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Abstract.  The Virtual Reality Modeling Language (VRML) and Java provide a standardized, portable and platform-

independent way to render dynamic, interactive 3D scenes across the Internet.  Integrating two powerful and portable

software languages provides interactive 3D graphics plus complete programming capabilities plus network access.

Intended for programmers and scene authors, this paper provides a VRML overview, synopsizes the open development

history of the specification, provides a condensed summary of VRML 3D graphics nodes and scene graph topology,

describes how Java interacts with VRML through detailed examples, and examines a variety of VRML/Java future

developments.

Overview.  The Web is being extended to three spatial dimensions thanks to VRML, a dynamic 3D scene description

language that can include embedded behaviors and camera animation.  A rich set of graphics primitives provides a

common-denominator file format which can be used to describe a wide variety of 3D scenes and objects.  The VRML

specification is now an International Standards Organization (ISO) specification (VRML 97).  

Why VRML and Java together?  Over twenty million VRML browsers have shipped with Web browsers,

making interactive 3D graphics suddenly available for any desktop.  Java adds complete programming capabilities plus

network access, making VRML fully functional and portable.  This is a powerful new combination, especially as

ongoing research shows that VRML plus Java provide extensive support for building large-scale virtual environments

(LSVEs).  This paper provides historical background, a detailed overview of VRML 3D graphics, example VRML-Java

test programs, and a look ahead at future work.

Development history.  “Birds of a feather” sessions organized by Mark Pesce and Tony Parisi at the 1994 World Wide

Web and SIGGRAPH conferences led to the formation of an open working group to examine potential technologies

for a “virtual reality markup language,” later changing markup to modeling.  The initial goal of this effort was

selection of a general 3D scene-description file format that was suitable for modification by addition of  hyperlink

semantics similar to the HyperText Markup Language (HTML).  Open nomination and discussion of seven possible

candidates led to selection of an extended subset of Silicon Graphics Inc. (SGI) OpenInventor file format [Wernicke

94] [Carey, Strauss 92]. Extensive online proposals and discussions punctuated by reported results became the hallmark

of the VRML development process.  Key contributions of the initial VRML 1.0 standard were selection of a core set

of object-oriented graphics constructs augmented by hypermedia links, all suitable for geometry rendering by  Web

browsers on personal computers or workstations. 

Language extensions for VRML.  Although spirited debate and rough consensus successfully delivered an

initial specification, there were two major limitations in VRML 1.0:  lack of support for dynamic scene animation, and

no traditional programming language constructs.  Difficult issues regarding real-time animation in VRML 1.0 included

entity behaviors, user-entity interaction and entity coordination. VRML 2.0 development tackled these issues directly,

using event-driven ROUTEs to connect 3D nodes and fields to behavior-driven sensors and timing.  “Language wars”

were avoided by allowing other programming languages to communicate with the VRML scene via a Script node.

Initial languages chosen are JavaScript for light-weight in-line calculations, and Java for full-fledged programming

and network access.  If Java or JavaScript are supported in a VRML browser, they must conform to the formal interface

specified in (VRML 97) Annexes B and C, respectively.  Major browsers now support both.  Ongoing development

of VRML continues via open working groups supported by the nonprofit VRML Consortium (VRMLC 97).

Behaviors.  The term “behaviors" refers to making changes in the structure or appearance of a 3D scene.  Thus

a broad definition of a VRML behavior might be “any change in the nodes or fields of a VRML scene graph.”   VRML

97  provides local key-frame animation mechanisms and remote scripting language hooks (i.e. an applications
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programming interface or API) to any scene graph component.  Dynamic scene changes can be stimulated by scripted

actions, message passing, user commands or behavior protocols, implemented using either via Java calls or complete

VRML scene replacement.  General approaches for VRML behaviors and scene animation are possible that provide

simplicity, security, scalability, generality and open extensions.  Using Java is the most powerful way for 3D scene

authors to explore the many possibilities provided by VRML.

