)=Yq(0) =0. Integrating the above problems with obtained from(6), is the x-derivative to the Schlichting—
the additional constraints [ZF %/ ndn=(2/q)[5F,Yodn  Squire functions. Comparison with the expansions given in
=1 arising from(6) yields"® (8) indicates that this first eigensolution corresponds to an

(pY}) IS+HFY +H(L+ N FoYm
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uncertainty in the location of the origin, with the value of T
C,=—X, representing the unknown upstream displacement 4
of the point source. 5L

The same uncertainty appears in general in any down- "
stream expansion for a boundary-layer flow when the initial
conditions are not imposédFor instance, for the Blasius
boundary layer over a flat plate, whose eigenproblem was %
solved numerically by Libby,the value ofx, is of the order
of the characteristic length of the Navier—Stokes region at s
the plate leading edge. For the laminar jet, the displacemen  ,|
of the point source is of the order of the characteristic length
of jet development, giving a value of, of order unity that ”~
can be easily incorporated to provi@® for the corrected
far-field description. Note that, since this is also an exact '
solution of(1)—(4), its perturbations must be associated with 0
the second eigenvalue,= 3 obtained from(9). Therefore,
with the apropriate choice for the virtual origin, equati¢8e FIG. 1. The velocity profiles for the planar j&) and for the round jetb)
give the boundary-layer far-field solution for the jet with as obtained from numerical integration ()—(5) (solid lineg, from the
small relative errors of ordex 3. Note that the effect of solution of the point source at=0 (thin dashed linés and from the solu-
streamwise diffusion, which is neglected in the boundary_tion c_)f t_he_ pc_)int source ax=X, (thick dashed !ine)s the scale for the
layer approximation, causes perturbations to the axial velogyelocty is indicated above the plots correspondinge0.4.
ity of order x 1 Re 2. Sufficiently far downstream, these
perturbations become larger than the departures from simi-

larity associated with the second eigenvalg=3, which  mined analytically by Rile§,who found that nontrivial solu-

give perturbations to the axial velocity of order*. tions exist for A ,=m(2m+1)/3=1,10/3,21/3,12,55/3,... ,
The as_ymptotic solution for the planar jepa?:t> l_paral— with the first eigenfunction[x~23(fq—2£f()/13x™43(y,
lels that given above for the round jet. In thlszggw 0),  +2¢yg)/3] being thex-derivative of Bickley solution. As

the appropriate selfsimilar coordinate §s- ar/x“~,~ where  before, this first correction, which satisfies the integral con-
the numerical coefficiem=1/(2'31/3) is introduced to sim-  ditions Jofofide=[o(foyr+fiyo)dZ=0 arising from(6),
plify the notation. The selfsimilar stream functiogy is due to an upstream displaceméht= —x, of the origin,
=x3f(£)? and scalaty =x"y,(¢) must be employed in  and reflects the fact that the alternative solution

this case, where the functions

ar
qsechS¢ lﬁ:(x_xo)llsfo(m' ,
fo=6atanh and y,= , (12) °
3aB(S+1,§ ve 1 ar (14)
= (X_Xo)l/SyO (x—xg)2R"

are determined by integrating &35+ fof() =0; fo(0) ) . _
—£5(0)=F4(*)=0 and (Zeyy/S+foyo)' =0; y4(0) corresponding to a point source locatedkatx,, is also an
—yo() =0, obtained from{1)—(4), subject to the additional exact solution of(1)—(4). Since perturbations t¢14) can
constrainty ¥ af {2d¢=q 1 Zyof id =1 emerging from(6). only be associated with the second eigensolution, the relative

Here, the prime denotes differentiation with respect to therror of this modified solution can be expected to be of order

—10/3
similarity coordinatef andB() represents the Beta function. ' , )
To seek a correction to the Bickley asymptotic The asymptotic analysis presented above does not deter-

description[x¥3f4,x~*3,], which is an exact solution to mine the value ok,, which depends on the development of

(1—(4), one considers perturbations of the formthejetin the regiorx~1 corresponding to distances of order

Reti f he | it. Th I Icu-
C[xV3Anf  x~13"Any 1 a development that leads to the etimesa roT the jet exit. The value ok, can be calcu
X ! lated from x,=Ilim,_,,[x—3/(8umad] (round je} and x,
linear equations

=limy_..[X— (6a?/Unms)°] (planar jej, whereumayis the ve-
moy o le gn (2 rer 4l ne locity along the axis calculated from the numerical integra-

it 3folmt (3 FAm ot (5= Am)olm=0 (12 tions of (1)—(5). The result depends on the shape of the ini-
and tial velocity profile u;(r), e.g.,X,=—0.230(round and x,
=—0.190 (planay for u;=1 andx,=—0.168 (round and
X,=—0.105 (planay for a parabolic profile. Note that the
1 PRy results for the round jet are in close agreement with the val-
=~ (G m)Yolm=Yolm, (13 uesx,= —0.225 (uniform) andx,= — 0.173 (paraboli¢ ob-
to be solved with boundary condition$(0)=f(0) tained by Andrade and Tsigiby imposing that the resulting
=f1(*)=yn(0)=ym()=0. It is worth pointing out that kinetic-energy flux of the point-source solution at the jet exit
the same eigenvalue problem arises in the study of perturbde equal to that of the initial jet velocity profile. The same
tions to the self-similar radial jet. The solution was deter-criterion applied to the planar jet also yields accurate values

ayn/S+ 5foymt+ (G + A foym



1824 Phys. Fluids, Vol. 14, No. 6, June 2002 Revuelta, Sanchez, and Linan

1.5

lated in Ref. 9 which decreases for increasing valuex of
towards the constant asymptotic valire= 87 of Schlichting
solution! According to (8), at distancesx>1 the volume
flux becomes[g2mrudr=2mF () (X—Xo) =8m(X—X,)-
Clearly, the volume flux of Schlichting solutiofig2rudr
=8mX, accounts only for the fluid that has been entrained
with the constant asymptotic rafe= 8. The virtual origin

i Xo=— fo [®/(87)—1]dx+q/8], (16)
0.0 ) l . l . obtained from(15) at the following order, corrects this
0.0 0.5 1.0 1.5 leading-order result by accounting for the initial volume flux
15 1 as well as for the larger entrainment rabe>87 that occurs
_‘\ \ ) in the region of jet development~1.
A

The asymptotic results given if8) and (14) are com-
pared in Figs. 1 and 2 with results of numerical integrations
of (1)—(5). Velocity profiles across the jet obtained with an
initial Poiseuille profile at the jet exit are shown in Fig. 1.
The plot indicates that the virtual origin improves consider-
ably the leading-order results, so that close agreement with
the numerical integrations is observed already at distances
x=0.1. The same level of accuracy is obtained for the de-

0.0 ! I ! I ! scription of the mixing process, as can be seen in Fig. 2,
0.0 0.5 1.0 1.5 where the evolution of the scalaralong the axis is plotted
for S=0.73, as corresponds to the temperature evolution in
FIG. 2. The evolution of along the axis for the planar jé) and for the  an ajr jet. It is remarkable that the virtual origin is the same

round jet(b) as obtained with an initial parabolic profile from numerical . .
integration of(1)—(5) (solid lineg, from the solution of the point source at for the VelOCIty and for the scalar, mdependently of the scalar

x=0 (thin dashed lineés and from the solution of the point sourcesat  diffusivity.
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