Getting started.  Numerous useful resources for obtaining browser software, subscribing to the www-vrml

mailing list, tutorials etc. are available via the VRML Repository (SDSC 97).  Excellent books for learning VRML

include (Ames 97) (Hartman 97).  The VRML 97 specification is online, and an annotated version of the specification

by principal VRML 97 architects Rikk Carey and Gavin Bell is available in book form and online (Carey 97).

Resources on Java network programming include (Harold 97) and (Hughes 97).  Intermediate and advanced textbooks

for combined VRML and Java programming are (Lea 97) and (Roehl 97), respectively.

3D graphics nodes.  For most programmers, there are many new language concepts and terms in VRML.  An overview

of this admittedly large language is necessary before describing how Java works in combination with it.  This section

describes the 3D-specific VRML nodes.

Big picture.  Since VRML is a general 3D scene description language that can be used as an interchange file

format, there are a large number of 3D graphics nodes available.  These nodes are organized in a hierarchical structure

called a scene graph, i.e. a directed acyclic graph.  The primary interaction model for 3D VRML browsers is point and

click, meaning that content can have embedded links just like the 2D HyperText Markup Language (HTML).   VRML

3D browsers are typically installed as plugins within 2D browsers (such as Netscape and Internet Explorer).  VRML

is optimized for general 3D rendering and minimal network loading, taking advantage of extensive VRML browser

capabilities.  For examples, geometric primitives such as IndexedFaceSet  allow authoring tools and datasets to create

highly complex objects. Textures and MovieTextures can wrap 2D images over and around arbitrary geometry.  Sound

nodes embed spatialized audio together with the associated shapes.  Lighting and camera control provide complete

control of presentation and rendering, including animation of camera position to create flyby explorations or dramatic

visual transitions.  Finally the Script node interface to Java allows modification or generation of any VRML content.

Shape.  The Shape node is a container node which collects a pair of components called geometry and

appearance.  Nodes that describe the objects being drawn are typically used in the geometry and appearance fields of

the Shape node.

Geometry.  Box, Cone, Cylinder and Sphere are nodes for simple regular polyhedra (sometimes called

primitives) which provide basic building blocks for easy object construction.  The Text node simplifies specification

of planar or extruded polygonal text. ElevationGrid is a table of height (y) values corresponding to x-z horizontal

spacing indices.  The Extrusion node stretches, rotates and scales a cross-section along a spine into a wide variety of

possible shapes.  IndexedFaceSet, IndexedLineSet and PointSet can create 3D geometry of arbitrary complexity.  Since

Extrusion, IndexedFaceSet, IndexedLineSet and PointSet are specified by sets of coordinate points, color values and

normal vectors can be specified point by point for these nodes.

Appearance.  The appearance of geometry is primarily controlled by specifying color values or texture images.

The Material node permits specification of diffuse, emissive and specular color components (which roughly correspond

to reflective, glowing and shininess colors).  Material nodes can also specify transparency.  Colors are specified as red-

green-blue (RGB) triples ranging from 0 (black) to 1 (full intensity).  Transparency value a similarly ranges from 0

(opaque) to 1 (completely transparent).  As an alternative or supplement to material values, three types of texture nodes

are provided.  ImageTexture is the most common: a 2D image is wrapped around (or over) the corresponding geometry.

MovieTexture allows use of time-dependent textures (e.g. MPEG movie files) as the image source.  Finally

TextureTransform specifies a 2D transformation in texture coordinates for advanced texture-mapping techniques, i.e.

applying specific repetitions or orientations of a texture to corresponding geometry features.

Scene topology: grouping and child nodes.  VRML syntax and node typing also helps enforce a strict hierarchical

structure of parent-child relationships, so that browsers can perform efficient rendering and computational

optimizations.  Grouping nodes are used to describe relationships between Shapes and other child nodes.  Moreover,

the semantics of a scene graph carefully constrain the ways that nodes can be organized together.  Child nodes come

under grouping nodes to comply with the scene graph hierarchy inherent in any author’s VRML scene.  In addition

to Shapes, child nodes describe lighting, sound, viewing, action sensors and animation interpolators.  This section
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synopsizes the full scope of VRML, the language; readers familiar with 3D graphics concepts may prefer skipping

ahead to the Java section.

Grouping.  Fundamental to any VRML scene is the notion that graphics nodes can only be grouped in ways

that make sense.  Grouping is used to describe spatial and logical relationships between nodes, and as an intentional

side result also enable efficient rendering by 3D browsers.  The Group node is the simplest of the grouping nodes: it

merely collects child nodes, with no implied ordering or relationship other than equivalent status in the scene graph.

The Transform node similarly groups child nodes, but first applies rotation, scaling and translation to place child nodes

in the proper coordinate frame of reference.  The Billboard node keeps its child nodes aligned to always face the

viewing camera, either directly or about an arbitrary rotation axis.  The Collision node lets an author specify a

bounding box which serves as a proxy to simplify collision detection calculations for grouped child nodes.  The Switch

node renders only one (or none) of its child nodes, and is useful for collecting alternate renderings of an object which

might be triggered by external behaviors.  The LOD (level of detail) node also renders only one of multiple child nodes,

but child selection is triggered automatically based either on viewer-to-object distance or on frame rate.  Thus LOD

enables the browser to efficiently select high-resolution or low-detail alternative renderings on-the-fly in order to

support interactive rendering.

Grouping and the Web.  Since the Web capabilities of VRML are  analogous to HTML, two types of grouping

nodes enable Web connectivity in 3D scenes.  The Inline node allows importing additional 3D data from another

VRML world into the current VRML world.  In contrast, the Anchor node creates a link between its child nodes and

an associated Uniform Resource Locator (URL) web address.  When the child geometry of an Anchor node is clicked

by the user’s mouse, the current VRML scene is entirely replaced by the VRML scene specified in the Anchor URL.

Multiple strings can be used to specify any URL, permitting browsers to preferentially load local copies before

searching for remote scenes or backup locations.  Typically browsers highlight “hot links” in a 3D scene by modifying

the mouse cursor when it is placed over Anchor-enabled shapes.

Lighting and sound.  Virtual lights in a 3D scene are used to determine illumination values when rendering.

Lights cannot be “seen” in the world directly, rather they are used to calculate visibility, shininess and reflection in

accordance with a carefully specified mathematical lighting model.  The DirectionalLight node illuminates using

parallel rays, the PointLight node models rays radiating omnidirectionally from a point, and the SpotLight node

similarly provides radial rays constrained within a conical angle.  Lights include color and intensity values which are

multiplied against material values to calculate produce proper shading.  The Sound node places an audio clip at a

certain location, and with nonrendered ellipsoids surrounding it determine minimum and maximum threshold

distances.  Sound can repeat, be  rendered spatially relative to user location, and be triggered on/off by events.

Embedding various lights and sounds at different locations within a scene can produce dramatic results.  

Viewing.  Most 3D nodes describe location, size, shape and appearance of a model.  The Viewpoint node

specifies position, orientation and field of view for the virtual camera that is used to “view” (i.e. calculate) the 3D scene

and render the screen image.  Most objects and scenes contain a number of named viewpoints to encourage easy user

navigation.  The NavigationInfo node extends the camera concept to include the notion of an Avatar bounding box,

used to determine camera-to-object collision and height of eye when “gravity” (i.e. terrain following) is enabled.

NavigationInfo also toggles a “headlight” in the field of view for default illumination, and can switch the browser

among a variety of user-navigation metaphors (FLY, EXAMINE, WALK etc.).  The Fog node specifies color and

intensity of obscuring fog, which is calculated relative to distance from viewer.  The Background node allows

specifying sky and ground color profiles, ranging smoothly from zenith to horizon to nadir.  Background also permits

specifying six images for texture box, which always sits beyond other rendered objects.  These various viewing nodes

provide rich functionality for animating viewpoint, assisting user navigation, and providing environmental effects.

Action sensors.  Sensors detect change in the scene due to passage of time (TimeSensor), user intervention

or other activity such as viewer proximity (VisibilitySensor).  Sensors produce time-stamped events whose values can

be routed as inputs to other nodes in the scene.  User intervention is often as simple as  direct mouse interaction  with

a shape via a TouchSensor, or interaction with a constraining bounding geometry specified by PlaneSensor,

ProximitySensor or SphereSensor. Consistently typed input and output events are connected to correspondingly typed

fields in the scene graph via ROUTEs.

Animation interpolators.  Key-frame animation typically consists of simple time-varying values applied to the

fields of the appropriate node.  Smooth in-between animation can be interpolated linearly as long as key values are at

sufficient resolution.  Linear interpolators are provided for Color, Coordinate, Normal, Orientation, Position and scalar

fields.  Linear interpolation is sufficient for many demanding applications, including most humanoid animation.  As



4

Figure 2b.  VRML scene hello_world.wrl

#VRML V2.0 utf8

Group {

  children [

Viewpoint {

  description "initial view"

  position    6 -1 0

  orientation 0  1 0 1.57

}

Shape {

geometry Sphere { radius 1 }

appearance Appearance {

  texture ImageTexture {

url “earth-topo.png"

} } }

Transform {

translation 0 -2 1.25 

  rotation    0  1 0   1.57

children [

Shape {

      geometry Text {

          string [" Hello" "world!"]

      }

appearance Appearance {

  material Material {

   diffuseColor 0.1 0.5 1

} } }

]

}

  ]

}

Figure 2a.   VRML source hello_world.wrl

with Sensors, Interpolator inputs and outputs are connected with other nodes via ROUTEs.  For performance reasons,

use of these standard VRML sensors and interpolators is usually preferable to writing a custom script, since they can

efficiently perform most authors’ intended tasks.  Scripts are the mechanism where authors can extend the action and

animation capabilities of VRML.

Prototypes.  Prototypes (PROTO and EXTERNPROTO) allow creation of new VRML node types by authoring

combinations of nodes and fields from other preexisting node types.  In this sense, a PROTO definition is somewhat

analogous to a macro definition.  In order to avoid completely copying a PROTO for each file where it is used, the

EXTERNPROTO definition specifies remote URL where the original PROTO is defined, along with the interface to

permit local type-checking by browsers during scene loading.  The EXTERNPROTO mechanism thus allows

construction of PROTO libraries for easy access and reuse.

Graphics example.  No doubt dedicated readers are fully convinced by this point that VRML contains a great

deal of functionality!  To regain clarity, a canonical “Hello world” example in Figures 2a and 2b displays basic VRML

syntax.  This scene is available at http://web.nps.navy.mil/~brutzman/vrml/examples/course/hello_world.wrl

VRML and Java: scripts, events, naming and ROUTEs.  Interfaces between VRML and Java are effected through

Script nodes, an event engine, DEF/USE naming conventions, and ROUTEs connecting various nodes and fields in

the VRML scene.  VRML provides the 3D scene graph, Script nodes encapsulate Java functionality, and ROUTEs

provide the wiring that connects computation to rendering.

Scripts.  Script nodes appear in the VRML file, encapsulating the Java code and providing naming

conventions for interconnecting Java variables with field values in the scene.  (Similar scripting conventions are

specified for JavaScript).  Interfaced Java classes import the vrml.* class libraries in order to provide type
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Script { 

  exposedField MFString url           [] 

  field        SFBool   directOutput  FALSE

  field        SFBool   mustEvaluate  FALSE

  # And any number of:

  eventIn      eventType eventName

  field        fieldType fieldName initialValue

  eventOut     eventType eventName

}

Script node is used to program behavior

in a scene. Script nodes typically

a. signify a change or user action; 

b. receive events from other nodes; 

c. contain a program module that

performs some computation; 

d. effect change somewhere else in the

scene by sending events. 

Figure 3.  Script node specification (VRML 97).

conversion (for both nodes and simple data types) between Java and VRML.  Java classes used by Script nodes must

extend the vrml.node.Script class in order to interface properly with the VRML browser.  The basic interface

and a good description of Script nodes is excerpted from the (VRML 97) specification in Figure 3.

Events.  Events allow VRML scenes to be dynamic.  Events are merely time-stamped values passed to and

from different parts of a VRML world.  EventIns accept events, and EventOuts send events (when triggered by some

predefined behavior).  Events must strictly match the simple type (such as integer, float, color) or node type (such as

a Material node) being passed from input to output.  Script parameters are designated as eventIn, eventOut or

exposedField, which respectively correspond to in, out or in/out parameter semantics.  Private fields are simply

designated as field rather than exposedField.

DEF/USE naming conventions.  Node naming and light-weight multiple instancing of nodes is possible

through the DEF (define) and USE mechanisms.  DEF is used to associate names with nodes.  USE permits duplicate

instances of nodes to be efficiently referenced without complete reinstantiation, significantly boosting performance.

Node names created via DEF are also used for routing events to and from fields.  Thus Script nodes (and other 3D

nodes which interact with the script) all must be named using DEF.  The scope of all DEF’ed names is kept local to

the file (or PROTO) where the name  is defined.

ROUTEs.  ROUTE statements define connections between named nodes and fields, allowing events to pass

from source to target.  ROUTE statements usually appear at the end of a file since all nodes must be DEF’ed (named)

prior to referencing.  Typically ROUTEs are used for all events passed into (or out of) Script nodes.  Use of ROUTEs

is not always required, however, since nodes in the VRML scene can be passed by reference as fields to the

encapsulated Script code.  This second approach permits direct manipulation of VRML by Java without using events

or ROUTEs.

Example: event-based control.  A scene demonstrating VRML-Java connectivity using Scripts, events, node

naming and ROUTEs is examined  in Figure 4.   This VRML scene and corresponding Java source code are available

at   http://web.nps.navy.mil/~brutzman/vrml/examples/course/ScriptNodeEventOutControl.wrl 

and http://web.nps.navy.mil/~brutzman/vrml/examples/course/ScriptNodeEventOutControl.java
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Group
Viewpoint
TouchSensor

touchTime
Transform

translation
Shape

appearance
 material

geometry
 text

string
fontStyle

Script InterfaceScriptNode
url
eventIn
eventOut
eventOut

  VRML Scene

import vrml.*;
import vrml.field.*;  import vrml.node.*;

public class  
extends Script

{
eventIn startTime
eventOut
eventOut

public void initialize ()
// connect eventIn & eventOuts
// set  to intermediate value

public void processEvent (Event touch) 
// activated by user’s 
//  & events
// are modified, sent back to VRML scene

} 

  

3

2

1

Figure 4.  Script node interface between VRML and Java.  This example tests event-based VRML-Java functionality.

Note shared events startTime, ChangedText and ChangedPosition.  The following sequence of events occurs:

(0) Initialize method on Java side establishes links, sets trace text in 3D scene to intermediate value.

(1) User clicks trace text in 3D scene with mouse, activating the TouchSensor built-in eventOut touchTime,

which is ROUTEd to trigger the Script node EventIn startTime, which in turn invokes the processEvent()

method in the corresponding Java class.  Changed values for text and position are calculated by the Java

class and then returned to the Script node as eventOut values.

(2) ChangedText eventOut sent to MessageToUser text node, sets trace text in 3D scene to final message value.

(3) ChangedPosition eventOut sent to TextPosition Transform node, moving trace text to bottom of scene.

Example: field-based control.  An alternative to event passing via ROUTEs is to pass references to VRML

nodes as values for fields in the Script node.  In effect, Java gains direct control of VRML nodes and fields, rather than

sending or receiving event messages to set/get values.  Upon initialization, the Java class instantiates the node reference

as a local variable.  During subsequent invocations the Java class can read or modify any referenced field in the scene

graph directly, without using ROUTEs.  A second example follows which demonstrates the exact same functionality

as the preceding example, but uses field-based control instead of events and ROUTEs.  Figure 5 shows how nodes in

the VRML scene are first defined, then passed as parameters to the Java class.  The field-based example is available

via  http://web.nps.navy.mil/~brutzman/vrml/examples/course/ScriptNodeFieldControl.wrl 

and    http://web.nps.navy.mil/~brutzman/vrml/examples/course/ScriptNodeFieldControl.java
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Group
Viewpoint
TouchSensor

touchTime
Transform

translation
Shape

appearance
 material

geometry
 text

string
fontStyle

Script
url  
eventIn
field  ChangedText   USE 
field   USE 

  VRML Scene

import vrml.*;
import vrml.field.*;  import vrml.node.*;

public class  
extends Script

{
eventIn startTime
field
field

public void initialize ()
// connect eventIn & fields
// set ChangedText to intermediate value

public void processEvent (Event touch) 
// activated by user’s 
//  & field
// references directly modify VRML scene

} 

  

1

Figure 5.  Field interface between VRML and Java.  This example tests field-based VRML-Java functionality.  Note

shared event startTime, and shared fields ChangedText and ChangedPosition.  Operation of this example is similar

to Figure 4, except that the Java class directly manipulates VRML nodes via fields instead of sending events.

Script interface performance hints.  Two authoring hints are provided as fields in the Script node for potential

browser optimization:  mustEvaluate and directOutput. In the first example (event-based control), mustEvaluate is set

to FALSE as an author hint allowing the browser to postpone event passing until convenient, in order to optimize

rendering.  Similarly, the author hint directOutput  is set to FALSE since the script only passes events and doesn't

modify VRML nodes directly.  In the second example (field-based control), the opposite values are used.  Since values

in the scene graph might be modified by the script directly (i.e. without notifying the browser via ROUTE activity),

the hint field mustEvaluate is set to TRUE and the browser can't delay event passing as a performance optimization.

Similarly, directOutput is set to TRUE to indicate that the script can modify VRML nodes directly via field control.

If a scene uses both event and field control, the safest approach is to keep both values set to TRUE to maximize browser

responsiveness to script actions.

Browser interface.  Java via the Script node is provided a variety of methods to interact with the host Web

browser.  getName and getVersion provide browser identification information.  getWorldURL provides a string

containing the original URL for the top-level VRML scene.  setDescription resets the top-level page heading.

getCurrentSpeed and getCurrentFrameRate show user navigation and window redraw speeds.  An author’s Java

program can also create and insert VRML source code (including nodes, PROTOs and additional ROUTEs) at run

time.  Java modifies VRML in the scene using the replaceWorld, createVrmlFromString, createVrmlFromURL,

addRoute, deleteRoute, and loadURL methods.  Valuable examples demonstrating these techniques appear throughout

the public-domain JVerge class libraries, which provide a complete Java API mirroring all VRML nodes.  JVerge

accomplishes scene graph changes by sending modifications through the browser interface (Couch 97) (Roehl 97).

Future language interfaces.  Java via VRML’s Script node is well specified and multiple compliant browsers exist.

Other interfaces are also on the horizon which can further extend Java-VRML functionality.  Details follow.

External Authoring Interface (EAI).  Rather than provide Java connectivity from “inside” the VRML scene

via the Script node, the EAI defines a Java or Javascript interface for external applets which communicate from an

“external” HTML web browser (Marrin 97).  EAI applets can pass messages to and from VRML scenes embedded in

an HTML page.  Much of the browser interface is similar but somewhat different semantics and syntax are necessary
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VRML
3D model

Internet
connectivity

Java
computation

Figure 6.  3D, computation

and network access provide

a general entity model.

for event passing and flow of control.  The primary benefit of the EAI is the ability for direct communications between

the encapsulating HTML browser and the embedded VRML browser.  The EAI will likely be proposed as an official

extension to VRML 97.  A next-generation Java-VRML working group is examining additional capabilities and

possibly unifying the EAI with the Script node classes, for consideration in future versions of VRML.

Java3D.  Sun has recently released the Java3D class library for 3D graphics programming (Deering 97).

Java3D is an API, providing a programming interface for 3D that is analogous to the Abstract Window Toolkit (AWT)

for 2D graphics.  Java3D programs are saved as Java byte codes, not as a modeling format.  Although Java3D is

expected to include a loader capable of importing and exporting VRML geometry, it is not yet clear whether the Java3D

event model will be able to similarly import and export VRML events.  Public availability of the Java3D classes adds

a number of new tools for Java programmers interested in VRML scene authoring.  A VRML-Java3D working group

is exploring usage conventions for interoperability, and also prototyping possible specification changes.  Further

unification of these already-complementary approaches holds tremendous promise.

Example Java-VRML research.  Programming Java in combination with VRML

provides great expressive power.  Simply illustrated in Figure 6, this combination of

capabilities appears sufficient to provide a general entity model.  VRML provides the 3D

rendering and dynamic interaction capabilities, while Java provides general computation

capabilities and network access.  A variety of example projects follow.

Multi-user server worlds.  A number of research laboratories and commercial

companies are producing networked games and shared worlds that utilize centralized

servers to share data among multiple participants.  This alternative approach can reliably

scale to several hundred participants.  An extensive example that builds such a world

appears in (Roehl 97).

Networking.  In order to scale to many simultaneous users, peer-to-peer

interactions are necessary in addition to client-server query-response.  As one example,

the IEEE 1278.1 Distributed Interactive Simulation (DIS) protocol is a well-specified way

to pass entity behavior such as position, orientation, collision, fire/detonate and other

message types.  Use of multicast networking enables scalable many-to-many

communications, avoiding server bottlenecks.  DIS is particularly effective at

communicating physics information at interactive rates in real time.  The dis-java-vrml

working group is implementing a public-domain DIS library in Java for use in multiple-

entity VRML worlds, available via http://web.nps.navy.mil/~brutzman/vrtp/dis-java-vrml
Physics of motion.  Displaying realistic entity motion requires properly modeling the underlying physics which

govern entity equations of motion.  Much work has been done to in the graphics and robotics communities to produce

kinematic (velocities only) and dynamic (forces, accelerations) models for many different types of entities.  Such

models typically range from three to six spatial degrees of freedom (x, y, z, roll, pitch and yaw).  The NPS Phoenix

autonomous underwater vehicle (AUV) hydrodynamics model provides a perhaps-worst-case example how

computationally demanding physical responses can be calculated in real time (10 Hz or better on a Pentium processor).

NPS AUV software is available at web.nps.navy.mil/~brutzman/auv.  Eventually we expect that interface conventions will

emerge and physics libraries for most entity types will be widely available.  A particularly appealing feature of such

an approach is that computational load is distributed evenly, with each entity responsible for its own physical response

calculations. Conventions for kinematic human body animation are already under development by the h-anim working

group at http://www.h-anim.org. 
Sound.  Computational requirements for spatial audio rendering are also demanding.  VRML provides a

simple sound node which localizes sound clips with their corresponding geometry.  Widespread work in streaming

audio is beginning to provide relatively low-bandwidth protocols with adequate sound quality and scalability.  Further

work in spatialized audio is beginning to show that advanced techniques for aural rendering are becoming possible on

desktop machines.  Further information is available via the Sound in Interactive Environments (SIE) mailing list at

www.cs.nps.navy.mil/people/phd/storms.

vrtp.  Finally, as the demanding bandwidth and latency requirements of virtual environments begin to be

exercised by VRML and Java, some client-server design assumptions of the HyperText Transfer Protocol (http) may

no longer be valid. Users won't be satisfied with network mechanisms that break down after a few hundred players.

A spectrum of functionality is needed on each desktop which includes client, server, peer-to-peer and network
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monitoring.  Our research group is building a Virtual Reality Transfer Protocol (vrtp) to better take advantage of

available transport-layer functionality for VRML and overcome bottlenecks in http.  Experimentation and quantitative

evaluation are essential to develop the next-generation code needed for diverse inter-entity virtual environment

communications. 

Next steps.  A great deal of implementation work is now in progress.  The best news: VRML and Java are powerful

software languages for 3D modeling, general computation and network access.  They are well matched, well specified,

openly available and portable to most platforms on the Internet.  VRML scenes in combination with Java can serve as

the building blocks of cyberspace.  Building large-scale internetworked worlds now appears possible.  Using VRML

and Java, practical experience and continued success will move the field of virtual reality past speculative fiction and

isolated islands of research onto desktops anywhere, creating the next-generation Web.
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